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Abstract 1 

Efficiently handling long contexts in 2 

transformer-based language models with low 3 

perplexity is an active area of research. Although, 4 

numerous approaches have been recently 5 

presented like Linformer, Longformer, 6 

Performer, Structured state space models (SSMs) 7 

etc., yet it remains an unresolved problem. All 8 

these models strive to reduce the quadratic time 9 

complexity of the attention mechanism to 10 

approximate linear time complexity while 11 

minimizing the loss in quality due to the 12 

effective compression of the long context. 13 

Inspired by the cache and virtual memory 14 

concepts in computer architecture, we improve 15 

the work presented in Long-Short Transformer 16 

(Transformer-LS) that implements a sliding 17 

window for the short attention and compressed 18 

contextual segments for the long attention. Our 19 

enhancements include augmenting the 20 

architecture with attention on dynamically 21 

retrieved uncompressed context segments that 22 

indicate high attention at the compressed level. 23 

Similar to the cache and virtual memory 24 

principle in computers, where in case of a cache 25 

or page miss, not only the needed data is 26 

retrieved from the random-access memory or the 27 

hard disk, but the nearby following data is also 28 

obtained. On a similar note, we too retrieve the 29 

nearby segments in uncompressed form when a 30 

high attention occurs at the compressed level. We 31 

further enhance the long-short transformer by 32 

augmenting the long attention with compressed 33 

overlapping segments to reduce the loss in 34 

quality due to segment fragmentation that occurs 35 

in sequences with long context. Our results 36 

indicate significant improvements over the base 37 

line of the long-short transformer in terms of 38 

perplexity on the popular benchmarks. 39 

1 Introduction 40 

Deep Convolutional Neural Networks (CNNs) 41 

were fundamental in revolutionizing the field of 42 

computer vision. Similarly, the pioneering 43 

induction of the Transformer (Vaswani et al., 44 

2017) architecture in Natural Language 45 

Processing (Singh and Mahmood, 2021) has 46 

resulted in the AI revolution with Large 47 

Language Models (LLMs) such as ChatGPT (J. 48 

Achiam et al., 2023), Bard (G. Team et al., 49 

2023), Llama (H. Touvron et al., 2023) among 50 

others have yielded impressive performances. 51 

The Transformer uses a simple similarity 52 

computation in the form of an inner product on 53 

the learnt positional encoded embeddings of a 54 

sequence of n input words. If the matrix Q and 55 

K contain rows representing embedding of each 56 

word (1𝑥𝑑) , then 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇) 57 

referred to as the “attention”, contains the dot 58 

product similarity of each input word with 59 

every other word in the input sequence. If there 60 

are 𝑛  words being input, referred to as the 61 

context, then 𝑄,𝐾 ∈  ℝ𝑛×𝑑, and 𝐴 ∈  ℝ𝑛×𝑛. 62 

Like parallel feature maps in a CNN, each layer 63 

in the Transformer divides the attention 64 

calculation into parallel heads. The output from 65 

a Transformer layer has the same 66 

dimensionality as input and is obtained by a 67 

simple matrix computation of (𝐴 × 𝑉)  ∈68 

 ℝ𝑑×𝑛 where V ∈  ℝ𝑛×𝑑  is similar to K and 69 

contains rows of learnt position encoded 70 

embeddings of input words. For language 71 

models, where text generation is carried out 72 

based on a given context, the attention matrix is 73 

masked in a triangular fashion so that future 74 

tokens are not visible in the training process. 75 

Multiple layers of Transformer blocks are used 76 

before feeding the result of the last layer to a 77 

classification head. Because attention 78 

computation in each head is 𝑂(𝑛2), for long 79 

contexts, this becomes a computational 80 

bottleneck. Many approaches have been 81 

proposed in the last few years to reduce the 82 

quadratic time complexity of attention to either 83 

linear or sub quadratic complexity. Some of the 84 

notable works include (Dai Z et al., 2019), 85 

(Wang et al., 2020), (Beltagy et al., 2020), 86 

(Kitaev et al., 2020), (Choromanski et al., 87 

2021), (Hawthorne et al., 2022), (H. Ji et al., 88 

2022), (Martins et al., 2022) among others. We 89 

provide a brief background in the above-90 

mentioned approaches used in reducing the 91 

attention complexity. Then we elaborate on the 92 
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Long-Short Transformer that we will further 93 

enhance in this work. 94 

2 Background and Related Work 95 

An important earlier work in handling long 96 

contexts was presented by (Dai Z et al., 2019). 97 

The authors divided the context into segments 98 

and used segment level recurrence and a 99 

corresponding positional encoding to allow it to 100 

handle longer contexts. It achieved impressive 101 

results on the perplexity and BPC at that time. 102 

(Wang et al., 2020) accomplished O(n) 103 

complexity through linear self-attention. The 104 

authors demonstrate that the attention is 105 

typically low rank, and thus can be 106 

approximated by a low rank matrix. Here, the Q 107 

and V matrices ∈  ℝ𝑛×𝑑 are projected to lower 108 

dimension matrices ∈  ℝ𝑘×𝑑 where k < n. Thus 109 

attention 𝐴 = 𝑄𝐾𝑇  ∈  ℝ𝑛×𝑘 . The output 110 

(𝐴 × 𝑉)  ∈  ℝ𝑛×𝑑 , i.e., same as the original 111 

transformer. Since k is fixed, the attention 112 

complexity is O(n).  113 

Although (Wang et al., 2020) reduced the 114 

attention complexity significantly, especially if 115 

𝑘 <<  𝑛 , note that, it cannot be effectively 116 

used in autoregressive training and generation, 117 

as the projection of Q compresses the 118 

information along the context, making the 119 

masking of attention for future tokens invalid. 120 

However, for classification problems where 121 

masking of attention is not needed, their 122 

architecture is effective in reducing complexity. 123 

 124 

Another approach introduced by (Beltagy et al., 125 

2020) used sparse attention patterns instead of 126 

the full dense attention. The authors proposed 127 

sliding window attention, where tokens 128 

attended only to the nearby past, a dilated 129 

sliding window, and a mix of global and sliding 130 

window attention where some tokens attend to 131 

all tokens while others only attend to nearby 132 

tokens. For autoregressive modeling (Beltagy et 133 

al., 2020) used dilated sliding window 134 

attention. Another notable work in reducing the 135 

attention complexity was performed by (Kitaev 136 

et al., 2020). The authors key idea was to use 137 

locality sensitive hashing which reduces the 138 

attention complexity to 𝑂(𝑛 𝑙𝑜𝑔 𝑛). Note that 139 

because of the hashing process, the architecture 140 

is not suited for autoregressive modeling. 141 

A different approach to reduce the attention 142 

complexity was taken by (Choromanski et al., 143 

2021) where the attention is decomposed as a 144 

product of non-linear functions of original 145 

query and key matrices referred to as random 146 

features. This allows the attention to be 147 

encoded more efficiently via the transformer 148 

query and key matrices. Further efficient 149 

handling of long contexts accomplished by 150 

(Hawthorne et al., 2022) divided the input 151 

sequence into smaller key/value and query 152 

components. These components underwent 153 

cross attention in the first layer with a latent ∈154 

 ℝ𝑙×𝑑 where l is the size chosen in splitting the 155 

input sequence into the query part. The 156 

remaining layers operate on the 𝑙 × 𝑑  size 157 

instead of the usual 𝑛 × 𝑑 size as in a standard 158 

transformer. Although this cross attention on 159 

the partitioned input sequence results in 160 

efficient handling of long sequences, because 161 

of the reduced query size, the equivalent effect 162 

is more like a sliding window attention. 163 

More recently, a different approach to handling 164 

long contexts was proposed via structure state 165 

space models. The work by (A. Gu et al., 2022) 166 

proposes the Structured State Space Sequence 167 

model (S4) based on a new parameterization 168 

that can be computed much more efficiently. A 169 

variation of the state space approach proposed 170 

by (X. Ma et al., 2023) uses single-head gated 171 

attention mechanism equipped with exponential 172 

moving average to incorporate inductive bias of 173 

position-aware local dependencies into the 174 

position-agnostic attention mechanism. They 175 

also present its variation with linear time 176 

complexity for handling long sequences. 177 

Further progression on the state space models 178 

yielded better results (D. Y. Fu et al., 2023), 179 

(Gu, Albert and Tri Dao., 2023) who achieved 180 

a very low perplexity score. Most recently 181 

(Maximilian et al., 2024) introduced 182 

exponential gating and parallelization in 183 

LSTMs to achieve extended memory. Some of 184 

the model sizes consisted of several billion 185 

parameters. We outperform the smaller version 186 

of these models with similar size as ours on the 187 

perplexity metric as shown in Table 2. 188 

An interesting concept in handling long 189 

sequences was presented by (C. Zhu et al., 190 

2021). Here a sliding window approach is used 191 

in handling near term attention, while a set of 192 
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compressed segments for the entire past context 193 

is used as long-term attention. Both short and 194 

long attention are combined in the overall 195 

attention. The slight drawback of the approach 196 

is that the longer context is effectively used in 197 

compressed form and thus may lose some key 198 

contextual information in being able to generate 199 

the output in an autoregressive environment. 200 

We address this problem by further augmenting 201 

the long-short attention by using uncompressed 202 

highly attentive segments. Since long short 203 

attention divides the context into equal size 204 

segments before projecting each segment to a 205 

smaller size, there is potential for a loss in 206 

information due to segment fragmentation. We 207 

also improve this aspect by using overlapping 208 

segments and augment this to the existing long-209 

short model. Thus, our enhanced long-short 210 

architecture involves four components in the 211 

overall attention, a sliding window attention, 212 

long attention based on compressed segments, 213 

long attention based on overlapping segments, 214 

and uncompressed segmented attention for few 215 

high attentive segments beyond the sliding 216 

window part. We describe the details of our 217 

design in the section 3. For completeness, we 218 

summarize the composition of a Transformer, 219 

followed by the ideas of long-short 220 

Transformer, that we build upon in our work.  221 

2.1 Canonical Transformer 222 

In normal multi-headed attention, if 𝑄,𝐾, 𝑉 ∈223 

ℝ𝑛×𝑑  are the query, key and value 224 

transformations of the input embeddings with 225 

sequence length of n and embedding dimension 226 

of d, then the scaled dot-product attention in the 227 

𝑖-th Head 𝐻𝑖  ∈ ℝ𝑛×𝑑𝑘 is given as: 228 

𝐻𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) =  229 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 [
𝑄𝑊𝑖

𝑄
(𝐾𝑊𝑖

𝐾)𝑇

√𝑑𝑘
]  𝑉𝑊𝑖

𝑉 = 𝐴𝑖𝑉𝑊𝑖
𝑉     (1) 230 

Where 𝑑𝑘 = 𝑑/ℎ   is the dimension of each 231 

head. The output in each transformer layer is 232 

obtained by catenation of the output of all 233 

heads and transformed further via this 234 

projection matrix.  235 

𝑊𝑜 ∈ ℝ𝑑×𝑑  𝑎𝑠 𝐿𝑎𝑦𝑒𝑟𝑗 =236 

𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻0, 𝐻1, ⋯ 𝐻ℎ−1)𝑊
𝑜                        (2)   237 

 238 

After feeding the embedding of a sequence of 239 

one hot encoded words, x (with position 240 

encoding PE added) through p transformer 241 

layers, a classification layer is used at the output 242 

of the last layer to decide the output produced by 243 

the transformer. For autoregressive text 244 

generation, the classification layer’s final output 245 

is equal to the size of the dictionary of unique 246 

words in the corpus. 247 

 248 

𝑜𝑢𝑡 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟[𝑙𝑎𝑦𝑒𝑟𝑝−1(𝑙𝑎𝑦𝑒𝑟𝑝−2(… 𝑙𝑎𝑦𝑒𝑟0 249 

(𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥) + 𝑃𝐸(𝑥))))]                          (3) 250 

 251 

2.2 Long Short Transformer 252 

(C. Zhu et al., 2021) aggregated the local 253 

attention around a smaller window (sliding 254 

window), with a projection of the full sequence 255 

attention to a smaller size, so that we can 256 

efficiently handle long sequences without the 257 

quadratic attention complexity. For short 258 

attention, the approach here is to use a segment 259 

level sliding window attention, where the input 260 

sequence is divided into disjoint segments with 261 

length w (e.g., w=128 and sequence length is 262 

1024). For non-autoregressive applications, all 263 

tokens within a segment attend to all tokens 264 

within its home segment, as well as w/2 265 

consecutive tokens on the left and right side of 266 

its home segment (zero-padding when 267 

necessary), resulting in an attention span over a 268 

total of 2w key-value pairs. This is depicted in 269 

Figure 1.   270 

 271 

Figure 1. Segment-based Sliding Window Attention 272 

 273 

For each query 𝑄𝑡 at the position t within the i-th 274 

head, the 2w key-value pairs within its window 275 

are: 𝐾𝑡̃  , 𝑉𝑡̃ ∈ ℝ2𝑤×𝑑 . The short attention 𝐴̅𝑠𝑖
∈276 

ℝ2𝑤×𝑑𝑘 is then given by the following equation: 277 

 278 

𝐴̅𝑠𝑖
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [

𝑄𝑊𝑖
𝑄𝐾̃𝑖

𝑇

√𝑑𝑘

]                              (4) 279 

 280 

Execution wise the segment-level sliding 281 

window attention (referred to as short attention) 282 

is more time efficient than the per-token sliding 283 

window attention where each token attends to 284 

itself and w tokens to its left and right, and its 285 

memory consumption scales linearly with 286 
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sequence length. For auto-regressive 287 

applications, the future tokens in the current 288 

segment are masked, and only the previous 289 

segment is used. 290 

For long attention, the key and value 291 

transformations for the input sequence are first 292 

divided into segments of fixed size s, and then 293 

projected to a smaller dimension r, where the 294 

projection 𝑃𝑙𝑖 ∈  ℝ𝑛×𝑟.  Figure 2 depicts this 295 

process. 296 

 297 

 298 

Figure 2. Segmented Long Attention with Compressed 299 

Segments 300 

 301 

Mathematically, the long attention 𝐴𝑙𝑖
̅̅ ̅̅  (in each 302 

head 𝑖) as followed by the long-short Transformer 303 

can be described as 304 

𝑃𝑙𝑖 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑊𝑖
𝑃), 𝐾̅𝑙𝑖 = 𝑃𝑙𝑖

𝑇𝐾𝑊𝑖
𝐾 , 𝑉̅𝑙𝑖 =305 

𝑃𝑙𝑖
𝑇𝑉𝑊𝑖

𝑉                                                                    (5) 306 

𝐴̅𝑙𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [
𝑄𝑊𝑖

𝑄
𝐾̅𝑙𝑖

𝑇

√𝑑𝑘

]                               (6) 307 

 308 

The output of in the 𝑖𝑡ℎ head is: 309 

𝐻̅𝑖 = 𝐴̅𝑙𝑖  (𝑃𝑙𝑖
𝑇𝑉𝑊𝑖

𝑉)                                             (7) 310 

 311 

Note that the long attention is effectively done on 312 

a compressed form of K and V, as the projection 313 

causes the input sequence of size n to be 314 

compressed to size r. This results in full attention 315 

to now be replaced with the implicit product of 316 

two low-rank matrices 𝑃𝑙𝑖
𝑇̅̅̅̅ ∈ ℝ𝑟×𝑛  and 𝑄𝑊𝑖

𝑄 ∈317 

ℝ𝑛×𝑑 , and thus the computational complexity is 318 

of long attention is reduced from 𝑂(𝑛2)  to 319 

𝑂(𝑟𝑛).   320 

Long-Short Transformer integrates the short and 321 

long attentions into a single attention. While the 322 

short attention can attend to most recent input, 323 

the long attention is in compressed form. Further, 324 

the long attention is based on segmentation of the 325 

input sequence that may suffer from segment 326 

fragmentation as the information in each segment 327 

is compressed via the projection mechanism. We 328 

improve upon these shortcomings and present 329 

our enhanced long short architecture in the 330 

following section. Our contributions can be 331 

summarized as: 332 

1. Improving the segment fragmentation of the     333 

projection mechanism followed in long 334 

attention by adding projections of segments 335 

that have an 𝑠/2  overlap where 𝑠  is the 336 

segment size, with the existing segment-based 337 

projection mechanism.   338 

2. Since the long attention is based on an 339 

effective compression of the input sequence, 340 

we develop an innovative uncompressed 341 

attention mechanism where some of the 342 

highly attentive segments are used 343 

dynamically in uncompressed form.   344 

3. The existing short and long attention are 345 

combined with our two enhancements in an 346 

effective manner to result in an architecture 347 

that can efficiently handle long attentions 348 

without causing much loss of attention 349 

information. 350 

 351 

3. Enhanced Long-Short Transformer 352 

The long-term attention in the existing Long-353 

Short Transformer is done at a compressed level 354 

(projection to r causes an effective compression 355 

of the input context). Therefore, one of our 356 

enhancements is to augment the long attention 357 

with an attention that is based on a subset of 358 

highly attentive uncompressed segments. 359 

3.1   Enhanced Long Attention with Segment                            360 

Caching  361 

The subset of segments that are selected for 362 

attention at the uncompressed level is completely 363 

dynamic and obtained by the vector magnitude 364 

of the compressed segment-wise attention. In 365 

simple words, we examine the segment-wise 366 

long attention 𝐴̅𝑙𝑖  as given by Equation 6. Since 367 

𝐴̅𝑙𝑖 ∈ ℝ𝑛×𝑟 , and if there are 𝑛𝑠  segments, then 368 

each row  in 𝐴̅𝑙𝑖 contains a set of row vectors of 369 

size 𝑟/𝑛𝑠  , as denoted by segmented attention 370 

𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ in Equation 8. Magnitude of each vector 371 

𝑎𝑖,𝑗⃗⃗ ⃗⃗  ⃗ ∈ ℝ1×𝑟/𝑛𝑠  in Equation 8, indicates the 372 

attention of word 𝑖 to the jth segment in the long 373 

attention.  374 

𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ = [

𝑎1,1⃗⃗ ⃗⃗⃗⃗  ⃗ 𝑎1,2⃗⃗ ⃗⃗⃗⃗  ⃗ . . . . 𝑎1,𝑛𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

. . . . . . . . . .

. .
𝑎𝑛,1⃗⃗ ⃗⃗ ⃗⃗  ⃗

. .
𝑎𝑛,2⃗⃗ ⃗⃗ ⃗⃗  ⃗

. .

. .
. .
. .

. .
𝑎𝑛,𝑛𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

]             (8) 375 
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For execution efficiency, we average the 376 

segment attention vectors in p consecutive rows 377 

resulting in a segment attention matrix 378 

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
∈  ℝ𝑚×𝑛𝑠  where m = n/p. Then we 379 

choose top k segments by magnitude of each 380 

vector in each row of the segment attention 381 

matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
 382 

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
= 

[
 
 
 
 
 
 
 
 
 
 
 

𝑡𝑜𝑝𝑘((∑𝐴𝑠𝑖
̅̅ ̅̅

𝑝

𝑡=1

[𝑡, : ])/𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

) 

𝑡𝑜𝑝𝑘(( ∑ 𝐴𝑠𝑖
̅̅ ̅̅

2𝑝

𝑡=𝑝+1

[𝑡, : ])/𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

)

. .

. .

𝑡𝑜𝑝𝑘((( ∑ 𝐴𝑠𝑖
̅̅ ̅̅

𝑛

𝑡=𝑛−𝑝

[𝑡, : ])/𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

)
]
 
 
 
 
 
 
 
 
 
 
 

    (9)  383 

Note that each entry in the segment attention 384 

matrix, 𝐴𝑒𝑔𝑠𝑎𝑣𝑔𝑖
[𝑖, 𝑗]  , indicates the segment 385 

number that has high attention to the sequence of 386 

p words (positioned from (𝑖 − 1)𝑥𝑝  to 𝑖𝑥𝑝 ) in 387 

the input context. Rather than using these 388 

attentive segments in compressed form, we 389 

extract them from the segmented K and V 390 

matrices before doing any compression on these. 391 

Similar to how in cache memory design (in 392 

computer architecture), in case of a cache miss, 393 

we not only retrieve the needed data from the 394 

RAM, but also bring a few consecutive following 395 

words, as there is high probability that these may 396 

be needed in the near future. In case of segments 397 

that we determine most attentive (by the top k 398 

order), we also retrieve u consecutive segments. 399 

To clarify our approach, if the sequence length is 400 

n = 1024, and long attention segment size = 16, 401 

then there will be 64 segments in the 402 

uncompressed K and V matrices. If the projection 403 

size r = 256 (ratio of 1024/256=4), then each 404 

segment of size 16 will be compressed to size of 405 

4, resulting in long attention matrix 𝐴𝑙𝑖
̅̅ ̅̅  of size 406 

1024x(64x4) i.e., 1024x256. If we choose to 407 

average p=32 consecutive rows in 𝐴𝑙𝑖
̅̅ ̅̅  , and take 408 

the magnitude of each of the 1x4 vectors in each 409 

row (corresponding to the 64 segments), then the 410 

segment attention matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
will be 32x64. 411 

Taking the index of top k entries in each row of 412 

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
 will give us the index of most attentive 413 

k segments to the corresponding set of 32 words 414 

in the input sequence. Assembling these top k 415 

attentive segments, and one segment before and 416 

one segment after the attentive segment (if u=3), 417 

will result in 15 segments per row. If k=5 is 418 

chosen in topk and u=3 which indicates using of 419 

u-1 many nearby segments for each attentive 420 

segment. Thus, the cache K, V matrices 𝐾𝑐 , 𝑉𝑐 ∈ 421 

ℝ(𝑛/𝑝)×(𝑘×𝑢) (e.g., 32x(15x16) = 32x240 in our 422 

example) contain the most attentive 15 segments 423 

in uncompressed form. From the most attentive 424 

kxu segments in 𝐾𝑐  , we can obtain the cache 425 

attention 𝐴̅𝑐𝑖
 ∈  ℝ𝑛×(𝑘×𝑢) as, 426 

𝐴̅𝑐𝑖
=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑊𝑖

𝑄
[

𝐾𝑐

𝐾𝑐. .. .
𝐾𝑐

]

𝑇

)/ √𝑑𝑘            (10)  427 

Note that we stack the 𝐾𝑐 p times to match the 428 

dimensionality with Q. 429 

3.2 Enhanced Long Attention with 430 

Overlapping Segments 431 

In addition to the original long attention in the 432 

Long-Short Transformer that uses the projections 433 

on each segment, we augment the existing long 434 

attention by using overlapping segments (with 435 

50% overlap in augmented long attention) as 436 

shown in Figure 3. The motivation behind the 437 

overlap is to reduce the effect of segment 438 

fragmentation in long attention. Zero padding in 439 

the beginning segment is added to ensure the 440 

same dimensionality for the overlapped long 441 

segment attention. 442 

 443 

 444 

Figure 3. Overlapping Segmented Long Attention 445 

with Compressed Segments 446 

The overlapped long segment attention 𝐴̅𝑜𝑖
 447 

∈ ℝ𝑛×𝑟 similar to Equation 5 is given below. 448 

𝑃𝑜𝑖
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑊𝑖

𝑃𝑜), 𝐾̅𝑜𝑖
= 𝑃𝑜𝑖

𝑇𝐾𝑊𝑖
𝐾 449 

𝑉̅𝑜𝑖
= 𝑃𝑜𝑖

𝑇𝑉𝑊𝑖
𝑉                                                     (11) 450 



6 

 
 

𝐴̅𝑜𝑖
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 [

𝑄𝑊𝑖
𝑄
𝐾̅𝑜𝑖

𝑇

√𝑑𝑘

]                            (12) 451 

𝐻̅𝑜𝑖
= 𝐴̅𝑜𝑖

 (𝑃𝑜𝑖
𝑇𝑉𝑊𝑖

𝑉)                                       (13) 452 

3.3 Aggregated Long-Short Attention 453 

The final attention in our enhanced architecture is 454 

obtained by aggregating the four attentions 455 

described earlier, i.e., the short attention 𝐴̅𝑠𝑖
∈ 456 

ℝ𝑛×2𝑤 that uses segment-wise sliding window, 457 

the segment based compressed long attention 458 

𝐴̅𝑙𝑖 ∈ ℝ𝑛×𝑟 as proposed by (C. Zhu et al., 2021). 459 

Our cache attention 𝐴̅𝑐𝑖
∈ ℝ𝑛×(𝑘×𝑢×𝑠) is based on 460 

uncompressed high attention segments, and 461 

overlapping segment-based compressed attention, 462 

𝐴̅𝑜𝑖
∈ ℝ𝑛×𝑟. We add the two long and overlapping 463 

attentions, 𝐴̅𝑙𝑖 and 𝐴̅𝑜𝑖
. Thus, the final enhanced 464 

attention 𝐴𝑒𝑖
∈ ℝ𝑛×𝑓  is: 465 

 466 

𝐴𝑒𝑖
= [𝐴̅𝑠𝑖

ǁ(𝐴̅𝑙𝑖 + 𝐴̅𝑜𝑖
)ǁ𝐴̅𝑐𝑖

]                             (14) 467 

 468 

where ǁ  indicates the catenation of different 469 

attentions, and 𝑓 = 2𝑤 + 𝑟 + (𝑘 × 𝑢 × 𝑠), w is 470 

the window size in short i.e., sliding window 471 

attention, r is the projection size in compressing 472 

the long attention, k is the 𝑡𝑜𝑝 𝑘  factor in 473 

retrieving high attention top k segments, u-1 is 474 

the number of neighboring segments to retrieve 475 

for cache attention, 𝑠 is the segment size in long 476 

attention. For example, for 𝑡𝑜𝑝 𝑘 of 5 and u = 3, 477 

segment size in short attention, w = 128, segment 478 

size in log attention = 16, r = 512, for an input 479 

sequence length of 2048, the size of our 480 

combined attention matrix is 2048x762. 481 

 482 

4. Results 483 

 484 

We use the long-short transformer (C. Zhu et al., 485 

2021) as the baseline architecture. Instead of 486 

focusing on the absolute best results for 487 

perplexity and BPC, which often are achieved 488 

through extremely refined training schedules and 489 

large model sizes, we focus on the improvements 490 

over the baseline. Therefore, the results we show 491 

are more accurate reflection of the architectural 492 

improvements of our design. The baseline 493 

architecture is also programmed by us, and the 494 

enhancements we propose are programmed in the 495 

same implementation and can be selectively 496 

turned on or off to see the contribution of each 497 

enhancement. We also use similar training 498 

schedules for the different architectures being 499 

compared. Table 1 shows the perplexity results 500 

for wikitext-103 dataset. It uses sequence length 501 

of 1024, short attention segment size of 128, long 502 

attention segment size of 16, compression of the 503 

long sequence by a factor of 4, i.e., r=256, and 504 

different values of k in top k cache attention, and 505 

neighboring segments retrieval u of 1 or 3 (which 506 

indicates the segment before the attentive 507 

segment, and the one after it is also retrieved. 508 

 509 

Model Model 

Size 

Perplexity 

Long-Short Baseline 122.52 

million 

23.74 

Enhanced Long-Short 

(k=3, u=1) 

122.52 

million 

23.31 

Enhanced Long-Short 

(k=5, u=1) 

122.52 

million 

22.75 

Enhanced Long-Short 

(k=7, u=1) 

122.52 

million 

21.32 

Enhanced Long-Short 

(k=5, u=3) 

122.52 

million 

21.26 

Table 1. Perplexity results Comparing the Baseline 510 

and our Enhanced Architecture 511 

Note that our enhanced architecture does not 512 

cause any increase in the number of model 513 

parameters over the baseline long short 514 

Transformer. The models used for results in 515 

Table 1 have 12 layers, 12 heads, and an 516 

embedding size of 768 (for all architectural 517 

variations). For a sequence length of 1024 518 

(which is same as used in GPT-2), using 7 519 

segments (k=7, u=1) yielded considerable 520 

improvement in perplexity. Increasing k beyond 521 

7 did not seem to considerably reduce perplexity 522 

further. Since we have two major enhancements 523 

of cache attention and overlapping segment-524 

based attention over the baseline, Table 2 shows 525 

an ablation study of the effects of each 526 

architectural improvement. 527 

Figure 4 depicts the 64 attention vectors for each 528 

segment (from compressed long attention, after 529 

averaging p=256 rows) corresponding to the 64 530 

segments during the beginning of training. The 531 

highest top k magnitude vectors then determine 532 

the segment to use in uncompressed form for our 533 

cache attention.  534 
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Table 3 shows the BPC results on the enwik-8 535 

benchmark. The 23 million model uses 8 layers, 536 

8 heads and embedding size of 512. The 34.88 537 

million models used 12 layers. It is interesting to 538 

note that the relative improvement in BPC by our 539 

enhanced architecture is less pronounced as 540 

compared to the perplexity improvements. This 541 

could be attributed to the fact that majority of 542 

improvements are attributed to cache attention 543 

which uses a few highly attentive uncompressed 544 

segments in long attention. 545 

 546 

Architecture Model 

Size 

(Millions) 

Perple-

xity 

Long-Short (Baseline-Ours) 122.52 23.74 

Transformer-XL (Standard) 151 24 

∞-former 160 24.22 

LaMemo 151 23.77 

H3 (Hungry Hungry Hippos) 125 23.7 

Llama 125 23.16 

Mamba 125 22.49 

xLSTM[7:1] 125 21.47 

Enhanced Long Short with 

overlapping segments only 

 

122.52 

 

23.47 

Enhanced Long Short with 

cache attention only (k=7, 

u=1) 

 

122.52 

 

21.67 

Enhanced Long Short with 

overlapping segments and 

cache attention (k=7, u=1) 

 

 

122.52 

 

 

21.32 

Table 2. Ablation Study of Architectural 547 

Enhancements  548 

 549 

While this benefits the perplexity which is a 550 

measure of the model’s prediction capability, but 551 

BPC not as much, as BPC is more of a 552 

compression efficiency measure of the model. 553 

 554 

 555 

 556 

Figure 4. Attention Vectors from Compressed Long 557 

Attention  558 

Model Model Size BPC 

Long-Short Baseline 23 million 1.192 

Enhanced Long-Short 

(k=7, u=1) 

23 million 1.188 

Long-Short Baseline 34.88 million 1.173 

Enhanced Long-Short 

(k=7, u=1) 

34.88 million 1.167 

Table 3. Comparison of BPC on the enwik-8 559 

Benchmark  560 

 561 

5. Discussion 562 

 563 

Since the uncompressed segments to be used in 564 

our cache attention design are dynamically 565 

decided based on the input sequence, the 566 

execution time increases as more segments (i.e., 567 

higher k) are used. When we use, sequence 568 

length of 1024, compression r = 256, k = 7, u = 569 

1, short attention segment size of 128, then the 570 

size of aggregated attention (short, long, cache, 571 

overlapping) is 1024x624. 572 

Since our cache attention mechanism as 573 

explained in section 3.1 is completely dynamic, 574 

and uses the most attentive segments in 575 

uncompressed form, we average the attention 576 

vectors over p rows (to improve efficiency of 577 

execution) as given by Equation 9.  578 

If we use a sequence length of 1024, and average 579 

over 256 rows, then the segments determined by 580 

our cache attention mechanism part way through 581 

the training of the model appears as shown in 582 

Table 4. Note that to implement the 583 

autoregressive behavior, the input sequence 584 

cannot attend to a future segment. Our 585 

implementation guarantees that the input 586 

sequence can only attend to a previous segment. 587 

For example, when attending to words 768-1023 588 

in the input sequence, the maximum segment that 589 

the cache attention can use is 47 (if the long 590 

segment size is 16, then there are 64 segments in 591 

the 1024 size sequence).  592 

One of the important recent papers in handling 593 

long contexts has indicated that current language 594 

models do not robustly make use of information 595 

in long input contexts (N. F. Liu et al., 2023). 596 

They studied different models and concluded that 597 

“performance is often highest when relevant 598 

information occurs at the beginning or at the end 599 

of the input context, and significantly degrades 600 

when models must access relevant information in 601 

the middle of long contexts.” 602 
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Input 

Sequence 

Top k 

Attentive 

Segments  

(k =7, u=1) 

Comments 

0 – 255 

words 

[ -1, -1, -1, -1, -

1,  -1,  -1] 

No cache 

segments are 

used to prevent 

future token 

leakage 

256-511 

words 
[ 7, 8, 11, 12, 

13, 14, 15] 

Maximum 

segment 

allowed = 15 

512-767 

words 
[ 7, 8, 27, 28, 

29, 30, 31] 

Maximum 

segment 

allowed = 31 

768-1023 

words 
[ 8, 29, 32, 35, 

37, 44, 47] 

Maximum 

segment 

allowed = 47  

Table 4. Most Attentive Segments Used by our Cache 603 

Attention Part way in Training. 604 

 605 

Note that our cache attention model addresses 606 

this aspect nicely in the sense it uses attentive 607 

segments dynamically regardless they are needed 608 

in the beginning or the middle of input context. 609 

For example, see the last row in Table 4 which 610 

indicates the highest attentive segments that are 611 

used. Segments 32, 35, 37 are relatively in the 612 

middle of the input context. When we determine 613 

the most attentive segment to use in our cache 614 

attention, if the neighboring segment parameter 615 

count u>1, then as we look at the segment index 616 

of the next or previous index, a duplicate may 617 

occur as the next segment may already be one of 618 

the high attentive segments. Similarly, if the high 619 

attentive segments belong to a future segment, 620 

we replace them by one of the allowed segments. 621 

Since information segmentation should not 622 

occur, the segment we select to be added is the 623 

one that is contiguous to an existing high 624 

attention segment. 625 

6 Conclusions 626 

Handling long contexts in an efficient manner 627 

without loss of performance is an important area 628 

of research in language models. Although many 629 

approaches have been recently proposed to 630 

address this problem, we present a new 631 

innovative solution that is motivated by the 632 

cache and virtual memory concepts in computer 633 

architecture. In such designs, if there is a cache 634 

or page miss, the needed data is retrieved from 635 

the disk or RAM. We handle long contexts by 636 

diving them into small segments. By the 637 

magnitude of the compressed attention vectors, 638 

we determine the most attentive segments, and 639 

then use these in uncompressed form. Similar to 640 

the cache memory design, we also use 641 

consecutive segments near to the high attention 642 

segments to improve the language model 643 

predictive performance. Our results on the 644 

perplexity indicate significant improvement over 645 

the baseline architecture that uses short and long 646 

compressed attention. For the BPC, the cache 647 

attention mechanism does not show remarkable 648 

improvement on the baseline. We conjecture that 649 

the BPC that favors compression capability is not 650 

benefited by the relevant segment usage that our 651 

model provides which is helpful in model 652 

prediction capability. Another advantage of our 653 

approach is that the use of high attention 654 

segments is dynamic and depends on the input 655 

sequence. Thus, if the model needs to use 656 

information in the middle or anywhere in the 657 

input context, it is provided in uncompressed 658 

form via the high attention determination on the 659 

compressed segments. 660 

7   Limitations 661 

The only shortcoming of our approach we feel is 662 

that the dynamic segment attention is relatively 663 

slow during training. We partially overcome this 664 

by initially pretraining the model without 665 

dynamic attention, and then fine tune it on our 666 

cached attention. Our future work involves in 667 

applying the cache attention to reduce the model 668 

complexity of large language models and to 669 

create a hierarchical cache design such that very 670 

long contexts can be efficiently handled.  671 

Further, our model sizes and datasets were 672 

constrained by computational resources available 673 

to us. We used GPU RTX 4090 and therefore 674 

could not use larger datasets such as PG-19 and 675 

run larger models with larger embedding size, 676 

layers, and heads.  677 

 678 

 679 

 680 

 681 

 682 
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Appendix 784 

A. Further Details on our Enhanced 785 

Caching Transformer 786 

In our caching protocol we compress and 787 

dynamically retrive the most relevant 788 

compressed segments for any given input. Based 789 

on the design constraints an appropriate amount 790 

of input sequence compression is performed. 791 

Thereafter the sequence is split into the desired 792 

segments and we choose the most similar 793 

segments for each query and retrieve them in the 794 

original uncompressed form. It ensures only the 795 

most relevant information is being picked. This 796 

not only helps in reducing the context size but it 797 

also enables in preserving key information. This 798 

enhanced caching attention technique is 799 

explained in greater detail in the subsequent 800 

sections. 801 

A.1  Enhanced Caching Attention 802 

 803 

Figure 5. Downsized Compression of Attention 804 

Matrix along 𝐾𝑐 ,  𝑉𝑐   805 

Consider the length of the input sequence to be 806 

1024 tokens that need to be compressed and 807 

down projected to 256 tokens. Here we choose to 808 

divide the row into (𝑛𝑠) 64 segments. This will 809 

yield to a compression ratio (𝑟/𝑛𝑠)  of 4. The 810 

attention matrix will be of size 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ ∈ ℝ𝑛×𝑟 . 811 

Therefore for 𝑛𝑠  segments, each row in 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ 812 

will consist of row vectors with size 𝑟/𝑛𝑠. 813 

Further, the magnitude of the vector 𝑎𝑖,𝑗⃗⃗ ⃗⃗  ⃗ ∈814 

ℝ1×𝑟/𝑛𝑠  will represent the attention of the 𝑖𝑡ℎ 815 

word token to the 𝑗𝑡ℎ compressed segment in the 816 

long attention as shown in Figure 5. Thereafter, 817 

we compute the root mean square for each of the 818 

(1 ⨯ 4)  sized attention vectors 𝑎𝑖,𝑗⃗⃗ ⃗⃗  ⃗ , hence the 819 

dimension across each row is downsized from 820 

256 to 64. We use this size for the subsequent 821 

attention processing steps as demonstrated in the 822 

following section.  823 

A.2  Averaging in Segment Caching  824 

Attention computation and top-k segment 825 

retrieval across all 1024 rows turned out to be 826 

computationally cumbersome and time intensive. 827 

Therefore, to achieve execution efficiency, we 828 

averaged all 1024 input vectors across 𝑝 829 

consecutive rows for the previous attention 830 

matrix 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ ∈ ℝ𝑛×𝑟  where 𝑝  is a 831 

hyperparameter.  832 

 833 

Figure 6. Averaged Compression of 834 

Attention Matrix along the Input Length 835 

This segment attnetion matrix is further reshaped 836 

and compressed into 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
∈  ℝ𝑚×𝑛𝑠 , where 837 

m = n/p=32 as shown in Figure 6. This 838 

implementation was key for our model to 839 

achieve superior results outperforming other 840 

popular language models of similar size as 841 

mentioned in Table 2 and resulted in a faster run 842 

time as well. 843 

A.3  Top-k Retrieval in Segment Caching  844 

Post the compression and averaging, the top 𝑘 845 

most similar segments were chosen to be 846 

retrieved by the order of the attention magnitude 847 



11 

 
 

betweeen the modified input and key/value 848 

matrices. These segments were picked 849 

corresponding to each row 𝑚 , which is an 850 

averaged input sequence of 32 consecutive words 851 

(aveeraged down from 1024) from the segment 852 

attention matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
.  853 

 854 

Figure 7. Enhanced Attention Matrix after 855 

top-k retrieval 856 

The hyperparameter 𝑘  is chosen based on the 857 

performance needs and based on that value along 858 

with the 𝑘𝑡ℎ segment, we also extract one 859 

segment before and after the 𝑘𝑡ℎ  attentive 860 

segment.  861 

Therefore, we define 𝑢  as the hyperparameter 862 

that regulates the number of adjacent segments 863 

around 𝑘  that need to be retrieved from the 864 

sequence. For instance, with 𝑘 =  5 and 𝑢 = 3   865 

will result in a total of 15 uncompressed 866 

extracted segments of length 16 from each row 867 

as shown in Figure 7.  868 

A.4 Overlapping Segments in Long Attention  869 

 870 

Figure 8. Long Attention with Overlapping Segments 871 

As discussed earlier that the segmentation of 872 

input into chunks leads to fragmentation of long-873 

term information. This becomes a challenge in 874 

building long term dependency. This issue hasn’t 875 

been addressed in prior Transformer based 876 

language models. Therefore, we augment the 877 

long attention with segments with a 50% overlap 878 

to maintain the continuity of data as shown in 879 

Figure 8. The model is trained with the 880 

overlapping data as the query that needs to learn 881 

the original chunks as key and values. 882 

A.5 Aggregated Enhanced Long Short                 883 

Attention  884 

Thereafter we add the overlapping attention 𝐴̅𝑜𝑖
 885 

to the long cache attention 𝐴̅𝑙𝑖 who have similar 886 

shapes. The sliding window (short) attention 𝐴̅𝑠𝑖
 887 

and our caching attention 𝐴̅𝑐𝑖
 are concatinated to 888 

the above summed attention as pictorially 889 

demostrated in Figure 9.  890 

Here ǁ  indicates the catenation of different 891 

attentions, w is the window size in short i.e., 892 

sliding window attention, r is the projection 893 

size in compressing the long attention, k is 894 

the 𝑡𝑜𝑝 𝑘  factor in retrieving high attention 895 

top k segments, 𝑠 is the segment size in long 896 

attention, 𝑢 determines the number of segments 897 

to be retrieved adjacent to the top 𝑘𝑡ℎ one. 898 

 899 

Figure 9. Complexity of the Enhanced Attention  900 

Finally, Figure 10 shows the four attention 901 

mechanisms that are simultaneously aggregated 902 

and succesfully inducted in our model 903 

architecture. 904 

 905 
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 906 

Figure 10. Aggregated Enhanced Attention  907 

 908 
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