CacheFormer: High Attention-based Segment Caching

1 Abstract

> Efficiently handling long contexts in
transformer-based language models with low
perplexity is an active area of research. Although,
numerous approaches have been recently
presented like Linformer, Longformer,
Performer, Structured state space models (SSMs)
etc., yet it remains an unresolved problem. All
these models strive to reduce the quadratic time
10 complexity of the attention mechanism to
1 approximate linear time complexity while
12 minimizing the loss in quality due to the
13 effective compression of the long context.
14 Inspired by the cache and virtual memory
15 concepts in computer architecture, we improve
16 the work presented in Long-Short Transformer
17 (Transformer-LS) that implements a sliding
18 window for the short attention and compressed
19 contextual segments for the long attention. Our
20 enhancements include augmenting the
21 architecture with attention on dynamically
22 retrieved uncompressed context segments that
23 indicate high attention at the compressed level.
24 Similar to the cache and virtual memory
25 principle in computers, where in case of a cache
26 Or page miss, not only the needed data is
27 retrieved from the random-access memory or the
s hard disk, but the nearby following data is also
29 obtained. On a similar note, we too retrieve the
30 nearby segments in uncompressed form when a
a1 high attention occurs at the compressed level. We
s> further enhance the long-short transformer by
s augmenting the long attention with compressed
4 overlapping segments to reduce the loss in
s quality due to segment fragmentation that occurs
s in sequences with long context. Our results
a7 indicate significant improvements over the base
s line of the long-short transformer in terms of
39 perplexity on the popular benchmarks.

© ® N o o A W

» 1 Introduction

.1 Deep Convolutional Neural Networks (CNNS)
> were fundamental in revolutionizing the field of
s computer vision. Similarly, the pioneering
s« induction of the Transformer (Vaswani et al.,
5 2017) architecture in Natural Language
s Processing (Singh and Mahmood, 2021) has
« resulted in the Al revolution with Large

s Language Models (LLMSs) such as ChatGPT (J.
s Achiam et al., 2023), Bard (G. Team et al.,
s0 2023), Llama (H. Touvron et al., 2023) among
s1 others have yielded impressive performances.
s> The Transformer uses a simple similarity
ss computation in the form of an inner product on
s« the learnt positional encoded embeddings of a
ss sequence of n input words. If the matrix Q and
ss K contain rows representing embedding of each
s> word (1xd) , then A= softmax(QKT")
ss referred to as the “attention”, contains the dot
so product similarity of each input word with
s0 every other word in the input sequence. If there
1 are m words being input, referred to as the
s> context, then Q, K € R™% and A € R™™,

s Like parallel feature maps in a CNN, each layer
s« in the Transformer divides the attention
es calculation into parallel heads. The output from
s a Transformer layer has the same
7 dimensionality as input and is obtained by a
s Simple matrix computation of (AXV) €
o RY™ where V € R™ is similar to K and
70 contains rows of learnt position encoded
, embeddings of input words. For language
> models, where text generation is carried out
s based on a given context, the attention matrix is
» masked in a triangular fashion so that future
7s tokens are not visible in the training process.
s Multiple layers of Transformer blocks are used
77 before feeding the result of the last layer to a
s classification head. Because attention
7o computation in each head is 0(n?), for long
so contexts, this becomes a computational
e1 bottleneck. Many approaches have been
s> proposed in the last few years to reduce the
s (uadratic time complexity of attention to either
s« linear or sub quadratic complexity. Some of the
es notable works include (Dai Z et al., 2019),
s (Wang et al., 2020), (Beltagy et al., 2020),
e7 (Kitaev et al., 2020), (Choromanski et al.,
s 2021), (Hawthorne et al., 2022), (H. Ji et al.,
so 2022), (Martins et al., 2022) among others. We
o0 provide a brief background in the above-
o1 mentioned approaches used in reducing the
o> attention complexity. Then we elaborate on the

)

~

~

~

~

o= Long-Short Transformer that we will further
o« enhance in this work.

s 2 Background and Related Work

s An important earlier work in handling long
o7 contexts was presented by (Dai Z et al., 2019).
¢ The authors divided the context into segments
oo and used segment level recurrence and a
w0 corresponding positional encoding to allow it to
w01 handle longer contexts. It achieved impressive
102 results on the perplexity and BPC at that time.
10s (Wang et al., 2020) accomplished O(n)
10a complexity through linear self-attention. The
105 authors demonstrate that the attention is
s typically low rank, and thus can be
107 approximated by a low rank matrix. Here, the Q
e and V matrices € R™ are projected to lower
100 dimension matrices € R**4 where k < n. Thus
10 attention A = QKT € R™* . The output
m (AXV) € R™4 je., same as the original
12 transformer. Since k is fixed, the attention
1z complexity is O(n).

14 Although (Wang et al., 2020) reduced the
115 attention complexity significantly, especially if
1us k << m, note that, it cannot be effectively
117 used in autoregressive training and generation,
us as the projection of Q compresses the
1o information along the context, making the
120 masking of attention for future tokens invalid.
121 However, for classification problems where
122 masking of attention is not needed, their
123 architecture is effective in reducing complexity.
124

125 Another approach introduced by (Beltagy et al.,
126 2020) used sparse attention patterns instead of
127 the full dense attention. The authors proposed
s Sliding window attention, where tokens
120 attended only to the nearby past, a dilated
120 sliding window, and a mix of global and sliding
121 window attention where some tokens attend to
12> all tokens while others only attend to nearby
133 tokens. For autoregressive modeling (Beltagy et
1w al, 2020) wused dilated sliding window
135 attention. Another notable work in reducing the
136 attention complexity was performed by (Kitaev
w7 et al., 2020). The authors key idea was to use
133 locality sensitive hashing which reduces the
130 attention complexity to O(n log n). Note that
110 because of the hashing process, the architecture
11 1S not suited for autoregressive modeling.

12 A different approach to reduce the attention
15 complexity was taken by (Choromanski et al.,
s 2021) where the attention is decomposed as a
15 product of non-linear functions of original
16 query and key matrices referred to as random
17 features. This allows the attention to be
15 encoded more efficiently via the transformer
1o query and key matrices. Further efficient
150 handling of long contexts accomplished by
151 (Hawthorne et al., 2022) divided the input
152 sequence into smaller key/value and query
152 components. These components underwent
154 Cross attention in the first layer with a latent €
15 R4 where | is the size chosen in splitting the
156 INpUt sequence into the query part. The
157 remaining layers operate on the [xd size
155 instead of the usual n x d size as in a standard
150 transformer. Although this cross attention on
10 the partitioned input sequence results in
161 efficient handling of long sequences, because
162 Of the reduced query size, the equivalent effect
163 IS more like a sliding window attention.

162 More recently, a different approach to handling
165 long contexts was proposed via structure state
166 Space models. The work by (A. Gu et al., 2022)
167 proposes the Structured State Space Sequence
1o model (S4) based on a new parameterization
160 that can be computed much more efficiently. A
170 variation of the state space approach proposed
11 by (X. Ma et al., 2023) uses single-head gated
172 attention mechanism equipped with exponential
173 Moving average to incorporate inductive bias of
172 position-aware local dependencies into the
175 position-agnostic attention mechanism. They
176 also present its variation with linear time
177 complexity for handling long sequences.
178 Further progression on the state space models
170 yielded better results (D. Y. Fu et al., 2023),
w0 (Gu, Albert and Tri Dao., 2023) who achieved
1@ very low perplexity score. Most recently
12 (Maximilian et al., 2024) introduced
183 exponential gating and parallelization in
1.2 LSTMS to achieve extended memory. Some of
15 the model sizes consisted of several billion
15 parameters. We outperform the smaller version
1e7 Of these models with similar size as ours on the
155 perplexity metric as shown in Table 2.

1o An interesting concept in handling long
190 Sequences was presented by (C. Zhu et al,
191 2021). Here a sliding window approach is used
192 IN handling near term attention, while a set of

195 compressed segments for the entire past context
104 1S used as long-term attention. Both short and
105 long attention are combined in the overall
106 attention. The slight drawback of the approach
197 i$ that the longer context is effectively used in
106 compressed form and thus may lose some key
199 contextual information in being able to generate
200 the output in an autoregressive environment.
-01 We address this problem by further augmenting
20> the long-short attention by using uncompressed
203 highly attentive segments. Since long short
204 attention divides the context into equal size
205 Segments before projecting each segment to a
206 SMaller size, there is potential for a loss in
207 information due to segment fragmentation. We
20s alSO improve this aspect by using overlapping
200 S€gMents and augment this to the existing long-
210 Short model. Thus, our enhanced long-short
-11 architecture involves four components in the
212 overall attention, a sliding window attention,
213 long attention based on compressed segments,
212 long attention based on overlapping segments,
215 and uncompressed segmented attention for few
216 high attentive segments beyond the sliding
217 window part. We describe the details of our
215 design in the section 3. For completeness, we
219 Summarize the composition of a Transformer,
220 followed by the ideas of long-short
21 Transformer, that we build upon in our work.

»» 2.1 Canonical Transformer

223 In normal multi-headed attention, if Q,K,V €
2o R™4 are the query, key and value
225 transformations of the input embeddings with
226 Sequence length of n and embedding dimension
227 0f d, then the scaled dot-product attention in the
2 i-th Head H; € R™ % is given as:

29 Hy = Attention(QWiQ,KWiK, VWiV) =
QW &w{)"

Jax

222 Where dj, = d/h is the dimension of each
22> head. The output in each transformer layer is
233 Obtained by catenation of the output of all

230 Softmax[] vw/” =Avw!” (D)

2 heads and transformed further via this
235 projection matrix.

20 WO € R as Layer; =

257 Concat (Hy, Hy, - Hp_1)W?°)

238

230 After feeding the embedding of a sequence of
20 ONe hot encoded words, x (with position
201 encoding PE added) through p transformer
242 layers, a classification layer is used at the output
243 Of the last layer to decide the output produced by
20 the transformer. For autoregressive text
225 generation, the classification layer’s final output
246 18 equal to the size of the dictionary of unique
247 WOrds in the corpus.

248

20 out = classifier[layer,_q(layer,_,(...layery
0 (embedding(x) + PE(x))))] 3
251

2 2.2 Long Short Transformer

3 (C. Zhu et al., 2021) aggregated the local
254 attention around a smaller window (sliding
255 Window), with a projection of the full sequence
256 attention to a smaller size, so that we can
»s7 efficiently handle long sequences without the
2ss quadratic attention complexity. For short
250 attention, the approach here is to use a segment
2s0 level sliding window attention, where the input
261 Sequence is divided into disjoint segments with
22 length w (e.g., w=128 and sequence length is
23 1024). For non-autoregressive applications, all
26 tOkens within a segment attend to all tokens
265 Within its home segment, as well as wi/2
266 cONsecutive tokens on the left and right side of
7 it home segment (zero-padding when
268 NECESSAry), resulting in an attention span over a
260 total of 2w key-value pairs. This is depicted in
270 Figure 1.

W W w w w (after 0 padding)

wiZ w w/2
+_ Lwattention

271
272 Figure 1. Segment-based Sliding Window Attention

273

. For each query Q; at the position t within the i-th
275 head, the 2w key-value pairs within its window
2 are: K,V € R#W*®. The short attention Aj, €

27 R2WX4k js then given by the following equation:

278

2

~

_ AT S
2o A, = softmax | ——— 4)
Vi
280
»s1 Execution wise the segment-level sliding

2> Window attention (referred to as short attention)
2s3 IS more time efficient than the per-token sliding
»so Window attention where each token attends to
2e5 itself and w tokens to its left and right, and its
255 memory consumption scales linearly with

287 Sequence length. For auto-regressive
2ss applications, the future tokens in the current
20 SEgMent are masked, and only the previous
200 S€gMent is used.

21 FOor long attention, the
20> transformations for the input sequence are first

205 divided into segments of fixed size s, and then

200 projected to a smaller dimension r, where the
205 projection P, € R™ 7. Figure 2 depicts this
296 QrOCESS.

297
5 5 5 5 s (after 0 padding)

— K,

Projection e Projection
d,-r d, -1
a
kov=p"s K,V € R kv=p"s

298

o Figure 2. Segmented Long Attention with Compressed
Segments

2

©

300
301

302

Mathematically, the long attention A_ll (in each
a0s head i) as followed by the long-short Transformer
s04 Can be described as

205 pli = Softmax(KWiP),I?zi = PlTiKWiK'Vli =

w PLVWY ()
_ QWCK]
wr Ay, = softmax |[——— (6)
VA
308
s00 The output of in the i* head is:
310 Hi = A_li (PZVVVIV) (7)

Note that the long attention is effectively done on
213 @ compressed form of K and V, as the projection
214 Causes the input sequence of size n to be
s compressed to size r. This results in full attention
216 10 now be replaced with the implicit product of

7 two low-rank matrices P € R™™ and QWiQ €

s R™4 | and thus the computational complexity is
20 of long attention is reduced from 0(n?) to
320 O(rn).

2. Long-Short Transformer integrates the short and
222 long attentions into a single attention. While the
223 Short attention can attend to most recent input,
222 the long attention is in compressed form. Further,
225 the long attention is based on segmentation of the
a6 INPUt sequence that may suffer from segment
27 fragmentation as the information in each segment
223 1S compressed via the projection mechanism. We
220 improve upon these shortcomings and present
;50 our enhanced long short architecture in the

312

3

key and value :

s following section. Our contributions can be
522 Summarized as:

s 1. Improving the segment fragmentation of the
projection mechanism followed in long
35 attention by adding projections of segments
that have an s/2 overlap where s is the
segment size, with the existing segment-based
projection mechanism.
2. Since the long attention is based on an
a0 effective compression of the input sequence,
we develop an innovative uncompressed
attention mechanism where some of the
highly attentive segments are used
dynamically in uncompressed form.
The existing short and long attention are
combined with our two enhancements in an
effective manner to result in an architecture
that can efficiently handle long attentions
without causing much loss of attention
information.

337

338

346
347
348

349

n

350
351

+» 3. Enhanced Long-Short Transformer

;3 The long-term attention in the existing Long-
ss2 Short Transformer is done at a compressed level
355 (projection to r causes an effective compression
ss6 Of the input context). Therefore, one of our
57 enhancements is to augment the long attention
s5s With an attention that is based on a subset of
ss0 highly attentive uncompressed segments.

w0 3.1 Enhanced Long Attention with Segment
361 Caching

s2 The subset of segments that are selected for
s63 attention at the uncompressed level is completely
s« dynamic and obtained by the vector magnitude
s Of the compressed segment-wise attention. In
66 Simple words, we examine the segment-wise
« long attention A;, as given by Equation 6. Since
w Aj, € R™7, and if there are ng segments, then
a0 €ach row in /Tli contains a set of row vectors of
a0 Size r/ng , as denoted by segmented attention
a1 Ageg, IN Equation 8. Magnitude of each vector

a,, € R™7/"s in Equation 8, indicates the
; attention of word i to the jin segment in the long
274 attention.

372

3
3

—_—

— —
a1 aqp QA1,ng

375 Asegl = . (8)
P —— — —
Ap1 Qn2 Anng

a7e FOr execution efficiency, we average the
377 Segment attention vectors in p consecutive rows
s resulting in a segment attention matrix
9 Asegayg; € R™*™s where m n/p. Then we

ss0 Choose top k segments by magnitude of each
a1 Vector in each row of the segment attention
s MAtrX Agegavg,

| topk((ZAsl
topk((Z a, It,

t=p+1

:D/p)

DI (o)

w0 Asegavg; =

topl(((2 4, 16:D)/p)
t=n-p

a2 Note that each entry in the segment attention
ss5 Matrix, Aegsa,, L] indicates the segment
ass NnUMber that has high attention to the sequence of
se7 p words (positioned from (i — 1)xp to ixp) in
s the input context. Rather than using these
a0 attentive segments in compressed form, we
a0 extract them from the segmented K and V
s01 matrices before doing any compression on these.
s> Similar to how in cache memory design (in
503 cOmputer architecture), in case of a cache miss,
500 We not only retrieve the needed data from the
s0s RAM, but also bring a few consecutive following
05 WOrdSs, as there is high probability that these may
307 be needed in the near future. In case of segments
a0 that we determine most attentive (by the top k
w00 Order), we also retrieve u consecutive segments.
w00 To clarify our approach, if the sequence length is
w01 N = 1024, and long attention segment size = 16,
w2 then there will be 64 segments in the
a0z uncompressed K and V matrices. If the projection
w04 Size v = 256 (ratio of 1024/256=4), then each
205 segment of size 16 will be compressed to size of
w06 4, resulting in long attention matrixA—llof size
07 1024x(64x4) i.e., 1024x256. If we choose to
408 @verage p=32 consecutive rows in A_ll and take
200 the magnitude of each of the 1x4 vectors in each
210 Fow (corresponding to the 64 segments), then the
11 segment attention matrix AsegavgiWi" be 32x64.

.12 Taking the index of top k entries in each row of
13 Agegavg; Will give us the index of most attentive

212 k segments to the corresponding set of 32 words
215 in the input sequence. Assembling these top k
16 attentive segments, and one segment before and
217 0ne segment after the attentive segment (if u=3),
«s Will result in 15 segments per row. If k=5 is
219 chosen in topk and u=3 which indicates using of
120 U-1 many nearby segments for each attentive
21 segment. Thus, the cache K, V matrices K.,V €
sz ROVPIX(EXW) (@ g 32x(15x16) = 32x240 in our
223 example) contain the most attentive 15 segments
224 in uncompressed form. From the most attentive
25 KXUu segments in K., we can obtain the cache

.o attention A, € R™kxw ag,
K"

w1 A, = softmax(QW;° KC)/ dk (10)

=

125 Note that we stack the K, p times to match the
120 dimensionality with Q.

0 3.2 Enhanced Long Attention with

Overlapping Segments

431

.3 In addition to the original long attention in the
233 Long-Short Transformer that uses the projections
232 0N each segment, we augment the existing long
.35 attention by using overlapping segments (with
23 50% overlap in augmented long attention) as
.3 shown in Figure 3. The motivation behind the
.0 overlap is to reduce the effect of segment
.30 fragmentation in long attention. Zero padding in
w0 the beginning segment is added to ensure the
.1 same dimensionality for the overlapped long
22> segment attention.

443

(0 padding) s s s 5 5
S S SSS— — o - — — K', V
L 4 -
Projection |
dy o1 L
= kv=p's kv=p's
K,V € R

Figure 3. Overlapping Segmented Long Attention
with Compressed Segments

.7 The overlapped long segment attention ATOL.
s € R™ similar to Equation 5 is given below.

wo Py, = Softmax(KW°), Ko, = PEKW/<

450]701. = PO’I;VWL-V (11)

WK,
i

452 Hol. = Aoi (Pg;VWiV)

s Ay, = Softmax

(12)

(13)

53 3.3 Aggregated Long-Short Attention

ss+ The final attention in our enhanced architecture is
.5 Obtained by aggregating the four attentions
.56 described earlier, i.e., the short attention ATSL. €
57 R™2W that uses segment-wise sliding window,
155 the segment based compressed long attention
459 lei € R™" as proposed by (C. Zhu et al., 2021).
w0 Our cache attention A, € R™ (45 is based on
w1 uncompressed high attention segments, and
.62 overlapping segment-based compressed attention,
w3 Ap, € R™T. We add the two long and overlapping
w4 attentions, A;,and A,,. Thus, the final enhanced
«s attention 4., € R™ is:

466

w1 Ag, = [AgI(Ay, + Ap)IAc,]
468

w0 Where |l indicates the catenation of different
a0 attentions, and f = 2w +r + (kX u X s), W is
.« the window size in short i.e., sliding window
.72 attention, r is the projection size in compressing
.2 the long attention, k is the top k factor in
174 retrieving high attention top k segments, u-1 is
.75 the number of neighboring segments to retrieve
.6 for cache attention, s is the segment size in long
477 attention. For example, for top k of 5and u = 3,
476 Segment size in short attention, w = 128, segment
470 Size in log attention = 16, r = 512, for an input
w0 Sequence length of 2048, the size of our
121 combined attention matrix is 2048x762.

482

3 4. Results

484

.35 We use the long-short transformer (C. Zhu et al.,
a5 2021) as the baseline architecture. Instead of
ss7 focusing on the absolute best results for
.55 perplexity and BPC, which often are achieved
250 through extremely refined training schedules and
200 large model sizes, we focus on the improvements
201 Over the baseline. Therefore, the results we show
292 @re more accurate reflection of the architectural
w03 Improvements of our design. The baseline
a00 @rchitecture is also programmed by us, and the
195 enhancements we propose are programmed in the
06 Same implementation and can be selectively

(14)

s07 turned on or off to see the contribution of each
28 enhancement. We also use similar training
200 SChedules for the different architectures being
so0 compared. Table 1 shows the perplexity results
so1 for wikitext-103 dataset. It uses sequence length
so2 0f 1024, short attention segment size of 128, long
s0s attention segment size of 16, compression of the
so« long sequence by a factor of 4, i.e., r=256, and
sos different values of k in top k cache attention, and
sos Neighboring segments retrieval u of 1 or 3 (which
so7 indicates the segment before the attentive
sos Segment, and the one after it is also retrieved.

509

Model Model Perplexity
Size

Long-Short Baseline 122.52 23.74
million

Enhanced Long-Short | 122.52 23.31

(k=3, u=1) million

Enhanced Long-Short | 122.52 22.75

(k=5, u=1) million

Enhanced Long-Short | 122.52 21.32

(k=7, u=1) million

Enhanced Long-Short | 122.52 21.26

(k=5, u=3) million

Table 1. Perplexity results Comparing the Baseline
and our Enhanced Architecture

510

511

5.2 Note that our enhanced architecture does not
s13 Cause any increase in the number of model
s12 parameters over the baseline long short
s1s Transformer. The models used for results in
si6 Table 1 have 12 layers, 12 heads, and an
s17 embedding size of 768 (for all architectural
s1s variations). For a sequence length of 1024
s10 (wWhich is same as used in GPT-2), using 7
s20 segments (k=7, u=1) vyielded considerable
s21 improvement in perplexity. Increasing k beyond
s> 7 did not seem to considerably reduce perplexity
s2s further. Since we have two major enhancements
s2 Of cache attention and overlapping segment-
525 based attention over the baseline, Table 2 shows
s2s an ablation study of the effects of each
s27 architectural improvement.

s2s Figure 4 depicts the 64 attention vectors for each
s20 Segment (from compressed long attention, after
530 averaging p=256 rows) corresponding to the 64
s21 segments during the beginning of training. The
s3> highest top k magnitude vectors then determine
s3a the segment to use in uncompressed form for our
s2 cache attention.

s3s Table 3 shows the BPC results on the enwik-8
s3s benchmark. The 23 million model uses 8 layers,
8 heads and embedding size of 512. The 34.88
million models used 12 layers. It is interesting to
note that the relative improvement in BPC by our
enhanced architecture is less pronounced as
compared to the perplexity improvements. This
s.2 could be attributed to the fact that majority of
s:s Improvements are attributed to cache attention
s22 Which uses a few highly attentive uncompressed
s.5 Segments in long attention.

546

537

538

539

540

541

Architecture Model Perple-

Size Xity
(Millions)

Long-Short (Baseline-Ours) 122.52 23.74

Transformer-XL (Standard) 151 24

oo-former 160 24.22

LaMemo 151 23.77

H3 (Hungry Hungry Hippos) 125 23.7

Llama 125 23.16

Mamba 125 22.49

XLSTM[7:1] 125 21.47

Enhanced Long Short with

overlapping segments only 122.52 23.47

Enhanced Long Short with

cache attention only (k=7, 122.52 21.67

u=1)

Enhanced Long Short with

overlapping segments and

cache attention (k=7, u=1) 122.52 21.32

Table 2. Ablation Study of Architectural
Enhancements

sso While this benefits the perplexity which is a
ss1 measure of the model’s prediction capability, but
ss» BPC not as much, as BPC is more of a
ss3 compression efficiency measure of the model.

554

555

|- \’;\J\lj R /:\ ‘J\\\:-H\‘T a i
,j{..,/ N\ j\g.\\r >

D AR R S
MRS A “7\1}‘“;\"_‘} AR)

556

Figure 4. Attention Vectors from Compressed Long
Attention

557

558

Model Model Size BPC
Long-Short Baseline 23 million 1.192
Enhanced Long-Short | 23 million 1.188
(k=7, u=1)
Long-Short Baseline 34.88 million | 1.173
Enhanced Long-Short | 34.88 million | 1.167
(k=7, u=1)
559 Table 3. Comparison of BPC on the enwik-8
560 Benchmark

561
s> 5. Discussion

563

se« Since the uncompressed segments to be used in
ses OUr cache attention design are dynamically
ses decided based on the input sequence, the
se7 eXecution time increases as more segments (i.e.,
ses higher k) are used. When we use, sequence
seo length of 1024, compression r = 256, k = 7, u =
s70 1, short attention segment size of 128, then the
sn1 Size of aggregated attention (short, long, cache,
s72 overlapping) is 1024x624.

s72 Since our cache attention mechanism as
s72 explained in section 3.1 is completely dynamic,
s and uses the most attentive segments in
s76 uncompressed form, we average the attention
s77 vectors over p rows (to improve efficiency of
s7s @Xecution) as given by Equation 9.

s7o 1T we use a sequence length of 1024, and average
ss0 OVer 256 rows, then the segments determined by
ss1 OUr cache attention mechanism part way through
s> the training of the model appears as shown in
sss Table 4. Note that to implement the
s« autoregressive behavior, the input sequence
sss cannot attend to a future segment. Our
sss implementation guarantees that the input
se7 Sequence can only attend to a previous segment.
sss FOr example, when attending to words 768-1023
sso IN the input sequence, the maximum segment that
so0 the cache attention can use is 47 (if the long
so1 Segment size is 16, then there are 64 segments in

. 502 the 1024 size sequence).

sss One of the important recent papers in handling

" s long contexts has indicated that current language
. sos models do not robustly make use of information

s IN long input contexts (N. F. Liu et al., 2023).

" 507 They studied different models and concluded that
. s “performance is often highest when relevant

seo INformation occurs at the beginning or at the end

“ 0 Of the input context, and significantly degrades

s0. When models must access relevant information in
s> the middle of long contexts.”

Input Top k Comments
Sequence | Attentive
Segments
(k =7, u=1)
0-255 [-1,-1,-1,-1,- | No cache
words 1, -1, -1] segments are
used to prevent
future token
leakage
256-511 [7,8,11, 12, Maximum
words 13, 14, 15] segment
allowed = 15
512-767 [7,8, 27,28, Maximum
words 29, 30, 31] segment
allowed = 31
768-1023 [8,29, 32,35, | Maximum
words 37, 44, 47] segment
allowed = 47

s03 Table 4. Most Attentive Segments Used by our Cache
604 Attention Part way in Training.

605

s0s Note that our cache attention model addresses
s07 this aspect nicely in the sense it uses attentive
s0s Segments dynamically regardless they are needed
s00 IN the beginning or the middle of input context.
s10 For example, see the last row in Table 4 which
s11 indicates the highest attentive segments that are
s12 Used. Segments 32, 35, 37 are relatively in the
1z middle of the input context. When we determine
s12 the most attentive segment to use in our cache
s15 attention, if the neighboring segment parameter
s16 count u>1, then as we look at the segment index
s17 Of the next or previous index, a duplicate may
s18 OCCUr as the next segment may already be one of
s10 the high attentive segments. Similarly, if the high
s20 attentive segments belong to a future segment,
s21 We replace them by one of the allowed segments.
s22 Since information segmentation should not
623 Occur, the segment we select to be added is the
22 ONe that is contiguous to an existing high
625 attention segment.

e 6 Conclusions

s>z Handling long contexts in an efficient manner
s2s Without loss of performance is an important area
s20 OF research in language models. Although many
s20 approaches have been recently proposed to
sa1 address this problem, we present a new
s3> iNNoOvative solution that is motivated by the
s22 cache and virtual memory concepts in computer
s22 architecture. In such designs, if there is a cache
s35 OF page miss, the needed data is retrieved from
s3s the disk or RAM. We handle long contexts by

ss7 diving them into small segments. By the
s:s magnitude of the compressed attention vectors,
ss0 We determine the most attentive segments, and
s20 then use these in uncompressed form. Similar to
«1 the cache memory design, we also use
s42 CONSecutive segments near to the high attention
ss Segments to improve the language model
s22 predictive performance. Our results on the
sss perplexity indicate significant improvement over
sss the baseline architecture that uses short and long
a7 compressed attention. For the BPC, the cache
sss attention mechanism does not show remarkable
s2o improvement on the baseline. We conjecture that
sso the BPC that favors compression capability is not
ss1 benefited by the relevant segment usage that our
ss2 model provides which is helpful in model
ss prediction capability. Another advantage of our
s« approach is that the use of high attention
ss5 Segments is dynamic and depends on the input
es6 Sequence. Thus, if the model needs to use
es7 information in the middle or anywhere in the
sss INpUt context, it is provided in uncompressed
sso form via the high attention determination on the
ss0 compressed segments.

1 7 Limitations

ss2 The only shortcoming of our approach we feel is
sss that the dynamic segment attention is relatively
ss« Slow during training. We partially overcome this
s Dy initially pretraining the model without
ssc dynamic attention, and then fine tune it on our
ss7 cached attention. Our future work involves in
sss applying the cache attention to reduce the model
sso complexity of large language models and to
s70 create a hierarchical cache design such that very
71 long contexts can be efficiently handled.

s> Further, our model sizes and datasets were
s72 constrained by computational resources available
72 10 US. We used GPU RTX 4090 and therefore
e7s could not use larger datasets such as PG-19 and
e76 run larger models with larger embedding size,
s layers, and heads.

678
679
680
681

6

2

s 8 References

3« Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. “Attention is all you need”.
Proceedings of Neural Information Processing
Systems (NeurlIPS), 2017

685
686
687

688

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, llge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, et al., “Gpt-4
technical report,” arXiv:2303.08774, 2023

689
690
691
692

693

s04 G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac,
J. Yu, R. Soricut, J. Sc (H. Touvron et al.,
2023)halkwyk, A. M. Dai, A. Hauth et al.,
“Gemini: a family of highly capable multimodal
models,” arXiv:2312.11805, 2023

695

696

e99 Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. “Llama: Open and
efficient foundation language models,”

arXiv:2302.13971, 2023.

701
702
703

704

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al., “Llama 2: Open
foundation and fine-tuned chat models,”
arXiv:2307.09288, 2023.

705
706
707
708
709

710

711 Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V.,
and Salakhutdinov, R. “Transformer-XL:
Attentive language models beyond a fixed-length
context,” Proceedings of the Annual Meetings of
the Association for Computational Linguistics

(ACL), 2019.

712
713
714
715

716

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, Hao Ma, "Linformer: Self-Attention with
Linear Complexity," arXiv:2006.04768, 2020.

717
718

719

Iz Beltagy, Matthew E Peters, and Arman Cohan,
"Longformer: The long-document transformer,"
arXiv:2004.05150, 2020.

720
721

722

2z Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya,
"Reformer: The efficient transformer,"ICLR,
2020.

724

725

s Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al., "Rethinking
attention with performers," ICLR, 2021

7

N}

727

728

729

21 Curtis Hawthorne, Andrew Jaegle, Citalina
Cangea, Sebastian Borgeaud et al., "General-
purpose, long-context autoregressive modeling
with Perceiver AR," ICML 2022

732

733

734

735 Albert Gu, Karan Goel, and Christopher R’e,
"Efficiently Modeling Long Sequences with
Structured State Spaces," arXiv:2111.00396v3,
2022

736
737

738

Xuezhe Ma, Chunting Zhou, Xiang Kong, et.al.,
"Mega: Moving Average Equipped Gated
Attention," arXiv:2209.10655v3, 2023.

739

740

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W.
Thomas, Atri Rudra, Christopher Ré, "Hungry
Hungry Hippos: Towards Language Modeling
with State Space Models," arXiv:2212.14052v3,
2023

744
745

746

Chen Zhu, Wei Ping,Chaowei Xiao, Mohammad
Shoeyb, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro, "Long-Short Transformer:
Efficient Transformers for Language and
Vision," 35th Conference on Neural Information
Processing Systems (NeurlPS 2021).

747

753 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin

754 Paranjape, Michele Bevilacqua, Fabio Petroni,
755 Percy Liang, "Lost in the Middle: How
756 Language Models Use Long Contexts,"”

arXiv:2307.03172v3 [cs.CL] 20 Nov 2023.

758 Singh, Sushant and Ausif Mahmood. “The NLP
Cookbook: Modern Recipes for Transformer

Based Deep Learning Architectures.” IEEE
Access (2021)

759
760

761

762 Ji,

763

Haozhe, Rongsheng Zhang, Zhenyu Yang,
Zhipeng Hu and Minlie Huang. “LaMemo:
Language Modeling with Look-Ahead
Memory.” North American Chapter of the
Association for Computational
Linguistics (2022).

s Martins, Pedro Henrique, Zita Marinho and André F.
T. Martins. “oo-former: Infinite Memory
Transformer-former: Infinite Memory
Transformer.” Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (2022)

774 Gu, Albert and Tri Dao. ‘“Mamba: Linear-Time
Sequence Modeling with Selective State
Spaces.” ArXiv abs/2312.00752 (2023)

775

776

Maximilian, Korbinian
Spanring, Andreas Auer, Oleksandra
Prudnikova, Michael K Kopp, Glnter
Klambauer, Johannes Brandstetter and Sepp

777 Beck,

778

Poppel, Markus

779

780

Hochreiter. “xLSTM: Extended Long Short-
Term Memory.” (2024).

781

782

783
784 QQendiX

s A, Further Details on our Enhanced
Caching Transformer

786

77 Inour caching protocol we compress and
s dynamically — retrive the most relevant
0 compressed segments for any given input. Based
70 ON the design constraints an appropriate amount
701 Of input sequence compression is performed.
2 Thereafter the sequence is split into the desired
702 Segments and we choose the most similar
794 sSegments for each query and retrieve them in the
original uncompressed form. It ensures only the
706 Most relevant information is being picked. This
7 not only helps in reducing the context size but it
also enables in preserving key information. This
0 enhanced caching attention technique s
a0 €xplained in greater detail in the subsequent
s01 Sections.

795

7

©

798

202 A.1 Enhanced Caching Attention

D ea—

N\

m @, al,ns
Asegg = .
ani n2 nng
If n:1024 - Projection Size(r):
256 2> ng: 64 > r/ng:4
{
a;,;€E1lx4
803 /

Figure 5. Downsized Compression of Attention
Matrix along K., V,

804

805

s0s Consider the length of the input sequence to be
207 1024 tokens that need to be compressed and
20 down projected to 256 tokens. Here we choose to
a00 divide the row into (n) 64 segments. This will
#0 Yield to a compression ratio (r/ng) of 4. The
s11 attention matrix will be of size Aseg € R™,

s12 Therefore for n, segments, each row in Ag,g,
213 Will consist of row vectors with size r/ng.

ss Further, the magnitude of the vector a,; €

15 RYX7/s will represent the attention of the ith
s:c word token to the j** compressed segment in the
g17 long attention as shown in Figure 5. Thereafter,
s1s We compute the root mean square for each of the
=0 (1 x 4) sized attention vectors a,;, hence the
s20 dimension across each row is downsized from
21 266 t0 64. We use this size for the subsequent
s22 attention processing steps as demonstrated in the
s2s following section.

22 A.2 Averaging in Segment Caching

g5 Attention computation and top-k segment
s26 retrieval across all 1024 rows turned out to be
s27 computationally cumbersome and time intensive.
s2s Therefore, to achieve execution efficiency, we
g0 averaged all 1024 input vectors across p
g0 cOnsecutive rows for the previous attention
s Matrix Ageg € R™” where p is a

g2 hyperparameter.

topk((X}-, Aseg, [t.:1)/P)
topk((Zt p+14 Ageg, [t:]1) /D)

segavg; —

| topk ((Eton—p Aseg; [t:1/P)]

Ifn > 1024, p>32, A;pgavy,> 32x64

833

Figure 6. Averaged Compression of
Attention Matrix along the Input Length

834

835

s3s This segment attnetion matrix is further reshaped
s and compressed into Agpgqpg, € R™™s, where
sss M = n/p=32 as shown in Figure 6. This
s20 iImplementation was key for our model to
sa0 achieve superior results outperforming other
a1 popular language models of similar size as
s> mentioned in Table 2 and resulted in a faster run
s2s time as well.

saa A.3 Top-k Retrieval in Segment Caching

s2s Post the compression and averaging, the top k
g2 MOSt similar segments were chosen to be
s27 retrieved by the order of the attention magnitude

10

s betweeen the modified input and key/value
a0 Matrices. These segments were picked
ss0 corresponding to each row m, which is an
ss1 averaged input sequence of 32 consecutive words
a2 (aveeraged down from 1024) from the segment
e53 attention matrix Agegapg, -

Cached K,V matrices K, V. € R/P)x(kxw)

——

K., V. € (32 x (15x16)) = 32x240

]
J
e
]

 mm

= softmax(Q WQ K

Stack vector K.,'p’ times for Attention

854

Figure 7. Enhanced Attention Matrix after
top-k retrieval

855

856

ss7 The hyperparameter k is chosen based on the
sss performance needs and based on that value along
sso With the k™ segment, we also extract one
s0 Segment before and after the k" attentive
se1 Segment.

s> Therefore, we define u as the hyperparameter
ses that regulates the number of adjacent segments
ssa around k that need to be retrieved from the
sss Sequence. For instance, with k = 5andu =3
ses Will result in a total of 15 uncompressed
ser extracted segments of length 16 from each row
ses @S shown in Figure 7.

ss0 A4 Overlapping Segments in Long Attention

(0 padding) s 5 5 5

} e———— — — K |
9 .
Projection Projection
dy =1 dy =1
2 k- p's kv=p's -—
K.V € R™4

P, = Softmax(KWF°),K,, = PEKWYX, V,, = PIVIWY
QWK;,

Jax

= Aﬂi (PDT;VMV)

ED[= Softmax

H,
870 t

s71 Figure 8. Long Attention with Overlapping Segments

sz As discussed earlier that the segmentation of
g7 iNput into chunks leads to fragmentation of long-
g7 term information. This becomes a challenge in
g7 building long term dependency. This issue hasn’t
g76 been addressed in prior Transformer based
s77 language models. Therefore, we augment the
g7 long attention with segments with a 50% overlap
g7o t0 Maintain the continuity of data as shown in
sso Figure 8. The model is trained with the
ss1 Overlapping data as the query that needs to learn
ss2 the original chunks as key and values.

s A5 Aggregated Enhanced Long Short
Attention

884
ses Thereafter we add the overlapping attention /Tol.
«s to the long cache attention A;, who have similar
ss7 Shapes. The sliding window (short) attention ATSL.
sss and our caching attention /Tcl. are concatinated to
se0 the above summed attention as pictorially
so0 demostrated in Figure 9.

so» Here I indicates the catenation of different
s> attentions, w is the window size in short i.e.,
s0s sliding window attention, r is the projection
s« Size in compressing the long attention, Kk is
205 the top k factor in retrieving high attention
200 tOp K segments, s is the segment size in long
5o, attention, u determines the number of segments
so: t0 be retrieved adjacent to the top k" one.

We add the two attentions = (long cache and
overlapping) = A, .and 4,,

Ag; = [A (A, + A,)14,]

Final enhanced attention = A,, € R™f

f=2w+r+(kxuxs)

899

o0 Figure 9. Complexity of the Enhanced Attention
Finally, Figure 10 shows the four attention
mechanisms that are simultaneously aggregated
o0z and succesfully inducted in our model
s04 @rchitecture.

901

902

905

11

906

907

908

909

910

911

912

913

914

915

916

917

918

919

Enhanced architecture obtained by
aggregating the four attentions

Short attention A, € R™*2¥, uses segment-wise
| sliding window

Segment based compressed long attention A, €
R™" as proposed in Transformer LS

Our cache attention > A, € RM*(xwxs)
_ Retrieval of uncompressed high attention segments

Overlapping segment-based compressed attention =]
Aoi € Rnxr

Figure 10. Aggregated Enhanced Attention

12

