
1

Abstract 1

Efficiently handling long contexts in 2

transformer-based language models with low 3

perplexity is an active area of research. Although, 4

numerous approaches have been recently 5

presented like Linformer, Longformer, 6

Performer, Structured state space models (SSMs) 7

etc., yet it remains an unresolved problem. All 8

these models strive to reduce the quadratic time 9

complexity of the attention mechanism to 10

approximate linear time complexity while 11

minimizing the loss in quality due to the 12

effective compression of the long context. 13

Inspired by the cache and virtual memory 14

concepts in computer architecture, we improve 15

the work presented in Long-Short Transformer 16

(Transformer-LS) that implements a sliding 17

window for the short attention and compressed 18

contextual segments for the long attention. Our 19

enhancements include augmenting the 20

architecture with attention on dynamically 21

retrieved uncompressed context segments that 22

indicate high attention at the compressed level. 23

Similar to the cache and virtual memory 24

principle in computers, where in case of a cache 25

or page miss, not only the needed data is 26

retrieved from the random-access memory or the 27

hard disk, but the nearby following data is also 28

obtained. On a similar note, we too retrieve the 29

nearby segments in uncompressed form when a 30

high attention occurs at the compressed level. We 31

further enhance the long-short transformer by 32

augmenting the long attention with compressed 33

overlapping segments to reduce the loss in 34

quality due to segment fragmentation that occurs 35

in sequences with long context. Our results 36

indicate significant improvements over the base 37

line of the long-short transformer in terms of 38

perplexity on the popular benchmarks. 39

1 Introduction 40

Deep Convolutional Neural Networks (CNNs) 41

were fundamental in revolutionizing the field of 42

computer vision. Similarly, the pioneering 43

induction of the Transformer (Vaswani et al., 44

2017) architecture in Natural Language 45

Processing (Singh and Mahmood, 2021) has 46

resulted in the AI revolution with Large 47

Language Models (LLMs) such as ChatGPT (J. 48

Achiam et al., 2023), Bard (G. Team et al., 49

2023), Llama (H. Touvron et al., 2023) among 50

others have yielded impressive performances. 51

The Transformer uses a simple similarity 52

computation in the form of an inner product on 53

the learnt positional encoded embeddings of a 54

sequence of n input words. If the matrix Q and 55

K contain rows representing embedding of each 56

word (1𝑥𝑑) , then 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇) 57

referred to as the “attention”, contains the dot 58

product similarity of each input word with 59

every other word in the input sequence. If there 60

are 𝑛 words being input, referred to as the 61

context, then 𝑄,𝐾 ∈ ℝ𝑛×𝑑, and 𝐴 ∈ ℝ𝑛×𝑛. 62

Like parallel feature maps in a CNN, each layer 63

in the Transformer divides the attention 64

calculation into parallel heads. The output from 65

a Transformer layer has the same 66

dimensionality as input and is obtained by a 67

simple matrix computation of (𝐴 × 𝑉) ∈68

 ℝ𝑑×𝑛 where V ∈ ℝ𝑛×𝑑 is similar to K and 69

contains rows of learnt position encoded 70

embeddings of input words. For language 71

models, where text generation is carried out 72

based on a given context, the attention matrix is 73

masked in a triangular fashion so that future 74

tokens are not visible in the training process. 75

Multiple layers of Transformer blocks are used 76

before feeding the result of the last layer to a 77

classification head. Because attention 78

computation in each head is 𝑂(𝑛2), for long 79

contexts, this becomes a computational 80

bottleneck. Many approaches have been 81

proposed in the last few years to reduce the 82

quadratic time complexity of attention to either 83

linear or sub quadratic complexity. Some of the 84

notable works include (Dai Z et al., 2019), 85

(Wang et al., 2020), (Beltagy et al., 2020), 86

(Kitaev et al., 2020), (Choromanski et al., 87

2021), (Hawthorne et al., 2022), (H. Ji et al., 88

2022), (Martins et al., 2022) among others. We 89

provide a brief background in the above-90

mentioned approaches used in reducing the 91

attention complexity. Then we elaborate on the 92

CacheFormer: High Attention-based Segment Caching

2

Long-Short Transformer that we will further 93

enhance in this work. 94

2 Background and Related Work 95

An important earlier work in handling long 96

contexts was presented by (Dai Z et al., 2019). 97

The authors divided the context into segments 98

and used segment level recurrence and a 99

corresponding positional encoding to allow it to 100

handle longer contexts. It achieved impressive 101

results on the perplexity and BPC at that time. 102

(Wang et al., 2020) accomplished O(n) 103

complexity through linear self-attention. The 104

authors demonstrate that the attention is 105

typically low rank, and thus can be 106

approximated by a low rank matrix. Here, the Q 107

and V matrices ∈ ℝ𝑛×𝑑 are projected to lower 108

dimension matrices ∈ ℝ𝑘×𝑑 where k < n. Thus 109

attention 𝐴 = 𝑄𝐾𝑇 ∈ ℝ𝑛×𝑘 . The output 110

(𝐴 × 𝑉) ∈ ℝ𝑛×𝑑 , i.e., same as the original 111

transformer. Since k is fixed, the attention 112

complexity is O(n). 113

Although (Wang et al., 2020) reduced the 114

attention complexity significantly, especially if 115

𝑘 << 𝑛 , note that, it cannot be effectively 116

used in autoregressive training and generation, 117

as the projection of Q compresses the 118

information along the context, making the 119

masking of attention for future tokens invalid. 120

However, for classification problems where 121

masking of attention is not needed, their 122

architecture is effective in reducing complexity. 123

 124

Another approach introduced by (Beltagy et al., 125

2020) used sparse attention patterns instead of 126

the full dense attention. The authors proposed 127

sliding window attention, where tokens 128

attended only to the nearby past, a dilated 129

sliding window, and a mix of global and sliding 130

window attention where some tokens attend to 131

all tokens while others only attend to nearby 132

tokens. For autoregressive modeling (Beltagy et 133

al., 2020) used dilated sliding window 134

attention. Another notable work in reducing the 135

attention complexity was performed by (Kitaev 136

et al., 2020). The authors key idea was to use 137

locality sensitive hashing which reduces the 138

attention complexity to 𝑂(𝑛 𝑙𝑜𝑔 𝑛). Note that 139

because of the hashing process, the architecture 140

is not suited for autoregressive modeling. 141

A different approach to reduce the attention 142

complexity was taken by (Choromanski et al., 143

2021) where the attention is decomposed as a 144

product of non-linear functions of original 145

query and key matrices referred to as random 146

features. This allows the attention to be 147

encoded more efficiently via the transformer 148

query and key matrices. Further efficient 149

handling of long contexts accomplished by 150

(Hawthorne et al., 2022) divided the input 151

sequence into smaller key/value and query 152

components. These components underwent 153

cross attention in the first layer with a latent ∈154

 ℝ𝑙×𝑑 where l is the size chosen in splitting the 155

input sequence into the query part. The 156

remaining layers operate on the 𝑙 × 𝑑 size 157

instead of the usual 𝑛 × 𝑑 size as in a standard 158

transformer. Although this cross attention on 159

the partitioned input sequence results in 160

efficient handling of long sequences, because 161

of the reduced query size, the equivalent effect 162

is more like a sliding window attention. 163

More recently, a different approach to handling 164

long contexts was proposed via structure state 165

space models. The work by (A. Gu et al., 2022) 166

proposes the Structured State Space Sequence 167

model (S4) based on a new parameterization 168

that can be computed much more efficiently. A 169

variation of the state space approach proposed 170

by (X. Ma et al., 2023) uses single-head gated 171

attention mechanism equipped with exponential 172

moving average to incorporate inductive bias of 173

position-aware local dependencies into the 174

position-agnostic attention mechanism. They 175

also present its variation with linear time 176

complexity for handling long sequences. 177

Further progression on the state space models 178

yielded better results (D. Y. Fu et al., 2023), 179

(Gu, Albert and Tri Dao., 2023) who achieved 180

a very low perplexity score. Most recently 181

(Maximilian et al., 2024) introduced 182

exponential gating and parallelization in 183

LSTMs to achieve extended memory. Some of 184

the model sizes consisted of several billion 185

parameters. We outperform the smaller version 186

of these models with similar size as ours on the 187

perplexity metric as shown in Table 2. 188

An interesting concept in handling long 189

sequences was presented by (C. Zhu et al., 190

2021). Here a sliding window approach is used 191

in handling near term attention, while a set of 192

3

compressed segments for the entire past context 193

is used as long-term attention. Both short and 194

long attention are combined in the overall 195

attention. The slight drawback of the approach 196

is that the longer context is effectively used in 197

compressed form and thus may lose some key 198

contextual information in being able to generate 199

the output in an autoregressive environment. 200

We address this problem by further augmenting 201

the long-short attention by using uncompressed 202

highly attentive segments. Since long short 203

attention divides the context into equal size 204

segments before projecting each segment to a 205

smaller size, there is potential for a loss in 206

information due to segment fragmentation. We 207

also improve this aspect by using overlapping 208

segments and augment this to the existing long-209

short model. Thus, our enhanced long-short 210

architecture involves four components in the 211

overall attention, a sliding window attention, 212

long attention based on compressed segments, 213

long attention based on overlapping segments, 214

and uncompressed segmented attention for few 215

high attentive segments beyond the sliding 216

window part. We describe the details of our 217

design in the section 3. For completeness, we 218

summarize the composition of a Transformer, 219

followed by the ideas of long-short 220

Transformer, that we build upon in our work. 221

2.1 Canonical Transformer 222

In normal multi-headed attention, if 𝑄,𝐾, 𝑉 ∈223

ℝ𝑛×𝑑 are the query, key and value 224

transformations of the input embeddings with 225

sequence length of n and embedding dimension 226

of d, then the scaled dot-product attention in the 227

𝑖-th Head 𝐻𝑖 ∈ ℝ𝑛×𝑑𝑘 is given as: 228

𝐻𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) = 229

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 [
𝑄𝑊𝑖

𝑄
(𝐾𝑊𝑖

𝐾)𝑇

√𝑑𝑘
] 𝑉𝑊𝑖

𝑉 = 𝐴𝑖𝑉𝑊𝑖
𝑉 (1) 230

Where 𝑑𝑘 = 𝑑/ℎ is the dimension of each 231

head. The output in each transformer layer is 232

obtained by catenation of the output of all 233

heads and transformed further via this 234

projection matrix. 235

𝑊𝑜 ∈ ℝ𝑑×𝑑 𝑎𝑠 𝐿𝑎𝑦𝑒𝑟𝑗 =236

𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻0, 𝐻1, ⋯ 𝐻ℎ−1)𝑊
𝑜 (2) 237

 238

After feeding the embedding of a sequence of 239

one hot encoded words, x (with position 240

encoding PE added) through p transformer 241

layers, a classification layer is used at the output 242

of the last layer to decide the output produced by 243

the transformer. For autoregressive text 244

generation, the classification layer’s final output 245

is equal to the size of the dictionary of unique 246

words in the corpus. 247

 248

𝑜𝑢𝑡 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟[𝑙𝑎𝑦𝑒𝑟𝑝−1(𝑙𝑎𝑦𝑒𝑟𝑝−2(… 𝑙𝑎𝑦𝑒𝑟0 249

(𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥) + 𝑃𝐸(𝑥))))] (3) 250

 251

2.2 Long Short Transformer 252

(C. Zhu et al., 2021) aggregated the local 253

attention around a smaller window (sliding 254

window), with a projection of the full sequence 255

attention to a smaller size, so that we can 256

efficiently handle long sequences without the 257

quadratic attention complexity. For short 258

attention, the approach here is to use a segment 259

level sliding window attention, where the input 260

sequence is divided into disjoint segments with 261

length w (e.g., w=128 and sequence length is 262

1024). For non-autoregressive applications, all 263

tokens within a segment attend to all tokens 264

within its home segment, as well as w/2 265

consecutive tokens on the left and right side of 266

its home segment (zero-padding when 267

necessary), resulting in an attention span over a 268

total of 2w key-value pairs. This is depicted in 269

Figure 1. 270

 271

Figure 1. Segment-based Sliding Window Attention 272

 273

For each query 𝑄𝑡 at the position t within the i-th 274

head, the 2w key-value pairs within its window 275

are: 𝐾𝑡̃ , 𝑉𝑡̃ ∈ ℝ2𝑤×𝑑 . The short attention 𝐴̅𝑠𝑖
∈276

ℝ2𝑤×𝑑𝑘 is then given by the following equation: 277

 278

𝐴̅𝑠𝑖
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [

𝑄𝑊𝑖
𝑄𝐾̃𝑖

𝑇

√𝑑𝑘

] (4) 279

 280

Execution wise the segment-level sliding 281

window attention (referred to as short attention) 282

is more time efficient than the per-token sliding 283

window attention where each token attends to 284

itself and w tokens to its left and right, and its 285

memory consumption scales linearly with 286

4

sequence length. For auto-regressive 287

applications, the future tokens in the current 288

segment are masked, and only the previous 289

segment is used. 290

For long attention, the key and value 291

transformations for the input sequence are first 292

divided into segments of fixed size s, and then 293

projected to a smaller dimension r, where the 294

projection 𝑃𝑙𝑖 ∈ ℝ𝑛×𝑟. Figure 2 depicts this 295

process. 296

 297

 298

Figure 2. Segmented Long Attention with Compressed 299

Segments 300

 301

Mathematically, the long attention 𝐴𝑙𝑖
̅̅ ̅̅ (in each 302

head 𝑖) as followed by the long-short Transformer 303

can be described as 304

𝑃𝑙𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑊𝑖
𝑃), 𝐾̅𝑙𝑖 = 𝑃𝑙𝑖

𝑇𝐾𝑊𝑖
𝐾 , 𝑉̅𝑙𝑖 =305

𝑃𝑙𝑖
𝑇𝑉𝑊𝑖

𝑉 (5) 306

𝐴̅𝑙𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [
𝑄𝑊𝑖

𝑄
𝐾̅𝑙𝑖

𝑇

√𝑑𝑘

] (6) 307

 308

The output of in the 𝑖𝑡ℎ head is: 309

𝐻̅𝑖 = 𝐴̅𝑙𝑖 (𝑃𝑙𝑖
𝑇𝑉𝑊𝑖

𝑉) (7) 310

 311

Note that the long attention is effectively done on 312

a compressed form of K and V, as the projection 313

causes the input sequence of size n to be 314

compressed to size r. This results in full attention 315

to now be replaced with the implicit product of 316

two low-rank matrices 𝑃𝑙𝑖
𝑇̅̅̅̅ ∈ ℝ𝑟×𝑛 and 𝑄𝑊𝑖

𝑄 ∈317

ℝ𝑛×𝑑 , and thus the computational complexity is 318

of long attention is reduced from 𝑂(𝑛2) to 319

𝑂(𝑟𝑛). 320

Long-Short Transformer integrates the short and 321

long attentions into a single attention. While the 322

short attention can attend to most recent input, 323

the long attention is in compressed form. Further, 324

the long attention is based on segmentation of the 325

input sequence that may suffer from segment 326

fragmentation as the information in each segment 327

is compressed via the projection mechanism. We 328

improve upon these shortcomings and present 329

our enhanced long short architecture in the 330

following section. Our contributions can be 331

summarized as: 332

1. Improving the segment fragmentation of the 333

projection mechanism followed in long 334

attention by adding projections of segments 335

that have an 𝑠/2 overlap where 𝑠 is the 336

segment size, with the existing segment-based 337

projection mechanism. 338

2. Since the long attention is based on an 339

effective compression of the input sequence, 340

we develop an innovative uncompressed 341

attention mechanism where some of the 342

highly attentive segments are used 343

dynamically in uncompressed form. 344

3. The existing short and long attention are 345

combined with our two enhancements in an 346

effective manner to result in an architecture 347

that can efficiently handle long attentions 348

without causing much loss of attention 349

information. 350

 351

3. Enhanced Long-Short Transformer 352

The long-term attention in the existing Long-353

Short Transformer is done at a compressed level 354

(projection to r causes an effective compression 355

of the input context). Therefore, one of our 356

enhancements is to augment the long attention 357

with an attention that is based on a subset of 358

highly attentive uncompressed segments. 359

3.1 Enhanced Long Attention with Segment 360

Caching 361

The subset of segments that are selected for 362

attention at the uncompressed level is completely 363

dynamic and obtained by the vector magnitude 364

of the compressed segment-wise attention. In 365

simple words, we examine the segment-wise 366

long attention 𝐴̅𝑙𝑖 as given by Equation 6. Since 367

𝐴̅𝑙𝑖 ∈ ℝ𝑛×𝑟 , and if there are 𝑛𝑠 segments, then 368

each row in 𝐴̅𝑙𝑖 contains a set of row vectors of 369

size 𝑟/𝑛𝑠 , as denoted by segmented attention 370

𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ in Equation 8. Magnitude of each vector 371

𝑎𝑖,𝑗⃗⃗ ⃗⃗ ⃗ ∈ ℝ1×𝑟/𝑛𝑠 in Equation 8, indicates the 372

attention of word 𝑖 to the jth segment in the long 373

attention. 374

𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ = [

𝑎1,1⃗⃗ ⃗⃗⃗⃗ ⃗ 𝑎1,2⃗⃗ ⃗⃗⃗⃗ ⃗ 𝑎1,𝑛𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

.

. .
𝑎𝑛,1⃗⃗ ⃗⃗ ⃗⃗ ⃗

. .
𝑎𝑛,2⃗⃗ ⃗⃗ ⃗⃗ ⃗

. .

. .
. .
. .

. .
𝑎𝑛,𝑛𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

] (8) 375

5

For execution efficiency, we average the 376

segment attention vectors in p consecutive rows 377

resulting in a segment attention matrix 378

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
∈ ℝ𝑚×𝑛𝑠 where m = n/p. Then we 379

choose top k segments by magnitude of each 380

vector in each row of the segment attention 381

matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
 382

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
=

[

𝑡𝑜𝑝𝑘((∑𝐴𝑠𝑖
̅̅ ̅̅

𝑝

𝑡=1

[𝑡, :])/𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

)

𝑡𝑜𝑝𝑘((∑ 𝐴𝑠𝑖
̅̅ ̅̅

2𝑝

𝑡=𝑝+1

[𝑡, :])/𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

)

. .

. .

𝑡𝑜𝑝𝑘(((∑ 𝐴𝑠𝑖
̅̅ ̅̅

𝑛

𝑡=𝑛−𝑝

[𝑡, :])/𝑝

⃗⃗

)
]

 (9) 383

Note that each entry in the segment attention 384

matrix, 𝐴𝑒𝑔𝑠𝑎𝑣𝑔𝑖
[𝑖, 𝑗] , indicates the segment 385

number that has high attention to the sequence of 386

p words (positioned from (𝑖 − 1)𝑥𝑝 to 𝑖𝑥𝑝) in 387

the input context. Rather than using these 388

attentive segments in compressed form, we 389

extract them from the segmented K and V 390

matrices before doing any compression on these. 391

Similar to how in cache memory design (in 392

computer architecture), in case of a cache miss, 393

we not only retrieve the needed data from the 394

RAM, but also bring a few consecutive following 395

words, as there is high probability that these may 396

be needed in the near future. In case of segments 397

that we determine most attentive (by the top k 398

order), we also retrieve u consecutive segments. 399

To clarify our approach, if the sequence length is 400

n = 1024, and long attention segment size = 16, 401

then there will be 64 segments in the 402

uncompressed K and V matrices. If the projection 403

size r = 256 (ratio of 1024/256=4), then each 404

segment of size 16 will be compressed to size of 405

4, resulting in long attention matrix 𝐴𝑙𝑖
̅̅ ̅̅ of size 406

1024x(64x4) i.e., 1024x256. If we choose to 407

average p=32 consecutive rows in 𝐴𝑙𝑖
̅̅ ̅̅ , and take 408

the magnitude of each of the 1x4 vectors in each 409

row (corresponding to the 64 segments), then the 410

segment attention matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
will be 32x64. 411

Taking the index of top k entries in each row of 412

𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
 will give us the index of most attentive 413

k segments to the corresponding set of 32 words 414

in the input sequence. Assembling these top k 415

attentive segments, and one segment before and 416

one segment after the attentive segment (if u=3), 417

will result in 15 segments per row. If k=5 is 418

chosen in topk and u=3 which indicates using of 419

u-1 many nearby segments for each attentive 420

segment. Thus, the cache K, V matrices 𝐾𝑐 , 𝑉𝑐 ∈ 421

ℝ(𝑛/𝑝)×(𝑘×𝑢) (e.g., 32x(15x16) = 32x240 in our 422

example) contain the most attentive 15 segments 423

in uncompressed form. From the most attentive 424

kxu segments in 𝐾𝑐 , we can obtain the cache 425

attention 𝐴̅𝑐𝑖
 ∈ ℝ𝑛×(𝑘×𝑢) as, 426

𝐴̅𝑐𝑖
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑊𝑖

𝑄
[

𝐾𝑐

𝐾𝑐. .. .
𝐾𝑐

]

𝑇

)/ √𝑑𝑘 (10) 427

Note that we stack the 𝐾𝑐 p times to match the 428

dimensionality with Q. 429

3.2 Enhanced Long Attention with 430

Overlapping Segments 431

In addition to the original long attention in the 432

Long-Short Transformer that uses the projections 433

on each segment, we augment the existing long 434

attention by using overlapping segments (with 435

50% overlap in augmented long attention) as 436

shown in Figure 3. The motivation behind the 437

overlap is to reduce the effect of segment 438

fragmentation in long attention. Zero padding in 439

the beginning segment is added to ensure the 440

same dimensionality for the overlapped long 441

segment attention. 442

 443

 444

Figure 3. Overlapping Segmented Long Attention 445

with Compressed Segments 446

The overlapped long segment attention 𝐴̅𝑜𝑖
 447

∈ ℝ𝑛×𝑟 similar to Equation 5 is given below. 448

𝑃𝑜𝑖
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑊𝑖

𝑃𝑜), 𝐾̅𝑜𝑖
= 𝑃𝑜𝑖

𝑇𝐾𝑊𝑖
𝐾 449

𝑉̅𝑜𝑖
= 𝑃𝑜𝑖

𝑇𝑉𝑊𝑖
𝑉 (11) 450

6

𝐴̅𝑜𝑖
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 [

𝑄𝑊𝑖
𝑄
𝐾̅𝑜𝑖

𝑇

√𝑑𝑘

] (12) 451

𝐻̅𝑜𝑖
= 𝐴̅𝑜𝑖

 (𝑃𝑜𝑖
𝑇𝑉𝑊𝑖

𝑉) (13) 452

3.3 Aggregated Long-Short Attention 453

The final attention in our enhanced architecture is 454

obtained by aggregating the four attentions 455

described earlier, i.e., the short attention 𝐴̅𝑠𝑖
∈ 456

ℝ𝑛×2𝑤 that uses segment-wise sliding window, 457

the segment based compressed long attention 458

𝐴̅𝑙𝑖 ∈ ℝ𝑛×𝑟 as proposed by (C. Zhu et al., 2021). 459

Our cache attention 𝐴̅𝑐𝑖
∈ ℝ𝑛×(𝑘×𝑢×𝑠) is based on 460

uncompressed high attention segments, and 461

overlapping segment-based compressed attention, 462

𝐴̅𝑜𝑖
∈ ℝ𝑛×𝑟. We add the two long and overlapping 463

attentions, 𝐴̅𝑙𝑖 and 𝐴̅𝑜𝑖
. Thus, the final enhanced 464

attention 𝐴𝑒𝑖
∈ ℝ𝑛×𝑓 is: 465

 466

𝐴𝑒𝑖
= [𝐴̅𝑠𝑖

ǁ(𝐴̅𝑙𝑖 + 𝐴̅𝑜𝑖
)ǁ𝐴̅𝑐𝑖

] (14) 467

 468

where ǁ indicates the catenation of different 469

attentions, and 𝑓 = 2𝑤 + 𝑟 + (𝑘 × 𝑢 × 𝑠), w is 470

the window size in short i.e., sliding window 471

attention, r is the projection size in compressing 472

the long attention, k is the 𝑡𝑜𝑝 𝑘 factor in 473

retrieving high attention top k segments, u-1 is 474

the number of neighboring segments to retrieve 475

for cache attention, 𝑠 is the segment size in long 476

attention. For example, for 𝑡𝑜𝑝 𝑘 of 5 and u = 3, 477

segment size in short attention, w = 128, segment 478

size in log attention = 16, r = 512, for an input 479

sequence length of 2048, the size of our 480

combined attention matrix is 2048x762. 481

 482

4. Results 483

 484

We use the long-short transformer (C. Zhu et al., 485

2021) as the baseline architecture. Instead of 486

focusing on the absolute best results for 487

perplexity and BPC, which often are achieved 488

through extremely refined training schedules and 489

large model sizes, we focus on the improvements 490

over the baseline. Therefore, the results we show 491

are more accurate reflection of the architectural 492

improvements of our design. The baseline 493

architecture is also programmed by us, and the 494

enhancements we propose are programmed in the 495

same implementation and can be selectively 496

turned on or off to see the contribution of each 497

enhancement. We also use similar training 498

schedules for the different architectures being 499

compared. Table 1 shows the perplexity results 500

for wikitext-103 dataset. It uses sequence length 501

of 1024, short attention segment size of 128, long 502

attention segment size of 16, compression of the 503

long sequence by a factor of 4, i.e., r=256, and 504

different values of k in top k cache attention, and 505

neighboring segments retrieval u of 1 or 3 (which 506

indicates the segment before the attentive 507

segment, and the one after it is also retrieved. 508

 509

Model Model

Size

Perplexity

Long-Short Baseline 122.52

million

23.74

Enhanced Long-Short

(k=3, u=1)

122.52

million

23.31

Enhanced Long-Short

(k=5, u=1)

122.52

million

22.75

Enhanced Long-Short

(k=7, u=1)

122.52

million

21.32

Enhanced Long-Short

(k=5, u=3)

122.52

million

21.26

Table 1. Perplexity results Comparing the Baseline 510

and our Enhanced Architecture 511

Note that our enhanced architecture does not 512

cause any increase in the number of model 513

parameters over the baseline long short 514

Transformer. The models used for results in 515

Table 1 have 12 layers, 12 heads, and an 516

embedding size of 768 (for all architectural 517

variations). For a sequence length of 1024 518

(which is same as used in GPT-2), using 7 519

segments (k=7, u=1) yielded considerable 520

improvement in perplexity. Increasing k beyond 521

7 did not seem to considerably reduce perplexity 522

further. Since we have two major enhancements 523

of cache attention and overlapping segment-524

based attention over the baseline, Table 2 shows 525

an ablation study of the effects of each 526

architectural improvement. 527

Figure 4 depicts the 64 attention vectors for each 528

segment (from compressed long attention, after 529

averaging p=256 rows) corresponding to the 64 530

segments during the beginning of training. The 531

highest top k magnitude vectors then determine 532

the segment to use in uncompressed form for our 533

cache attention. 534

7

Table 3 shows the BPC results on the enwik-8 535

benchmark. The 23 million model uses 8 layers, 536

8 heads and embedding size of 512. The 34.88 537

million models used 12 layers. It is interesting to 538

note that the relative improvement in BPC by our 539

enhanced architecture is less pronounced as 540

compared to the perplexity improvements. This 541

could be attributed to the fact that majority of 542

improvements are attributed to cache attention 543

which uses a few highly attentive uncompressed 544

segments in long attention. 545

 546

Architecture Model

Size

(Millions)

Perple-

xity

Long-Short (Baseline-Ours) 122.52 23.74

Transformer-XL (Standard) 151 24

∞-former 160 24.22

LaMemo 151 23.77

H3 (Hungry Hungry Hippos) 125 23.7

Llama 125 23.16

Mamba 125 22.49

xLSTM[7:1] 125 21.47

Enhanced Long Short with

overlapping segments only

122.52

23.47

Enhanced Long Short with

cache attention only (k=7,

u=1)

122.52

21.67

Enhanced Long Short with

overlapping segments and

cache attention (k=7, u=1)

122.52

21.32

Table 2. Ablation Study of Architectural 547

Enhancements 548

 549

While this benefits the perplexity which is a 550

measure of the model’s prediction capability, but 551

BPC not as much, as BPC is more of a 552

compression efficiency measure of the model. 553

 554

 555

 556

Figure 4. Attention Vectors from Compressed Long 557

Attention 558

Model Model Size BPC

Long-Short Baseline 23 million 1.192

Enhanced Long-Short

(k=7, u=1)

23 million 1.188

Long-Short Baseline 34.88 million 1.173

Enhanced Long-Short

(k=7, u=1)

34.88 million 1.167

Table 3. Comparison of BPC on the enwik-8 559

Benchmark 560

 561

5. Discussion 562

 563

Since the uncompressed segments to be used in 564

our cache attention design are dynamically 565

decided based on the input sequence, the 566

execution time increases as more segments (i.e., 567

higher k) are used. When we use, sequence 568

length of 1024, compression r = 256, k = 7, u = 569

1, short attention segment size of 128, then the 570

size of aggregated attention (short, long, cache, 571

overlapping) is 1024x624. 572

Since our cache attention mechanism as 573

explained in section 3.1 is completely dynamic, 574

and uses the most attentive segments in 575

uncompressed form, we average the attention 576

vectors over p rows (to improve efficiency of 577

execution) as given by Equation 9. 578

If we use a sequence length of 1024, and average 579

over 256 rows, then the segments determined by 580

our cache attention mechanism part way through 581

the training of the model appears as shown in 582

Table 4. Note that to implement the 583

autoregressive behavior, the input sequence 584

cannot attend to a future segment. Our 585

implementation guarantees that the input 586

sequence can only attend to a previous segment. 587

For example, when attending to words 768-1023 588

in the input sequence, the maximum segment that 589

the cache attention can use is 47 (if the long 590

segment size is 16, then there are 64 segments in 591

the 1024 size sequence). 592

One of the important recent papers in handling 593

long contexts has indicated that current language 594

models do not robustly make use of information 595

in long input contexts (N. F. Liu et al., 2023). 596

They studied different models and concluded that 597

“performance is often highest when relevant 598

information occurs at the beginning or at the end 599

of the input context, and significantly degrades 600

when models must access relevant information in 601

the middle of long contexts.” 602

8

Input

Sequence

Top k

Attentive

Segments

(k =7, u=1)

Comments

0 – 255

words

[-1, -1, -1, -1, -

1, -1, -1]

No cache

segments are

used to prevent

future token

leakage

256-511

words
[7, 8, 11, 12,

13, 14, 15]

Maximum

segment

allowed = 15

512-767

words
[7, 8, 27, 28,

29, 30, 31]

Maximum

segment

allowed = 31

768-1023

words
[8, 29, 32, 35,

37, 44, 47]

Maximum

segment

allowed = 47

Table 4. Most Attentive Segments Used by our Cache 603

Attention Part way in Training. 604

 605

Note that our cache attention model addresses 606

this aspect nicely in the sense it uses attentive 607

segments dynamically regardless they are needed 608

in the beginning or the middle of input context. 609

For example, see the last row in Table 4 which 610

indicates the highest attentive segments that are 611

used. Segments 32, 35, 37 are relatively in the 612

middle of the input context. When we determine 613

the most attentive segment to use in our cache 614

attention, if the neighboring segment parameter 615

count u>1, then as we look at the segment index 616

of the next or previous index, a duplicate may 617

occur as the next segment may already be one of 618

the high attentive segments. Similarly, if the high 619

attentive segments belong to a future segment, 620

we replace them by one of the allowed segments. 621

Since information segmentation should not 622

occur, the segment we select to be added is the 623

one that is contiguous to an existing high 624

attention segment. 625

6 Conclusions 626

Handling long contexts in an efficient manner 627

without loss of performance is an important area 628

of research in language models. Although many 629

approaches have been recently proposed to 630

address this problem, we present a new 631

innovative solution that is motivated by the 632

cache and virtual memory concepts in computer 633

architecture. In such designs, if there is a cache 634

or page miss, the needed data is retrieved from 635

the disk or RAM. We handle long contexts by 636

diving them into small segments. By the 637

magnitude of the compressed attention vectors, 638

we determine the most attentive segments, and 639

then use these in uncompressed form. Similar to 640

the cache memory design, we also use 641

consecutive segments near to the high attention 642

segments to improve the language model 643

predictive performance. Our results on the 644

perplexity indicate significant improvement over 645

the baseline architecture that uses short and long 646

compressed attention. For the BPC, the cache 647

attention mechanism does not show remarkable 648

improvement on the baseline. We conjecture that 649

the BPC that favors compression capability is not 650

benefited by the relevant segment usage that our 651

model provides which is helpful in model 652

prediction capability. Another advantage of our 653

approach is that the use of high attention 654

segments is dynamic and depends on the input 655

sequence. Thus, if the model needs to use 656

information in the middle or anywhere in the 657

input context, it is provided in uncompressed 658

form via the high attention determination on the 659

compressed segments. 660

7 Limitations 661

The only shortcoming of our approach we feel is 662

that the dynamic segment attention is relatively 663

slow during training. We partially overcome this 664

by initially pretraining the model without 665

dynamic attention, and then fine tune it on our 666

cached attention. Our future work involves in 667

applying the cache attention to reduce the model 668

complexity of large language models and to 669

create a hierarchical cache design such that very 670

long contexts can be efficiently handled. 671

Further, our model sizes and datasets were 672

constrained by computational resources available 673

to us. We used GPU RTX 4090 and therefore 674

could not use larger datasets such as PG-19 and 675

run larger models with larger embedding size, 676

layers, and heads. 677

 678

 679

 680

 681

 682

9

8 References 683

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 684

Jones, L., Gomez, A. N., Kaiser, L., and 685

Polosukhin, I. “Attention is all you need”. 686

Proceedings of Neural Information Processing 687

Systems (NeurIPS), 2017 688

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 689

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 690

Diogo Almeida, Janko Altenschmidt, Sam 691

Altman, Shyamal Anadkat, et al., “Gpt-4 692

technical report,” arXiv:2303.08774, 2023 693

G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, 694

J. Yu, R. Soricut, J. Sc (H. Touvron et al., 695

2023)halkwyk, A. M. Dai, A. Hauth et al., 696

“Gemini: a family of highly capable multimodal 697

models,” arXiv:2312.11805, 2023 698

Hugo Touvron, Thibaut Lavril, Gautier Izacard, 699

Xavier Martinet, Marie-Anne Lachaux, Timothée 700

Lacroix, Baptiste Rozière, Naman Goyal, Eric 701

Hambro, Faisal Azhar, et al. “Llama: Open and 702

efficient foundation language models,” 703

arXiv:2302.13971, 2023. 704

Hugo Touvron, Louis Martin, Kevin Stone, Peter 705

Albert, Amjad Almahairi, Yasmine Babaei, 706

Nikolay Bashlykov, Soumya Batra, Prajjwal 707

Bhargava, Shruti Bhosale, et al., “Llama 2: Open 708

foundation and fine-tuned chat models,” 709

arXiv:2307.09288, 2023. 710

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., 711

and Salakhutdinov, R. “Transformer-XL: 712

Attentive language models beyond a fixed-length 713

context,” Proceedings of the Annual Meetings of 714

the Association for Computational Linguistics 715

(ACL), 2019. 716

 Sinong Wang, Belinda Z. Li, Madian Khabsa, Han 717

Fang, Hao Ma, "Linformer: Self-Attention with 718

Linear Complexity," arXiv:2006.04768, 2020. 719

Iz Beltagy, Matthew E Peters, and Arman Cohan, 720

"Longformer: The long-document transformer," 721

arXiv:2004.05150, 2020. 722

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya, 723

"Reformer: The efficient transformer,"ICLR, 724

2020. 725

Krzysztof Choromanski, Valerii Likhosherstov, David 726

Dohan, Xingyou Song, Andreea Gane, Tamas 727

Sarlos, Peter Hawkins, Jared Davis, Afroz 728

Mohiuddin, Lukasz Kaiser, et al., "Rethinking 729

attention with performers," ICLR, 2021 730

Curtis Hawthorne, Andrew Jaegle, Cătălina 731

Cangea, Sebastian Borgeaud et al., "General-732

purpose, long-context autoregressive modeling 733

with Perceiver AR," ICML 2022 734

Albert Gu, Karan Goel, and Christopher R´e, 735

"Efficiently Modeling Long Sequences with 736

Structured State Spaces," arXiv:2111.00396v3, 737

2022 738

Xuezhe Ma, Chunting Zhou, Xiang Kong, et.al., 739

"Mega: Moving Average Equipped Gated 740

Attention," arXiv:2209.10655v3, 2023. 741

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. 742

Thomas, Atri Rudra, Christopher Ré, "Hungry 743

Hungry Hippos: Towards Language Modeling 744

with State Space Models," arXiv:2212.14052v3, 745

2023 746

Chen Zhu, Wei Ping,Chaowei Xiao, Mohammad 747

Shoeyb, Tom Goldstein, Anima Anandkumar, 748

and Bryan Catanzaro, "Long-Short Transformer: 749

Efficient Transformers for Language and 750

Vision," 35th Conference on Neural Information 751

Processing Systems (NeurIPS 2021). 752

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin 753

Paranjape, Michele Bevilacqua, Fabio Petroni, 754

Percy Liang, "Lost in the Middle: How 755

Language Models Use Long Contexts," 756

arXiv:2307.03172v3 [cs.CL] 20 Nov 2023. 757

Singh, Sushant and Ausif Mahmood. “The NLP 758

Cookbook: Modern Recipes for Transformer 759

Based Deep Learning Architectures.” IEEE 760

Access (2021) 761

Ji, Haozhe, Rongsheng Zhang, Zhenyu Yang, 762

Zhipeng Hu and Minlie Huang. “LaMemo: 763

Language Modeling with Look-Ahead 764

Memory.” North American Chapter of the 765

Association for Computational 766

Linguistics (2022). 767

Martins, Pedro Henrique, Zita Marinho and André F. 768

T. Martins. “∞-former: Infinite Memory 769

Transformer-former: Infinite Memory 770

Transformer.” Proceedings of the 60th Annual 771

Meeting of the Association for Computational 772

Linguistics (Volume 1: Long Papers) (2022) 773

Gu, Albert and Tri Dao. “Mamba: Linear-Time 774

Sequence Modeling with Selective State 775

Spaces.” ArXiv abs/2312.00752 (2023) 776

Beck, Maximilian, Korbinian Poppel, Markus 777

Spanring, Andreas Auer, Oleksandra 778

Prudnikova, Michael K Kopp, Günter 779

Klambauer, Johannes Brandstetter and Sepp 780

10

Hochreiter. “xLSTM: Extended Long Short-781

Term Memory.” (2024). 782

 783

Appendix 784

A. Further Details on our Enhanced 785

Caching Transformer 786

In our caching protocol we compress and 787

dynamically retrive the most relevant 788

compressed segments for any given input. Based 789

on the design constraints an appropriate amount 790

of input sequence compression is performed. 791

Thereafter the sequence is split into the desired 792

segments and we choose the most similar 793

segments for each query and retrieve them in the 794

original uncompressed form. It ensures only the 795

most relevant information is being picked. This 796

not only helps in reducing the context size but it 797

also enables in preserving key information. This 798

enhanced caching attention technique is 799

explained in greater detail in the subsequent 800

sections. 801

A.1 Enhanced Caching Attention 802

 803

Figure 5. Downsized Compression of Attention 804

Matrix along 𝐾𝑐 , 𝑉𝑐 805

Consider the length of the input sequence to be 806

1024 tokens that need to be compressed and 807

down projected to 256 tokens. Here we choose to 808

divide the row into (𝑛𝑠) 64 segments. This will 809

yield to a compression ratio (𝑟/𝑛𝑠) of 4. The 810

attention matrix will be of size 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ ∈ ℝ𝑛×𝑟 . 811

Therefore for 𝑛𝑠 segments, each row in 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ 812

will consist of row vectors with size 𝑟/𝑛𝑠. 813

Further, the magnitude of the vector 𝑎𝑖,𝑗⃗⃗ ⃗⃗ ⃗ ∈814

ℝ1×𝑟/𝑛𝑠 will represent the attention of the 𝑖𝑡ℎ 815

word token to the 𝑗𝑡ℎ compressed segment in the 816

long attention as shown in Figure 5. Thereafter, 817

we compute the root mean square for each of the 818

(1 ⨯ 4) sized attention vectors 𝑎𝑖,𝑗⃗⃗ ⃗⃗ ⃗ , hence the 819

dimension across each row is downsized from 820

256 to 64. We use this size for the subsequent 821

attention processing steps as demonstrated in the 822

following section. 823

A.2 Averaging in Segment Caching 824

Attention computation and top-k segment 825

retrieval across all 1024 rows turned out to be 826

computationally cumbersome and time intensive. 827

Therefore, to achieve execution efficiency, we 828

averaged all 1024 input vectors across 𝑝 829

consecutive rows for the previous attention 830

matrix 𝐴𝑠𝑒𝑔𝑖
̅̅ ̅̅ ̅̅ ̅ ∈ ℝ𝑛×𝑟 where 𝑝 is a 831

hyperparameter. 832

 833

Figure 6. Averaged Compression of 834

Attention Matrix along the Input Length 835

This segment attnetion matrix is further reshaped 836

and compressed into 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
∈ ℝ𝑚×𝑛𝑠 , where 837

m = n/p=32 as shown in Figure 6. This 838

implementation was key for our model to 839

achieve superior results outperforming other 840

popular language models of similar size as 841

mentioned in Table 2 and resulted in a faster run 842

time as well. 843

A.3 Top-k Retrieval in Segment Caching 844

Post the compression and averaging, the top 𝑘 845

most similar segments were chosen to be 846

retrieved by the order of the attention magnitude 847

11

betweeen the modified input and key/value 848

matrices. These segments were picked 849

corresponding to each row 𝑚 , which is an 850

averaged input sequence of 32 consecutive words 851

(aveeraged down from 1024) from the segment 852

attention matrix 𝐴𝑠𝑒𝑔𝑎𝑣𝑔𝑖
. 853

 854

Figure 7. Enhanced Attention Matrix after 855

top-k retrieval 856

The hyperparameter 𝑘 is chosen based on the 857

performance needs and based on that value along 858

with the 𝑘𝑡ℎ segment, we also extract one 859

segment before and after the 𝑘𝑡ℎ attentive 860

segment. 861

Therefore, we define 𝑢 as the hyperparameter 862

that regulates the number of adjacent segments 863

around 𝑘 that need to be retrieved from the 864

sequence. For instance, with 𝑘 = 5 and 𝑢 = 3 865

will result in a total of 15 uncompressed 866

extracted segments of length 16 from each row 867

as shown in Figure 7. 868

A.4 Overlapping Segments in Long Attention 869

 870

Figure 8. Long Attention with Overlapping Segments 871

As discussed earlier that the segmentation of 872

input into chunks leads to fragmentation of long-873

term information. This becomes a challenge in 874

building long term dependency. This issue hasn’t 875

been addressed in prior Transformer based 876

language models. Therefore, we augment the 877

long attention with segments with a 50% overlap 878

to maintain the continuity of data as shown in 879

Figure 8. The model is trained with the 880

overlapping data as the query that needs to learn 881

the original chunks as key and values. 882

A.5 Aggregated Enhanced Long Short 883

Attention 884

Thereafter we add the overlapping attention 𝐴̅𝑜𝑖
 885

to the long cache attention 𝐴̅𝑙𝑖 who have similar 886

shapes. The sliding window (short) attention 𝐴̅𝑠𝑖
 887

and our caching attention 𝐴̅𝑐𝑖
 are concatinated to 888

the above summed attention as pictorially 889

demostrated in Figure 9. 890

Here ǁ indicates the catenation of different 891

attentions, w is the window size in short i.e., 892

sliding window attention, r is the projection 893

size in compressing the long attention, k is 894

the 𝑡𝑜𝑝 𝑘 factor in retrieving high attention 895

top k segments, 𝑠 is the segment size in long 896

attention, 𝑢 determines the number of segments 897

to be retrieved adjacent to the top 𝑘𝑡ℎ one. 898

 899

Figure 9. Complexity of the Enhanced Attention 900

Finally, Figure 10 shows the four attention 901

mechanisms that are simultaneously aggregated 902

and succesfully inducted in our model 903

architecture. 904

 905

12

 906

Figure 10. Aggregated Enhanced Attention 907

 908

 909

 910

 911

 912

 913

 914

 915

 916

 917

 918

 919

