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Abstract

Large Language Models (LLMs) have achieved significant performance gains
through test-time scaling methods. However, existing approaches often incur redun-
dant computations due to the accumulation of historical dependency information
during inference. To address this challenge, we leverage the memoryless property
of Markov processes to minimize reliance on historical context and propose a
Markovian reasoning process. This foundational Markov chain structure enables
seamless integration with various test-time scaling methods, thereby improving
their scaling efficiency. By further scaling up the Markovian reasoning chain
through integration with techniques such as tree search and reflective refinement,
we uncover an emergent atomic reasoning structure, where reasoning trajectories
are decomposed into a series of self-contained, low-complexity atomic units. We
name this design Atom of Thoughts (AOT). Extensive experiments demonstrate
that AOT consistently outperforms existing baselines as computational budgets
increase. Importantly, AOT integrates seamlessly with existing reasoning frame-
works and different LLMs (both reasoning and non-reasoning), facilitating scalable,
high-performance inference.We submit our code alongside this paper and will make
it publicly available to facilitate reproducibility and future research.

1 Introduction

Large Language Models (LLMs) exhibit remarkable scaling behavior: as model parameters and
training data increase, their performance improves predictably across a wide range of tasks [21]].
Recently, test-time scaling methods have emerged to push the performance boundary further by
increasing computational resources during inference. These range from basic Chain-of-Thought
(CoT) prompting that extends reasoning chains [33]], to more structured approaches like Tree-of-
Thought (ToT) [40]] and Graph-of-Thought (GoT) [4] that organize multiple LLLM invocations for
exploring solution spaces, and recent reasoning models such as OpenAl O1 [26] and DeepSeek
R1 [9] that enhance LLMs’ long-chain reasoning ability through post-training [29} 24! [18]].

However, current framework-based test-time scaling methods typically rely heavily on retaining
extensive historical information. Even the simplest CoT must preserve the entire reasoning trajectory
to generate each subsequent step [33}53]]. Tree-based methods maintain ancestor and sibling relations
for branching decisions [40} 56, [11]], while Graph-based methods introduce even more complex
dependencies through arbitrary node connections [4} [52]. Figure [Ib]analyzes these representative
structures and abstract the complexity of historical information and reasoning completion token
involved at each LLM invocation.

To decouple the current problem’s reasoning from processing historical information and thus mini-
mize their mutual interference during test-time computation, we aim to generalize Markov chain—style
structures to general-purpose reasoning. By exploiting the memoryless property of Markov pro-
cesses, we design the Markovian reasoning process, where each state encapsulates a self-contained
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Figure 1: Token Allocation Comparison in Reasoning Frameworks. Figure (a) demonstrates
the differences between thoughts and states, where the red-highlighted text in thoughts reflects
dependencies on historical information, whereas states maintain answer-equivalence with the initial
problem while progressively reducing execution complexity. Figure (b) illustrates differences in
the number of prompt tokens and completion tokens for CoT, ToT, GoT, and the state-based AOT.
For simplicity, we assume each thought consists of the same number of tokens, with an average of
O(n) thoughts required to express a solution. While ToT maintains b branches, resulting in a fixed
number of b invocations per expansion stage, GoT’s settings can be flexibly adjusted depending on
the scenario and are thus denoted as O(b).

problem, thereby significantly reducing historical dependencies. The reasoning process is expressed
as a sequence of states with progressively reduced test-time complexity, rather than an accumulation
of historical thoughts like CoT, as illustrated in Figure[Ta] To ensure steady progress, we introduce
a two-phase state transition mechanism: the decomposition stage converts the current state into a
Directed Acyclic Graph (DAG)-based reasoning path, and the contraction stage uses its structure to
reduce dependencies and generate the next state.

This fundamental structure with memoryless property distinguish our approach from many CoT-based
methods. Thus, our method can be seamlessly integrated with existing test-time scaling methods,
enhancing their scaling efficiency. While exploring integrations with tree search and reflective
refinement to further scale up the Markovian reasoning chain, we identify an emergent trend towards
an atomic reasoning structure (Figure [)), where reasoning trajectories are represented as a series
of self-contained, low-complexity atomic problems. To emphasize this characteristic, we name our
approach Atom of Thoughts (AOT).

Our contributions are summarized as follows:

* Markovian Reasoning Process. We introduce a general-purpose Markovian reasoning
process that achieves high-quality and cost-effective reasoning across various scenarios,
including code generation, mathematical reasoning, and multi-step reasoning tasks.

* Scalable Reasoning Structure. The basic structure design of Markov chain in AOT facili-
tates seamless integration with various test-time scaling methods, significantly enhancing
computational efficiency and allowing the combination of different methods’ advantages.
This scalability ensures more effective utilization of increased computational budgets without
the overhead of maintaining extensive historical contexts.

* Atomic Reasoning. Further leveraging AOT’s seamless integration capability to enhance
itself, by integrating with tree search and reflective refinement to scale up the exploration of
the Markovian reasoning chain, we uncover an emergent atomic reasoning structure. In this
structure, complex reasoning trajectories are decomposed into a sequence of atomic, self-



contained units with low complexity. This atomicization brings about improved reasoning
performance and robustness.

2 Related Work

2.1 Reasoning Framework

Drawing inspiration from cognitive behaviors in human reasoning [3]—such as step-by-step
decomposition [33) 157, 31, [13]], reflective refinement [23, |55, [54]], and aggregation ensem-
ble [32l 20, 42]—various prompting strategies have been developed to enhance the reasoning
capabilities of LLMs. These reasoning frameworks typically employ structured representations,
including chains, graphs, and trees [40, 4, |51]], to model the reasoning space efficiently and system-
atically. Chain-based methods, for instance, decompose complex problems into linear sequences
of subproblems [33} 157, [31]], primarily optimizing for stepwise dependency. In contrast, tree- and
graph-based formalisms support hierarchical exploration of multiple reasoning paths, allowing for
more dynamic adaptation during the problem-solving process [40, 4]. These structured approaches
have demonstrably improved LLLM performance in diverse applications like code generation, question
answering, and complex data processing [[17, [16} 48] |50], by enabling LLMs to tackle intricate
problems with enhanced coherence and interpretability.

While these structured methods significantly expand LLMs’ reasoning capabilities, they also inher-
ently accumulate historical dependencies. This accumulation can lead to increased computational
costs and potential interference during the inference process. Recent efforts have attempted to
mitigate this reliance on historical information by exploring Markovian reasoning processes and
atomic reasoning steps, aiming for more memoryless transitions [36} 34, 58} 35]. However, these
approaches often suffer from task-specific design limitations, hindering generalizability and efficient
parallelism [12} 38| 46]. In contrast, AOT introduces a DAG-based approach that decouples partial
subproblems into atomic nodes. This decoupling enables independent state transitions without the
substantial overhead associated with maintaining historical context. By iteratively decomposing
problems into these atomic nodes and then contracting them, our method reduces overall complexity
and inherently supports efficient parallel execution, thereby addressing the limitations of traditional
chain, tree, and graph-based structures.

2.2 Test-Time Scaling

Test-time scaling has emerged as a powerful mechanism to enhance LLM reasoning by extending
computational effort during inference. Framework-based approaches augment LLM capabilities
through structured reasoning extensions, leveraging cognitive operations and external tool integration
to facilitate deeper exploration of solution spaces [49} 28 [7]]. These methods introduce reflective
reasoning cycles, recursive problem-solving, and dynamic path selection, significantly improving
performance on complex reasoning tasks. Despite these advances, existing techniques commonly
preserve full historical state information throughout the reasoning process. This can lead to redundant
computational overhead and potential conflicts across successive reasoning steps.

Recent work has explored alternative strategies, such as supervised fine-tuning on CoT trajectories,
demonstrating improved LLM capacity to maintain coherent, long-term reasoning [44, |6} 41]]. Re-
inforcement learning have further pushed these boundaries by enabling models to autonomously
extend reasoning chains, potentially unlocking emergent cognitive patterns [22, 47, 9} 45]]. However,
similar to framework-based methods, these techniques often rely on maintaining expansive historical
contexts, which can limit their efficiency and scalability as reasoning paths become extended.

In contrast to these history-dependent methods, our approach adopts a Markovian perspective,
modeling the reasoning process as state transitions assisted by a temporary DAG structure. This
memoryless design eliminates the need for redundant history tracking, focusing computational
resources solely on current state transformations. Furthermore, our proposed two-phase transition
mechanism, comprising decomposition and contraction stages, facilitates atomic problem-solving.
This enhances computational efficiency while maintaining structural clarity. This structured yet
flexible approach not only reduces dependency overhead but also aligns naturally with the principles
of test-time scaling, offering seamless integration with existing reasoning frameworks to achieve
scalable, high-performance inference.
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Figure 2: Overview of AOT. The Markov reasoning framework iteratively derives states );41 from
predecessors (Q; using DAG decomposition and contraction. The left part shows this iterative process,
while the right part highlights the integration with existing methods. Any intermediate state (); can
act as an entry point ()¢ for other methods, ensuring flexible composition while preserving answer
equivalence to the original question. This allows AOT to operate independently or as a preprocessing
module to optimize the performance or efficiency of existing approaches.

3 Atomic Reasoning via Markov Process

In this section, we first formally derive a Markovian reasoning process grounded in a clear probabilistic
formulation. We then discuss how this Markovian reasoning structure can be integrated seamlessly
with other reasoning methods to further scale up inference time. Finally, we demonstrate how atomic
reasoning structures naturally emerge through such scaling-up procedures. The overview of this
Markovian reasoning process is illustrated in Figure 2}

3.1 Markovian Reasoning Process

Reasoning Chain. CoT reasoning introduces a sequence of intermediate steps 7; to solve a problem.
This process can be formalized as a probabilistic sampling procedure:

N
A~ p(AIT, Qo) [ [ p(Til T<i, Qo) 0]

i=0
where A is the final answer, and 7 = {1y, 11, . . ., T } is the sequence of thoughts, each conditioned

on the previous steps 7, and the initial question Q.

An alternative formulation—Least-to-Most [57] prompting—reframes the node of chain as a sub-
question @;, yielding:

N

A~ p(A1Q) [[r(Qi1Q<) 2

i=0

Under the above formulation, the reasoning process is characterized by the accumulation of in-
termediate thoughts or subquestions in the sequence, leading to a continual increase in historical
information. However, ideally, if the reasoning chain satisfies the property of a memoryless Markov
process—where each state .S; ;1 depends only on S;—we obtain:

N
A~ p(A|Sw) HP(Si+1|Sz') 3)

i=0
where S; represents a state in the Markovian reasoning process. In the following paragraph, we

will explicitly clarify the semantic content of the Markov state .S;, resulting in a more specific and
practical representation.



Markov State. In practice, real-world problems rarely satisfy the strict Markov assumption directly.
To establish a meaningful Markovian formulation, we reuse the subquestion symbol @); to represent
the Markov states .5;, initialized by the original question (J¢. Since the final answer A must be
derivable from the final state () _1, it follows naturally that ) _; is answer-equivalent to (J¢. Thus,
an essential invariant emerges: each intermediate subquestion (); must preserve answer-equivalence
with the original question. To ensure meaningful Markov state transitions, we further impose that
the sequence of subquestions {Qg, @1, . . . , @ n } monotonically reduces in complexity, guaranteeing
genuine reasoning progress at each transition.

Two-phase Transition However, state transitions aiming at test-time reduction remain challenging
for LLMs, especially without task-specific training. This difficulty arises primarily from the complex
historical dependencies within reasoning trajectories. To address this issue, we propose a two-phase
transition mechanism that first explicitly decomposes the current state (); to capture the internal
dependencies before contracting them into the next state.

In the decomposition phase, we introduce a DAG scaffold G; to explicitly represent the dependency
structure among reasoning steps within each intermediate question ();. This temporary structure is
later discarded to eliminate historical dependencies, enabling the Markovian transition. Formally, the
DAG is defined as:

gz:(N7E)> Eg{(vaNk)|j<k} (4)

where nodes N, represent individual thoughts or subquestions, and edges (IV;, Ni,) indicate that
node NN; provides necessary information for node N,.

In the subsequent contraction phase, we transform the temporary DAG structure G; into the next
Markov state ();11. Specifically, nodes without incoming edges in G; are independent and can be
safely discarded, whereas the remaining dependent nodes are reformulated into an answer-equivalent
independent question ;1. Formally, the overall Markovian transition process can be expressed as:

N
A~ p(AlQN) [ p(Qir11G:) p(Gil Qi)- &)
i=0
A detailed step-by-step example demonstrating the complete decomposition-contraction process is
provided in Appendix [B.2]

3.2 Emerged Atomic Reasoning

The Markovian reasoning process provides a fundamental, low-level structural prior for inference.
In this subsection, we discuss the design of a termination mechanism to counteract the potential
fragility introduced by strict memorylessness, thereby constructing a stable reasoning framework.
Moreover, we describe how this Markovian reasoning structure can be combined with additional
methods—particularly through structured exploration via tree search and reflective verification—to
further scale up test-time reasoning. This combined approach reveals the emergence of a stable,
indivisible reasoning structure, termed atomic reasoning.

Termination Strategy. Unlike CoT-based approaches, which can recover from early errors by
leveraging accumulated context, our Markov chain lacks such a fallback due to its memoryless nature.
This amplifies the risk of propagating low-quality transitions—if an intermediate question ;11
diverges semantically from the original task, subsequent reasoning becomes meaningless.

To address this, we introduce a quality-aware termination strategy. After each transition Q); —
Qi+1, an LLM-as-a-judge selects the best answer to the original question )y from the triplet
{solve(Q);), solve(G;), solve(Q;+1)}. Crucially, this mechanism implicitly enforces answer equiv-
alence: if ();1 fails to preserve answer equivalence with g, then solve(Q;1) will not provide a
valid answer for (Qy and thus cannot be selected by the judge. This selection-based filtering naturally
ensures that only semantically stable transformations maintaining answer equivalence are retained. If
Qi+1 is not selected, the process terminates and returns the best candidate among the three. Detailed
quality metrics demonstrating the effectiveness of this mechanism are provided in Appendix [B.1]

Modular Integration. Since each Markov state is constrained to be an equivalently transformed
representation of the original question, the reasoning process forms a semantically aligned and



Table 1: Performance Comparison.

Model Benchmark CoT CoT-SC SR AR AFlow  ToT GoT  FoT  AoT
Non-Reasoning LLMs

MATH 78.3 81.8 787 654 83.0 82.0 823 82.6  83.6

GPT-do-mini GSMS8K 90.9 92.0 91.7 872 93.5 91.8 92.1 942  95.0
MBPP 72.4 73.2 72.8  70.1 74.0 73.5 737 748 752

LongBench 57.6 58.6 582 529 61.0 59.0 592 608  68.5

MATH 94.4 95.2 948  90.1 96.1 95.0 953 956  96.5

DeenSeek-V3 GSM8K 96.2 97.0 96.8 925 97.8 96.5 968 975 982
cepseek MBPP 757 76.5 760 732 713 768 770 7182 79.6
LongBench 58.8 60.1 595 553 63.5 612 615 633 710

Reasoning LLMs

AIME 79.6 81.0 80.2  76.0 82.5 81.2 815 81.8  83.0

O3-mini LiveCodeBench  23.6 25.0 242 200 26.5 252 255 27.8 322
LongBench 56.3 57.5 56.8  52.0 58.0 56.5 568 579 653

AIME 78.3 79.7 789 747 81.2 799 802 80.5 81.7

DeepSeek-R1 LiveCodeBench  24.5 259 25.1 209 27.4 26.1 264  28.1 309
LongBench 55.1 56.2 554 523 58.7 570 575 582 679

fully self-contained sequence of problem representations. This property enables modular reasoning
without compromising the integrity of the overall task. In practice, each state within the chain can be
independently routed to specialized solvers, subjected to verification procedures, or further embedded
into structured reasoning frameworks—such as tree-based or graph-based inference. The introduction
of the Markov reasoning process thus does not merely offer an alternative to previous reasoning chain
methods, but rather defines a structural foundation upon which diverse test-time reasoning strategies
can be constructed.

Atomic Structure. Although the termination strategy ensures robustness, it also restricts the
emergence of deeper reasoning chains. To explore the full potential of the Markov process, we
sample and extend trajectories, combining tree search and reflection mechanisms. These structured
explorations reveal a statistically supported phenomenon: deeper reasoning states tend to converge
into irreducible forms, maintaining a stable and relatively low reasoning token count, from which
the original problem’s answer can be directly inferred with high execution stability. We refer to
these stable forms as atomic structures: indivisible and self-contained representations that require
no further decomposition. Importantly, atomicity is not imposed a priori, but emerges naturally
as a property discovered throughout the reasoning process. This convergence toward atomic units
represents a logical endpoint where problems become sufficiently simple that further decomposition
is neither necessary nor beneficial. Notably, this convergence point is jointly determined by both the
intrinsic complexity of the problem and the reasoning capabilities of the underlying model—different
problems may converge at different depths, and the same problem may exhibit different atomic
granularities when solved by models with varying capacities.

4 Experiments

Our experiments aim at two primary objectives. First, we conduct main experiments across a variety
of datasets spanning mathematics, code generation, and multi-hop question answering to demonstrate
the cost-efficiency advantages of AOT as a general-purpose reasoning framework. Second, leveraging
the flexibility provided by the basic Markov chain structure in our approach, we design integration
experiments at various granularities. These experiments explore the utilization of AOT as a plug-in
component to enhance cost-efficiency in other reasoning frameworks and investigate scaling effects
in integration with classical methods like tree search and verification-based reflection, analyzing
emergent reasoning phenomena.
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Figure 3: A comparison of performance and cost of various methods and ablation methods on the
dataset, with GPT-40-mini as the backbone. Each node in the curves represents an AoT (or ablation
variants) iteration result, where increasing token consumption indicates deeper iterations. Due to
relatively poor AR performance leading to scattered data points, AR data points are excluded.

4.1 Experimental Setup

Benchmarks and Metrics. We evaluate AOT across representative benchmarks covering mathemat-
ical reasoning (MATH [14], GSMS8K [&]], AIMEE]), code generation (MBPP [1]], LiveCodeBench [19]),
and multi-hop question answering tasks (HotpotQA [39], MuSiQue [30], and 2WikiMultiHopQA [15]
preprocessed by LongBench [2]]), see Appendix F.3 for details. Following previous work [49] 5], we
report pass rates for mathematical and coding benchmarks, and F1 scores for multi-hop QA tasks.

Settings. All prompt templates used in Markov reasoning process for experiments are fully de-
scribed in Appendix [A.I] Key hyperparameters, including model temperature and Markov chain
length, are detailed and discussed in Appendix We set the default temperature to 1.0 and the
maximum Markov chain length to 3 for the main experiments to balance performance and efficiency
while enabling scaling curves. Due to AOT ’s design and termination mechanism, longer chain
lengths increase the performance ceiling without linearly increasing costs.

Backbones and Baselines. AOT is designed to be compatible with various LLM backbones. To
demonstrate its effectiveness, we employed two categories of LLMs. The first category comprises
non-reasoning LLMs, specifically GPT-40-mini [25]] and DeepSeek-V3 [10]. The second category
includes reasoning-capable LLMs such as O3-mini [27]] and DeepSeek R1 [9]. Specifically, we
use non-reasoning models to evaluate performance on MATH, GSM8K, and MBPP, and reasoning-
capable models to evaluate performance on more challenging tasks such as AIME and LiveCodeBench.
Additionally, since multi-hop QA is not a primary focus for reasoning-capable models, both categories
of models are evaluated on LongBench for comprehensive comparison.

For comparison, we evaluated AOT against a diverse set of baseline methods, broadly categorized by
their interaction pattern with the LLM: single-call or multi-call invocations. Single-call approaches
include well-known techniques like Chain-of-Thought (CoT) [33]] and Chain-of-Draft (CoD) [37].
Multi-call methods represent more complex workflows, such as CoT with Self-Consistency (CoT-
SC) [32], Self-Refine (SR) [23]], Analogical Prompting (AP) [43]], Forest-of-Thought (FoT) [5], and
the agentic framework AFlow [49]]. Further details are provided in Appendix [A.3]

"https://huggingface.co/datasets/Maxwell-Jia/AIME_2024



4.2 Main Results

Table[I] presents the main experimental results. Across both Non-Reasoning and Reasoning LLMs,
AOT consistently demonstrates strong performance. For Non-Reasoning LLMs such as GPT-40-mini
and DeepSeek-V3, AOT achieves the highest scores on benchmarks like MATH, GSM8K, MBPP,
and LongBench, often surpassing all other compared methods. For instance, with GPT-40-mini, AOT
scores 83.6 on MATH, 95.0 on GSMSK, 75.2 on MBPP, and 68.5 on LongBench, which are the top
performances. Similarly, DeepSeek-V3 with AOT leads with scores on all benchmarks.

In the Reasoning LLMs section, featuring O3-mini and DeepSeek-R1, AoT continues to exhibit
competitive and often leading performance. For O3-mini, AoT achieves the highest scores on AIME
(83.0), LiveCodeBench (32.2), and LongBench (65.3). With DeepSeek-R1, AoT again leads on
all tasks. Overall, AOT consistently achieves state-of-the-art or highly competitive results across a
diverse set of models and benchmarks, demonstrating its effectiveness.

Figure 3| further demonstrates that performance improves progressively with additional reasoning
iterations. This highlights the effectiveness of our proposed termination strategy: by mitigating error
propagation from memoryless Markovian transitions, it preserves the desirable test-time scaling
property—performance does not degrade as more computational resources are allocated.

4.3 Ablation Study

We conduct ablation studies to examine the impact of core components in our framework. Specifically,
we evaluate two variants: (1) Without Decomposition, where the model directly contracts reasoning
trajectories from the initial question without constructing a DAG; and (2) Without DAG-guided
Contraction, where decomposition still occurs, but the contraction step does not rely on any structural
guidance. In this setting, only the first naturally independent subproblem is separated out. Figure 3|
shows that both ablations significantly degrade performance, with the second variant causing a more
severe drop. This suggests that partial or superficial structural cues can be more harmful than providing
none at all. These results underscore the importance of explicitly modeling fine-grained dependencies
in reasoning trajectories, showing that faithful structural representations meaningfully enhance
reasoning effectiveness and precision. Comprehensive quality metrics for the DAG generation
process, including answer equivalence maintenance rates (>99% across all datasets) and complexity
reduction rates (74-82%), are provided in Appendix

4.4 Scaling Up Analysis

In this section, we further explore the scalability of AOT by integrating it with existing reasoning
frameworks, leveraging its flexible, modular design. We begin our analysis by using individual
Markov states as integration points—a lightweight and straightforward approach where interme-
diate states processed by AOT serve as optimized entry points for other reasoning methods. Our
experiments reveal substantial efficiency improvements at test-time, which encourages us to examine
larger, more structured integration granularities to fully capitalize on the structural strengths of our
framework. Notably, as we progressively extend the Markov chain during scaling analysis, we
observe a consistent reduction in the number of tokens required for reasoning in the final states.
Through detailed analysis, we identify emerging atomic characteristics in the reasoning trajectories,
motivating us to design further scaling-up experiments based on this property.

State Integration. The Markov states (); generated by AOT represent simplified, yet answer-
equivalent reformulations of the original questions, making them ideal entry points for external
methods. Indeed, AOT itself demonstrates such modular integration potential, employing basic
CoT-style prompting to solve each intermediate state. To experimentally validate the effectiveness of
these intermediate states, we investigate whether initiating reasoning using optimized intermediate
states (01 can enhance both accuracy and computational efficiency in external frameworks. The
results, illustrated in Figure[d confirm that starting reasoning from these optimized intermediate states
notably improves performance while simultaneously reducing computational costs, as demonstrated
in the integration with frameworks such as FoT.

Tree Searching. Beyond single-state integration, the full Markov sequence Q generated by AOT
can provide a structured scaffold for more complex reasoning frameworks, effectively replacing
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Figure 4: The process involves gradually enhancing integration for scaling up at test time. ToT uses
three branches, while FoT employs two, four, and eight trees, respectively.

traditional CoT-based structures. In conventional CoT-based ToT, the inherent randomness of LLM-
based sampling can lead to inconsistencies in reasoning chain lengths, causing nodes at the same depth
to represent varying stages of reasoning progress. This inconsistency complicates node comparison
and diminishes pruning effectiveness. In contrast, the Markov chains constructed by AOT ensure
answer equivalence between each intermediate node and the original question, thereby guaranteeing
fundamental comparability across nodes at the same depth. This structural consistency significantly
enhances the gains from scaling through parallel sampling at test-time.

Reflective Refinement. Termination strategy in AOT provides a safeguard for the quality of
single-pass Markov reasoning. When a transition yields a low-quality intermediate state, early
termination allows the system to avoid wasting computation on unpromising paths. However, this
conservative mechanism may also limit further exploration. To address this, we augment our method
with verification-based reflection, where transitions ); — ;41 are evaluated by an LLM-as-a-
judge to assess whether the newly generated state exhibits a significant degradation in test-time
performance. If such degradation is detected, the system triggers a reflective refinement step,
encouraging deeper and more meaningful reasoning rather than trivial reformulations. This reflective
verification substantially improves comparability between nodes at the same depth, increases the
effective exploration space, and further amplifies the benefits of structural scaling. When combining
all three integration strategies (ToT + Markov chain + Reflective Refinement), we observe significant
performance gains: for instance, on MATH, this full integration achieves 84.9% accuracy compared
to ToT’s 82.0%, and on AIME, it reaches 81.2% versus ToT’s 78.0%, demonstrating the compounding
benefits of our modular design.

Atomic Struture. Due to the inherent scalability of the AOT architecture, deeper Markov chains—
enabled by both tree search and verification-based reflection—exhibit stronger test-time performance
and require fewer reasoning tokens in the final state. Statistical analysis reveals that the token count
of final reasoning steps gradually approaches that of a minimal DAG representation comprising all
independent subproblems generated during transitions. This suggests a natural convergence toward
atomic states—questions that are semantically represent indivisible reasoning units. We refer to this
phenomenon as atomic reasoning, where the entire reasoning trajectory is composed of such minimal,
non-decomposable elements. To further validate this insight, we conduct an additional experiment
where we isolate and re-execute these highly atomic reasoning paths independently. While this incurs
significantly higher computational cost, the results exhibit stable scaling trends, highlighting the
structural advantages of AOT with high budget.

5 Conclusions and Future Work

We present AOT, a general-purpose reasoning framework that leverages Markovian transitions to
minimize historical dependencies during inference. By alternating between decomposition and
contraction, AOT incrementally reduces complex queries into atomic subproblems, enabling scalable
and modular reasoning across maths, code, and multi-hop QA tasks. Empirically, we show that AOT
not only scales gracefully with compute but also integrates flexibly into existing reasoning paradigms
as a plug-in module. Limitations and broader impacts of AOT are provided in Appendix ?? and ??.



While AOT offers a promising path toward atomic reasoning, its current implementation operates
solely at inference time. A natural extension is to align this structure with training-time objec-
tives—teaching models to internalize Markovian and atomic reasoning patterns directly. This could
involve supervised fine-tuning with synthetic traces, reinforcement learning over decomposition
trajectories, or pretraining on datasets that promote context-isolated reasoning.

More broadly, this work lays the foundation for reasoning systems that emphasize minimal context,
compositionality, and structural modularity. We hope AOT serves as a stepping stone toward more
efficient, interpretable, and robust reasoning with large language models.
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Appendix Overview

This appendix is organized into three main parts: Section[A]provides comprehensive implementation
details including prompts, hyperparameters, and baseline configurations; Section [B] presents detailed
empirical analyses validating our framework’s effectiveness; and Sections ??—?? discuss limitations
and broader impacts of this work.

A Implementation Details

This section provides comprehensive implementation details necessary for reproducing our experi-
ments, including prompt templates, hyperparameter settings, and baseline method configurations.

A.1 Prompt Templates

We present the core prompt structures used in AOT for different task domains. Our framework
employs four key prompt types: (1) direct for solving problems, (2) decompose for extracting
DAG structures, (3) contract for generating simplified questions, and (4) judge for LLM-as-a-
judge evaluation. Below we detail domain-specific implementations for mathematical reasoning,
code generation, and multi-hop question answering.

Design Rationale. The Multi-hop QA prompts use JSON for structured responses, while Math and
Code tasks use HTML-like tags (e.g., <answer></answer>). This design choice reflects task-specific
requirements: JSON naturally accommodates Multi-hop QA’s need for structured outputs including
reasoning chains and supporting evidence, while HTML tags provide clear answer demarcation for
Math and Code tasks. Function parameters also vary by domain—Multi-hop QA requires context
passages, Code generation needs test cases and dependency information, while Math tasks only
require the question. These variations align with the inherent characteristics of each problem type
rather than representing arbitrary design choices.

A.1.1 Mathematical Reasoning

def direct(question: str):
instruction = """
You are a precise math question solver. Solve the given math
question step by step using a standard algebraic approach:

QUESTION: {question}

You can freely reason in your response, but please enclose the
final answer within <answer ></answer> tags (pure number without
units and explanations)
nun
prompt = instruction.format(question=question)
return prompt

def decompose():
instruction = """
Decompose the previous reasoning trajectory into a series of
sub-questions or thoughts.

Instructions:

1. Each sub-question or thought should list its other sub-
questions or thoughts’ indexes it depends (O-based, can be an
empty list)
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2. Dependencies are defined as information needed in sub-
question or thought that:
- Does NOT come directly from the original question
- MUST come from previous sub-questions or thoughts

nun

return instruction

def contract():
instruction = """
Generate a simplified intermediate form of the original
question based on the previous sub-questions or thoughts step by
step.

The previous sub-questions or thoughts with marked
dependencies actually form a directed acyclic graph (DAG), where
nodes whose dependencies is empty list can be regarded as
independent sub-questions or thoughts.

The simplified question must be:

1. self-contained: The simplified question’s description must
contain all information needed to solve itself, without requiring
additional information from the original question or reasoning
trajectory

2. test-time reduced: The simplified question must require
fewer reasoning steps compared to the original question (these
steps are reduced because these solved independent sub-problems or

thoughts become known conditions in the simplified question or
excluded as incorrect explorations)

nnn

formatter = "Last step, enclose the question within <question></
question> tags"

instruction += formatter

return instruction

def judge(question: str, solutions: list):
instruction = """
Here is the original problem:
{question}

Here are some reference solutions:
{solutions}

Ensemble the best answer to the original problem from the
solutions step by step:
nmn
formatter = "Last step, enclose the answer within <answer ></answer
> tags (must be an integer or decimal number without units and
explanations)"
instruction += formatter

solutions_str = ""
for i, solution in enumerate(solutions):
solutions_str += f'"solution {i}: {solution}\n"
prompt = instruction.format(question=question, solutions=
solutions_str)
return prompt

Listing 1: Math

A.1.2 Code Generation

|def direct (question: str, contexts: str):
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instruction = """
Solve the following problem step by step:
{question}
Your code should be a python function with format: {contexts}

Please extend your reasoning process as much as possible; the
longer the chain of thought, the better.

nun

formatter = "Last step, enclose your code within ¢‘‘python and ‘¢
n

instruction += formatter

prompt = instruction.format(question=question, contexts=contexts)
return prompt

def decompose ():
instruction = """
Decompose the previous reasoning trajectory into a series of
sub-questions or thoughts.

Instructions:

1. Each sub-question or thought should list its other sub-
questions or thoughts’ indexes it depends (O-based, can be an
empty list)

2. Dependencies are defined as information needed in sub-
question or thought that:

- Does NOT come directly from the original question
- MUST come from previous sub-questions or thoughts

return instruction

def contract(dag, test_cases):
instruction = """
Generate a simplified intermediate form of the original
problem based on the variable dependency analysis.

You ast.arg given a directed acyclic graph (DAG) representing
the dependencies between variables in the original code:
{dag}

And the original test cases:
{test_cases}

The simplified problem must be:

1. Self-contained: The description must contain all
information needed to solve itself, without requiring additional
context from the original problem

2. Test-time reduced: The simplified problem must require
fewer reasoning steps by using intermediate variables from the
original code as direct inputs

Your task is to:
1. Create a simplified version of the problem that starts with
intermediate variables as inputs
2. Generate new test cases that use these intermediate
variables as parameters while maintaining the exact same expected
outputs as in the original test cases

Do not use any code examples in your simplified problem
formulation.
nmnn
formatter = r"Enclose the simplified problem within <question></
question> tag and the new test cases (assert codes, use \n to
split each case) within <test></test> tag"
instruction += formatter
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prompt = instruction.format(dag=dag, test_cases=test_cases)
return prompt

def judge(question: str, solutions: list):
instruction = """
Here is the original problem:
{question}

Here are some reference solutions:
{solutions}

Give the index of the best solution as your answer.
nun
formatter = "Last step, enclose the answer within <answer ></answer
> tags (0-based)"
instruction += formatter

solutions_str = ""
for i, solution in enumerate(solutions):
solutions_str += f'"solution {i}: {solutionl}\n"
prompt = instruction.format(question=question, solutions=
solutions_str)
return prompt

Listing 2: Code

A.1.3 Multi-hop Question Answering

def direct(question: str, contexts: str):
instruction = """
Solve the following multi-hop question step by step:
{question}

CONTEXTS:
{contexts}

Firstly, you need to extract the relevant supporting sentences
from the original text, then cut out the continuous segments as
the answer.
nmnn
formatter = """
Provide your response in this JSON format:

{
"question": {question},
"thought": "give your step by step thought process here",
"supporting_sentences'": [
"Include ALL sentences needed to justify your answer',
"Use ... for long sentences when appropriate"
:I’
"answer": "Your precise answer following the instructions
above" or "mone" if no answer can be found
}3}

nnnn
instruction += formatter

prompt = instruction.format(question=question, contexts=contexts)
return prompt

def decompose(question: str, trajectory: str, answer: str):
instruction = """
You are tasked with breaking down a multiple choice question

reasoning process into sub-questions.

Original Question: {question}
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Complete Reasoning Process: {trajectory}

Instructions:
1. Break down the reasoning process into a series of sub-
questions
2. Each sub-question should:
- Be written in interrogative form
- Have a clear answer
- List its other sub-questions’ indexes it depends (O-based
, can be an empty list)
3. Dependencies are defined as information needed to answer
the current sub-question that:
- Does NOT come directly from the original question
- MUST come from the answers of previous sub-questions
nnn
formatter = """
Format your response as the following JSON object:
{
"thought": "<the thought process of how to step by step
propose the sub-questions until the answer of the original
question in the given reasoning process is obtained>",

"sub-questions": [
{{
"description": "<the description of the sub-
question>",
"answer": <the answer to the sub-question>,
"depend": [<indices of the dependent sub-questions
>, ]
}3
1,
"answer": "{answerl}"
}r

return (instruction + formatter).format (question=question,
trajectory=trajectory, answer=answer)

def contract(question: str, decompose_result: dict, independent: list,
dependent: list):
instruction = """

You are a multiple choice question solver specializing in
optimizing step-by-step reasoning processes. Your task is to
optimize the existing reasoning trajectory into a more efficient,
single self-contained question.

For the original question: {questionl}

Here are step-by-step reasoning process:
{response}

{sub_questions}

Here are explanations of key concepts:

1. self-contained: The optimized question must be solvable
independently, without relying on any external information

2. efficient: The optimized question must be simpler than the
original, requiring fewer reasoning steps and having a clearer
reasoning process (these steps are reduced because some solved sub
-problems become known conditions in the optimized question or are
excluded as incorrect explorations)

Note: Since this is a multiple choice question, the optimized

question must completely retain the options of the original
question.
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def

A2

You can freely reason in your response, but please enclose the
your optimized question within <question></question> tags
nun
sub_questions = """
The following sub-questions and their answers can serve as
known conditions:
{independent}

The descriptions of the following questions can be used to
form the description of the optimized problem:
{dependent}

answer = decompose_result["answer"

for sub_q in independent:
sub_q.pop("depend", None)

for sub_q in dependent:
sub_q.pop("depend", None)

sub_questions = sub_questions.format(independent=independent,
dependent=dependent)

return instruction.format(question=question, answer=answer ,
response=decompose_result ["response"], sub_questions=sub_questions

)

judge (question: str, solutiomns: list):
instruction = """

You are a precise multiple choice question solver. Compare
then synthesize the best answer from multiple solutions to select
the most correct option:

QUESTION: {question}

SOLUTIONS:
{solutions}

Extend your chain of thought as much as possible; the longer
the chain of thought, the better.

You can freely reason in your response, even propose new
reasoning to get a better answer than all solutions, but please
mark the final option with <answer>single letter of your chosen
option</answer> tags

solutions_str = ""
for i, solution in enumerate(solutions):
solutions_str += f'"solution {i}: {solution}\n"
prompt = instruction.format(question=question, solutions=
solutions_str)
return prompt

Listing 3: Multi-hop QA

Hyperparameter Configuration

Maximum Transition Count. The maximum number of transitions in the Markovian reasoning
chain is a key hyperparameter that controls the depth of reasoning exploration. Theoretically, longer
chains enable deeper reasoning, but practical considerations require balancing performance gains with
computational efficiency. Throughout our experiments, we uniformly set the maximum transition
count to 3, which empirically provides an effective trade-off (see Section[B.3|for empirical justification
based on structural depth analysis).
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Adaptive Setting. For query-specific optimization, the maximum transition count can be dynami-
cally determined by analyzing the initial DAG structure. Since each transition ideally eliminates one
layer of independent nodes (those without incoming edges), the depth of the initially decomposed
DAG Gy, serves as a reasonable upper bound estimate for the required number of transitions. This can
be computed via a simple graph traversal without additional LLM invocations.

Other Hyperparameters. We use temperature 7' = 1.0 for all LLM sampling operations to balance
exploration and determinism. For integration experiments with tree-based methods (Section 4.4), we
use 3 branches for ToT and vary the number of trees in FoT as {2, 4, 8} to study scaling behavior.

A.3 Baseline Implementation Details

This subsection describes our implementation of baseline methods to ensure fair and reproducible
comparisons.

A.3.1 Forest of Thoughts (FoT)

In our implementation, we utilize the classical Tree of Thoughts (ToT) approach as the fundamental
tree structure within the Forest of Thoughts framework, while maintaining several critical mechanisms
from the original FoT design, including majority voting for aggregating results across different trees
and expert evaluation for assessing solution quality.

However, our implementation differs from the original FoT in certain aspects to accommodate a
broader range of question types. Specifically, we remove the early stopping criteria that terminate tree
splitting when nodes cannot produce valid outputs. While this mechanism is particularly effective
for constrained tasks like Game-of-24 where rule-based validation is straightforward, it is less
applicable to our diverse evaluation scenarios where output validity is less clearly defined. Instead, we
maintain tree expansion regardless of intermediate output quality, allowing the framework to explore
potentially valuable paths that might initially appear suboptimal. Additionally, we omit the Input
Data Augmentation technique, as analogical reasoning approaches do not demonstrate consistent
effectiveness across different question domains in our experiments.

These modifications preserve the core strengths of FoT while enhancing its adaptability to a wider
range of reasoning tasks. Our implementation successfully reproduces the scaling curves reported in
the original FoT paper and achieves superior performance across multiple benchmarks.

A.3.2 AFlow

For AFlow, we adopt the optimal workflows identified in the original work for each benchmark
dataset while making necessary adaptations to our experimental setup. For mathematical reasoning
tasks on MATH and GSMSK, we directly employ AFlow’s proven optimal workflows. For multi-hop
reasoning scenarios in LongBench, we use the workflow initially optimized for HotpotQA, as both
datasets share core multi-hop reasoning characteristics. This approach ensures we leverage AFlow’s
strengths while maintaining consistency across similar problem types.

A.3.3 Dataset-Specific Details
For the MATH dataset, we filter out questions with non-integer or non-decimal answers to ensure

consistent evaluation. We evaluate the first 1,000 cases from MATH for efficiency, while assessing
the remaining benchmarks in their entirety.

B Empirical Analysis and Validation

This section presents detailed empirical analyses that validate the effectiveness of our framework,
including quality metrics for DAG generation, concrete examples of the decomposition-contraction
process, and statistical analyses of structural properties.
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B.1 DAG Generation Quality Assessment

To evaluate the quality of our two-phase transition mechanism (decomposition and contraction), we
provide comprehensive quality metrics across multiple datasets. Table 2| presents three key metrics
that assess different aspects of the DAG generation and state transition process.

Table 2: DAG Generation Quality Metrics Across Benchmarks
Metric MATH GSMS8K MBPP LongBench
Answer Equivalence Maintenance ~ 99.2% 99.5% 99.7% 99.3%

Test-time Complexity Reduction 76.4% 82.1% 74.8% 79.2%
LLM-as-a-Judge Selection Rate 92.5% 95.8% 83.1% 91.5%

Evaluation Methodology. Both answer equivalence and test-time complexity reduction are assessed
through LLM evaluation, where the evaluator LLM is provided with ); and @Q;1 along with their
execution processes. The LLM judges answer equivalence by examining whether the reasoning
trajectory’s derivation goals remain consistent, and assesses complexity reduction by analyzing the
trajectory length and required reasoning steps.

Metric Definitions.

* Answer Equivalence Maintenance: The probability that the contracted question ();1
maintains answer equivalence with the original question Q. The consistently high rates
(>99% across all datasets) demonstrate the reliability of our transition mechanism.

* Test-time Complexity Reduction: The probability that (); 1 successfully reduces reasoning
complexity compared to @);. Rates between 74%-82% indicate that most transitions achieve
meaningful simplification.

* LLM-as-a-Judge Selection Rate: The probability that @), is selected (or at least not re-
jected) by the LLM-as-a-judge when choosing among {solve(Q;), solve(G;), solve(Q;+1)}-
High selection rates (83%-96%) confirm that the generated states provide valuable reasoning
improvements.

These metrics collectively demonstrate that our DAG generation and contraction process reliably
maintains answer equivalence while achieving meaningful complexity reduction, validating the
effectiveness of our two-phase transition design.

B.2 Detailed DAG Decomposition and Contraction Examples

To provide concrete understanding of how the DAG decomposition and contraction mechanism
works in practice, we present detailed step-by-step examples demonstrating the complete two-phase
transition process.

B.2.1 Mathematical Reasoning Example

Original Problem (Qg): There are two possible triangles ABC satisfying AB = 10, AC = b > 10,
and sin B = 3/5. Find the positive difference between the lengths of side BC.

Step 1: Direct Reasoning Trajectory. When solving Q¢ directly, the LLM generates the following
reasoning chain:

. Given sin B = 3/5, we can find cos B using the Pythagorean identity: cos® B 4 sin®? B = 1
. This gives us cos> B=1— (3/5)2 =1 —9/25 = 16/25

. Therefore, cos B = £4/5 (two possible values)

. Using the Law of Cosines: b> = a? + ¢? — 2accos B, where a = BC, c = AB = 10

. For cos B=4/5: b? = a® + 100 — 20a(4/5) = a® — 16a + 100

. For cos B =-4/5: b = a? + 100 — 20a(—4/5) = a* + 16a + 100

AN L AW =
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7. Solving these two cases yields two possible values for BC

8. The positive difference is computed from these two values

Step 2: DAG Decomposition ((Qg — Gp). The LLM decomposes this reasoning trajectory into a
dependency structure:

Node 0: “Calculate cos B from sin B = 3/5 using the Pythagorean identity”

* Dependencies: [] (no dependencies, independent subproblem)
* Result: cos B = +4/5

Node 1: “Given AB = 10, AC =b > 10, and cos B = +4/5, apply the Law of Cosines to find the two
possible values of BC”

* Dependencies: [0] (depends on the result of Node 0)
Node 2: “Calculate the positive difference between the two values of BC”
* Dependencies: [1] (depends on the result of Node 1)

The DAG structure is: Node 0 — Node 1 — Node 2, forming a linear chain of depth 3.

Step 3: Contraction (Gy — (J1). Nodes without incoming edges (Node 0) represent independent
subproblems that can be directly solved. After solving Node 0, we obtain cos B = +4/5. This
information is incorporated into the problem statement, and nodes depending on it are reformulated:

Contracted Question (QQ1): Given that cos B can be either 4/5 or -4/5, with AB = 10 and AC =
b > 10, use the Law of Cosines to find the two possible values of BC, then calculate their positive
difference.

Key observations:

* () is self-contained: All necessary information (cos B values) is now explicitly stated
* ()1 maintains answer equivalence with Qg: Solving (), yields the same final answer

* ()1 has reduced test-time complexity: The trigonometric calculation is eliminated, reducing
reasoning steps from 8 to approximately 5

* The DAG depth is reduced from 3 to 2 (only Nodes 1 and 2 remain)

Step 4: LLM-as-a-Judge Selection. After generating the triplet
{solve(Qo), solve(Gp), solve(Q1)}, the LLM-as-a-judge evaluates which provides the best
answer to the original problem (). In this case:

* solve(Qo): Direct solution with full reasoning chain

* solve(Gy): Solution by explicitly solving each node in the DAG

* solve(Q1): Solution of the contracted problem
If 1 maintains answer equivalence (which it does), solve(Q1) will provide a valid answer and is
likely to be selected due to its cleaner reasoning structure. If the contraction process had failed to

maintain equivalence, solve(();) would produce an incorrect or nonsensical answer, and the judge
would select one of the other options, naturally filtering out the failed transition.

Iteration Potential. If we continue from ()1, a second transition could further decompose and
contract the problem, potentially separating the two Law of Cosines calculations from the difference
computation. This iterative process continues until reaching an atomic state where no further
meaningful decomposition is possible.

B.2.2 Key Insights from the Example

This example illustrates several important aspects of our framework:

22



1. Structural Guidance: The DAG explicitly captures dependencies, allowing the contraction
phase to identify which information can be “baked into” the problem statement (Node 0’s
result) versus which must remain as reasoning steps (Nodes 1-2).

2. Answer Equivalence: The contracted question ()7 asks for exactly the same final answer as
o, ensuring the Markov property holds while making meaningful progress.

3. Complexity Reduction: By solving independent subproblems and incorporating their
results, ()1 requires fewer reasoning steps, reducing the test-time computational burden.

4. Implicit Quality Control: The LL.M-as-a-judge mechanism naturally filters failed transi-
tions—if contraction produces an invalid or non-equivalent question, it won’t be selected,
preventing error propagation.

B.3 Analysis of Structural Diversity

To understand the structural characteristics of problems decomposed by our framework and provide
empirical justification for our hyperparameter choices, we analyze the DAG structures generated
from the first 1,000 questions of the MATH dataset.

B.3.1 Graph Structure and Chain Length

Problem Count Distribution by Depth
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Figure 5: Distribution of solution depths across questions. Darker orange bars indicate depths that
appear more frequently in the dataset.

Figures [5|and[6]reveal clear structural patterns in the decomposed questions. The depth distribution
(Figure|5)) shows that most questions exhibit depths between 2 and 4, with depth 3 being the most
common pattern. This observation provides empirical justification for our choice of maximum
transition count (3) in the main experiments—the structural depth naturally aligns with the transition
requirements for most problems.

Similarly, the subquestion count distribution (Figure [6)) indicates that questions typically decompose
into 2 to 5 subquestions, with 3-4 subquestions representing the most frequent pattern. These statistics
suggest that most reasoning problems naturally decompose into a small number of manageable sub-
problems, supporting our framework’s design assumption that complex reasoning can be effectively
simplified through structured decomposition.

B.3.2 Correlation Between Structural Complexity and Performance

Notably, we observed correlations between these structural metrics and solution accuracy. The scatter
plots reveal two important patterns: First, as shown in Figure 8] as the depth of the solution graph
increases, there is a general trend of decreasing accuracy. Second, as illustrated in Figure[7] questions
with more subquestions tend to show lower accuracy rates. The color intensity of the points provides
additional insight - darker points represent more common structural patterns in our dataset, showing
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Problem Count Distribution by Subproblems
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Figure 6: Distribution of subquestion counts across questions. Darker green bars represent more
common subquestion counts in the solutions.

Accuracy vs Number of Subproblems
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Figure 7: Number of subquestions vs accuracy. Color intensity (green) reflects data density - darker
points represent more frequent patterns.

that most of our high-accuracy solutions come from questions with moderate depth and subquestion
counts. This suggests that more complex question structures, characterized by either greater depth or
more subquestions, pose greater challenges for question-solving systems. The decline in accuracy
could be attributed to error propagation through longer solution chains and the increased cognitive
load required to maintain consistency across more complex question structures.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], [No|, or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.
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Accuracy vs Depth
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Figure 8: Solution depth vs accuracy. Color intensity (orange) reflects data density - darker points
represent more frequent patterns.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims in the abstract and introduction are precise and consistent with our
findings.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in the Appendix 2?.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For all the propositions and theorems presented in this paper, we provide
mostly self-contained proofs in Section [3| For certain parts of the proofs, we refer to
well-established results from recognized papers in the literature.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide detailed descriptions of our experimental setup in Section[d We
submit the code with the paper and will also release the source code to further facilitate
reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code in the supplementary file. The datasets we use are
publicly available and have been accessed with the necessary permissions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a dedicated section in Section [4] that details our experimental
setups.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Experimental results are tested multiple times to ensure stability and reliability.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

Justification: We provide comprehensive details about the compute resources used in both
the experimental setup and results sections, ensuring reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms to the NeurIPS Code of
Ethics in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both the potential positive and negative societal impacts of our
work in Appendix ??.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

29


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites the original paper that produced the models or datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the documentations alongside with the submitted code for repro-
ducibility.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The LLM is only used for writing and not as part of the core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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