HYPERADAPT:
Simple High-Rank Adaptation

Abel Gurung Joseph Campbell
Purdue University Purdue University
gurungl@purdue.edu joecamp@purdue.edu
Abstract

Foundation models achieve strong general performance on a wide variety of tasks,
but fine-tuning is often necessary for tasks requiring specialized outputs, constraints,
or data. However fine-tuning the entire model can be computationally prohibitive
due to the large number of parameters. In this paper, we introduce HYPERADAPT,
a parameter-efficient fine-tuning method that significantly reduces the number of
trainable parameters compared to state-of-the-art methods like LoRA. Specifically,
HYPERADAPT fine-tunes a pre-trained weight matrix by applying row-wise and
column-wise scaling via diagonal matrices, requiring only n 4+ m trainable param-
eters for an n X m matrix. Empirically, we show that HYPERADAPT achieves
performance comparable to full fine-tuning and existing parameter-efficient meth-
ods on widely-used reasoning and arithmetic benchmarks with significantly fewer
trainable parameters.

1 Introduction

Large-scale foundation models have shown strong capabilities across tasks such as natural language
understanding [[10} 33} 4]], mathematical reasoning [8], and multimodal learning [1}32]. However,
adapting them to domain-specific tasks often requires fine-tuning, which is computationally expensive.
Parameter-efficient fine-tuning (PEFT) addresses this challenge by updating only a small subset of
parameters. LoRA [17], a widely used PEFT method, constrains updates to low-rank matrices but
grows costly as rank increases. Recent high-rank methods reduce parameter costs, but many rely on
large non-trainable matrices [25,|21] or incur expensive forward passes [27], limiting their efficiency.

In this work, we propose HYPERADAPT, a novel parameter-efficient fine-tuning method that leverages
high-rank update to adapt to downstream tasks efficiently. Specifically, our approach fine-tunes a
pre-trained weight matrix by left- and right-multiplying it with trainable diagonal matrices, resulting
in row- and column-wise scaling. This adjusts the model’s sensitivity to different input features and
its emphasis on certain output representations, achieving performance comparable to full fine-tuning
and state-of-the-art PEFT methods (see Fig. [I).

Our contributions include:
» Improved parameter efficiency: HYPERADAPT only uses n + m trainable parameters.

* Competitive performance: HYPERADAPT achieves performance comparable to full fine-
tuning and existing PEFT methods such as LoRA across widely-used NLP benchmarks.

» High-Rank adaptation: We provide a theoretical upper bound on HYPERADAPT’s update

rank (Cemma A.T) and validate it empirically (Sec. ).
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Figure 1: (Left) Our proposed method, HYPERADAPT, fine-tunes a model by learning row-wise and
column-wise diagonal matrices. Unlike full fine-tuning, which requires n x m trainable parameters,
our method yields comparable performance yet only requires n + m trainable parameters. Grayscale
values represent frozen parameters, while colored values represent trainable parameters. (Right)
Our method achieves similar performance to LoORA across common benchmarks while using up to
significantly fewer trainable parameters

2 Preliminaries

Let fy be a pre-trained model with parameters §, mapping input x to output y. Fine-tuning adapts the
model by updating parameters to fg: with 8’ = 6 + A6, where Af is task-specific. For large models,
updating all parameters is impractical, and prior work shows that modifying only a small subset can
yield strong performance.

The intrinsic dimension hypothesis [22, 2] states that solving a specific task to a desired accuracy
generally requires adjusting only a minimal subset of parameters within a low-dimensional subspace
of the full parameter space. Hu et al. [17] applies this idea at the level of weight matrices. For a
pre-trained weight matrix Wy € R™*™, the adapted weights are

W' =Wy + AW. 1)

LoRA parameterizes AW as BA, with B € R"*" and A € R™*"™ for small rank r < min(n, m).
While effective, its parameter cost grows linearly with 7, and higher ranks are often needed for
stronger adaptation.

3 High-Rank Parameter-Efficient Fine-Tuning

It is a well-known phenomenon that over-parameterization of neural networks facilitates easier
optimization [12]. Empirical scaling laws[ 19} [15]] show that increasing parameters reliably decreases
loss, suggesting that larger parameter spaces provide models with more flexibility during training. At
the matrix level, we hypothesize that this flexibility is related to the rank of the update—the number
of independent directions modified during training. In this view, update expressivity grows with
rank, but achieving a high rank update typically requires more trainable parameters when learning
these directions from scratch. The key observation underlying our work is that the pre-trained weight
matrices are already (near) full-rank and encode many useful directions from pre-training. For
efficient fine-tuning, rather than learning new update directions as in prior PEFT methods, we can
simply exploit the existing directions. We propose a method to induce constrained high-rank updates:
scale the rows and columns of an n X m pre-trained matrix, which requires only n + m trainable
scalars to reweight existing directions. This achieves high-rank updates across transformer modules
(see[Sec. 3)), improving adaptability with minimal trainable parameters.

3.1 HYPERADAPT

In this work, we introduce HYPERADAPT, a parameter-efficient fine-tuning method that achieves
high-rank transformations by constraining the form of the update rather than its rank. Given a



pre-trained weight matrix Wy € R™*™, we define the fine-tuned AW to be:
AW = AW,B — W, 2)
where A € R"*™ and B € R™*"" are diagonal matrices. Substituting AW intoyields:
W' =Wq + AWB — Wy = AW B.

The resulting fine-tuned weight matrix W’ is then the product of the original weight matrix W with
two diagonal scaling matrices, A and B. This transformation can be intuitively interpreted as adjusting
the latent representations most relevant to the downstream task. Representing W’ using diagonal
matrices has two primary benefits: Only n + m trainable parameters are required and diagonal
matrix multiplication can be calculated using element-wise multiplications rather than full matrix
multiplications, which is significantly faster. HYPERADAPT is effective despite using only a minimal
number of trainable parameters because it produces high-rank updates without explicitly constraining
the rank. This enables HYPERADAPT to efficiently adapt pre-trained models to downstream tasks.
The rank of AW in (2) is upper-bounded by min(2 - rank(Wy), n, m)

Lemma 3.1. Let Wy € R™*"™ and let A € R"*", B € R™*™ be diagonal matrices. Define
AW := AWy B — Wy. Then rank(AW) < min{2 - rank(Wy), n, m }.

The full proof is given in the Appendix (Lemma A.T)). This means that the update matrix induced by
HYPERADAPT can achieve a high-rank and is upper-bounded only by the rank of Wy. While this
transformation cannot increase the rank of Wy, as it involves multiplication with diagonal matrices, it
nonetheless utilizes the full rank potential of Wy to adapt to the downstream objective. Additionally,
our empirical results in[Sec. 5|show that updates are consistently high-rank in practice. Furthermore,
similar to prior works, our method introduces no additional test-time latency as the modified
weights can be precomputed before deployment.

3.2 Related Work

Low-Rank Adaptation and Variants: LoRA [17], discussed in[Sec. 2] is one of the most widely
adopted methods for fine-tuning large pre-trained models. A recent extension, DoRA [26], decom-
poses the pre-trained weight matrix into separate magnitude and direction components which are then
fine-tuned separately.

High-Rank Adaptation: Recent methods such as SVFT [25] and VeRA [21] achieve high-rank
updates with few trainable parameters but rely on large non-trainable matrices, making them memory-
inefficient. HYPERADAPT avoids this overhead by not introducing auxiliary parameters. An alterna-
tive, BoFT [27]], represents dense orthogonal matrices through butterfly factorization, but its series of
matrix multiplications incurs high activation memory costs.

4 Empirical Experiments

To evaluate the effectiveness of our method, we aim to answer two research questions: 1) How does
the downstream task performance of models fine-tuned with our method compare to full fine-tuning
and existing PEFT methods? 2) How does the number of trainable parameters required by our method
compare to these other methods?

To answer these questions, we fine-tune four LLMs of varying sizes: RoBERTa-Large (355M) [28]],
Llama 3 (8B) [13]], Qwen 2.5 (7B) [32], and Phi 4 (14B) [1]. And evaluate them on a wide range
of NLP tasks spanning three benchmarks: GLUE [40], Commonsense Reasoning, and Arithmetic
Reasoning.

4.1 GLUE Benchmark

We first evaluate our proposed method on the General Language Understanding Evaluation (GLUE)
benchmark [40] using RoBERTa-Large. GLUE is a widely used collection of natural language



understanding tasks designed to test various aspects of language comprehension and reasoning. To
ensure a fair comparison, we follow the same experimental setup as Hu et al. [[17/] and use a sequence
length of 128 and the same number of training epochs for each task. We exclude QQP and MNLI
from our benchmark due to their high computational cost.

As shown in HYPERADAPT achieves performance comparable to LoRA while using 4
times fewer trainable parameters. Moreover, it matches the performance of full fine-tuning despite
requiring over 1700 times fewer parameters. Similarly, VeRA also demonstrates strong performance
with minimal trainable parameters; however, it introduces 0.5M additional non-trainable parameters
during fine-tuning. In contrast, HYPERADAPT achieves 86.0 average with 0.1M trainable parameters
without additional non-trainable matrices, while achieving performance comparable to both LoRA
and full fine-tuning.

Table 1: GLUE task performance results for RoOBERTa-Large. We report Matthew’s correlation for
CoLA, Pearson correlation for STS-B, and accuracy for other tasks; higher is better. The values for
Full FT and LoRA are taken from prior work [[17]. For VeRA, we also report additional non-trainable
parameters with red text.

Method | #Params | SST2 MRPC CoLA QNLI RTE STS-B | Avg.
Full FT 355.0M 96.4 90.9 68.0 94.7 86.6 924 88.2
LoRA 0.8M 96.2+0.5 902+10 682+£19 948+0.3 852+11 923+£0.5 | 878
DoRA 0.8M 96.0+0.2 89.3+06 65.8+03 946+0.1 83.5+11 91.0£0.4 | 86.7
VeRA 0.06M10.5M | 95.8£0.3 89.4+05 653+1.5 941+£02 793+34 89.5+08 | 856
Hyper (Ours) | 0.1M 96.2+0.2 89.8+03 649+£07 938+0.1 80.8+13 90.2+0.3 | 8.0

4.2 Arithmetic Reasoning Benchmark

To evaluate the impact of HYPERADAPT on arithmetic reasoning, we compare our method against
widely used PEFT baselines. Following the experimental settings in Hu et al. [[18]], we fine-tune each
model on the Math10K dataset[[18]], which comprises training examples from GSM8K]S§]] and AQuA
[24]. Models are then evaluated on six downstream arithmetic reasoning tasks, refer to
for details. Because Math10K includes only two of these sub-tasks, this benchmark also assesses
generalization to out-of-distribution arithmetic problems.

Table 2: Arithmetic Reasoning results. We report accuracy for all tasks. For all tasks, higher value is
better. For VeRA, we also report additional non-trainable parameters with red text.

Model | Method | #Params (%) | AddSub SingleEq GSM8K AQuA MultiArith SVAMP | Avg
LoRA,—; 0.03 70.1 87.6 553 37.4 86.5 589 66.0
LoRA 1.03 89.6 95.9 64.4 40.9 94.2 74.9 76.7
Llama-3-8b DoRA 1.05 90.1 95.9 64.3 41.3 93.2 77.4 77.0
VeRA 0.0210.37 73.7 85.6 55.0 41.3 85.0 59.5 66.7
Hyper (Ours) | 0.03 86.3 96.7 61.9 44.1 94.2 69.8 75.5
LoRA,—; 0.03 93.4 98.4 82.6 63.4 97.5 86.5 87.0
LoRA 1.05 92.7 98.2 79.8 70.1 98.2 83.6 87.1
Qwen-2.5-7B | DoRA 1.07 90.9 98.6 79.7 67.7 98.7 83.4 86.5
VeRA 0.0210.51 94.2 98.6 82.3 66.9 98.7 88.1 88.1
Hyper (Ours) | 0.03 92.7 98.6 79.9 68.1 98.8 83.4 86.9
LoRA,—; 0.02 93.7 98.0 86.8 68.5 98.3 87.7 88.8
LoRA 0.75 95.2 99.0 87.5 69.3 98.7 89.9 89.9
Phi-4-14B DoRA 0.77 95.2 99.2 87.0 69.7 98.5 89.9 89.9
VeRA 0.0210.75 93.4 96.6 84.7 73.2 95.8 87.9 88.6
Hyper (Ours) | 0.02 93.9 99.0 86.5 66.9 98.3 89.4 89.0

HYPERADAPT achieves comparable performance with most methods while using fewer parameters.
Among the models compared, performance with Llama-3-8B [[13] stands out for HYPERADAPT
when comparing against VeRA and LoRA,.—, showing robustness across models.

4.3 Commonsense Reasoning Benchmark

For commonsense reasoning benchmarks, we first fine-tuned the models on the Commonsense 170K
dataset [18]], an aggregated dataset consisting of eight sub-tasks. These tasks evaluate a model’s
ability to reason about everyday scenarios and implicit world knowledge that may not be directly



stated in the text. The results are shown in[Table 3] HYPERADAPT again yields competitive results
across all model sizes while using fewer trainable parameters.

Table 3: Commonsense Reasoning results. We report accuracy for all tasks. For all tasks, higher
value is better. For VeRA, we also report additional non-trainable parameters with red text.

Model [ Method [ #Params (%) | ARC-c _ARC-e¢ WinoGrande SIQA OBQA BoolQ PIQA HellaSwag [ Avg
LoRA,—; 0.03 76.5 89.7 77.4 75.2 78.8 60.8 84.9 89.9 79.1
LoRA 1.03 79.4 90.3 83.0 79.8 86.0 72.5 87.9 95.5 84.3
Llama-3-8B DoRA 1.05 79.6 90.8 83.8 80.1 84.2 73.2 87.9 95.5 84.4
VeRA 0.0210.37 74.4 89.0 74.0 73.3 78.8 61.6 84.0 84.5 71.5
Hyper (Ours) | 0.03 78.2 89.3 79.4 76.4 80.6 67.9 86.3 9224 81.3
LoRA, -1 0.03 88.1 95.8 76.0 78.9 87.4 70.1 88.0 92.8 84.6
LoRA 1.05 88.6 95.8 83.5 80.2 89.2 72.7 89.8 94.9 86.8
Qwen-2.5-7B | DoRA 1.07 88.5 95.9 824 79.8 89.6 72.8 89.6 94.6 86.7
VeRA 0.0210.51 88.0 95.4 74.8 78.6 87.8 69.2 88.4 92.6 84.3
Hyper (Ours) | 0.03 88.3 95.3 80.1 78.8 90.4 68.6 88.7 93.7 85.5
LoRA,—; 0.02 92.8 97.9 83.5 79.6 91.6 73.4 90.5 94.0 87.9
LoRA 0.75 93.5 98.0 87.5 81.9 93.8 74.6 92.6 95.1 89.6
Phi-4-14B DoRA 0.77 93.9 98.2 87.3 82.0 94.8 75.1 9224 89.9 89.2
VeRA 0.0210.75 92.6 97.8 58.4 79.3 90.8 69.9 83.6 93.6 83.2
Hyper (Ours) | 0.02 93.3 97.7 83.1 81.0 91.2 69.7 92.6 94.5 87.9

Table [3| summarizes the results of different methods on commonsense reasoning benchmarks. Hy-
PERADAPT achieves competitive performance despite using significantly fewer trainable parameters
compared to LoRA and DoRA with Llama3-8B and Qwen2.5-7B.

4.4 Fine-Tuning With Reasoning Traces

To further evaluate the performance of HYPER- Table 4: Performance of fine-tuned reasoning
ADAPT in low-data and long-context settings, we fine-  models over math benchmarks. We report
tune Qwen-2.5-7B on the S1 dataset [30], which con-  accuracy for all tasks (higher is better). For
tains 1,000 high-quality reasoning traces and solu- VeRA, we also report additional non-trainable
tions collected from Gemini’s “thinking” model [14]. parameters with red text.

Following Muennighoff et al. [30] setup, we train
only on the reasoning traces and solutions, but not =~ Method | # Params (%) | GSM8K MATHS500

the question itself, using the Transformer Reinforce-  LorA,_; | 0.03 75.7 62.6
ment Learning (TRL) library [39]. We set the cut-off =~ LoRA 1.05 88.8 063.6
length for a given sequence to 16K tokens to assess \D,;’g: (1)'8; 10.51 gg'g gg'g
robustness across longer sequences. The fine-tuned  gyper 003 89.0 64.0
models are evaluated on GSMS8K [8]] and MATH500

[23]].

As shown in[Table 4 HYPERADAPT attains 89.0 on GSM8K and 64.0 on MATHS500, effectively
matching low-rank baselines with an order of magnitude fewer parameters. Additionally, with the
same number of trainable parameters set as HYPERADAPT, LoRA,_1, substantially underperforms
compared to HYPERADAPT, showing that naively shrinking rank is not an adequate substitute for
properly fine-tuning models in such constrained trainable parameter settings.

5 Rank Analysis:

To quantify how many orthogonal directions are utilized during fine-tuning, we analyze the empirical
rank of the weight update AW. Specifically, we compute the difference between the fine-tuned and
pre-trained weight matrices: AW = W’ — W, where Wy, is the original pre-trained weight matrix
and W’ is the fine-tuned weight matrix. We then compute the singular value decomposition (SVD)
of AW to obtain its singular values . The number of non-negligible (i.e., significantly non-zero)
singular values indicates the empirical rank of the update. Taking numerical precision into account,
we only consider {07; €X | o > 10*2} to be non-trivial. Finally, we normalize this empirical rank

by rank(Wy), yielding the normalized rank of the update.

We compute the normalized rank for Qwen-2.5-7B after fine-tuning on Commonsense 170K [18].
empirically supports our theoretical claim that HYPERADAPT induces high-rank update. As
seen in the figure, most of the modules use almost all the available orthogonal directions.
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Figure 2: Normalized update rank across all layers of Qwen-2.5-7B after fine-tuning on Common-
sensel70K. HYPERADAPT produces high-rank update across most modules effectively utilizing a
large fraction of available orthogonal directions.
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Figure 3: Singular-value spectra of the update matrix AW as given by HYPERADAPT and LoRA for
Qwen-2.5-7B and Llama-3-8B. We visualize the first 50 singular values of the update matrix in log
scale; values above 1 x 10~2 are considered to be non-negligible and contribute to the update’s rank.
The red dashed line indicates the rank r of LoRA, showing that all values beyond this are negligible.
In contrast, HYPERADAPT exhibits a slower decay, reflecting a higher-rank update. The top row
corresponds to the Query matrix AW of the 13th layer, and the bottom row corresponds to the
Value matrix AWy, of the 13th layer.

Singular Value Trend. Additionally, we analyze the spectrum of the update matrices, AW, plotting
the singular values for the query (AW ) and value (AW+) matrices. [Fig. 3|shows the spectra for
Qwen-2.5-7B and Llama-3-8B fine-tuned on Commonsensel70K and Math10K. HYPERADAPT
exhibits a slower decay of singular values across different weight matrices, models, and datasets. In
contrast, LORA shows a rapid drop in singular values after its 7! singular value which corresponds
to its rank, as expected given its low-rank structure.

6 Conclusion

In this work, we introduced HYPERADAPT, a simple yet effective parameter-efficient fine-tuning
method that leverages diagonal scaling to achieve high-rank update with minimal trainable parameters.
Across multiple benchmarks, HYPERADAPT delivers performance comparable to full fine-tuning and
leading PEFT methods like LoRA, while requiring orders of magnitude fewer parameters. These
results highlight that high-rank adaptation can be achieved without expensive auxiliary structures or
large ranks, offering a scalable and efficient alternative for adapting foundation models.

Limitations: This work focuses exclusively on Transformer-based language models; extending
HYPERADAPT to other data domains and models (diffusion models) remains an open direction.
HYPERADAPT also assumes that the model is pre-trained, making it an effective tool for adaptation.
However, when the model is not pre-trained (random initialization), HYPERADAPT cannot bootstrap
and exploit the matrix’s representation, which leads to poor learning.
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A Bound for Rank of Update Matrix

Lemma A.1. Let Wy € R™"™™ and let A € R"*"™, B € R™*™ be diagonal matrices. Define
AW := AWy B — Wq. Then rank(AW) < min{2 - rank(Wy), n, m }.

Proof. Let r be the rank(W). We know that for any conformable matrix X and Y, rank(X +7Y) <
rank(X) + rank(Y). Therefore:

rank(AWoB — Wy) < rank(AWB) + rank(—W,)
Since we define AW to be AWyB — W, we substitute this definition:
rank(AW) < rank(AW(B) + rank(—W)

Here, rank(AWoB) < rank(Wy) = r because rank(XY) < min(rank X, rankY). There-
fore, rank(AW(B) < rank(WoB) < rank(Wy), and similarly rank(AWyB) < rank(AW,) <
rank(Wp).

rank(AW) < r + rank(—W,)
Additionally, rank(—Wj) = rank(Wy) = r:
rank(AW) <r+4r =2r

Furthermore, for any matrix its rank is always upper-bounded by its dimensions so the rank(AW) <
min(2 - rank(Wy), n, m). O

B Experiments and Hyperparameters

B.1 GLUE Benchmark

The General Language Understanding Evaluation (GLUE) benchmark [40] is a collection of various
natural language processing (NLP) tasks designed to evaluate the generalization capabilities of
language models. It includes single-sentence classification, sentence-pair classification, and similarity
tasks. We primarily use six of it’s sub-tasks: CoLA (Corpus of Linguistic Acceptability) determines
whether a given sentence is grammatically acceptable [41]]. SST-2 (Stanford Sentiment Treebank)
classifies movie reviews as positive or negative [38]. MRPC (Microsoft Research Paraphrase Cor-
pus) identifies whether two sentences are semantically equivalent [[L1]. STS-B (Semantic Textual
Similarity Benchmark) measures the similarity of two sentences [5]. QNLI (Question Natural Lan-
guage Inference) evaluates whether a given passage contains the answer to a question [34]]. RTE
(Recognizing Textual Entailment) is a binary classification task for textual entailment [9]].

To keep results consistent, we use the same T setup as Hu et al. [17]] for RoBERTa Large. All of our
GLUE experiments have the same max sequence length and epochs for each task.

B.2 Arithmetic Reasoning

Arithmetic Reasoning Benchmarks consists of six evaluation tasks. AddSub [16] tests simple addition
and subtraction word problems, SingleEq [20] involves solving word problems that translate to
a single algebraic equation, GSMS8K [8]] features multi-step grade school problems. AQuA [24]]
focuses on multiple-choice algebra questions, MultiArith[35] requires sequential arithmetic steps,
and SVAMP [31]] evaluates robustness through perturbed math problems. For fine-tuning DoRA, we
use the hyperparamerters provided by Liu et al. [26].

B.3 Commonsense Reasoning

Commonsense Reasoning benchmark consists of eight evaluation tasks. Arc-challenge and Arc-easy
[7] consist of science exam questions drawn from a variety of sources, Winogrande[36] evaluates
pronoun resolution in challenging contexts, SociallnteractionQA (SIQA) [137]] assesses social and
situational reasoning, OpenBookQA (OBQA)[29] focuses on science-related multiple-choice ques-
tions, BoolQ[6] contains yes/no questions from real-world queries, PhysicallnteractionQA(PIQA) [3]]
tests physical commonsense, and HellaSwag [42] challenges models with grounded commonsense
questions.
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Table 5: The hyperparameters used for RoOBERTa-Large on the GLUE benchmark.

Method Dataset \ SST-2 MRPC CoLA QNLI RTE STS-B
Optimizer AdamW
Warmup Steps 10
LR Schedule Constant
Epochs 10 20 20 10 20 10
Batch Size 128
Target Layers QV
Max Seq. Len. 128

HYPERADAPT  Learning Rate | 3E-03 8E-03 8E-03 3E-03 8E-03 3E-03
Learning Rate | 3E-03 8E-03 8E-03 3E-03 8E-03 3E-03

vera

Rank 256

Learning Rate | 4E-04 3E-04 2E-04 2E-04 4E-04 2E-04
DoRA Rank 8

LoRA « 16

Table 6: The hyperparameters used for the Arithmetic Reasoning Benchmark.

Method Models \ Llama-3-8b Qwen-2.5-7B  Phi-4-14B
Optimizer AdamW
Warmup Steps 100
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 512
Batch Size 256
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 3
HYPERADAPT  Learning Rate | 3e-3
vera Learning Rate 3e-3
Rank 1024 1024 2048
Learning Rate 3e-4
BoFT Block Size 4
Butterfly Factor 4
Learning Rate le-4
Rank 1
LoRAr=1 LoRA a 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRA LoRA a 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA o 64
LoRA Dropout 0.05

B.4 Fine-Tuning With Reasoning Traces

We use the following hyperparameters for fine-tuning for the over reasoning traces. The learning
rates are based on the suggestions from the original paper.
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Table 7: The hyperparameters used for the Common Sense Reasoning Benchmark.

Method Models \ Llama-3-8b Qwen-2.5-7B  Phi-4-14B
Optimizer AdamW
Warmup Steps 100
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 256
Batch Size 256
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 2
HYPERADAPT  Learning Rate | 3e-3
vera Learning Rate 3e-3
Rank 1024 1024 2048
Learning Rate le-4
Rank 1
LoRAr=1 LoRA o 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRA LoRA a 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA a 64
LoRA Dropout 0.05

Table 8: The hyperparameters used for the Math Benchmark.

Method Models | Qwen-2.5-7B
Optimizer AdamW
Warmup Steps 10
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 16384
Batch Size 64
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 5
HYPERADAPT  Learning Rate | 3e-3
vera Learning Rate 3e-3
Rank 1024
Learning Rate le-4
Rank 1
LoRA—1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRrA LoRA o 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA a 64
LoRA Dropout 0.05
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B.5 Decoding Hyperparameters

For commonsense reasoning, we generate at most 32 new tokens. For Arithmetic reasoning, we
generate at most 512 new tokens. For math benchmark after fine-tuning on reasoning traces, we
generate at most 1024 new tokens.

Table 9: Decoding hyperparameters used for text generation.

Parameter | Value

Temperature | 0.05
Top-p 0.40
Top-k 40

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this work, we show that for a given pre-trained weight matrix fine-tune
it using diagonal matrices and empirically show that we efficiently achieve comparable
performance with other PEFT methods with lower trainable parameter count.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss that the focus on this paper only was limited to large language
models and the impact of its application in other domains remain open.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we provide proof on why our method is high-rank with a tight upper
bound on the rank of the update.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide sufficient details in the main paper regarding the datasets,
methods, and procedures to reproduce experiments. We provide specific details regarding
hyperparameters and model configurations in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open-source our code and publicly release it upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, along with the specific model and dataset used for experiments, we also
provide all the hyperparameters used for the experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Standard errors and statistical significance are not reported due to the immense
computational resources required to fine-tune large language models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details regarding the amount of compute used for experiments in
the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method is strictly a parameter-efficient optimization method for neural
networks, and in itself does not provide a direct path to positive or negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: While we use open-source models and code in our experiments, we cite all
relevant papers and give proper attribution.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our anonymized code as part of the supplementary material, and
include documentation and instructions along with it.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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