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ABSTRACT

Calibration is a critical requirement for reliable probabilistic prediction, especially
in high-risk applications. However, the theoretical understanding of which learning
algorithms can simultaneously achieve high accuracy and good calibration remains
limited, and many existing studies provide empirical validation or a theoretical
guarantee in restrictive settings. To address this issue, in this work, we focus on the
smooth calibration error (CE) and provide a uniform convergence bound, showing
that the smooth CE is bounded by the sum of the smooth CE over the training
dataset and a generalization gap. We further prove that the functional gradient of
the loss function can effectively control the training smooth CE. Based on this
framework, we analyze three representative algorithms: gradient boosting trees,
kernel boosting, and two-layer neural networks. For each, we derive conditions
under which both classification and calibration performances are simultaneously
guaranteed. Our results offer new theoretical insights and practical guidance for
designing reliable probabilistic models with provable calibration guarantees.

1 INTRODUCTION

Probabilistic prediction plays a central role in many real-world applications, such as healthcare (Jiang
et al., 2012), weather forecasting (Murphy & Winkler, 1984), and language modeling (Nguyen &
O’Connor, 2015), where uncertainty estimates are often critical. Since ensuring the reliability of
such predictions has become a key challenge in modern machine learning, calibration Dawid (1982);
Foster & Vohra (1998)—which requires that predicted probabilities align with the actual frequency of
the true label—has attracted increasing attention. Calibration is a relatively weak condition that can be
satisfied by simple models. However, it is frequently violated in practice. Notably, Guo et al. (2017)
demonstrated that many modern deep learning models can be significantly miscalibrated, which has
since drawn increasing attention to calibration within the machine learning community. Although
various regularization techniques (Kumar et al., 2018; Karandikar et al., 2021; Popordanoska et al.,
2022; Marx et al., 2023) and recalibration methods (Zadrozny & Elkan, 2001; Guo et al., 2017; Gupta
& Ramdas, 2021; Kull et al., 2019) have been proposed to improve calibration, most of them are
either empirically evaluated without a theoretical guarantee or lead to a trade-off between calibration
and sharpness (Kuleshov & Liang, 2015), degrading predictive accuracy. As a result, it remains
unclear which learning algorithms can train well-calibrated predictors without sacrificing accuracy.

One classical approach to this problem is the minimization of proper loss functions, such as the
squared loss or the cross-entropy loss (Schervish, 1989; Buja et al., 2005). These losses are minimized
in expectation by the true conditional probability and thus have a natural connection to calibration.
However, in practice, constraints on model classes and suboptimal optimization may prevent proper
losses from yielding calibrated predictions. To address this issue, in a recent theoretical work, the
notion of a post-processing gap (Błasiok et al., 2023) has been introduced, which quantifies the
potential improvement of the loss function achievable by applying Lipschitz-continuous transfor-
mations to the model outputs. This framework provides an optimization-theoretic perspective on
calibration. Nevertheless, analyses based on this concept typically assume access to infinite data (i.e.,
population-level risk) (Błasiok et al., 2023; Globus-Harris et al., 2023), which limits their applicability
to real-world algorithms based on finite training samples. Furthermore, only a few theoretical results
explicitly connect calibration error with concrete learning algorithms (Hansen et al., 2024; Błasiok
et al., 2023). As a result, a key question remains unresolved: What types of learning algorithms can
achieve both high predictive accuracy and strong calibration guarantees in practice?
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To address this gap, we focus on the smooth calibration error (CE) (Błasiok et al., 2023; Foster &
Hart, 2018; Kakade & Foster, 2008), a recently proposed calibration metric for binary classification
that has favorable theoretical properties. Using smooth CE, we contribute to answering the above
question through two main theoretical advances. First, we derive a uniform convergence bound for
smooth CE, showing that the population-level smooth CE can be bounded by the smooth CE over the
training dataset plus a generalization gap (Section 3). Second, we prove that such training smooth CE
can be bounded by the norm of the functional gradient (or its approximation) of the loss evaluated on
training data, providing a principled criterion for optimizing calibration (Section 4). Taken together,
these results show that algorithms that achieve small functional gradients while regularizing model
complexity can obtain small smooth CE.

We apply our theoretical framework to three representative algorithms for the binary classification
closely tied to functional gradients: gradient boosting trees (GBTs), kernel boosting, and two-
layer neural networks (NNs). For GBTs, we provide the theoretical guarantee for their calibration
performance, showing that the smooth CE decreases with iteration (Section 4.1). For kernel boosting,
we analyze the trade-off between optimization and model complexity induced by the reproducing
kernel Hilbert space (Section 4.2). For two-layer NNs, we leverage their connection to the neural
tangent kernel to study calibration behavior on the basis of function space optimization (Section 4.3).
Furthermore, for all these algorithms, by introducing a margin-based assumption, we derive sufficient
conditions on the sample size and the number of iterations required to simultaneously achieve ϵ-level
smooth CE and misclassification rate under appropriately chosen hyperparameters.

In summary, in this work, we develop a unified theoretical framework for the smooth CE that
integrates a uniform convergence analysis with a functional-gradient-based characterization of
training dynamics. Our results establish new theoretical foundations for understanding and improving
calibration in modern learning algorithms.

2 PRELIMINARIES

In this section, we introduce proper losses and the smooth CE.

2.1 PROBLEM SETTING OF BINARY CLASSIFICATION

We denote random variables by capital letters (e.g., X) and deterministic values by lowercase letters
(e.g., x). The Euclidean inner product and norm are denoted by · and ∥ · ∥, respectively.

We consider a binary classification problem in the supervised setting. Let Z = X ×Y denote the data
domain, where X ⊂ Rd is the input space and Y = {0, 1} is the label space. We assume that data
points are sampled from an unknown data-generating distribution D over X × Y . Let F be a class of
predictors f : X → [0, 1] approximating the ground-truth conditional probability f∗(x) = E[Y |x].
To evaluate the performance of the predictor, we use a loss function. Since the task is binary
classification, the label Y follows a Bernoulli distribution, i.e., Y ∼ Ber(v) for some v ∈ [0, 1],
where Pr(Y = 1) = v. A loss function is defined as ℓ : [0, 1] × Y → R, with evaluation
given by ℓ(v, y). Our goal is not only to achieve high classification accuracy but also to assess
the quality of the predicted probabilities. In this context, proper loss functions play a central role
(Gneiting & Raftery, 2007). The loss ℓ is called proper if, for any v, v′ ∈ [0, 1], the following holds:
EY∼Ber(v)[ℓ(v, Y )] ≤ EY∼Ber(v)[ℓ(v

′, Y )].

For clarity, we focus on two representative proper losses: the squared loss ℓsq(v, y) := (y − v)2 and
the cross-entropy loss ℓent(v, y) := −y log v − (1 − y) log(1 − v). Given x and f , we substitute
v = f(x) in these expressions. For other proper losses, see Appendix A and Błasiok et al. (2023).

2.2 CALIBRATION METRICS AND LOSS FUNCTIONS

Given a distribution D and a predictor f , we say the model is perfectly calibrated if E[Y | f(X)] =
f(X) holds almost surely (Błasiok et al., 2023). Various metrics have been proposed to quantify the
deviation from perfect calibration. The most widely used metric is the expected calibration error
(ECE): ECE(f) := E [|E[Y | f(X)]− f(X)|] . Despite its popularity, ECE is difficult to estimate

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

efficiently (Arrieta-Ibarra et al., 2022; Lee et al., 2023) and is known to be discontinuous (Foster &
Hart, 2018; Kakade & Foster, 2008). As a more tractable alternative, we focus on the smooth CE:
Definition 1 (Smooth CE (Błasiok et al., 2023)). Let LipL([0, 1], [−1, 1]) be the set of L-Lipschitz
functions from [0, 1] to [−1, 1]. Given f and D, the smooth CE is defined as

smCE(f,D) := sup
h∈LipL=1([0,1],[−1,1])

E [h(f(X)) · (Y − f(X))] .

We remark that the concept of the smooth CE is also introduced in Foster & Hart (2018); Kakade &
Foster (2008). We also express smCE(f,D) = suph∈Lip1([0,1],[−1,1]) ⟨h(f(X)), Y − f(X)⟩L2(D).
The smooth CE offers favorable properties such as continuity and computational tractability (Błasiok
et al., 2023; Hu et al., 2024). Moreover, the smooth CE provides both upper and lower bounds on the
binning ECE, making it a principled surrogate for analyzing calibration. See Section 5 for details.

Błasiok et al. (2023) established a connection between the smooth CE and the optimization based on
the concept of the possible improvement of the function under the squared loss. Given f and D, we
define the post-processing gap as

pGap(f,D) := E[ℓsq(f(X), Y )]− inf
h∈Lip1([0,1],[−1,1])

E[ℓsq(f(X) + h(f(X)), Y )].

Then, the following inequality holds (Theorem 2.4 in Błasiok et al. (2023)):

smCE(f,D)2 ≤ pGap(f,D) ≤ 2smCE(f,D). (1)

Błasiok et al. (2023) also provided analogous results for the general proper scoring rule, which
indicates that the potential improvement in the population risk is closely tied to calibration quality.

We now consider the setting of the cross-entropy loss. In practice, the predicted probability f is often
obtained by applying the sigmoid function σ to a logit function g : X → R, i.e., f(x) = σ(g(x)) =
1/(1 + e−g(x)). Therefore, it is more natural to consider post-processing over the logit g rather than
the predicted probability f , as many models explicitly learn logits and apply the sigmoid function
only at the final prediction stage. We define a corresponding post-processing gap over the logit
function with the cross-entropy loss as

pGapσ(g,D) := E[ℓent(σ(g(X)), Y )]− inf
h∈Lip1(R,[−4,4])

E[ℓent(σ(g(X) + h(g(X))), Y )],

where Lip1(R, [−4, 4]) defines a class of 1-Lipschitz functions from R to [−4, 4] and the choice of
4 reflects the fact that the sigmoid function is 1/4-Lipschitz. Then, this post-processing leads to
defining a smooth CE directly over the logit function:
Definition 2 (Dual smooth CE (Błasiok et al., 2023)). Given a logit function g : X → R and
f(x) = σ(g(x)), the dual smooth CE is defined as

smCEσ(g,D) := sup
h∈Lip1/4(R,[−1,1])

⟨h(g(X)), Y − f(X)⟩L2(D) .

Similarly to Eq. (1), the following relation holds:

2smCEσ(g,D)2 ≤ pGapσ(g,D) ≤ 4smCEσ(g,D). (2)

Finally, we note that the dual smooth CE always upper bounds the smooth CE: smCE(f,D) ≤
smCEσ(g,D). Hence, minimizing the dual smooth CE guarantees a small value of the smooth CE.

3 UNIFORM CONVERGENCE OF THE SMOOTH CE

As shown in Eqs. (1) and (2), (dual) smooth CE is related to improvements in the population risk,
and Błasiok et al. (2023) utilized these relationships to analyze when algorithms can achieve a small
smooth CE. However, their results are defined over population-level quantities, where the expectation
by D is taken, making them inapplicable to practical algorithms trained on finite data points.

Since our goal is to analyze the behavior of the smooth CE under standard learning algorithms trained
on finite data, it is natural to consider its empirical counterpart. Given a dataset Sn = {(Xi, Yi)}ni=1

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

consisting of independently and identically distributed (i.i.d.) data points sampled from the data
distribution D, we define the empirical smooth CE (Błasiok et al., 2023) given Sn as

smCE(f, Sn) := sup
h∈Lip1([0,1],[−1,1])

1

n

n∑
i=1

h(f(Xi)) · (Yi − f(Xi)).

We also express this as smCE(f, Sn) = suph∈Lip1([0,1],[−1,1]) ⟨h(f(X)), Y − f(X)⟩L2(Sn)
. We

similarly define smCEσ(g, Sn) as empirical counterparts of smCEσ(g,D).

We consider two datasets: a training set Str = {Zi}ni=1 ∼ Dn, used to learn the predictor f , and
an independent test set Ste = {Z ′

i}ni=1 ∼ Dn. We call smCE(f, Str) as the training smooth CE,
smCE(f, Ste) as the test smooth CE, and smCE(f,D) as the population smooth CE. Given Str,
we are interested in evaluating |smCE(f,D)− smCE(f, Str)|. Błasiok et al. (2023) has shown that

|smCE(f,D)− smCE(f, Ste)| = Op(1/
√
n). (3)

Therefore, we need to evaluate |smCE(f, Ste)− smCE(f, Str)|, which we refer to as the smooth
CE generalization gap. Combining this gap with Eq. (3), we obtain the desired bound. To evaluate
the smooth CE generalization gap, we use the covering number bound. Suppose that F is equipped
with the metric ∥ · ∥∞. Let N (ϵ,F , ∥ · ∥∞) be an ϵ-cover with metric ∥ · ∥∞ of F , with the cardinality
N(ϵ,F , ∥ · ∥∞). Then, for any f ∈ F , there exists f̃ ∈ N (ϵ,F , ∥ · ∥∞) such that ∥f − f̃∥∞ ≤ ϵ.

We now present our first main result: (All proofs for this section are provided in Appendix C.)
Theorem 1. Let Ste ∼ Dn and Str ∼ Dn be independent test and training datasets. Then, for any
δ > 0, with probability at least 1− δ over the draw of Ste and Str, we have:

sup
f∈F

|smCE(f, Ste)−smCE(f, Str)|≤ inf
ϵ≥0

8ϵ+24

∫ 1

ϵ′

√
lnN(ϵ′,F , ∥ · ∥∞)

n
dϵ′+2

√
log δ−1

n
.

Since the smooth CE involves evaluating the composite function h(f(X)), standard chaining bounds
would introduce complexity over the composite class Lip1([0, 1], [−1, 1])◦F . However, by leveraging
the smoothness property of smooth CE, the above bound does not include the complexity of Lipschitz
functions. Combining Theorem 1 with Eq. (3), we obtain the bound for the population smooth CE.
Corollary 1. Under the same assumptions as in Theorem 1, there exist a universal constant C1 such
that with probability at least1− δ over the draw of Str, the following holds for all f ∈F:

|smCE(f,D)− smCE(f, Str)| ≤
C1√
n
+ inf
ϵ≥0

8ϵ+24

∫ 1

ϵ′

√
lnN(ϵ′,F , ∥ · ∥∞)

n
dϵ′+3

√
log 3

δ

n
.

The first term of the right-hand side represents the complexity of the Lipschitz function class.

In certain cases, the Rademacher complexity offers a more interpretable characterization. The
empirical and expected Rademacher complexities of a function class F are defined as R̂S(F) :=

Eσ supf∈F
1
n

∑n
i=1 σif(xi) , and RD,n(F) := EDn [R̂S(F)], respectively.

Theorem 2. Under the same assumptions as in Theorem 1, there exist a universal constant C2 such
that with probability at least 1− δ over the draw of Str, the following holds:

sup
f∈F

|smCE(f,D)− smCE(f, Str)| ≤
C2√
n
+ 4RD,n(F) + 2

√
log 2

δ

n
.

The first term on the right-hand side reflects the complexity of Lip1([0, 1], [−1, 1]), while the second
corresponds to F . A direct application of uniform convergence theory would yield a bound in terms of
RD,n(Lip1([0, 1], [−1, 1])◦F), which cannot be reduced to RD,n(F) using the standard contraction
lemma. Our analysis circumvents this difficulty by employing a covering argument for Lipschitz
functions. Similarly, Rademacher complexity can be used to bound |smCE(f, Ste)− smCE(f, Str)|.
However, such a bound depends on the complexity of the Lipschitz function, making it suboptimal
relative to Theorem 1. See Appendix D for a detailed comparison between Corollary 1 and Theorem 2.

In conclusion, by jointly controlling the complexity of the hypothesis class and reducing the training
smooth CE, we guarantee a small population smooth CE. In the next section, we show how to achieve
a small training smooth CE via functional gradients.
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4 CONTROLLING THE SMOOTH CE VIA FUNCTIONAL GRADIENT

In this section, we discuss how we can minimize the training smooth CE. From Eqs. (1) and (2), (dual)
smooth CE can be characterized via the (dual) post-processing gap, which describes the potential
improvement over functions. Building on this perspective, we show that both smooth and dual
smooth CEs can be further characterized using functional gradients. Since we focus on the functional
gradients over the training dataset, they are just finite-dimensional vectors. We provide the precise
connection between functional gradients and the population smooth CE in Appendix H.

For the squared loss, the gradient for the predicted probability is ∇f ℓsq(f, y) = f − y, and for the
cross-entropy loss, the gradient for the logit is ∇gℓent(σ(g), y) = σ(g) − y. Using these, we can
write the smooth and dual smooth CEs on the training dataset Str as

smCE(f, Str) = sup
h∈Lip1([0,1],[−1,1])

⟨h(f(X)),−∇f ℓsq(f(X), Y )⟩L2(Sn)
,

smCEσ(g, Str) = sup
h∈Lip1/4(R,[−1,1])

⟨h(g(X)),−∇gℓent(σ(g(X)), Y )⟩L2(Sn)
.

The connection between functional gradients and the smooth CE can be extended to general proper
scoring rules using the post-processing gaps, see Appendix H for the details.

Therefore, to effectively control the training smooth CE, it is natural to consider algorithms that focus
on functional gradients. From this perspective, in the following subsections, we investigate how the
smooth CE interacts with the training dynamics of three widely used models: gradient boosting tree,
kernel boosting in a reproducing kernel Hilbert space (RKHS), and two-layer neural networks. These
models can all be interpreted on the basis of functional gradients, and our theoretical framework
enables a unified understanding of their calibration behavior under different forms of regularization.

In this section, we express the empirical risk as Ln(g) = 1
n

∑n
i=1 ℓent(σ(g(Xi)), Yi)

and the functional gradient over the training dataset as ∇gLn(g) =
(∇gℓent(σ(g(X1)), Y1)), . . . ,∇gℓent(σ(g(Xn)), Yn)) ∈ Rn.

4.1 CASE STUDY I: GRADIENT BOOSTING TREE

Gradient boosting (Friedman, 2001) is a widely used method for constructing predictive models by
iteratively adding base learners to minimize a loss function. It generates a sequence of functions
{g(t)}Tt=0 via the updates, for t = 0, . . . , T − 1:

g(t+1)(x) = g(t)(x)− wtψt(x), (4)

wherewt > 0 is the stepsize and ψt approximates the functional gradient of the empirical loss (Mason
et al., 1999). Since using the exact functional gradient often leads to overfitting, ψt is restricted to a
predefined function class Ψ, which provides implicit regularization. We impose the following mild
assumption on Ψ, which is readily satisfied by common choices such as regression trees.
Assumption 1. The set of real-valued functions Ψ satisfies: for every ψ ∈ Ψ, the negation −ψ also
belongs to Ψ; supψ∈Ψ ∥ψ∥∞ ≤ B for some B ≥ 1; and the constant function 0 is included in Ψ.

To obtain the update direction, we iteratively solve ψ(t) = argminψ∈Ψ Ln
(
g(t) − wtψ(x)

)
. Many

boosting methods approximate this by a quadratic upper bound, leading to the squared loss

ψt = argmin
ψ∈Ψ

∥Mwtψ −∇gLn(g
(t))∥2L2(Sn)

=
1

n

n∑
i=1

|Mwtψ(Xi)−∇gℓent(σ(g(Xi)), Yi))|2.

where M is the smoothness parameter of the loss (e.g., M = 1/4 for cross-entropy).

Although gradient boosting is often observed to be well calibrated in practice (Niculescu-Mizil
& Caruana, 2005; Wenger et al., 2020), its theoretical guarantees remain less understood. Our
framework provides a natural way to analyze this. Following prior analysis on boosting, we impose a
standard margin assumption:
Assumption 2 (Telgarsky (2013)). Let ∆n = {q ∈ Rn+ |

∑n
i=1 qi = 1} denote the n-dimensional

probability simplex. Given a dataset Str = {(Xi, Yi)}ni=1, there exists γ > 0 such that for every
q ∈ ∆n, there exists ψ ∈ Ψ satisfying

∑n
i=1 qi(2Yi − 1)ψ(Xi) ≥ γB.

5
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Here, 2Yi − 1 maps the binary label Yi ∈ {0, 1} to ±1. This condition guarantees that for any
weighted sample distribution q ∈ ∆n, one can choose a base learner with nontrivial correlation to the
labels. Such margin assumptions are also standard in classification theory (Wei et al., 2018). Under
this setup, we present our main result for the training dual smooth CE:
Theorem 3. Given Str, under Assumptions 1 and 2, if T ≥ 2 with constant stepsize wt = w, the
averaged predictor ḡ(T ) = 1

T

∑T−1
t=0 g(t) satisfies

smCEσ
(
ḡ(T ), Sn

)
≤ Ln(g

(0))

γBwT
+
wB

8γ
.

Proof outline. By definition, the smooth CE is bounded by the L1 norm of the functional gradient:

smCEσ(g, Str) ≤
1

n

n∑
i=1

|∇gℓent(g(Xi), Yi)| = ∥∇gℓent(g(X), Y )∥L1(Sn). (5)

Under Assumption 2, this norm can be further bounded as

∥∇gℓent(g(X), Y )∥L1(Sn) ≤
1

γB

〈
ψt,∇t

〉
L2(Sn)

+
w

8γ
B

as shown in Lemma 4 in Appendix E. The inner product
〈
ψt,∇t

〉
L2(Sn)

is then bounded based on
the standard convex optimization techniques. See Appendix E.3 for the complete proof.

Thus, choosing w = O(1/
√
T ) ensures that the training smooth CE converges to 0 at rate O(1/

√
T ).

Next, we establish a guarantee for the population smooth CE by applying Theorem 2. This requires
specifying Ψ to evaluate the complexity of F . We consider gradient boosting trees (Friedman, 2002;
Hastie et al., 2005), where Ψ is the class of binary regression trees. A binary regression tree of depthm
partitions the input space Rd into at most J ≤ 2m disjoint regions: Rd =

⋃J
j=1Rj ,with Rj ∩Rk =

∅ for j ̸= k. Each region Rj is assigned a constant cj ∈ R, yielding a piecewise constant function:
ψθ(x) =

∑J
j=1 cj · 1{x∈Rj} with parameters θ = {cj , Rj}Jj=1. The complete GBT algorithm is

provided in Appendix E. Under these settings, we obtain the following result:
Corollary 2. Under the same assumptions as Theorem 3, there exist universal constants {Ci}s such
that, with probability at least 1− δ over the draw of Str, we have

smCE(σ(ḡ(T )),D) ≤ Ln(g
(0))

γBwT
+
wB

8γ
+
C2√
n
+ C3wT

√
2m log nd

n
+ 2

√
log(2/δ)

n
.

We find that increasing the number of steps T reduces the training smooth CE, but also enlarges
the function class, as the Rademacher complexity grows at rate O(wT ). This highlights a trade-off
between lowering training smooth CE and controlling model complexity. Corollary 3 shows that with
appropriate hyperparameters, one can attain any target precision ϵ for the smooth CE.

In addition, bounding the norm of the functional gradient provides a generalization guarantee for test
accuracy (Nitanda & Suzuki, 2018). For completeness, we include in Appendix E a formal upper
bound on the misclassification rate, P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0].

Combining this with Theorem 2, we conclude that with suitable choices of T and n, both the smooth
CE and the misclassification rate can be controlled to within any target precision ϵ.
Corollary 3. Under assumptions in Corollary 2, for any ϵ > 0, if the hyperparameters satisfy:

T = Ω(γ−2ϵ−2), w = Θ(γ−1ϵ−1T−1), n = Ω̃(γ−2ϵ−4),

then, with probability at least 1 − δ, the averaged predictor ḡ(T ) satisfies smCE(σ(ḡ(T )),D) ≤ ϵ
and P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ ϵ.

Here, Ω̃(·) hides logarithmic factors in the big-Ω notation. Corollary 3 shows that ϵ-smooth CE and
ϵ-classification error can be achieved with O(1/ϵ2) iterations of GBT. To the best of our knowledge,
this is the first theoretical analysis of GBTs that jointly accounts for both test accuracy and smooth
CE. We complement our theory with numerical experiments in Appendix I, which examine how the
number of iterations and training sample size affect smooth CE and prediction accuracy.
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4.2 CASE STUDY II: KERNEL BOOSTING

We next consider kernel boosting (Wei et al., 2017), where the functional gradient is approximated by
functions in an RKHS. Let (H, ⟨·, ·⟩H) be an RKHS associated with the kernel k : X ×X → R. The
functional gradient over the training dataset is approximated as

max
ϕ∈H,∥ϕ∥H≤1

〈
∇gLn(g

(t)), ϕ
〉
L2(Sn)

=
Tk∇gLn(g)

∥Tk∇gLn(g)∥H
,

where Tk∇gLn(g) :=
1
n

∑n
i=1 k(Xi, ·)∇gℓent(σ(g(Xi)), Yi)) is the empirical kernel operator. In

kernel boosting, we set ht = −Tk∇gLn(g
(t)) in Eq. (4) and use the update rule:

g(t+1) = g(t) − wtTk∇gLn(g
(t)).

To analyze this, we introduce the following normalized margin assumption:
Assumption 3. Given a dataset Str, there exists a function ϕ ∈ H and a constant γ > 0 such that
for all (Xi, Yi) ∈ Str, (2Yi − 1)ϕ(Xi) ≥ γ.

This assumption is essentially equivalent to Assumption 2 in the GBT analysis. Setting q in As-
sumption 2 as a unit vector yields Assumption 3. Conversely, taking convex combinations of
(2Yi − 1)ϕ(Xi) ≥ γ in Assumption 3 recovers Assumption 2.

Under Assumption 3, the L1 norm of the functional gradient is bounded as follows:

∥∇gℓent(g(X), Y )∥L1(Sn) =
1

n

n∑
i=1

|∇gℓent(g(Xi), Yi)| ≤
1

γ
∥Tk∇gLn(g)∥H .

All proofs for this section are provided in Appendix F. Combining this with Eq. (5), we can control
the smooth CE via ∥Tk∇gLn(g)∥H. Using this relation, we obtain the following result.

Theorem 4. Suppose Assumption 3, supx,x′∈X k(x, x
′) ≤ Λ, and ∥g(0)∥H ≤ Λ′ hold. When using

the constant stepsize wt = w which satisfies w < 4/Λ, the average of function ḡ(T ) = 1
T

∑T−1
t=0 g(t)

satisfies

smCEσ(ḡ(T ), Str) ≤
1

γ

√
Ln(g(0))

wT
.

Additionally, there exist universal constants {Ci}s such that with probability at least 1− δ over the
draw of Str, we have:

smCE(σ(ḡ(T )),D) ≤ 1

γ

√
Ln(g(0))

wT
+
C2√
n
+ C4(Λ

′ +
√
2wTLn(g(0)))

√
Λ

n
+ 2

√
log 2

δ

n
.

Although covering number bounds require assumptions on kernel eigenvalue decay, here we use the
Rademacher complexity bound from Theorem 2, which yields a simpler result.

We observe that increasing the number of steps T decreases the training smooth CE but simultaneously
enlarges the function class, since the Rademacher complexity of predictors (the third term on the
right-hand side) grows with the norm of ḡ(t) at rate O(

√
wT ). This highlights a trade-off between

reducing training smooth CE and controlling model complexity.

Since the norm of the functional gradient also upper bounds the misclassification rate, we
show—analogous to Corollary 3—that suitable hyperparameter choices guarantee any target precision
ϵ for both the smooth CE and the misclassification rate.
Corollary 4. Suppose assumptions in Theorem 4 hold. For any ϵ > 0, if the hyperparameters satisfy:

T = Ω(γ−2ϵ−2), w = Θ(γ−2ϵ−2T−1), n = Ω̃(γ−2ϵ−4),

then, with probability at least 1− δ, the average of function ḡ(T ) satisfies smCE(σ(ḡ(T )),D) ≤ ϵ
and P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ ϵ.

Corollary 4 establishes that both ϵ-smooth CE and ϵ-classification error can be achieved using
O(1/ϵ2) iterations of kernel boosting. This result is grounded in the observation that bounding the
functional gradient norm leads to a small smooth CE and a misclassification rate.

7
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4.3 CASE STUDY III: TWO-LAYER NEURAL NETWORK

The next example is the two-layer neural network (NN). While NNs are typically trained by gradient
descent on their parameters, recent work (Nitanda et al., 2019) shows that under certain hyperparam-
eter settings—such as output scaling and a sufficiently large number of neurons—two-layer NNs
behave similarly to kernel boosting with the neural tangent kernel (NTK).

We adopt the setting of Nitanda et al. (2019). Define the logit function gθ : X → R by a two-layer
NN gθ(x) = 1

mβ

∑m
r=1 arϕ(θr · x), where m > 0 is the number of hidden units, β ∈ [0, 1] is a

scaling exponent, and ϕ : R → R is a smooth activation function (e.g., sigmoid, tanh). The weights
{ar}mr=1 ∈ {−1, 1}m are fixed, while the parameters θ = {θr}mr=1 with θr ∈ Rd are updated via
gradient descent: θ(t+1) = θ(t) − w∇θLn(gθ(t)) with constant stepsize w > 0.

We now give an informal statement of Theorem 2 from Nitanda et al. (2019), which provides
guarantees for the functional gradient. Assume: (1) the activation function is smooth; (2) the initial
parameters are sampled from a sub-Gaussian distribution; (3) the NTK-transformed data are separable
with margin γ; (4) the stepsize is sufficiently small; and (5) the number of hidden units m is large
enough. Then, for T ≤ mγ2K3

w , there exist constants K1, K2, and K3 such that, for all β ∈ [0, 1],
with probability at least 1− δ over the random initialization, the following bound holds:

1

T

T−1∑
t=0

∥∇gℓent(gθ(t)(X), Y )∥2L1(Sn)
≤ K1

γ2T

(
m2β−1

w
+K2

)
. (6)

See Appendix G for the formal statement. Then, similar to Theorem 4, we have

min
t∈{0,...,T−1}

smCEσ(gθ(t) , Str) ≤
1

T

T−1∑
t=0

smCEσ(gθ(t) , Str) ≤

√
K1

γ2T

(
m2β−1

w
+K2

)
.

Combining the Rademacher complexity estimate of Nitanda et al. (2019) with Theorem 2, we derive
upper bounds on the population smooth CE and misclassification rate, analogous to the kernel
boosting setting (see Appendix G for details). As in Theorem 4, the bound reveals a trade-off in T :
increasing T reduces the training smooth CE but enlarges the complexity term, which grows at rate
O(

√
wT ). Similar to Corollary 4, we further show that with suitable hyperparameters, both ϵ-smooth

CE and ϵ-classification error can be guaranteed.
Corollary 5 (Informal). Suppose the same assumptions as those for Eq. (6) hold. If for any ϵ > 0,
the hyperparameters satisfy one of the following:
(i) β ∈ [0, 1), m = Ω(γ

−2
1−β ϵ

−1
1−β ), T = Ω(γ−2ϵ−2), w = Θ(γ−2ϵ−2T−1m2β−1), n = Ω̃(γ−2ϵ−4),

(ii) β = 0, m = Θ
(
γ−2ϵ−3/2 log(1/ϵ)

)
, T = Θ

(
γ−2ϵ−1 log2(1/ϵ)

)
, w = Θ(m−1), n = Ω̃(ϵ−2),

then with probability at least 1 − δ, gradient descent with the stepsize w finds a parameter θ(t)
satisfying smCE(σ(gθ(t)), Str) ≤ ϵ and P(X,Y )∼D [(2Y − 1)gθ(t)(X) ≤ 0] ≤ ϵ within T iterations.

See Appendix G for the formal statement with explicit constants. This result shows that both ϵ-smooth
CE and ϵ-classification error can be achieved within O(1/ϵ2) or O(1/ϵ) iterations, assuming the
NTK-transformed data are separable with margin γ. Between the two hyperparameter settings, (ii)
attains the same error target with fewer iterations T by increasing the number of hidden units m,
and further yields improved complexity compared with Corollary 4 for kernel boosting. Appendix I
provides empirical results illustrating how smooth CE and accuracy vary with T and n.

5 RELATED WORK

Various metrics have been proposed to quantify deviations from perfect calibration, including
ECE (Guo et al., 2017; Rahaman et al., 2021; Minderer et al., 2021). The binning ECE has been
widely used to estimate the conditional expectation E[Y |f(X)] in the ECE, which partitions the prob-
ability interval into discrete bins. Despite its popularity, binning ECE is sensitive to hyperparameters
such as the number of bins, and it lacks both consistency and smoothness as a distance metric (Kumar
et al., 2019; Nixon et al., 2019; Minderer et al., 2021). A broader comparison of ECE variants is
given by Gruber & Buettner (2022). Błasiok et al. (2023) systematically studied calibration distances
and formalized the true distance from calibration as a rigorous notion of deviation from perfect
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calibration. As an efficiently estimable surrogate, they proposed the smooth CE, building on Foster &
Hart (2018); Kakade & Foster (2008). More recently, Hu et al. (2024) showed that smooth CE can be
efficiently evaluated in practice. Importantly, Błasiok et al. (2023) proved that smooth CE provides
both upper and lower bounds on binning ECE, making it a theoretically sound proxy. Hence, the
results established here for smooth CE also yield implications for binning ECE; see Appendix B for
details.

To achieve a well-calibrated prediction with a theoretical guarantee, many prior works focus on
recalibration, such as binning-based recalibration methods (Gupta et al., 2020; Gupta & Ramdas,
2021; Kumar et al., 2019; Sun et al., 2023; Futami & Fujisawa, 2024). However, it has been reported
that such post-processing loses the sharpness of the prediction, which sometimes leads to accuracy
degradation (Kumar et al., 2018; Karandikar et al., 2021; Popordanoska et al., 2022; Marx et al., 2023;
Kuleshov & Liang, 2015). To theoretically guarantee the calibration, our analysis takes a different
perspective. We provide guarantees for the smooth CE without relying on such a post-processing
approach similar to recalibration. This is achieved by combining a uniform convergence bound and a
functional gradient characterization of the training smooth CE. Then, our analysis simultaneously
guarantees both the smooth CE and accuracy for several practical algorithms.

Prior work has connected the post-processing gap to the population smooth CE (Błasiok et al., 2023;
Błasiok et al., 2023), making it less applicable to algorithms trained on finite datasets. Similarly,
although Gruber & Buettner (2022) discussed post-processing, their approach faces the same limita-
tion. In contrast, our analysis directly targets the smooth CE from finite data. From a generalization
perspective, Futami & Fujisawa (2024) developed algorithm-dependent bounds for binning ECE
using information-theoretic techniques. By contrast, we derive a uniform convergence bound for
smooth CE, which applies more broadly beyond binning. Moreover, their generalization bound
for ECE converges at a rate O(log n/n1/3), which is slower than our rate. We conjecture that this
slower convergence arises from the nonparametric estimation of conditional probabilities via binning,
whereas smooth CE avoids such estimation and hyperparameter dependence. Finally, their results
focus only on the generalization gap and do not address when the training ECE itself becomes small.

Although in recent studies, new boosting algorithms have been proposed to improve various notions
of calibration (Hebert-Johnson et al., 2018; Globus-Harris et al., 2023), our analysis provides a
theoretical explanation for why existing gradient boosting already yields strong calibration perfor-
mance. Unlike prior works on boosting, which primarily focus on accuracy on the basis of functional
gradients (Zhang & Yu, 2005; Nitanda & Suzuki, 2018; Nitanda et al., 2019), we leverage functional
gradients to analyze calibration, offering a novel perspective on the behavior of these algorithms
in calibration. While our analysis assumes a constant stepsize, the choice of stepsize in boosting
is crucial for achieving better performance (Telgarsky, 2013). Extending our calibration analysis
beyond the constant stepsize setting is an important direction for future work.

In several works, the post-processing has been highlighted in achieving advanced calibration objec-
tives, such as multicalibration (Hebert-Johnson et al., 2018; Hansen et al., 2024; Błasiok et al., 2023;
Globus-Harris et al., 2023). Whereas our analysis focuses on smooth CE, this metric is closely related
to these variants of CE from the viewpoint of low-degree calibration (Gopalan et al., 2022). We
believe our findings may offer new insights into these metrics, which we leave for future exploration.

6 CONCLUSION AND LIMITATION

This work presented the first rigorous guarantees on the smooth CE for several widely used learning
algorithms. Our analysis proceeds in two stages: we first derive a uniform convergence bound for the
smooth CE, and then upper-bound the training smooth CE via functional gradients. We demonstrate
that algorithms that can control the functional gradient simultaneously achieve a small smooth CE
and misclassification rate. Despite these contributions, several limitations remain. First, our bounds
are derived using a uniform bound over the post-processing function h, not the Lipschitz function
class, which may result in loose estimates. More refined analyses that better align with practical
performance would be valuable. Moreover, our analysis relies on a strong margin assumption, which
requires a well-separated data distribution. Since calibration is a rather weak notion compared with
accuracy, extending the analysis to more realistic and weaker conditions is an important direction for
future work. Finally, our analysis is limited to binary classification as the smooth CE is designed for
this setting. Extending our analysis to the multiclass setting should be explored in future work.
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REPRODUCIBILITY STATEMENT

This paper is primarily theoretical, and all technical details and complete proofs of our results are
provided in the Appendix. In addition, for the supplementary experimental analyses presented in
the Appendix, we provide the corresponding source code in the Supplementary Material to facilitate
reproducibility.
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A ADDITIONAL FACTS ABOUT PROPER LOSSES

Here, we describe the general form of a proper loss function and its relation to the post-processing
gap. Given a proper loss function ℓ, it can always be represented in terms of a convex function as
follows:

ℓ(p, y) = −ϕ(p)−∇ϕ(p) · (y − p),

where ϕ : [0, 1] → R is a convex function and ∇ϕ(p) denotes a subgradient at p. This representation
is known as the Savage representation (Gneiting & Raftery, 2007). Błasiok et al. (2023) further
showed that, in the binary case, the subgradient satisfies ∇ϕ(p) = ℓ(p, 0)− ℓ(p, 1), and referred to
∇ϕ(p) as the dual of p (dual(p)). Hereinafter, we assume that ϕ is differentiable, since the convex
functions corresponding to commonly used losses such as the squared loss and the log loss are
differentiable.

Table 1: Savage representations for the cross-entropy Loss and squared loss
cross-entropy Loss Squared Loss

ℓ(p, y) −y ln p− (1− y) ln(1− p) (y − p)2

ϕ(v) p ln p+ (1− p) ln(1− p) p(p− 1)

dual(p) ln
(

p
1−p

)
2p− 1

ψ(s) ln(1 + es)


0, s < −1
(s+1)2

4 , −1 ≤ s ≤ 1

s, s > 1

ℓψ(s, y) ln(1 + es)− y · s


−ys, s < −1

(y − (s+ 1)/2)2, −1 ≤ s ≤ 1

(1− y)s, t > 1

predψ(s)(= ∇ψ(s)) es

1+es


0, s < −1
s+1
2 , −1 ≤ s ≤ 1

1, s > 1

We define the convex conjugate of a function ϕ(p) as follows: for all s ∈ R,

ψ(s) = sup
p∈[0,1]

{s · p− ϕ(p)} ,

where ψ is a convex function. We refer to s as a score, as will be explained later. Using this notation,
we define the dual loss ℓψ : R× Y → R as

ℓψ(s, y) := ψ(s)− s · y.

The score s is linked to the probability p via the dual mapping dual(p) = ∇ϕ(p) = ℓ(p, 0)− ℓ(p, 1).
By Fenchel–Young duality, this relationship is inverted as p = ∇ψ(s), which we also denote as
p = predψ(s).

With these definitions, the proper loss can be equivalently written as

ℓ(p, y) = ℓψ(dual(p), y) = ψ(dual(p))− dual(p) · y.

For details and proofs, see Błasiok et al. (2023). We summarize the key properties of these expressions
in Table 1.

Similarly, we can define the dual post-processing gap for the proper scoring rule (Błasiok et al., 2023):

Definition 3 (Dual-post processing gap). Assume that Ψ is a differentiable and convex function
with derivative ∇ψ(t) ∈ [0, 1] for all t ∈ R. Assume that ψ is λ smooth function. Given ψ, ℓψ,
g : X → R, and D, we define the dual post-processing gap as

pGap(ψ,λ)(g,D) := E[ℓψ(g(X), Y )]− inf
h∈Lip1(R,[−1/λ,1/λ])

E[ℓψ(g(X) + h(g(X)), Y )]

14
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When considering the cross-entropy loss, this dual post-processing gap corresponds to improving the
logit function.
Definition 4 (Dual smooth calibration). Consider the same setting as the definition of the dual-post
processing gap. Given ψ and g, we define f(·) = ∇ψ(g(·)). We then define the dual calibration
error of g as

smCE(ψ,λ)(g,D) := sup
h∈LipL=λ(R,[−1,1])

Eη(g(X)) · (Y − f(X))

Then, similarly to the relationship between the smooth ECE and the post-processing gap, the following
holds: if ψ is a λ-smooth function, then we have

smCE(ψ,λ)(g,D)2/2 ≤ λpGap(ψ,λ)(g,D)2/2 ≤ smCE(ψ,λ)(g,D)

and

smCE(f,D) ≤ smCE(ψ,λ)(g,D)

holds.

In the case of the cross-entropy loss, we have ψ(s) = log(1 + es), which is 1/4-smooth. For the
squared loss, ψ is 1/2-smooth. Therefore, the dual smooth calibration and the smooth calibration are
essentially equivalent in both cases.

B DISCUSSION ABOUT CALIBRATION METRICS

Here, we introduce several definitions of calibration metrics and their relationship to the smooth CE,
which is the primary focus of our paper.

B.1 TRUE DISTANCE CALIBRATION AND SMOOTH CE

Given a distribution D and predictor f , we consider the distribution induced by f , which is the joint
distribution of prediction-label pairs (f(x), y) ∈ [0, 1]× {0, 1}, denoted by Df .
Definition 5 (Perfect calibration (Błasiok et al., 2023)). We say that a prediction-label distribution Γ
over [0, 1]× {0, 1} is perfectly calibrated if E(v,y)∼Γ[y|v] = v. Moreover, given D over X × {0, 1},
we say that f is perfectly calibrated with respect to D if Df is perfectly calibrated.

We denote the set of perfectly calibrated predictors with respect to D by cal(D).

Next, we introduce the true calibration distance, defined as the distance to the closest calibrated
predictor:
Definition 6 (True calibration distance). The true distance of a predictor f from calibration is defined
as

dCED(f) := inf
g∈cal(D)

ED|f(x)− g(x)|.

This is the l1 metric, which possesses many desirable properties for measuring calibration; see Błasiok
et al. (2023) for details. However, it is not practically usable because cal(D) may be non-convex, and
the metric depends on the domain X , whereas calibration metrics typically depend only on µ(D, f).
Błasiok et al. (2023) proposed that any calibration metric should satisfy the following three criteria:

(i) Prediction-only access A calibration metric should depend only on the distribution over
(f(x), y) ∼ Df , and not on the distribution over X . If it meets this requirement, we say that a
calibration metric µ satisfies the Prediction-only access (PA) property. Note that the true calibration
distance depends on (x, f(x), y) and is therefore called the sample access (SA) model.

(ii) Consistency
Definition 7. For c > 0, a calibration metric µ is said to satisfy c-robust completeness if there exists
a constant a ≥ 0 such that for every distributionD on X × {0, 1}, and predictor f ∈ F

µ(D, f) ≤ a (dCED(f))
c
.
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Definition 8. For s > 0, a calibration metric µ satisfies s-robust soundness if there exists a constant
b ≥ 0 such that for every distribution D on X × {0, 1}, and predictor f ∈ F ,

µ(D, f) ≥ b (dCED(f))
s
.

Definition 9. A calibration metric µ is said to be (c, s)-consistent if it satisfies both c-robust
completeness and s-robust soundness.

Thus, consistent calibration metrics are polynomially related to the true distance from calibration.
Błasiok et al. (2023) showed that any PA model must satisfy s/c ≥ 2.

(iii) Efficiency A calibration metric µ is said to be efficient if it can be computed to accuracy ϵ in
time poly(1/ϵ) using poly(1/ϵ) random samples from Df .

Błasiok et al. (2023) showed that the smooth CE satisfies all of these properties. In particular, with
respect to consistency, the smooth CE satisfies

smCE(f,D) ≤ dCED(f) ≤ 4
√
2smCE(f,D)

⇔ 1

32
dCED(f)

2 ≤ smCE(f,D) ≤ dCED(f)

which means that the smooth CE is (c = 1, s = 2)-consistent and achieves s/c = 2.

B.2 ECE AND BINNING ESTIMATOR

Recall the definition of the expected calibration error (ECE):

ECED(f) := E [|E[Y |f(X)]− f(X)|] .
The binning estimator is commonly used to approximate this. Given a partition I = {I1, . . . , Im} of
[0, 1] into intervals, we define:

binnedECED(Γ, I) =
∑
j∈[m]

|E(V,Y∼Γ)[(V − Y )1(V ∈ Ij)]|.

It has been shown in Lemma 4.7 of Błasiok et al. (2023) that

dCED(f) ≤ ECED(f)

demonstrating robust soundness. However, ECE does not satisfy robust completeness; Błasiok et al.
(2023) proved (Lemma 4.8) that for any ϵ ∈ R+, there exists a distribution D such that dCED(f) ≤ ϵ
but ECED(f) ≥ 1/2− ϵ. This also highlights the discontinuity of ECE, which hinders its estimation
from finite samples.

Błasiok et al. (2023) showed that by accounting for bin widths, the binning ECE satisfies consistency:

intCE(f) := min
I

(binnedECED(Γ, I) + wΓ(I))

where

wΓ(I) :=
∑
j∈[m]

|E(V,Y∼Γ)w(Ij)1(V ∈ Ij)|

and w(I) denotes the width of interval I .

Then, the following holds (Theorem 6.3 in Błasiok et al. (2023)):

dCED(f) ≤ intCE(f) ≤ 4
√

dCED(f)

Thus, intCE satisfies (1/2, 1)-consistency. Błasiok et al. (2023) also provided an estimator for
intCE(Γ).

As we have seen, bounding the smooth CE leads to a bound on dCED(f), which in turn bounds
intCE(f)—an optimized estimator for the binned ECE.

Finally, we remark that since E[Y |f = v] is continuous, we can relate the ECE and the smooth CE as
follows:
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Theorem 5. Suppose that E[Y |f = v] satisfies L-Lipschitz continuity. Then the following relation
holds:

1

2
smCE(f,D) ≤ ECED(f) ≤ (1 + 2

√
2(1 + L))

√
2smCE(f,D).

Thus, controlling the smooth CE also leads to controlling the ECE when the underlying conditional
probability function is continuous.

Proof. We first prove the following inequality:

ECED(f) ≤ binnedECED(Γ, I) + (1 + L)wΓ(I). (7)

This can be derived using Lemma 4 in Futami & Fujisawa (2024). For completeness, we outline the
key steps of the analysis below:

ECED(f) = E [|E[Y |f = V ]− V |] =
m∑
i=1

P (V ∈ Ii)E[|E[Y |f = V ]− V ||V ∈ Ii]

=

m∑
i=1

P (V ∈ Ii)E[|E[Y |f = V ]− E[V |V ∈ Ii]

+ E[V |V ∈ Ii]− V ||V ∈ Ii]

≤
m∑
i=1

P (V ∈ Ii)E[|E[Y |V ]− E[Y |V ∈ Ii]||V ∈ Ii]

+

m∑
i=1

P (V ∈ Ii)E[|E[Y |V ∈ Ii]− E[V |V ∈ Ii]||V ∈ Ii]

+

m∑
i=1

P (V ∈ Ii)E[|E[V |V ∈ Ii]− V ||V ∈ Ii].

As for the second term, it is evident that
m∑
i=1

P (V ∈ Ii)E|E[Y |V ∈ Ii]− E[V |V ∈ Ii]| = binnedECED(Γ, I)

and as for the third term,
m∑
i=1

P (V ∈ Ii)E[|E[V |V ∈ Ii]− V ||V ∈ Ii] ≤
m∑
i=1

E[w(Ii)1V ∈Ii ] = w(Γ).

Finally, the first term can be bounded by using the Lipschitz continuity,
m∑
i=1

P (V ∈ Ii)E[|E[Y |V ]− E[Y |V ∈ Ii]||V ∈ Ii]

≤
m∑
i=1

P (V ∈ Ii)E[|E[Y |V ]− E[Y |VI ]||V ∈ Ii]

+

m∑
i=1

P (V ∈ Ii)E[|E[Y |VI ]− E[Y |V ∈ Ii]||V ∈ Ii]

≤ L

m∑
i=1

P (V ∈ Ii)E[|V − E[V |V ∈ Ii]||V ∈ Ii] ≤ Lw(Γ)

where

VI :=

m∑
i=1

VIi · 1V ∈Ii =

m∑
i=1

E[V |V ∈ Ii] · 1V ∈Ii .
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The term E[|E[Y |VI ]− E[Y |V ∈ Ii]||V ∈ Ii] = 0 holds by the definition of conditional expectation.
Thus, we have established Eq. (7).

Next, we consider taking the infimum over all partitions I. By combining Claim 6.6 and Lemma 6.7
in Błasiok et al. (2023) and Eq. (7), we obtain:

ECED(f) ≤ (1 + 2/ϵ)dCED(f) + (1 + L)ϵ

where dCED(f) denotes the lower calibration distance (see Błasiok et al. (2023) for the formal

definition), and ϵ > 0 is an arbitrary width parameter. By setting ϵ =
√

2
1+LdCED(f) and using

the fact that dCED(f) ≤ 2smCE(f,D) from Theorem 7.3 in Błasiok et al. (2023), we obtain the
desired result.

We remark that if the underlying conditional distribution satisfies a continuity condition, then the
ECE becomes a consistent calibration metric.

B.3 OTHER METRICS

As discussed in Błasiok et al. (2023) and Gopalan et al. (2022), the smooth CE is a special case of the
weighted calibration error introduced by Gopalan et al. (2022).
Definition 10 (Weighted Calibration Error). Let M be a class of functions h : [0, 1] → R. The
calibration error relative to M is defined as

CED(f,M) := sup
h∈M

E [h(f(X)) · (Y − f(X))] = sup
h∈M

⟨h(f(X)), Y − f(X)⟩L2(D) .

In this view, the smooth CE corresponds to smCE(f,D) = CED(f,Lip1([0, 1], [−1, 1])).

For the dual smooth CE, the inverse of the sigmoid function is σ−1(x) = log(x/(1 − x)). When
g(x) = σ−1(f(x)), we have:

smCEσ(g,D) = CED(f,Lip1/4(R, [−1, 1]) ◦ σ−1)

Another important function class is the RKHS H associated with a positive definite kernel k. This
space is equipped with the feature map ϕ : R → H satisfying ⟨h, ϕ(v)⟩H = h(v). The associated
kernel k : R× R → R is defined by k(u, v) = ⟨ϕ(u), ϕ(v)⟩H.

Let H1 := {h ∈ H|∥h∥H ≤ 1}. We define the kernel calibration error as CED(f,H1).

Given samples {(v1, y1), . . . , (vn, yn))} where vi = f(xi), the kernel CE under finite samples is
defined as

ĈED(f,WH)2 :=
1

n2

∑
i,j

(yi − vi)k(vi, vj)(yj − vj).

This was first proposed by Kumar et al. (2018) as the maximum mean calibration error (MMCE).

A key kernel is the Laplace (exponential) kernel kLap(u, v) = exp(−|u− v|), for which it has been
shown that

1

3
smCE(f,D) ≤ CED(f,H1).

On the other hand, the Gaussian kernel does not upper bound the smooth CE and has several
limitations; see Błasiok et al. (2023) for details.

We numerically evaluate the behavior of MMCE with the Laplace kernel and smooth CE in Ap-
pendix I.

C PROOF OF SECTION 3

C.1 PROOF OF THEOREM 1

Before the formal proof, we provide a proof sketch to highlight the key differences from standard
generalization bounds.
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First, we reformulate the smooth CE as a linear convex optimization (Hu et al., 2024): let vi = f(xi)
and ω = (ω1, . . . , ωn) ∈ Rn. Then smCE(f, S) = maxω

∑n
i=1(yi − vi)ωi/n subject to the

constraints |ωi| ≤ 1, ∀i, and |ωi − ωj | ≤ |vi − vj |, ∀i, j. Let ω∗ denote one such solution, and we
define ϕ(f, zi) := (yi − vi)ω

∗
i . Then, we express ϕ(f, S)= 1

n

∑n
i=1 ϕ(f, zi).

Although our analysis follows the structure of classical generalization bounds, the dependence among
{ϕ(f, zi)}ni=1 induced by ω∗ through the optimization precludes the use of standard concentration
inequalities based on independence. Instead of Hoeffding’s inequality, we use the bounded difference
inequality to show supf∈F |ϕ(f, Ste)−ϕ(f, Str)| ≤ ESte,Str∼D2n supf∈F |ϕ(f, Ste)−ϕ(f, Str)|+√
log δ−1/n. This requires studying the stability of the above convex problem.

We would like to apply a symmetrization argument using i.i.d. Rademacher variables σi ∈ ±1 and
evaluate ESte,Str∼D2nEσ supf∈F

1
n

∑n
i=1 σi [ϕ(f, Z

′
i)− ϕ(f, Zi)]. However, this technique is not

directly applicable in our setting due to dependencies among the terms {ϕ(f, zi)}ni=1.

To address this, we introduce {σi}s in a way that preserves the structure of the linear convex
formulation of smooth CE. Since the resulting bound does not take the form of standard Rademacher
complexity, we discretize the hypothesis class F and derive a covering number bound.

Proof. We begin by leveraging the reformulation of the smooth CE as a linear program introduced
by Błasiok et al. (2023). Given a dataset S = {(xi, yi)}ni=1 and defining vi = f(xi), it is known that
the smooth CE on S corresponds to the optimal value of the following optimization problem:

smCE(f, S) = max
{ωi}

1

n

n∑
i=1

(yi − vi)ωi (8)

subject to the constraints:

−1 ≤ ωi ≤ 1, ∀i, |ωi − ωj | ≤ |vi − vj |, ∀i, j.

This is a convex linear program whose optimal value exists; see Lemma 7.6 in Błasiok et al. (2023).
Note that the optimal solution is not necessarily unique. Nevertheless, given a function f and dataset
S, the value smCE(f, S) is uniquely determined. Let ω∗

i denote one such optimal solution. Then,
we can write:

smCE(f, S) =
1

n

n∑
i=1

(yi − vi)ω
∗
i =

1

n

n∑
i=1

ϕ(f, zi)

where zi = (xi, yi). We denote smCE(f, Str) = ϕ(f, Str) and smCE(f, Ste) = ϕ(f, Ste).

As discussed above, although the optimizer ω∗ may not be unique, the value smCE(f, S) is uniquely
determined for a fixed f and dataset S. Therefore, the uniform upper bound on the smooth CE can be
controlled via the supremum over f when the training and test datasets are fixed. We thus focus on
the following inequality:

|smCE(f, Ste)− smCE(f, Str)| ≤ sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)|

Following the standard approach in uniform convergence analysis, we derive the convergence in
expectation as follows:

Lemma 1. Under the same setting as Theorem 1, with probability 1− δ, we have

sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)| ≤ ESte,Str∼D2n sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)|+ 2

√
log 1

δ

n
.

The proof of this lemma is provided in Appedix C.2.

Note that this is not a consequence of Hoeffding’s inequality, since

ϕ(f, Str) =
1

n

n∑
i=1

(yi − vi)ω
∗
i =

1

n

n∑
i=1

ϕ(f, zi)
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and thus the terms ϕ(f, zi) are dependent through ω∗
i , which is a solution of the linear program

in Eq. (8). Since there are n dependent variables ϕ(f, zi), Hoeffding’s inequality, which requires
independence, is not applicable. To establish Lemma 1, we instead employ McDiarmid’s inequality
combined with a bounded difference argument; see the proof in Appendix C.2.

Our proof proceeds in three steps: (1) we introduce Rademacher random variables, (2) we evaluate
the exponential moment to control the empirical process induced by these variables, and (3) we refine
the exponential moment bound via a chaining argument.

We introduce Rademacher random variables to control the empirical process in Lemma 1. Following
standard generalization analysis, we aim to apply the symmetrization technique. However, the
standard formulation

E(Sn,S′
n)∼D2nEσ sup

f∈F

1

n

n∑
i=1

[σiϕ(f, Z
′
i)− σiϕ(f, Zi)] (9)

is not suitable for Step (2), as it complicates the evaluation of the exponential moment.

To understand this, let us explicitly express the uniform generalization gap as follows:
ESte,Str∼D2n sup

f∈F
ϕ(f, Ste)− ϕ(f, Str) (10)

= E(Sn,S′
n)∼D2n sup

f∈F

(
max
ω

1

n

n∑
i=1

(yi − f(xi))ωi −max
ω′

1

n

n∑
i=1

(y′i − f(x′i))ω
′
i

)

= E(Sn,S′
n)∼D2n sup

f∈F
max
ω

min
ω′

1

n

n∑
i=1

[(yi − f(xi))ωi − (y′i − f(x′i))ω
′
i] (11)

Here, we used the reformulation of the smooth CE over the training dataset via a Lipschitz function.
For simplicity, we omit the constraints of the linear program. We now introduce Rademacher variables
and demonstrate the difficulty in evaluating the exponential moment.

To simplify the discussion, let us consider the case n = 2. For a fixed dataset S and function f ,
Eq. (9) under the expression of Eq. (10) is written as:

Eσmax
ω

min
ω′

σ1
2

[(y1 − f(x1))ω1 − (y′1 − f(x′1))ω
′
1] +

σ2
2

[(y2 − f(x2))ω2 − (y′2 − f(x′2))ω
′
2]

=
1

8
max
ω

min
ω′

(y1 − f(x1))ω1 + (y2 − f(x2))ω2 − (y′1 − f(x′1))ω
′
1 − (y′2 − f(x′2))ω

′
2

+
1

8
max
ω

min
ω′

(y1 − f(x1))ω1 − (y2 − f(x2))ω2 − (y′1 − f(x′1))ω
′
1 + (y′2 − f(x′2))ω

′
2

+
1

8
max
ω

min
ω′

−(y1 − f(x1))ω1 + (y2 − f(x2))ω2 + (y′1 − f(x′1))ω
′
1 − (y′2 − f(x′2))ω

′
2

+
1

8
max
ω

min
ω′

−(y1 − f(x1))ω1 − (y2 − f(x2))ω2 + (y′1 − f(x′1))ω
′
1 + (y′2 − f(x′2))ω

′
2

̸= 0

This non-zero result indicates the challenge in applying exponential moment analysis for Step (2). In
standard analysis, this type of expectation is typically zero, which enables the use of tools such as
Massart’s lemma. Hence, the standard symmetrization technique fails in this setting.

Therefore, we must develop an alternative symmetrization strategy. To illustrate the idea, we begin
by introducing only σ1 and consider the following expression:

Eq. (11)

= E(Sn,S′
n)∼D2nEσ1

sup
f∈F

max
ω

min
ω′

[
σ1
n

(
(y1 − f(x1))

(
1 + σ1

2
ω1 +

1− σ1
2

ω′
1

)
− (y′1 − f(x′1))

(
1 + σ1

2
ω′
1 +

1− σ1
2

ω1

))
+

1

n

n∑
i=2

((yi − f(xi))ωi − (y′i − f(x′i))ω
′
i)

]
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Here, σ1 is a Rademacher random variable. This equality holds because, when σ1 = 1, the maxi-
mization and minimization are unchanged; when σ1 = −1, the roles of ω1 and ω′

1 are exchanged.
However, since we are averaging over S and S′, and these datasets are i.i.d., such swapping does not
affect the distribution of the expectation. Therefore, the equality holds. This method of introducing
Rademacher variables differs fundamentally from the standard symmetrization approach.

We then introduce i.i.d. Rademacher random variables {σi}ni=1 and consider the following expression:

Eq. (11)
= E(Sn,S′

n)∼D2nEσ sup
f∈F

max
ω

min
ω′

1

n

n∑
i=1

σi

[
(yi − f(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
− (y′i − f(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)]

An important property is that for fixed f and dataset S, we have:

Eσmax
ω

min
ω′

1

n

n∑
i=1

σi

[
(yi − f(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
(12)

−(y′i − f(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)]
= 0.

This cancellation becomes evident in the case n = 2: by expanding the left-hand side above, we
obtain

1

8
max
ω

min
ω′

(y1 − f(x1))ω1 + (y2 − f(x2))ω2 − (y′1 − f(x′1))ω
′
1 − (y′2 − f(x′2))ω

′
2

+
1

8
max
ω

min
ω′

(y1 − f(x1))ω1 + (y′2 − f(x′2))ω2 − (y′1 − f(x′1))ω
′
1 − (y2 − f(x2))ω

′
2

+
1

8
max
ω

min
ω′

(y′1 − f(x′1))ω1 + (y2 − f(x2))ω2 − (y1 − f(x1))ω
′
1 − (y′2 − f(x′2))ω

′
2

+
1

8
max
ω

min
ω′

(y′1 − f(x′1))ω1 + (y′2 − f(x′2))ω2 − (y1 − f(x1))ω
′
1 − (y2 − f(x2))ω

′
2

= 0.

This is because the structure of the linear convex problem ensures symmetric cancellation when
Rademacher variables are introduced. Therefore, we can proceed the analysis of the exponential
moment of Step (2).

We define the integrated empirical process as

R(F , Sn, S′
n) := Eσ sup

f∈F
max
ω

min
ω′

1

n

n∑
i=1

σiϕ(f, Zi, Z
′
i),

where

ϕ(f, Zi, Z
′
i) := (yi − f(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
− (y′i − f(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)
.

We now derive a bound using a variant of the Massart lemma. For simplicity, assume the function
class F has finite cardinality |F|. This will later be replaced by a covering number. Then for all
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λ > 0, we have:

R(F , Sn, S′
n) = Eσ sup

f∈F
max
ω

min
ω′

1

n

n∑
i=1

σiϕ(f, Zi, Z
′
i)

≤ Eσ
1

λ
log
∑
f∈F

exp

(
max
ω

min
ω′

λ

n

n∑
i=1

σiϕ(f, Zi, Z
′
i)

)

≤ 1

λ
log
∑
f∈F

Eσ exp

(
max
ω

min
ω′

λ

n

n∑
i=1

σiϕ(f, Zi, Z
′
i)

)

≤ 1

λ
log

(
|F| · Eσ exp

(
max
ω

min
ω′

λ

n

n∑
i=1

σiϕ(f, Zi, Z
′
i)

))
.

Since the expectation of the exponential term is 0 from Eq. (12), we apply McDiarmid’s inequality:

Lemma 2. Under the above setting, we have

Eσ exp

(
max
ω

min
ω′

λ

n

n∑
i=1

σiϕ(f, Zi, Z
′
i)

)
≤ exp

(
λ2

2n

)
.

The proof of this theorem is provided in Appendix C.3. Using this, we obtain

R(F , Sn, S′
n) ≤

log |F|
λ

+
λ

2n
.

Optimizing over λ, we find

R(F , Sn, S′
n) ≤

√
2 log |F|

n
.

This is a modified version of Massart’s lemma since the left-hand side does not represent the classical
Rademacher complexity.

Since F can be uncountable, we apply a discretization argument using the covering number. By the
definition of the supremum, for any ϵ′ ∈ R+, there exists f∗ ∈ F such that

Eσ sup
f∈F

1

n

n∑
i=1

σiϕ(f, Zi, Z
′
i) = Eσ

1

n

n∑
i=1

σiϕ(f, Zi, Z
′
i) + ϵ′.

Here we present a stronger result compared to the theorem presented in the main paper, based on the
L2(Sn) pseudometric, which is defined as:

∥f − f ′∥L2(Sn) :=

√√√√ 1

n

n∑
i=1

|f(Xi)− f ′(Xi)|2.

By the definition of the ϵ-covering, for a given f∗ ∈ F , there exists f̃ ∈ N (ϵ,F , L2(S2n)) such that

∥f∗ − f̃∥L2(S2n) ≤ ϵ.

We first derive the generalization bound using the L2(Sn) pseudometric, and subsequently upper
bound it in terms of the ∥ · ∥∞ norm. By definition, we have

Eσmax
ω

min
ω′

1

n

n∑
i=1

σiϕ(f
∗, Zi, Z

′
i) ≤ Eσmax

ω
min
ω′

1

n

n∑
i=1

σiϕ(f̃ , Zi, Z
′
i) + 2ϵ.
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To prove this, we fix σ and expand the difference:

1

n

n∑
i=1

σi

[
(yi − f∗(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
− (y′i − f∗(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)]

=
1

n

n∑
i=1

σi

[
(yi − f̃(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
− (y′i − f̃(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)]

+
1

n

n∑
i=1

σi

[
(f̃(xi)− f∗(xi))

(
1 + σi

2
ωi +

1− σi
2

ω′
i

)
− (f̃(x′i)− f∗(x′i))

(
1 + σi

2
ω′
i +

1− σi
2

ωi

)]

≤ (first term) +

√√√√ 1

n

n∑
i=1

|f̃(xi)− f∗(xi)|2 +

√√√√ 1

n

n∑
i=1

|f̃(x′i)− f∗(x′i)|2

≤ (first term) + 2ϵ,

where we used the Cauchy–Schwarz inequality and the bounds |ωi|, |ω′
i| ≤ 1. Taking expectations

over σ and maximizing/minimizing over ω, ω′, the result follows.

Thus, we obtain:

R(F , Sn, S′
n) ≤

√
2 logN(ϵ,F , L2(S2n))

n
+ 2ϵ+ ϵ′. (13)

Letting ϵ′ → 0, we have

R(F , Sn, S′
n) ≤ 2ϵ+

√
2 logN(ϵ,F , L2(Sn))

n
. (14)

We can use Eq. (14) for the uniform convergence bound, however, to get the refined dependency, we
use the chaining technique; Let ϵℓ = 2−ℓ for ℓ = 0, 1, 2, . . .. Let Fℓ be an ϵℓ-cover of F with metric
L2(S2n), and define Nℓ = |Fℓ| = N(ϵℓ,F , L2(S2n)). We may set F0 = {0} at scale ϵ0 = 1.

For each f ∈ F , we consider fℓ(f) ∈ Fℓ so that

∥f − fℓ(f)∥L2(S2n) ≤ ϵℓ.

Based on the standard chaining technique, which uses f ∈ F , we consider the following multi-scale
decomposition:

f = (f − fL(f)) +

L∑
ℓ=1

(fℓ(f)− gℓ−1(f)).

By the triangle inequality, we have

∥fℓ(f)− fℓ−1(f)∥L2(Sn) ≤ ∥fℓ(f)− f∥L2(Sn) + ∥fℓ−1(f)− f∥L2(Sn) ≤ 3ϵℓ.

Note that the number of distinct fℓ(f)− fℓ−1(f) is at most NℓNℓ−1.

Similar to the derivation of Eqs. (13) and (14), regarding ϕ(f, Zi, Z ′
i) as f(Zi), we need to care that

2ϵ appears. Therefore, given ϵ-cover for F ,

∥f − fℓ(f)∥L2(S2n) ≤ 2ϵℓ.

and

∥fℓ(f)− fℓ−1(f)∥L2(Sn) ≤ ∥fℓ(f)− f∥L2(Sn) + ∥fℓ−1(f)− f∥L2(Sn) ≤ (2 + 4)ϵℓ.

holds if regarding ϕ(f, Zi, Z ′
i) as f(Zi) in the above.
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Then we can consider the following decomposition;

R(F , Sn, S′
n) = Eσ sup

f∈F

1

n

n∑
i=1

σi

[
(f − fL(f))(Zi) +

L∑
ℓ=1

(fℓ(f)− fℓ−1(f))(Zi)

]

≤ Eσ sup
f∈F

1

n

n∑
i=1

σi(f − fL(f))(Zi) +

L∑
ℓ=1

Eσ sup
f∈F

1

n

n∑
i=1

σi(fℓ(f)− fℓ−1(f))(Zi)

≤2ϵL +

L∑
ℓ=1

sup
f∈F

∥fℓ(f)− fℓ−1(f)∥L2(Sn)

√
2 ln(NℓNℓ−1)

n

≤2ϵL + 6

L∑
ℓ=1

ϵℓ

√
2 ln(NℓNℓ−1)

n

≤ 2ϵL + 24

L∑
ℓ=1

(ϵℓ − ϵℓ+1)

√
lnNℓ
n

≤ 2ϵL + 24

∫ ϵ0

ϵL+1

√
lnN(ϵ′,F , L2(Sn))√

n
dϵ′.

Then for any ϵ > 0, we pick L = sup{j : ϵj > 2ϵ}. This simple ϵL+1 ≤ 2ϵ, thus ϵL ≤ 4ϵ holds. By
definition of L, ϵL > 2ϵ and this implies ϵL+1 > ϵ

Therefore, we have

R(F , Sn, S′
n) ≤ inf

ϵ≥0

[
8ϵ+ 24

∫ 1

ϵ

√
lnN(ϵ′,F , L2(Sn))√

n
dϵ′

]
.

By definition, we only need to take ϵ ≤ 1.

Finally using the fact that lnN(ϵ′,F , L2(Sn)) ≤ lnN(ϵ′,F , ∥ · ∥∞) (Wainwright, 2019), we obtain
the result.

Finally, we remark on the case of smCEσ . The dual smooth CE under the dataset S is equivalent to
the optimal value of the following optimization problem:

smCEσ(g, S) = max
{ωi}

1

n

n∑
i=1

(yi − vi)ωi

subject to the constraints:

−1 ≤ ωi ≤ 1, ∀i, |ωi − ωj | ≤
1

4
|g(Xi)− g(Xj)|, ∀i, j,

where vi = σ(g(Xi)), and σ denotes the sigmoid function. These constraints can also be rewritten
as:

−1 ≤ ωi ≤ 1, ∀i, |ωi − ωj | ≤
1

4
|σ−1(vi)− σ−1(vj)|, ∀i, j.

By definition, the only difference from the standard smooth CE formulation lies in the constraint
of the linear program. Since the resulting problem remains a convex optimization, the same proof
techniques developed above can be applied to the dual formulation as well. To carry out a similar
analysis, it is necessary to bound the range of the logit function g.

C.2 PROOF OF LEMMA 1

Proof. Since ϕ(f, S) = 1
n

∑n
i=1 ϕ(f, zi) =

1
n

∑n
i=1(yi − f(xi))ω

∗
i , where S = {zi}ni=1 consists

of i.i.d. samples and |(yi − f(xi))ω
∗
i | ≤ 1, one may wish to apply Hoeffding’s inequality. However,
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the coefficients ω∗
i are obtained as the solution to a linear program that depends on the dataset Ste.

Consequently, the terms (yi − f(xi))ω
∗
i are not independent, and Hoeffding’s inequality cannot be

applied.

Instead, we employ McDiarmid’s inequality, which requires only the bounded difference property of
ϕ(f, Ste). For completeness, we state McDiarmid’s inequality below:

Lemma 3. (Boucheron et al., 2013) We say that a function f : X → R has the bounded difference
property if for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,x′

i∈X
|f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n. (15)

IfX1, . . . , Xn are independent random variables taking values in X and f has the bounded difference
property with constants c1, . . . , cn, then for any t ∈ R, we have

E
[
et(f(X1,...,Xn)−E[f(X1,...,Xn)])

]
≤ e

t2

8

∑n
i=1 c

2
i .

Moreover

Pr (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n
i=1

c2
i (16)

Pr (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≤ −ϵ) ≤ e
−2ϵ2∑n
i=1

c2
i

Therefore, we are required to estimate the constants ci in Eq. (15). To this end, consider
replacing the i-th data point zi with z′i, and let the resulting dataset be denoted by S′

n =
(z1, . . . , zi−1, z

′
i, zi+1, . . . , zn). We define the following notation:

smCE(f, Sn) =
1

n

n∑
j=1

(yj − f(xj))ω
∗
j ,

where ω∗
j is the solution of Eq. (8) given f and Sn. Similarly, define

smCE(f, S′
n) =

1

n

n∑
j ̸=i

(yj − f(xj))ω
′∗
j +

1

n
(y′i − f(x′i))ω

′∗
i ,

where ω
′∗
j is the solution of Eq. (8) given f and S′

n.

We now evaluate the change in the smooth CE under this replacement:

smCE(f, Sn)− smCE(f, S′
n) =

1

n

n∑
j=1

(yj − f(xj))ω
∗
j −

 1

n

n∑
j ̸=i

(yj − f(xj))ω
′∗
j +

1

n
(y′i − f(x′i))ω

′∗
i



≤ 1

n

n∑
j=1

(yj − f(xj))ω
∗
j −

 1

n

n∑
j ̸=i

(yj − f(xj))ω
∗
j +

1

n
(y′i − f(x′i))ω

∗
i



=
1

n
(yi − f(xi))ω

∗
i −

1

n
(y′i − f(x′i))ω

∗
i

=
1

n
(yi − y′i)ω

∗
i +

1

n
(f(x′i)− f(xi))ω

∗
i ≤ 2

n
,
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where the inequality uses the definition of ω∗
j and the bound |ω∗

i | ≤ 1. Similarly, we have:

smCE(f, Sn)− smCE(f, S′
n) =

1

n

n∑
j=1

(yj − f(xj))ω
∗
j −

 1

n

n∑
j ̸=i

(yj − f(xj))ω
′∗
j +

1

n
(y′i − f(x′i))ω

′∗
i



≥ 1

n

n∑
j=1

(yj − f(xj))ω
′∗
j −

 1

n

n∑
j ̸=i

(yj − f(xj))ω
′∗
j +

1

n
(y′i − f(x′i))ω

′∗
i



=
1

n
(yi − f(xi))ω

′∗
i − 1

n
(y′i − f(x′i))ω

′∗
i

=
1

n
(y′i − yi)ω

∗
i +

1

n
(f(x′i)− f(xi))ω

′∗
i ≥ − 2

n
.

Combining the two results, we obtain:

|smCE(f, Sn)− smCE(f, S′
n)| ≤

2

n
.

Thus, the bounded difference constant ci in McDiarmid’s inequality satisfies:

sup
{zj}n

j=1,z̃
′
i

|smCE(f,D, Sn)− smCE(f,D, S′
n)| ≤

1

n
. (17)

Our goal is now to study the uniform stability of the quantity supf∈F |ϕ(f, Ste) − ϕ(f, Str)|. By
definition, for any ϵ ∈ R+, there exists g ∈ F such that

sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)| ≤ |ϕ(g, Ste)− ϕ(g, Str)|+ ϵ.

Therefore, it suffices to study the stability coefficient ci for |ϕ(g, Ste) − ϕ(g, Str)|. Consider the
combined dataset S = Ste ∪ Str ∼ D2n, and analyze the effect of replacing a single data point in S,
which consists of 2n i.i.d. samples.

We first consider the case where the replaced data point is from the test set Ste = {z̃i}ni=1. Let the
perturbed dataset be

S′
te = (z̃1, . . . , z̃i−1, z

′
i, z̃i+1, . . . , z̃n).

Then, using the triangle inequality and Eq. (17), we have:

|ϕ(g, Ste)− ϕ(g, Str)| − |ϕ(g, S′
te)− ϕ(g, Str)| ≤ |ϕ(g, Ste)− ϕ(g, S′

te)| ≤
2

n
,

|ϕ(g, Ste)− ϕ(g, Str)| − |ϕ(g, S′
te)− ϕ(g, Str)| ≥ −|ϕ(g, Ste)− ϕ(g, S′

te)| ≥ − 2

n
.

Combining these, we obtain:

||ϕ(g, Ste)− ϕ(g, Str)| − |ϕ(g, S′
te)− ϕ(g, Str)|| ≤

2

n
.

A similar analysis applies when the replaced data point is from the training set Str = {zi}ni=1. Let
the perturbed test set be

S′
tr = (z1, . . . , zi−1, z

′
i, zi+1, . . . , zn).

Then,

||ϕ(g, Ste)− ϕ(g, Str)| − |ϕ(g, Ste)− ϕ(g, S′
tr)|| ≤

2

n
.

Therefore, the bounded difference coefficient for each data point in the combined dataset is

ci = sup
{zj}2n

j=1,z
′
i

|ϕ(g, Ste)− ϕ(g, Str)− (ϕ(g, S′
te)− ϕ(g, Str))| ≤

2

n
,
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for all i = 1, . . . , 2n.

Applying McDiarmid’s inequality (Eq. (16)) with these coefficients yields:

Pr

(
sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)| − ESte,Str∼D2n sup
f∈F

|ϕ(f, Ste)− ϕ(f, Str)| ≥ ϵ

)
≤ exp(−nϵ2/4).

C.3 PROOF OF LEMMA 2

Similar to the proof of Lemma 1 in Appendix C.2, we apply McDiarmid’s inequality to evaluate the
exponential moment. To this end, we first compute the bounded difference constants in Eq. (15).
Recall the definition:

max
ω

min
ω′

λ

n

n∑
i=1

σiϕ(f, Zi, Z
′
i),

where

ϕ(f, Zi, Z
′
i) :=

[
(yi − f(xi))

(
1+σi

2 ωi +
1−σi

2 ω′
i

)
− (y′i − f(x′i))

(
1+σi

2 ω′
i +

1−σi

2 ωi
)]
.

For clarity, we first analyze the special case where σi = 1 for all i ∈ [n]; the general case is handled
later. Under this assumption, the expression reduces to the difference of smooth CEs:

max
ω

min
ω′

λ

n

n∑
i=1

ϕ(f, Zi, Z
′
i) = λ

(
smCE(f, Sn)− smCE(f, S′

n)
)
. (18)

Now fix the dataset and flip a single coordinate σj from 1 to −1. Only the j-th term is affected. For
σj = 1, the term is

(yj − f(xj))ωj − (y′j − f(x′j))ω
′
j ,

while for σj = −1, it becomes

(y′j − f(x′j))ωj − (yj − f(xj))ω
′
j .

This corresponds to swapping the training and test inputs in the smooth CE optimization.

Formally, define the datasets:

S̃n = ((x1, y1), . . . , (x
′
j , y

′
j), . . . , (xn, yn)), S̃′

n = ((x′1, y
′
1), . . . , (xj , yj), . . . , (x

′
n, y

′
n)).

Then the exponent, with σi = 1 for i ̸= j and σj = −1, can be written as

max
ω

min
ω′

λ

n

∑
i ̸=j

ϕ(f, Zi, Z
′
i)−

λ

n
ϕ(f, Zj , Z

′
j) = λ

(
smCE(f, S̃n)− smCE(f, S̃′

n)
)
.

Using Eq. (17), which bounds the stability of smCE, and combining with Eq. (18), we obtain:∣∣∣∣∣∣max
ω

min
ω′

λ

n

n∑
i=1

ϕ(f, Zi, Z
′
i)−

max
ω

min
ω′

λ

n

∑
i ̸=j

ϕ(f, Zi, Z
′
i)−

λ

n
ϕ(f, Zj , Z

′
j)

∣∣∣∣∣∣
= λ

∣∣smCE(f, Sn)− smCE(f, S̃n)
∣∣+ λ

∣∣smCE(f, S′
n)− smCE(f, S̃′

n)
∣∣

≤ 2λ
n .

Since this bound holds for arbitrary j ∈ [n], we have:

sup
j∈[n]

∣∣∣max
ω

min
ω′

λ

n

n∑
i=1

ϕ(f, Zi, Z
′
i)−

(
max
ω

min
ω′

λ

n

∑
i ̸=j

ϕ(f, Zi, Z
′
i)−

λ

n
ϕ(f, Zj , Z

′
j)
)∣∣∣≤ 2λ

n
. (19)
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The same reasoning applies to any fixed realization σ = σ|± of the Rademacher variables (note that
σ|± is a fixed realization and not a random variable). For each such realization, we construct the
datasets Sσ|± and S′

σ|± used in the smooth CE optimization. Then,

max
ω

min
ω′

λ

n

n∑
i=1

σ|±ϕ(f, Zi, Z ′
i) = λ

(
smCE(f, Sσ|±)− smCE(f, S′

σ|±)
)
,

and changing any single component of σ alters the value by at most 2λ
n , as in Eq. (19).

Therefore, by the argument in Appendix C.2, the sensitivity coefficients satisfy ci = 2λ
n for all i ∈ [n].

Substituting this into Lemma 4 in Appendix C.2 yields the desired exponential moment bound.

C.4 PROOF OF COROLLARY 1

Proof. As stated in the main paper, Błasiok et al. (2023) proved in Theorem 9.5 that, with probability
at least 1− δ over the draw of the test dataset,

|smCE(f,D)− smCE(f, Ste)| ≤ 2RD,n(Lip1([0, 1], [−1, 1])) +

√
log 2

δ

2n
. (20)

They further showed that there exists a universal constant C such that

RD,n(Lip1([0, 1], [−1, 1])) ≤ C√
n
,

based on the result of Ambroladze & Shawe-Taylor (2004). See also Luxburg & Bousquet (2004) for
the derivation of Rademacher complexity of lipshictz functions.

Combining this with Theorem 1 and Corollary 6, and applying the triangle inequality, we obtain:
sup
f

|smCE(f,D)− smCE(f, Str)|

≤ sup
f

|smCE(f,D)− smCE(f, Ste)|+ sup
f

|smCE(f, Ste)− smCE(f, Str)|.

We now allocate the total failure probability δ across the two terms using the union bound. Specifically,
we set δ → 2

3δ in Eq. (20), and δ → 1
3δ in Theorem 1 or Corollary 6. Then, the sum of the confidence

terms becomes: √
log 2

2
3 δ

2n
+ 2

√
log 1

1
3 δ

n
=

(
2 +

1√
2

)√
log 3

δ

n
≤ 3

√
log 3

δ

n
.

Thus, we obtain the desired high-probability bound.

D ANALYSIS BASED ON RADEMACHER COMPLEXITY

D.1 PROOF OF THEOREM 2

To simplify the notation, we define
ϕ(f, h, x, y) = h(f(x)) · (y − f(x)).

Then
smCE(f,D)− smCE(f, Str)

≤ sup
f∈F

smCE(f,D)− smCE(f, Str)

≤ sup
f∈F

sup
h∈LipL=1([0,1],[−1,1])

Eϕ(f, h,X, Y )− sup
h∈LipL=1([0,1],[−1,1])

1

n

n∑
i=1

ϕ(f, h,Xi, Yi)

≤ sup
f∈F

sup
h∈LipL=1([0,1],[−1,1])

{
Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi)

}

≤ sup
h∈LipL=1([0,1],[−1,1])

sup
f∈F

{
Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi)

}
.
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In the last line, we simply used the swapping of the supremum, which can be shown using the
definition of the supremum. (In general, for any f ∈ F , ϕ(f, h) ≤ sup′f ϕ(f

′, h), which leads to
suph ϕ(f, h) ≤ suph sup

′
f ϕ(f

′, h). This further leads to supf suph ϕ(f, h) ≤ suph sup
′
f ϕ(f

′, h).)

Then, we use Mcdiramid’s inequality. The bounded difference for the training dataset is 2/n, we
have the following result; for any δ > 0 with probability 1− δ/2, we have

sup
h∈LipL=1([0,1],[−1,1])

sup
f∈F

Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi)

≤ EStr∼Dn sup
h∈LipL=1([0,1],[−1,1])

sup
f∈F

Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi) + 2

√
log 2

δ

n
.

Then by considering the standard symmetrization property, we have the following upper bound

sup
h∈LipL=1([0,1],[−1,1])

sup
f∈F

Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi)

≤ 2ESEσ

[
sup

h∈LipL=1([0,1],[−1,1])

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
+ 2

√
log 2

δ

n
.

Finally, by considering the union bound, for any δ > 0 with probability 1− δ, we have

sup
h∈LipL=1([0,1],[−1,1])

sup
f∈F

∣∣∣Eϕ(f, h,X, Y )− 1

n

n∑
i=1

ϕ(f, h,Xi, Yi)
∣∣∣

≤ 2ESEσ

[
sup

h∈LipL=1([0,1],[−1,1])

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
+ 2

√
log 2

δ

n
.

Next, we evaluate the Rademacher complexity term.

For the notational convenience, we define

T := ESEσ

[
sup

h∈LipL=1([0,1],[−1,1])

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
,

η0 := {η : [0, 1]→R | −1 ≤ Lip(η) ≤ 1}.

Our goal is to show

T ≤ 2RD,n(F) +
12√
n

∫ 1

0

√
logN

(
u, η0, ∥ · ∥∞

)
du.

First, we will consider an ϵ-net of the Lipschitz class, which is independent of data and σ. Fix
geometric scales εk := 2−k for k = 0, 1, 2, . . . . For each k, choose a fixed (data- and σ-independent)
εk-net Nk ⊂ η0 under the uniform norm ∥ · ∥∞, with |Nk| = N(εk, η0, ∥ · ∥∞). For every η ∈ η0
pick a nearest projection πk(η) ∈ Nk so that ∥η − πk(η)∥∞ ≤ εk. Then, by the triangle inequality,∥∥πk(η)− πk−1(η)

∥∥
∞ ≤ εk + εk−1 ≤ 2εk−1.

Consequently,

η = π0(η) +
∑
k≥1

(
πk(η)− πk−1(η)

)
.
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We set A(h) = supf∈F
1
n

∑n
i=1 σiϕ(f, h,Xi, Yi). The discretization error by the k-th covering is

given as

ESEσ sup
h∈Lip

A(h)− ESEσ sup
h∈Nk

A(h)

= ESEσ sup
h∈Lip

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)− ESEσ sup
h∈Nk

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

≤ ESEσ sup
h∈Lip

1

n

n∑
i=1

σiϕ(f
′, h,Xi, Yi)− sup

h∈Nk

1

n

n∑
i=1

σiϕ(f
′, h,Xi, Yi) + 2ϵ′

≤ ϵk + 2ϵ′,

where f ′ and ϵ′ is coming from the definition of the supremum, that is, there exists some f ′ ∈ F such
that supf∈F

1
n

∑n
i=1 σiϕ(f, h,Xi, Yi) ≤ 1

n

∑n
i=1 σiϕ(f

′, h,Xi, Yi)+ ϵ′ for any ϵ′ ∈ R+. Since we
can take ϵ′ arbitrarily small, the discretization error is ϵk.

Next we show that under the k-th covering, we can disentangle the complexity of the lipshicit function
class by the covering number as follows:

ESEσ sup
h∈Nk

A(h)− sup
h∈Nk

ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]

=
1

t
log exp t(ESEσ sup

h∈Nk

A(h)− sup
h∈Nk

ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
)

≤ 1

t
logESEσ exp t( sup

h∈Nk

A(h)− sup
h∈Nk

ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
)

≤ 1

t
logESEσ exp t( sup

h∈Nk

A(h)− ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
)

≤ 1

t
logESEσ sup

h∈Nk

exp t(A(h)− ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
)

≤ 1

t
logESEσ

∑
h∈Nk

exp t(A(h)− ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
).

To evaluate this exponential moment, we use the Mcdiramid’s inequality. The bounded difference
coefficient is

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)−

 sup
f ′∈F

1

n

n∑
i ̸=j

σiϕ(f
′, h,Xi, Yi) +

1

n
σ′
jϕ(f

′, h,Xj , Yj)


≤ sup
f∈F

1

n
(σjϕ(f

′, h,Xj , Yj)− σ′
jϕ(f

′, h,Xj , Yj)) ≤
2

n
.

Thus

ESEσ sup
h∈Nk

A(h)− sup
h∈Nk

ESEσ

[
sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
≤ 1

t
log

∑
h∈Nk

exp t2n(
2

n
)/8

=
1

t
log |Nk|+

t

2n
,

Next, we analyze suph∈Nk
ESEσ

[
supf∈F

1
n

∑n
i=1 σiϕ(f, h,Xi, Yi)

]
.

ESEσ
[
supf∈F

1
n

∑n
i=1 σiϕ(f, h,Xi, Yi)

]
is the Rademacher complexity of ϕ(f, h,X, Y ). More-

over from Lemma 7.4 in Błasiok et al. (2023), ϕ(f, h,X, Y ) is 2-Lipshitz with respect to h. Thus by
Talagrand’s contraction lemma, suph∈Nk

ESEσ
[
supf∈F

1
n

∑n
i=1 σiϕ(f, h,Xi, Yi)

]
≤ 2RD,n(F).
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Thus, in conclusion, we have

ESEσ

[
sup
h∈Nk

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
≤ 2RD,n(F) +

1

t
log |Nk|+

t

2n
.

Thus, combining the discretization result

ESEσ

[
sup

h∈LipL=1([0,1],[−1,1])

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]
≤ 2RD,n(F) +

√
2 log |Nk|

n
+ ϵk.

Then, following Dudley’s integral approach as shown in Eq. (14), we have

ESEσ

[
sup

h∈LipL=1([0,1],[−1,1])

sup
f∈F

1

n

n∑
i=1

σiϕ(f, h,Xi, Yi)

]

≤ 2RD,n(F) + inf
ϵ≥0

[
4ϵ+ 12

∫ 1

ϵ

√
lnN(ε′, η0, ∥ · ∥∞)√

n
dϵ′

]

≤ 2RD,n(F) +
C√
n
,

where we used the covering number estimate of the 1-dimensional Lipschitz functions, see Wainwright
(2019) for the details.

D.2 SUB-OPTIMAL RESULT OF THE RADEMACHER COMPLEXITY

The evaluation of |smCE(f, Ste)− smCE(f, Str)| using Rademacher complexity can be carried out
in the same manner as in Appendix D.1, except that randomness is now considered over the 2n data
points from both the test and train sets. Apart from this difference, the argument is identical, and the
resulting bound again depends—just as in Appendix D.1—on the complexity of Lipschitz functions
through covering arguments, as well as on the complexity of F . This reflects the inherent complexity
of the composite function h(f(X)) appearing in the definition of smooth CE. Consequently, compared
with Theorem 1, where the covering-based proof avoids dependence on the complexity of Lipschitz
functions, this approach yields a suboptimal result.

On the other hand, as shown below, it is also possible to derive the Rademacher complexity bound
from the covering-number result of Theorem 1. In this case, the dependence on the complexity of
Lipschitz functions disappears, but at the cost of introducing an additional (log 2n)2 factor into the
Rademacher complexity bound.
Corollary 6. Under the same assumptions as in Theorem 1, there exist universal constants {Ci}s
such that with probability at least 1− δ over the draw of Ste and Str, we have:

sup
f∈F

|smCE(f, Ste)− smCE(f, Str)| ≤ C1RD,2n(F)(log 2n)2 +
C2√
n
+ 2

√
log δ−1

n
.

Proof. We begin by defining the empirical Gaussian complexity of F as:

G(F , Sn) = Eg sup
f∈F

1

n

n∑
i=1

gif(Zi),

where g = [g1, . . . , gn] are independent standard normal random variables, i.e., gi ∼ N (0, 1) for all
i ∈ [n].

From the modified version of Sudakov’s minoration inequality (Theorem 12.4 in Zhang (2023)), we
have: √

lnN (ϵ,F , L2(S2n)) ≤
√

lnM(ϵ,F , L2(S2n)) ≤
2
√
2nGD,2n(F)

ϵ
+ 1.

This justifies the reason why we use the covering number based on the L2(S2n) pseudometric in the
derivation of Theorem 1.
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As a result, we obtain:

|smCE(f, Ste)− smCE(f, Str)| ≤ inf
ϵ>0

[
8ϵ+ 24

∫ 1

ϵ

(
2
√
2GD,2n(F)

ϵ′
+

1√
n

)
dϵ′

]
+

√
log(1/δ)

n

≤ inf
ϵ>0

[
8ϵ+ 48

√
2GD,2n(F) log

(
1

ϵ

)
+

24√
n

]
+

√
log(1/δ)

n

≤ 8√
2n

+ 24
√
2GD,2n(F) log(2n) +

24√
2n

+

√
log(1/δ)

n
,

where we have set ϵ = 1/
√
2n in the final inequality.

Furthermore, from Lemma 4 in Bartlett & Mendelson (2002), there exist universal constants c and C
such that:

cRD,2n(F) ≤ GD,2n(F) ≤ C log(2n)RD,2n(F).

Combining the above results, we conclude:

|smCE(f, Ste)− smCE(f, Str)| ≤ 24
√
2CRD,2n(F)(log 2n)2 +

32√
2n

+ 2

√
log(1/δ)

n
.

E PROOFS OF THE GRADIENT BOOSTING TREE

E.1 QUADRATIC UPPER BOUND OF THE BOOSTING

The iterative minimization problem is given as

min
ψθ

Ln
(
g(t) − wtψθ(x)

)
,

and by considering the quadratic upper bound for this

min
ψθ

(
− ⟨∇Ln(g(t)), wtψθ⟩+

M

2
∥wtψθ∥2

)
⇔ min

ψθ

∥Mwtψθ −∇∥2.

E.2 FROM WEAK LEARNABILITY TO FUNCTIONAL GRADIENT

We use the empirical inner product and norms

⟨a, b⟩L2(Sn) :=
1

n

n∑
i=1

aibi, ∥f∥2L2(Sn)
:= ⟨f, f⟩L2(Sn), ∥v∥L1(Sn) :=

1

n

n∑
i=1

|vi|.

Consider the binary cross-entropy with logit z = g(X), i.e.,

ℓent(ỹ, z) = −ỹ log σ(z) − (1− ỹ) log
(
1− σ(z)

)
, σ(z) =

1

1 + e−z
.

Its per-sample gradient w.r.t. the logit is

∇i :=
∂

∂z
ℓent(ỹi, z)

∣∣∣
z=g(Xi)

= σ
(
g(Xi)

)
− ỹi.

Let v = (∇1, . . . ,∇n).
Lemma 4. Under the same assumptions in Theorem 3, the following holds:

smCEσ
(
g(t), Sn

)
≤ ∥v∥L1(Sn) ≤

1

γB

〈
ψt,∇t

〉
L2(Sn)

+
Mwt
2γ

B.
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Proof. Introduce yi := 2ỹi − 1 ∈ {±1}. Then

∇i = σ
(
g(Xi)

)
− ỹi = −yiσ

(
−yig(Xi)

)
:= −yiqi, qi ∈ (0, 1),

hence |∇i| = qi. Let wi :=
|∇i|∑n
j=1 |∇j |

∈ ∆n. By Assumption 2 there exists ψ⋆ ∈ Ψ such that∑n
i=1 wiyiψ

⋆(Xi) ≥ γB. Therefore

〈
v, ψ⋆

〉
L2(Sn)

=
1

n

n∑
i=1

(−yi|∇i|)ψ⋆(Xi) = − 1

n

( n∑
i=1

|∇i|
)( n∑

i=1

wiyiψ
⋆(Xi)

)
≤ −γB∥v∥L1(Sn).

Since Ψ is sign-flip closed, −ψ⋆ ∈ Ψ, and〈
v,−ψ⋆

〉
L2(Sn)

≥ γB∥v∥L1(Sn). (21)

Note that

∥Mwtψθt −∇∥2L2(Sn)
≤ ∥Mwt(−ψ⋆)−∇t∥2L2(Sn)

,

which implies that

−2Mwt
〈
ψt,∇t

〉
L2(Sn)

≤ −2Mwt
〈
(−ψ⋆), ∇t

〉
L2(Sn)

+M2w2
t ∥ψ⋆∥2L2(Sn)

,

and we obtain

⟨(−ψ⋆), ∇t

〉
L2(Sn)

≤
〈
ψt,∇t

〉
L2(Sn)

+
Mwt
2

B2. (22)

Then combining Eq. (21) and (22) we obtain

γB∥v∥L1(Sn) ≤
〈
ψt,∇t

〉
L2(Sn)

+
Mwt
2

B2.

By definition, we have
smCEσ

(
g(t), Sn

)
≤ ∥v∥L1(Sn).

Since M = 1/4, combining the above two inequalities, we obtain the result.

E.3 PROOF OF THEOREM 3

We consider the Taylor expansion of the objective

Ln(g
(t+1)) ≤ Ln(g

(t))− wt⟨∇, ψθt⟩L2(Sn) +
M

2
w2
t ∥ψθt∥2L2(Sn)

.

Here we use Lemma 5 in Appendix E.4. The lemma is the Pythagorean relation of the projection of
the function gradient. In the lemma, wtM → w and ∇ → x, and p→ ψθt corresponding to the GBT
step. From Eq. (23), setting q = 0 and , we get

⟨ψθt , wtMψθt −∇t⟩L2(Sn) ≤ 0,

and this leads to

Mwt∥ψθt∥2n ≤ ⟨ψθt ,∇t⟩L2(Sn).

Finally we have

Ln(g
(t+1)) ≤ Ln(g

(t))− wt
2
⟨∇t, ψθt⟩L2(Sn).

By summing up from 0 to T − 1, we have

1

2

T−1∑
t=0

wt⟨∇t, ψθt⟩L2(Sn) ≤ Ln(g
(0))− Ln(g

(T )).
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If we use the constant stepsize wt = w, we have

1

T

T−1∑
t=0

⟨∇t, ψθt⟩L2(Sn) ≤
2
(
Ln(g

(0))− Ln(g
(T ))

)
wT

.

Combining Lemma 4, we have

1

T

T−1∑
t=0

smCEσ
(
g(t), Sn

)
≤ 1

T

T−1∑
t=0

∥∇t∥L1(Sn) ≤
1

2γB
· 1
T

T−1∑
t=0

⟨∇t, ψθt⟩L2(Sn) +
wMB

2γ

≤ 1

2γB
·
2
(
Ln(g

(0))− Ln(g
(T ))

)
wT

+
wMB

2γ
.

Since the cross entropy loss is always positive, we drop Ln(g(T )) and obtain the result.

E.4 AUXILIARY LEMMAS

Setting. Let X ⊂ Rd be a nonempty closed convex set and fix a scalar weight w > 0. Consider

f(z) := 1
2∥wz − x∥22 = w2

2

∥∥z − x
w

∥∥2
2
+ const, x ∈ Rd,

and let
p ∈ argmin

z∈X
f(z).

Equivalently, with y0 := x/w, p is the Euclidean projection p = ΠX(y0).

Following is the alternative lemma of Lemma 3.1 in Bubeck et al. (2015),
Lemma 5. For all q ∈ X , the following relation holds.

⟨p− q, w2p− wx⟩ ≤ 0.

Equivalently, since w2p− wx = w2(p− y0), we have

⟨p− q, p− y0⟩ ≤ 0. (23)

Proof. The objective f is convex and differentiable with gradient

∇f(z) = w2z − wx.

For convex differentiable optimization over a convex set X , the necessary and sufficient first-order
condition at a minimizer p is

⟨∇f(p), q − p⟩ ≥ 0 (∀q ∈ X).

Rewriting gives ⟨∇f(p), p− q⟩ ≤ 0, i.e. ⟨p− q, w2p− wx⟩ ≤ 0. □

E.5 SUMMARY OF THE GRADIENT BOOSTING TREE ALGORITHM

We remark that the regions of a binary tree are defined as follows: Given a node associated with
some region R̃ ⊂ X ⊂ Rd, we split the region using a splitting threshold s ∈ R and a splitting
dimension j ∈ [d] into two child nodes, R̃L and R̃R, which respectively correspond to the regions
R̃L := {x ∈ R̃ | xj ≤ s} and R̃R := {x ∈ R̃ | xj > s}. By recursively applying this procedure, we
obtain partitions {Rj}Jj=1, where each region corresponds to a hyperrectangular region in Rd.

The set of all such trees defines the following function class:

T =

x 7→
J∑
j=1

cj · 1{x∈Rj}

∣∣∣∣∣∣J ≤ 2m, Rj disjoint, cj ∈ R

 .

and |Cj | is bounded by B

Let ∇t,i = ∇gℓ(σ(g
(t)(Xi)), Yi) denote the functional gradient at the i-th training point.
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Algorithm 1 Gradient Boosting Tree with Cross-Entropy Loss
Require: Training data Str = {(Xi, Yi)}ni=1, base learner ψθ ∈ T , loss function ℓent
Ensure: Final logit function g(T )(x)

1: Initialize g(0)(x) = 0
2: for t = 0, 1, . . . , T − 1 do
3: Compute functional gradients:

∇t,i = ∇gℓent(σ(g
(t)(Xi)), Yi), i = 1, . . . , n

4: (Optionally set step size wt)
5: Solve: θt = argminθ∈Θ

1
n

∑n
i=1 |Mwtψθ(Xi)−∇t,i|2

6: Update the model:
g(t+1)(x) = g(t)(x)− wtψθt(x)

7: end for
8: return g(T )(x) or ḡ(T )(x)

E.6 PROOF OF COROLLARY 2

We first remark that the following relationship holds:

smCE(f, Str) ≤ smCEσ(g, Str).

The proof is nearly identical to that of Lemma 4.7 in Błasiok et al. (2023). By replacing the population
expectation over D with the empirical expectation over the sample Str, we obtain the result.

Therefore, an upper bound on the dual smooth CE over the training dataset directly implies an upper
bound on the standard smooth CE. By combining this with our developed generalization bounds, we
obtain the desired result.

We now evaluate the Rademacher complexity. We express the function class of ḡ(T ) = 1
n

∑T−1
t=0 gt

as G.

Since F = σ ◦ G and σ is 1/4-Lipschitz, Talagrand’s contraction lemma yields:

RD,n(F) = RD,n(σ ◦ G) ≤ 1

4
RD,n(G).

We now derive an upper bound on the Rademacher complexity of G. Using its sub-additive property,
we have:

RD,n(G) ≤
1

T

T−1∑
t=0

RD,n({g(t)}).

where {g(t)} is the function class that after t-step GBT algorithms.

Then

RD,n({g(t)}) ≤ wtRD,n(T ),

where T denotes the class of regression trees.

Furthermore, by Theorem 6.25 in Zhang (2023), the Rademacher complexity is upper bounded by
the covering number:

RD,n(T ) ≤ inf
ϵ>0

[
4ϵ+ 12

∫ 1

ϵ

√
lnN(ϵ′, T , L2(Sn))

n
dϵ′

]
.

To proceed, we upper bound the covering number for binary regression trees. From Appendix B in
Klusowski & Tian (2024), we have:

lnN(ϵ, T , L2(Sn)) ≤ ln(nd)2
m

(
C

ϵ2

)2m+1

.
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Therefore, there exists a universal constant C > 0 such that:

RD,n(T ) ≤ C

√
2m log(nd)

n
.

In conclusion, we have that

RD,n(F) ≤ CwT

√
2m log(nd)

n
.

Finally, substituting this into Theorem 2, we obtain the result.

smCEσ
( 1
T

T−1∑
t=0

g(t), Sn
)
≤Ln(g

(0))

γBwT
+
wMB

2γ
+ wTC

√
2m log(nd)

n
+

√
log 2

δ

n
.

E.7 MISCLASSIFICATION RATE

Let Sn denote the empirical distribution of the training dataset. From standard margin-based general-
ization theory, for any ρ > 0, with probability at least 1− δ, the following inequality holds:

P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ P(X,Y )∼Sn
[(2Y − 1)ḡ(T )(X) ≤ ρ] +

2

ρ
RD,n(G) +

√
log 1

δ

2n
.

According to Nitanda & Suzuki (2018); Nitanda et al. (2019), the empirical margin error can be
upper-bounded by the functional gradient as follows:

P(X,Y )∼Sn
[(2Y − 1)ḡ(T )(X) ≤ ρ] ≤ (1 + eρ)∥∇gℓent(ḡ

(T )(X), Y )∥L1(Sn).

Combining the above results, we obtain:

P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ (1 + eρ)

(
Ln(g

(0))

γBwT
+
wB

8γ

)
+
CwT

ρ

√
2J log(nd)

n
+

√
log 1

δ

2n
.

This result illustrates a trade-off with respect to wT , which balances the training misclassification
rate and the complexity of the hypothesis class.

F PROOFS FOR THE KERNEL BOOSTING

F.1 PROOF OF EQ. (4.2)

From the margin assumption, the following property holds:
ϕ(xi) > γ if yi = 1, −ϕ(xi) > γ if yi = 0, for all (xi, yi) ∈ Str.

Since ϕ ∈ H implies −ϕ ∈ H, we define ϕ̃ := −ϕ. Then, the margin assumption implies:

ϕ̃(xi) < −γ if yi = 1, ϕ̃(xi) > γ if yi = 0, for all (xi, yi) ∈ Str.

We now analyze the gradient in the RKHS under this construction:

∥Tk∇gLn(g)∥H =

〈
Tk∇gLn(g),

Tk∇gLn(g)

∥Tk∇gLn(g)∥H

〉
H

(24)

= sup
ϕ∈H,∥ϕ∥H≤1

⟨Tk∇gLn(g), ϕ⟩H

≥
〈
∇gLn(g), ϕ̃

〉
L2(Sn)

=
1

n

n∑
i=1

∇gℓ(g(Xi), Yi) · ϕ̃(Xi)

=
1

n

n∑
i=1

(σ(g(Xi))− Yi) · ϕ̃(Xi),
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where the last equality follows from the functional gradient.

Using the margin assumption, we obtain:

1

n

n∑
i=1

(Yi − σ(g(Xi))) · (−ϕ̃(Xi)) ≥
γ

n

n∑
i=1

|∇gℓ(g(Xi), Yi)| .

This completes the proof.

F.2 PROOF OF THEOREM 4

Assume that the loss function L(g) is M -Lipschitz smooth with respect to g, meaning that for all
g, g′,

L(g′) ≤ L(g) + ⟨∇L(g), g′ − g⟩L2(Sn) +
M

2
∥g′ − g∥2L2(Sn)

.

Plugging in g = g(t) and g′ = g(t+1) = g(t) − wtTk∇gL(g
(t)), we obtain:

L(g(t+1)) ≤ L(g(t))− wt⟨∇L(g(t)), Tk∇gL(g
(t))⟩L2(Sn)

+
M

2
w2
t ∥Tk∇gL(g

(t))∥2L2(Sn)

≤ L(g(t))− wt∥Tk∇gLn(g
(t))∥2H +

MΛ

2
w2
t ∥Tk∇gLn(g

(t))∥2H

= L(g(t))− wt

(
1− wtMΛ

2

)
∥Tk∇gLn(g

(t))∥2H

≤ L(g(t))− wt
2
∥Tk∇gLn(g

(t))∥2H,

where the last inequality uses wt ≤ 1
MΛ .

Summing over t = 0, . . . , T − 1, we get:

T−1∑
t=0

1

2
wt∥Tk∇gLn(g

(t))∥2H ≤ Ln(g
(0)).

In particular, using constant step size wt = w, we obtain:

1

T

T−1∑
t=0

∥Tk∇gLn(g
(t))∥2H ≤ 2

wT
Ln(g

(0)).

From Eq. (24), we have:

1

T

T−1∑
t=0

∥∥∥∇gℓ(g
(t)(X), Y )

∥∥∥2
L1(Sn)

≤ 2

wT
Ln(g

(0)).

Then, using Jensen’s inequality and the definition of ḡ(T ) := 1
T

∑T−1
t=0 g(t), we get:

∥∥∥∇gℓ(ḡ
(T )(X), Y )

∥∥∥2
L1(Sn)

≤ 1

T

T−1∑
t=0

∥∥∥∇gℓ(g
(t)(X), Y )

∥∥∥2
L1(Sn)

.

Combining these gives: ∥∥∥∇gℓ(ḡ
(T )(X), Y )

∥∥∥
L1(Sn)

≤
√

2

wT
Ln(g(0)).
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Generalization Bound via Rademacher Complexity.
We now evaluate the Rademacher complexity. We express the function class of ḡ(T ) = 1

n

∑T−1
t=0 gt

as G. Since F = σ ◦ G and σ is 1/4-Lipschitz, Talagrand’s contraction lemma yields:

RD,n(F) = RD,n(σ ◦ G) ≤ 1

4
RD,n(G) ≤

α

4

√
Λ

n
,

where α is an upper bound on the RKHS norm of G, which we estimate below. The final inequality
follows from the standard Rademacher complexity estimate of the RKHS, see Mohri et al. (2018) for
the details.

Recall the recursion:

g(T ) = g(0) − w

T−1∑
t=0

Tk∇gLn(g
(t)).

Then:

∥g(T )∥H ≤ ∥g(0)∥H +

∥∥∥∥∥w
T−1∑
t=0

Tk∇gLn(g
(t))

∥∥∥∥∥
H

.

Applying Jensen’s inequality:

∥w
T−1∑
t=0

Tk∇gLn(g
(t))∥2H ≤ 1

T

T−1∑
t=0

∥wTTk∇gLn(g
(t))∥2H ≤ w2T 2 1

T

T−1∑
t=0

∥Tk∇gLn(g
(t))∥2H

≤ w2T 2 2

wT
Ln(g

(0))

≤ 2wTLn(g
(0))

Assuming ∥g(0)∥H ≤ Λ′, we obtain:

∥g(T )∥H ≤ Λ′ +
√

2wTLn(g(0)).

Absorbing
√
2Ln(g(0)) into a universal constant. When considering the norm of ḡ(T ), it is also

O(Λ′ +
√
wT ). Thus, we conclude α = O(Λ′ +

√
wT ). Substituting this into the Rademacher

bound yields the final generalization result.

F.3 PROOF OF MISCLASSIFICATION RATE

Let Sn denote the empirical distribution of the training dataset. From standard margin-based general-
ization theory, for any ρ > 0, with probability at least 1− δ, the following inequality holds:

P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ P(X,Y )∼Sn
[(2Y − 1)ḡ(T )(X) ≤ ρ] +

2

ρ
RD,n(G) +

√
log 1

δ

2n
.

According to Nitanda & Suzuki (2018); Nitanda et al. (2019), the empirical margin error can be
upper-bounded by the functional gradient as follows:

P(X,Y )∼Sn
[(2Y − 1)ḡ(T )(X) ≤ ρ] ≤ (1 + eρ)∥∇gℓent(ḡ

(T )(X), Y )∥L1(Sn).

Combining the above results, we obtain:

P(X,Y )∼D[(2Y − 1)ḡ(T )(X) ≤ 0] ≤ (1 + eρ)

γ

√
Ln(g(0))

wT
+

2(Λ′ +
√
2wTLn(g(0)))

ρ

√
Λ

n
+

√
log 1

δ

2n
.

This result illustrates a trade-off with respect to wT , which balances the training misclassification
rate and the complexity of the hypothesis class.
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F.4 PROOF OF COROLLARY 4

We first remark that both the smooth calibration error and the misclassification rate exhibit similar
asymptotic behavior with respect to n and wT . By substituting the given hyperparameters into the
bound presented in Theorem 4, we obtain the desired result.

G FORMAL SETTINGS OF THE TWO-LAYER NEURAL NETWORK

G.1 FORMAL RESULTS FOR THE SMOOTH CE

Here we provide the formal setting of the results from Nitanda et al. (2019). We assume Y = {±1}
and denote by ν the true probability measure on X × Y , and by νn the empirical measure based on
samples {(Xi, Yi)}ni=1 drawn independently from ν, i.e.,

dνn(X,Y ) =
1

n

n∑
i=1

δ(Xi,Yi)(X,Y )dXdY,

where δ denotes the Dirac delta function. In the main paper, we consider labels in Ỹ = {0, 1}; here,
we convert them to Y = 2Ỹ − 1, so the distribution D over X × Ỹ becomes µ over X × Y .

The marginal distributions of ν and νn over X are denoted by νX and νX ,n, respectively. For s ∈ R
and y ∈ Y , let ℓ(s, y) denote the logistic loss:

ℓ(s, y) = log(1 + exp(−ys)).
We remark that given a logit value s, the predicted probability of Y = 1 is p = σ(s), and the loss can
also be written as ℓ(s, y) = y+1

2 log p+ 1−y
2 log(1− p). Replacing Y with Ỹ recovers the standard

cross-entropy loss: ℓ(s, ỹ) = ỹ log p+ (1− ỹ) log(1− p).

The empirical objective to be minimized is defined as

Ln(θ) := E(X,Y )∼νn [ℓ(gθ(X), Y )] =
1

n

n∑
i=1

ℓ(gθ(Xi), Yi),

where gθ : X → R is a two-layer neural network parameterized by θ = (θr)
m
r=1. When treating the

function gθ as the variable of the objective, we also write Ln(gθ) := Ln(θ).

We now introduce the following formal assumptions.

Assumption 1.

(A1) Assume that supp(νX ) ⊂ {x ∈ X | ∥x∥2 ≤ 1}. Let σ be a C2-class function, and there
exist constants K1,K2 > 0 such that

∥σ′∥∞ ≤ K1 and ∥σ′′∥∞ ≤ K2.

(A2) A distribution µ0 on Rd, used for the initialization of θr, has a sub-Gaussian tail bound:
there exist constants A, b > 0 such that

Pθ(0)∼µ0

[
∥θ(0)∥2 ≥ t

]
≤ A exp(−bt2).

(A3) Assume that the number of hidden units m ∈ Z+ is even. The constant parameters (ar)mr=1

and parameters θ(0) = (θ
(0)
r )mr=1 are initialized symmetrically as follows:

ar = 1 for r ∈
{
1, . . . ,

m

2

}
, ar = −1 for r ∈

{m
2

+ 1, . . . ,m
}
,

and
θ(0)r = θ

(0)
r+m

2
for r ∈

{
1, . . . ,

m

2

}
,

where the initial parameters (θ(0)r )
m/2
r=1 are independently drawn from the distribution µ0.

(A4) Assume that there exist γ > 0 and a measurable function v : Rd → {w ∈ Rd | ∥w∥2 ≤ 1}
such that the following inequality holds for all (x, y) ∈ supp(ν) ⊂ X × Y:

y
〈
∂θσ(θ

(0) · x), v(θ(0))
〉
L2(µ0)

= yEθ(0)∼µ0

[
∂θσ(θ

(0)⊤x) · v(θ(0))
]
≥ γ.
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Remark. Clearly, many activation functions (sigmoid, tanh, and smooth approximations of ReLU
such as swish) satisfy assumption (A1). Typical distributions, including the Gaussian distribution,
satisfy (A2). The purpose of the symmetrized initialization (A3) is to uniformly bound the initial
value of the loss function Ln(θ(0)) over the number of hidden units m. This initialization leads to
fθ(0)(x) = 0, resulting in Ln(θ(0)) = log(2). Assumption (A4) implies the separability of a dataset
using the neural tangent kernel. We next discuss the validity of this assumption.

Theorem 6 (Global Convergence, Theorem 2 in Nitanda et al. (2019)). Suppose Assumption 1 holds.
We set constant K as

K = K4
1 + 2K2

1K2 +K4
1K

2
2 .

For all β ∈ [0, 1), δ ∈ (0, 1), and m ∈ Z+ such that

m ≥ 16K2
1

γ2
log

2n

δ
,

consider gradient descent (6) with learning rate

0 < w ≤ min

{
1

mβ
,
4m2β−1

K2
1 +K2

}
,

and the number of iterations

T ≤
⌊

mγ2

32wK2
2 log(2)

⌋
.

Then, with probability at least 1− δ over the random initialization, we have:

1

T

T−1∑
t=0

∥∇gLn(gθ(t))∥
2
L1(νX ,n)

≤ 16 log(2)

γ2T

(
m2β−1

w
+K

)
.

where we define the L1-norm of the functional gradient as

∥∇gLn(gθ)∥L1(νX ,n)
:=

1

n

n∑
i=1

|∂gℓ(gθ(Xi), Yi)| =
1

2n

n∑
i=1

|Yi − 2pθ(Y = 1 | xi) + 1| .

The result above corresponds to Eq. (6). This bound provides a guarantee on the training smooth CE.
Proposition 8 in Nitanda et al. (2019) yields estimates for the Rademacher complexity and covering
numbers.

Theorem 7 (Proposition 8 in Nitanda et al. (2019)). Suppose Assumptions (A1) and (A2) hold.
Let ∀w > 0, ∀m ∈ Z+, ∀T ∈ Z+, ∀δ ∈ (0, 1), and ∀S of size n. Then, there exists a
universal constant C > 0 such that with probability at least 1− δ with respect to the initialization of
Θ(0), the empirical Rademacher complexity satisfies:

R̂S(F) ≤ Cm1/2−βDw,m,T (1 +K1 +K2)

·
√
d

n
log
(
n(1 +K1 +K2)

(
log(m/δ) +D2

w,m,T

))
. (27)

where

Dw,m,T =
√
wT

Moreover, when σ is convex and σ(0) = 0, with probability at least 1− δ over a random initialization
of θ(0), we have:

R̂S(F) ≤ 8K1m
1/2−β

√
n

(
Dw,m,T +

√
log(Am/δ)

b

)
. (28)

By substituting Theorems 6 and 7 into the uniform convergence bound in Theorem 2, we obtain the
following guarantee on the smooth CE for two-layer neural networks.
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Corollary 7. Suppose Assumption 1 and the settings of Theorem 6 hold. Then with probability 1− δ
over the random draw of Str and initial parameter θ0, we have

min
t∈{0,...,T−1}

smCEσ(gθ(t) , µ) ≤ C1

√
1

γ2T

(
m2β−1

w
+K

)
+ (29)

C2√
n
+ C3m

1/2−βDw,m,T (1 +K1 +K2)·

·
√
d

n
log
(
n(1 +K1 +K2)

(
log(2m/δ) +D2

w,m,T

))
) + 6

√
log 6

δ

n
.

where C1, . . . , C3 are universal constants.

Moreover, when σ is convex and σ(0) = 0, with probability at least 1− δ over the random draw of
Str and initial parameter θ0, such that we have:

min
t∈{0,...,T−1}

smCEσ(gθ(t) , µ) ≤ C1

√
1

γ2T

(
m2β−1

w
+K

)
+

C2√
n
+
C4K1m

1/2−β
√
n

(
Dw,m,T +

√
log(2Am/δ)

b

)
+ 6

√
log 6

δ

n
.

where C4 is a universal constant.

Proof. We use the following upper bound from Mohri et al. (2018): with probability 1− δ/2, we
have

RD,n(F) ≤ R̂S(F) +

√
log 2

δ

2n
.

Then from Theorem 2 with probability 1− δ, we have

sup
f∈F

|smCE(f,D)− smCE(f, Str)| ≤
C2√
n
+ 4R̂S(F) + 6

√
log 3

δ

n
.

We then substitute Eq. (27) and (28) and taking the union bound, we obtain the result.

For completeness, we include the result on the classification error, adapted from Theorem 4 in Nitanda
& Suzuki (2018):
Theorem 8 (Theorem 4 in Nitanda & Suzuki (2018)). Suppose Assumption 1 and the settings of
Theorem 6 hold. Fix ∀ϵ > 0. Then, with probability at least 1− 3δ over a random initialization and
random choice of training dataset Str, we have

min
t∈{0,...,T−1}

P(X,Y )∼ν [Y gθ(t)(X) ≤ 0] ≤ C5(1 + exp(ϵ))Cw,m,T + 3

√
log(2/δ)

2n

+ C6m
1/2−βDw,m,T (1 +K1 +K2) ·

√
d

n
log
(
n(1 +K1 +K2)

(
log(m/δ) +D2

w,m,T

))
,

where

Cw,m,T = γ−1T−1/2
(
mβ−1/2w−1/2 +

√
K
)

and C5 and C6 are universal constants.

Moreover, when σ is convex and σ(0) = 0, we can avoid the dependence on the dimension d. With
probability at least 1− 3δ over a random initialization and random choice of training dataset Str,

min
t∈{0,...,T−1}

P(X,Y )∼ν [Y gθ(t)(X) ≤ 0] ≤ C5(1 + exp(ϵ))Cw,m,T + 3

√
log(2/δ)

2n

+ C7K1m
1/2−β 1

ϵ
√
n

(
Dw,m,T +

√
log(Am/δ)

b

)
.

where C7 is a universal constant.
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G.2 FORMAL STATEMENT FOR COROLLARY 5

We restate Corollary 5 with formal assumptions

Corollary 8. Suppose Assumption 1 and the settings of Theorem 6 hold. If for any ϵ > 0, the
hyperparameters satisfy one of the following:
(i) β ∈ [0, 1), m = Ω(γ

−2
1−β ϵ

−1
1−β ), T = Ω(γ−2ϵ−2), w = Θ(γ−2ϵ−2T−1m2β−1), n = Ω̃(γ−2ϵ−4),

(ii) β = 0, m = Θ
(
γ−2ϵ−3/2 log(1/ϵ)

)
, T = Θ

(
γ−2ϵ−1 log2(1/ϵ)

)
, w = Θ(m−1), n = Ω̃(ϵ−2),

then with probability at least 1 − δ, gradient descent with the stepsize w finds a parameter θ(t)
satisfying smCE(gθ(t) , Str) ≤ ϵ and P(X,Y )∼ν [Y gθ(t)(X) ≤ 0] ≤ ϵ within T iterations.

Proof. The guarantee for the misclassification rate is adapted from Corollary 3 in Nitanda & Suzuki
(2018). As for the smooth CE, since the complexity terms in the misclassification bound (Theorem 8)
and the smooth CE bound (Corollary 7) are of the same order, we also obtain a corresponding
guarantee for the smooth CE.

H RELATIONSHIPS OF THE PROPER SCORING RULE AND FUNCTIONAL
GRADIENT

In the main paper, we discussed the relationships involving the functional gradient only over the
training dataset. Here, we provide the corresponding results for the population smooth CE.

We begin by connecting the post-processing gap with the functional gradient. First, we recall the
definition of the functional gradient:

Definition 11. Let H be a Hilbert space and h be a function on H. For ξ ∈ H, we say that h is
Fréchet differentiable at ξ in H if there exists an element ∇ξh(ξ) ∈ H such that

h(ζ) = h(ξ) + ⟨∇ξh(ξ), ζ − ξ⟩H + o(∥ξ − ζ∥H).

Moreover, for simplicity, we refer to ∇ξh(ξ) as the functional gradient.

See Luenberger (1997) for more details.

Next, we focus on the case of the squared loss. To simplify the notation, we express r(f(x)) =
f(x) + h(f(x)) where h is the post-processing function in the definition of the smooth CE. Then we
set h→ ℓsq, ζ → f(x), and ξ → r(f(x)) in the definition of the functional gradient. This results in
the following relation.

ℓsq(f(x), y) (30)

= ℓsq(r(f(x)), y)−∇f ℓsq(f(x), y) · (r(f(x))− f(x))− 1

2
∥r(f(x))− f(x)∥2,

where ∇f ℓsq(f(x), y) denotes the partial derivative of ℓsq(f, y) with respect to f . Thus, we observe
that ∇f ℓsq(f(x), y) corresponds to the functional gradient. Therefore,

smCE(f,D)2 ≤ pGap(f,D) = sup
h

E
[
−∇f ℓsq(f(X), Y ) · h(f(X))− 1

2
∥h(f(X))∥2

]
≤ sup

h
E [−∇f ℓsq(f(X), Y ) · h(f(X))] ,

where the supremum is taken over all 1-Lipschitz functions.

Next, for the cross-entropy loss, recall that ∇2
sℓ
ψ(s, y) = p(1 − p), where p = predψ(s) =

es/(1 + es). This implies that the cross-entropy loss is 1/4-Lipschitz with respect to s. Therefore,
by Taylor’s theorem, there exists p̃ ∈ (0, 1/4] such that

ℓψ(g(x), y) = ℓψ(r(g(x)), y)−∇gℓ
ψ(g(x), y) · (r(g(x))− g(x))− 1

2
p̃(1− p̃)∥r(g(x))− g(x)∥2.

(31)
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Thus, we obtain

2smCE(σ)(g,D)2 ≤ pGap(ψ,1/4)(g,D)

= sup
h

E
[
−∇gℓ

ψ(g(X), Y ) · h(g(X))− 1

2
p̃(1− p̃)∥h(g(X))∥2

]
≤ sup

h
E
[
−∇gℓ

ψ(g(X), Y ) · h(g(X))
]
,

where the supremum is taken over all 1/4-Lipschitz functions.

From Eqs. (30) and (31), we obtain upper bounds on the training smooth CE in terms of the functional
gradient evaluated on the training dataset:

smCE(f, Str)
2 ≤ sup

η

1

n

n∑
i=1

[−∇f ℓsq(f(Xi), Yi) · η(f(Xi))] ,

and

2smCE(ψ,1/4)(g, Str)
2 ≤ sup

η

1

n

n∑
i=1

[
−∇gℓ

ψ(g(Xi), Yi) · η(g(Xi))
]
.

Finally, we remark on the case of general proper losses. As discussed in Appendix A, the post-
processing gap can be defined more generally. If the loss is Fréchet differentiable, then similar
relationships to those derived above for the cross-entropy loss can be obtained.

I EXPERIMENT

In this section, we numerically validate our theoretical findings regarding smooth CE for GBTs and
two-layer neural networks presented in Section 4.

We evaluate the behavior of several metrics on both training and test datasets, including cross-entropy
loss, accuracy, functional gradient norm (denoted as "Func Grad" in the experiments), and binning
ECE, MMCE, and smooth CE. These evaluations are conducted by varying the number of iterations
T and the training dataset size n. Each experiment is repeated 10 times with different random seeds,
and we report the mean and standard deviation.

For the binning ECE, we use 10 equally spaced bins. For MMCE, we use the Laplacian kernel with
a bandwidth set to 1. Definitions and additional details of the calibration metrics are provided in
Appendix B.

I.1 GRADIENT BOOSTING TREES

We conduct numerical experiments on the Gradient Boosting Tree with cross-entropy loss, as
described in Algorithm 1. The main objective is to investigate how the training and test smooth CE
behaves on both toy and real datasets, as predicted by Theorem 3 and Corollary 2.

The toy dataset consists of two classes with equal probability, i.e.,

P (Y = 0) = P (Y = 1) =
1

2
.

Given the class label Y ∈ {0, 1}, the conditional distribution of X ∈ R2 is:

X | Y = 0 ∼ N

([
−1.3
−1

]
,

[
(1.2 · 1.3)2 0

0 1.22

])
,

X | Y = 1 ∼ N

([
1
1.3

]
,

[
1.22 0
0 (1.2 · 1.3)2

])
. (32)

First, we set m = 3 and present the results in Figure 1. In Figure 1(a), we fix the training dataset
size (n = 200) and increase the number of boosting iterations T . The left panel shows the behavior
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of the metrics on the training dataset, the middle panel shows the same metrics on the test dataset,
and the right panel reports the generalization gaps for both log loss and smooth CE. From the left
panel, we observe that both the cross-entropy loss and smooth CE decrease as T increases, consistent
with Theorem 3. In contrast, the middle panel shows that neither metric necessarily decreases on the
test dataset as T increases. This is consistent with the well-known overfitting behavior of boosting,
and demonstrates that smooth CE exhibits overfitting trends similar to those of the cross-entropy
loss, as predicted by Corollary 2. The right panel confirms this overfitting phenomenon for both
cross-entropy loss and smooth CE.

Next, we investigate how these metrics behave as the training sample size n increases. The results
are shown in Figure 1(b). We observe that the test calibration metrics decrease monotonically as
n increases, indicating improved generalization. These results show that GBTs, when trained with
sufficient samples, can achieve both high accuracy and low smooth CE.

(a) Increasing the number of iterations T

(b) Increasing the number of training samples n

Figure 1: GBT experiments on the toy dataset defined in Eq. (32) with m ≥ d

Next, we set m = 1, which is shallow since m ≤ d. The results are shown in Figure 2. We can see
that the behavior of the calibration metrics seems similar to that of m = 3 ≥ d.

Next, using the UCI Breast Cancer dataset, we observed how the metrics behave on the training
and test datasets by increasing the number of iterations T while keeping the training dataset size
fixed. The results are shown in Figure 3. Since d = 30 in this dataset, we considered two settings: (i)
m = 30, which is not shallow m ≥ d, and (ii) m = 3, which is shallow since m < d.

We found that the results closely resemble those of the toy dataset in Figure 1. This implies that both
shallow and not-so-shallow trees behave similarly in this setting.

Finally, we also remark that the binning ECE, smooth CE, and MMCE exhibit similar behavior across
all experimental settings. This observation is consistent with the discussion in Appendix B.

I.2 NUMERICAL EXPERIMENTS OVER TWO-LAYER NEURAL NETWORK

We conducted similar experiments using a two-layer neural network corresponding to Section 4.3.
We prepared the toy dataset and designed the two-layer neural network to satisfy Assumption 1
in Appendix G. We used the sigmoid activation function, initialized the parameters independently
from the standard Gaussian distribution, and set the number of hidden units to be even to satisfy
Assumption (A3). The coefficients ar were also set according to the specification in Assumption
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(a) Increasing the number of iterations T

(b) Increasing the number of training samples n

Figure 2: GBT experiments on the toy dataset defined in Eq. (32) with m < d

(a) Increasing the number of iterations T (m = 30, m ≥ d)

(b) Increasing the number of iterations T (m = 3, m < d)

Figure 3: GBT experiments for UCI breast cancer dataset d = 30
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(A3). Unless otherwise stated, we used 300 hidden units. We used full-batch gradient descent (GD)
for optimization with a fixed step size of w = 0.01.

First, we performed experiments on the same toy dataset used for GBTs. We evaluated the training
and test metrics by increasing the number of GD iterations while fixing the training dataset size
(n = 200). Figure 4(a) reports the same set of metrics as in the GBT experiments (Figure 1). We
observed that the smooth CE decreases monotonically, consistent with the upper bound behavior
predicted by Eq. (6). However, from the middle and right panels of Figure 4(a), we observe that the
test smooth CE does not decrease as the number of training iterations increases. We also confirmed
that the generalization gap of the cross-entropy loss increases as T increases. According to Eq. (29),
the complexity term grows with the number of iterations, which may explain this phenomenon. On
the other hand, we did not observe an apparent increase in the generalization gap of the smooth CE
as T increased.

Next, we varied the training dataset size, and the results are shown in Figure 4(b). From the
middle and right panels, we observe that both the test smooth CE and the generalization gap
decrease monotonically as n increases. This is consistent with the theoretical discussion provided in
Appendix G.

(a) Increasing the number of iterations T

(b) Increasing the number of training samples n

Figure 4: Two-layer neural network using toydata defined in Eq. (32)

The experiments in Figure 4 are based on a toy dataset where the separability condition is easily
satisfied. Next, we consider a toy dataset in which the separability condition is more difficult to satisfy,
constructed as follows. Assume that n is even and define n0 = n1 = n

2 . Let {Zi}n0
i=1 ∼ N (0, σ2I2)

with σ = 0.05 be shared random base vectors. Define two classes:

X
(0)
i = Zi +

[
0.1
0.1

]
+ ε

(0)
i , ε

(0)
i ∼ N (0, τ2I2), (33)

X
(1)
i = −Zi +

[
−0.1
−0.1

]
+ ε

(1)
i , ε

(1)
i ∼ N (0, τ2I2),

with τ = 0.01. Each X(0)
i is labeled Y = 0, and each X(1)

i is labeled Y = 1. Due to the symmetric
structure of the data, this setting makes the margin assumption more difficult to satisfy than in the
previous toy dataset. The results are shown in Figure 5, where we increase the training dataset size
and evaluate the relevant statistics on both training and test datasets. Even under this more challenging
setting, we observe that the test smooth CE decreases monotonically.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Figure 5: Two-layer neural network using toy dataset defined in Eq. (33)

Next, we used the UCI Breast Cancer dataset and evaluated various statistics on both the training and
test datasets, following the same procedure as in Figure 4(a). Here, we varied the number of hidden
units from a relatively small size (10) to a larger value (100). The results are shown in Figure 6.

Consistent with the results in Figure 4(a), we observed that the training statistics decrease mono-
tonically in both small and large hidden unit settings. However, the test statistics did not show any
corresponding improvement.

(a) Increasing the number of iterations T when the hidden unit size is 10

(b) Increasing the number of iterations T when the hidden unit size is 100

Figure 6: UCI breast cancer dataset d = 30
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