

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING PART-AWARE DENSE 3D FEATURE FIELD FOR GENERALIZABLE ARTICULATED OBJECT MANIP- ULATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Articulated object manipulation is essential for various real-world robotic tasks, yet generalizing across diverse objects remains a major challenge. A key to generalization lies in understanding functional parts (e.g., door handles and knobs), which indicate where and how to manipulate across diverse object categories and shapes. Previous works attempted to achieve generalization by introducing foundation features, while these features are mostly 2D-based and do not specifically consider functional parts. When lifting these 2D features to geometry-profound 3D space, challenges arise, such as long runtimes, multi-view inconsistencies, and low spatial resolution with insufficient geometric information. To address these issues, we propose **Part-Aware 3D Feature Field (PA3FF)**, a novel dense 3D feature with part awareness for generalizable articulated object manipulation. PA3FF is trained by 3D part proposals from a large-scale labeled dataset, via a contrastive learning formulation. Given point clouds as input, PA3FF predicts a continuous 3D feature field in a feedforward manner, where the distance between point features reflects the proximity of functional parts: points with similar features are more likely to belong to the same part. Building on this feature, we introduce the **Part-Aware Diffusion Policy (PADP)**, an imitation learning framework aimed at enhancing sample efficiency and generalization for robotic manipulation. We evaluate PADP on several simulated and real-world tasks, demonstrating that PA3FF consistently outperforms a range of 2D and 3D representations in manipulation scenarios, including CLIP, DINOv2, and Grounded-SAM, achieving state-of-the-art performance. Beyond imitation learning, PA3FF enables diverse downstream methods, including correspondence learning and segmentation tasks, making it a versatile foundation for robotic manipulation. Project page: <https://pa3ff.github.io/>.

## 1 INTRODUCTION

The next generation of assistive robots must possess the generalization ability to manipulate objects across a broad range of scenarios with ease and adaptability. To achieve this goal, recent studies (Black et al., 2024; Intelligence et al., 2025; Team et al., 2024; Kim et al., 2024b) leverage the power of 2D vision-language foundation models (e.g., CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023), SigLIP (Zhai et al., 2023)) to improve performance and generalization in robotic manipulation policies. However, these representations inherently lack 3D geometry and spatial continuity, which are crucial for reasoning about object shapes, part configurations, and affordance in manipulation tasks (Zhu et al., 2024; Zhang et al., 2023; Ke et al., 2024a).

Some recent works attempt to lift 2D features into 3D feature fields via multi-view fusion or neural rendering (Kerr et al., 2023a; Shen et al., 2023; Lin et al., 2023; Rashid et al., 2023; Ze et al., 2023). While these methods improve the understanding of 3D objects and scenes, they are not native 3D representations, and thus usually suffer from problems such as **long inference times** (even minutes), **feature inconsistency across views** (Wang et al., 2024b), and **limited spatial resolution** (Fu et al., 2024), making them impractical for dense, fine-grained and real-time robotic manipulation.

In this paper, we propose **Part-Aware 3D Feature Field (PA3FF)**, a novel 3D-native representation designed to encode dense, semantic, and part-aware features directly from point clouds. PA3FF

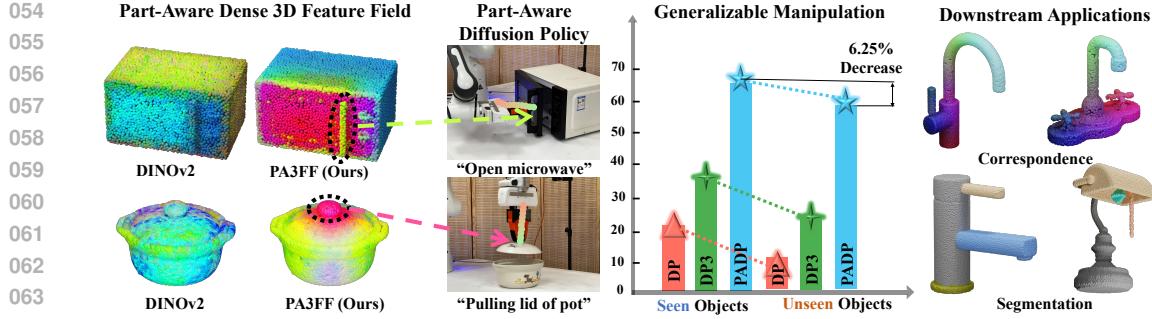


Figure 1: (1) We propose PA3FF, a feedforward model that predicts part-aware 3D feature fields for 3d shapes. (2) We propose a part-aware diffusion policy, which leverages PA3FF, that can efficiently generalize to unseen objects. (3) PA3FF exhibits consistency across shapes, enabling various downstream applications such as correspondence and segmentation.

predicts a continuous 3D feature field in a feedforward manner, where the distance between features reflects the part-level awareness—points with similar features are more likely to belong to the same part. We leverage Sonata, a model pretrained on 140k point clouds with self distillation, to provide rich 3D geometric priors for our proposed representation. To enhance the part-awareness, we incorporate a contrastive learning framework that establishes consistent relationships between 3D part-level features and their corresponding semantic counterparts by a collection of public dataset (PartNet-Mobility (Xiang et al., 2020; Mo et al., 2018), 3DCoMPaT (Slim et al., 2025), PartObjaverse-Tiny (Yang et al., 2024b)).

To demonstrate the power of PA3FF in robotic manipulation scenarios, we introduce **Part-Aware Diffusion Policy (PADP)**, a 3D point cloud-based visuomotor policy that integrates PA3FF with a diffusion policy architecture, as shown in Figure 1 (Left). The part awareness and generalization capability to novel shapes empower the highly sample-efficient and generalizable manipulation behaviors across objects. As shown in Figure 1 (Right), beyond imitation learning, PA3FF enables diverse downstream methods, including correspondence learning, along with key-point proposals for planning constraints, making it a versatile foundation for robotic manipulation.

We evaluate PA3FF and PADP on a broad spectrum of robotic manipulation tasks from the PartInstruct (Yin et al., 2025), as well as in the real world. PADP sets a new state-of-the-art on PartInstruct with a 9.4% absolute gain, outperforming existing 2D and 3D representations with Diffusion Policy (Chi et al., 2024a), such as CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023) and Grounded-SAM (Ren et al., 2024). We further show PADP significantly surpasses a strong baseline (GenDP (Wang et al., 2024c)) from 8 real-world tasks, offering 18.75% increment. We also provide a detailed analysis of how well and why our method can generalize to novel instances.

In summary, our contributions include:

- We introduce **PA3FF**, a 3D-native representation that encodes dense, semantic, and functional part-aware features directly from point clouds.
- We develop **PADP**, a diffusion policy that leverages PA3FF for generalizable manipulation with strong sample efficiency.
- PA3FF can further enable diverse downstream methods, including correspondence learning and segmentation, making it a versatile foundation for robotic manipulation.
- We validate our approach on 16 PartInstruct and 8 real-world tasks, where it significantly outperforms prior 2D and 3D representations (CLIP, DINOv2, and Grounded-SAM), offering a 15% and 16.5% increase.

## 2 RELATED WORK

**3D Semantic Representation in Robotic Manipulation.** One common approach to 3D semantic representation involves extracting functional or affordance information from observations Paulius et al. (2016); Chen et al. (2022); Kokic et al. (2017); Wu & Zhao (2022); Zhao et al. (2023b); Wang et al. (2022); Wu et al. (2023); Wen et al. (2022); Di Palo & Johns (2024). This line of

research focuses on tasks that can be accomplished using motion primitives such as grasping, picking, and placing. However, our diffusion-based policy offers greater flexibility in terms of action representation and task execution. Another approach lifts 2D foundational features (e.g., CLIP, DINOv2) to 3D representations via multi-view fusion (Wang et al., 2024b; Kerr et al., 2023a; Wang et al., 2024c; Ke et al., 2024a; Yang et al., 2024b; Kerr et al., 2023b; Qiu et al., 2024; Zou et al., 2025). However, this method has several notable limitations. First, multi-view fusion in previous approaches is computationally expensive and suffers from inconsistent features across views. Second, these methods often sacrifice spatial resolution for semantic quality in 2D features. For instance, ViT-family models process image tokens as patches, resulting in significantly lower-resolution feature maps (e.g., 14x smaller in DINOv2), which leads to a substantial loss of spatial information. In contrast, our approach leverages visual representations that are pre-trained on large-scale point clouds, which enables our robot to generalize to unseen configurations efficiently.

**Imitation Learning.** Imitation learning (IL) has proven effective in enabling end-to-end robotic training from expert demonstrations via supervised learning (Peng et al., 2020; Radosavovic et al., 2021; Zhao et al., 2023a; Tie et al., 2025; Chi et al., 2023). However, many recent IL methods rely on large-scale datasets to learn robust manipulation policies (Radosavovic et al., 2021; Peng et al., 2020). To improve data efficiency, several works (Tie et al., 2025; Yang et al., 2024a; Wang et al., 2024a) incorporate equivariance into policy architectures, thereby enhancing spatial generalization. Other approaches have explored multi-modal fusion of 3D vision, language instructions, and proprioception (Gervet et al., 2023; Shridhar et al., 2023; Zhang et al., 2023; 2024; Ke et al., 2024a). Despite their success, these methods typically predict discrete keyframes rather than continuous control trajectories (e.g., PerAct (Shridhar et al., 2023), Act3D (Gervet et al., 2023), Chained Diffuser (Xian et al., 2023), and 3D Diffuser Actor (Ke et al., 2024a)), limiting their effectiveness in long-horizon or fine-grained manipulation tasks. A method most closely related to ours is GenDP (Wang et al., 2024c), which computes dense semantic fields by measuring cosine similarity between 2D image features and scene observations. This enables category-level generalization, but suffers from two key limitations: (1) its reliance on 2D features from DINOv2 introduces inconsistencies across views; and (2) its semantic representations lack the granularity needed to identify functionally relevant object parts, which are critical for manipulation. In contrast, our method introduces a 3D-native fine-grained feature field that is function-aware, allowing for more accurate localization of interactive parts. Based on this representation, we develop a manipulation policy that not only requires fewer demonstrations but also generalizes across unseen object categories—addressing both data efficiency and generalization in robotic manipulation.

### 3 METHOD

In this section, we cover the different components of our approach, as shown in 2. Initially, we present an overview of Part-Aware 3D Feature Field (PA3FF), and data strategy, training process, along with model architecture in section 3.1. Subsequently, we explore how to leverage this 3D feature field to achieve generalizable articulated object manipulation learning in section 3.2.

#### 3.1 PART-AWARE 3D FEATURE FIELD

**Problem Formulation.** Our objective is to design a 3D and part-awareness feature for generalizable articulated object manipulation. Given an input point cloud  $\mathcal{P} = \{\mathbf{p}_i \in \mathbb{R}^3\}_{i=1}^N$ , this model predicts a continuous 3D feature field  $f : \mathbb{R}^3 \rightarrow \mathbb{R}^n$  that encodes the part structure and their hierarchy in a feedforward manner. This feature field assigns each point  $\mathbf{p} \in \mathcal{P}$  an  $n$ -dimensional latent feature vector  $f(\mathbf{p})$ , resulting in a per-point embedding of the input point clouds. The notion of parts is captured by the proximity of features in this latent space: points  $\mathbf{p}_a$  and  $\mathbf{p}_b$  that belong to the same part should have similar features, i.e.,  $f(\mathbf{p}_a) \approx f(\mathbf{p}_b)$ .

**Backbone for 3D Feature Extraction.** In this stage, we aim to get a 3D feature extraction backbone that leverages the geometric cues of 3D objects and learns 3D priors from a large-scale 3D dataset. Unlike prior work He et al. (2024); Yang et al. (2024b); Kim et al. (2024a); Liu et al. (2023); Zhou et al. (2023) that relies on per-shape optimization to lift or distill 2D predictions or priors, we instead leverage Sonata (Wu et al., 2025), a self-supervised pre-trained Point Transformer V3 (Wu et al., 2024). We then employ Sonata with its pre-trained weights as our feature extractor  $f(\mathbf{p})$  to extract multi-scale features from point clouds. The key advantage of our approach lies in addressing limitations present in prior methods that rely on 2D feature distillation. First, multi-view fusion in

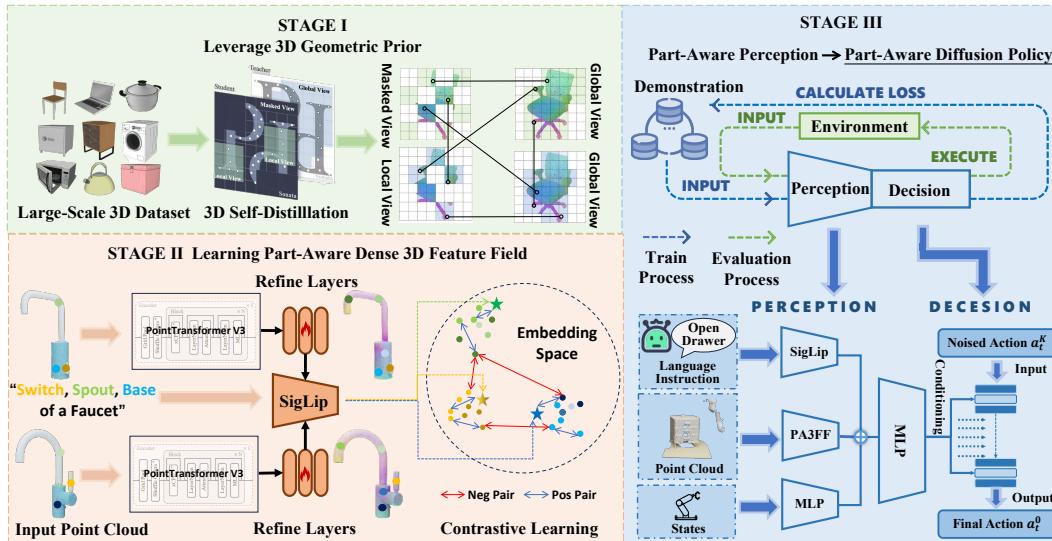


Figure 2: Overview of our Learning Framework. (1) *Pretraining the PTv3 backbone* to extract part-aware 3D features. (2) *Feature refinement via contrastive learning* across objects to enhance part-level consistency and distinctiveness. (3) *Downstream usage* by integrating the refined features into a diffusion policy for action generation.

previous approaches is computationally slow and suffers from the problem of inconsistent features across views. Second, these methods typically sacrifice spatial resolution for semantic quality in 2D features—for example, ViT-family models process image tokens as patches, resulting in much lower-resolution feature maps (e.g., 14x smaller in DINOv2), leading to a significant loss of spatial information. In contrast, Sonata allows for 3D dense feature extraction that maintains both geometric accuracy and semantic information. This approach offers several advantages: (a) efficient, feedforward inference; (b) consistent and complete 3D feature fields that generalize well across objects; and (c) per-point dense features that capture accurate geometric cues. However, Sonata was originally trained on scene-level data and is not directly tailored for object- or part-level representation learning. Specifically, its backbone, PointTransformer v3 (PTv3), is designed for large-scale scenes, using aggressive downsampling to expand receptive fields and reduce computational cost. In contrast, object-level inputs are smaller in both point count and spatial extent, making such downsampling suboptimal. To adapt Sonata for our task, we remove most downsampling layers in PTv3 and instead deepen the network by stacking additional transformer blocks, which enhances detail preservation and improves feature abstraction. Importantly, our overall framework is model-agnostic and can accommodate more advanced 3D feature extraction. More details can be found in Appendix A

**Learning Part-Aware Dense 3D Feature Field.** Building on the promising 3D priors we have obtained, we aim to enhance these representations by incorporating part-aware semantic features. To achieve this, we introduce a contrastive learning framework that effectively establishes consistent relationships between 3D part-level features and their corresponding semantic counterparts.

We design two complementary loss functions to achieve this goal. The first one is **geometric loss**, which focuses on the spatial relationships between points within the same part and between different parts. It encourages the model to bring points from the same part closer together in the feature space while pushing points from different parts apart. Given a set of  $N$  feature/label pairs  $\{\mathbf{f}_k, a_k\}_{k=1\dots N}$ , and assumes there are  $N_{a_k}$  samples sharing label  $a_k$ . The geometric loss is derived from the Supervised Contrastive Loss (Khosla et al., 2021), a widely-used method in contrastive learning. The geometric loss is defined as:

$$\mathcal{L}_{Geo} = \sum_{i=1}^N \frac{-1}{N_{a_i} - 1} \sum_{j=1}^N \mathbf{1}_{i \neq j} \cdot \mathbf{1}_{a_i = a_j} \cdot \log \frac{\exp(\mathbf{f}_i \cdot \mathbf{f}_j / \tau)}{\sum_{k=1}^N \mathbf{1}_{i \neq k} \cdot \exp(\mathbf{f}_i \cdot \mathbf{f}_k / \tau)} \quad (1)$$

where  $\tau \in \mathbb{R}^+$  denotes the balancing coefficient in SupCon.

216 In addition to geometric alignment, we introduce a **semantic loss**, which aligns point-level features  
 217 with semantic representations derived from part names. Specifically, we leverage SigLip (Zhai et al.,  
 218 2023) to encode the part names from the dataset into semantic vectors. These semantic vectors  
 219 are then used as targets for aligning point features through InfoNCE Loss (van den Oord et al.,  
 220 2019), which encourages the model to map point-level features to their corresponding semantic  
 221 representations.

222 Let  $m$  represent the number of distinct part names in the current object category, denoted as  
 223  $\{s_1, s_2, \dots, s_m\}$ . These part names are encoded using the SigLIP text encoder to obtain semantic  
 224 representations  $\mathbf{x}_k = \text{SigLip}(s_k)$ ,  $k = 1 \dots m$ . Given a set of  $N$  feature/label pairs  $\{\mathbf{f}_k, a_k\}_{k=1 \dots N}$ ,  
 225 where  $a_k \in 1, \dots, m$  is the index of the ground-truth part name for the  $k$ -th point feature, just like  
 226 above. The semantic Loss is defined as:

$$227 \quad \mathcal{L}_{Sem} = \sum_{i=1}^N -\log \frac{\exp(\mathbf{f}_i \cdot \mathbf{x}_{a_i} / \tau)}{\sum_{k=1}^m \exp(\mathbf{f}_i \cdot \mathbf{x}_k / \tau)} \quad (2)$$

231 where  $\tau \in \mathbb{R}^+$  denotes the balancing coefficient in InfoNCE.

232 The total loss used for training combines both the geometric loss and the semantic loss:

$$233 \quad \mathcal{L}_{total} = \mathcal{L}_{Geo} + \mathcal{L}_{Sem} \quad (3)$$

235 This combined loss function ensures that the model learns features that are both geometrically  
 236 consistent within parts and semantically aligned with their corresponding part names. To further  
 237 refine the feature representations, we propose a lightweight feature refinement network, consisting of  
 238 a shallow per-point MLP. This network processes the output from the Sonata model and uses the total  
 239 loss function to guide the learning process, as shown in Fig 2.

240

### 241 3.2 PART-AWARE DIFFUSION POLICY

243 **Problem Formulation.** Part-Aware Diffusion Policy is a diffusion-based model for action generation  
 244 (Chi et al., 2023; Tie et al., 2025) that takes 3D point cloud observations and robot proprio-  
 245 ceptive state as input to predict future action sequences (action chunks). We formulate visuomotor  
 246 control as modeling the conditional distribution  $p(A_t \mid \mathbf{o}_t)$ , where the observation at time  $t$  is  
 247  $\mathbf{o}_t = [\mathbf{P}_t^1, \dots, \mathbf{P}_t^n, \mathbf{q}_t]$ , with  $\mathbf{P}_t^i$  representing the point cloud from the  $i^{\text{th}}$  camera view and  $\mathbf{q}_t$  the pro-  
 248 prioreceptive state. The predicted action chunk is  $A_t = [a_t, a_{t+1}, \dots, a_{t+H-1}]$ . We train a Denoising  
 249 Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) and use Denoising Diffusion Implicit Model  
 250 (DDIM) (Song et al., 2022) for accelerated inference sampling. The denoising process is defined as:

$$251 \quad \mathbf{a}_t^{k-1} = \frac{\sqrt{\bar{\beta}^{k-1}} \gamma^k}{1 - \bar{\beta}^k} \mathbf{a}_t^0 + \frac{\sqrt{\beta^k} (1 - \bar{\beta}^{k-1})}{1 - \bar{\beta}^k} \mathbf{a}_t^k + \tau^k \mathbf{v}, \quad (4)$$

254 where  $\{\beta^k\}_{k=1}^K$  and  $\{\tau^k\}_{k=1}^K$  are scalar coefficients from a predefined noise schedule,  $\gamma^k := 1 - \beta^k$ ,  
 255 and  $\bar{\beta}^{k-1} := \prod_{i=1}^{k-1} \beta^i$ . The noise term is  $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  when  $k > 1$ ; otherwise,  $\bar{\beta}^{k-1} = 1$  and  
 256  $\mathbf{v} = \mathbf{0}$ . The model is trained by minimizing the mean squared error (MSE) between the ground-truth  
 257 action  $\mathbf{a}_t$  and the model's prediction:

$$259 \quad \mathcal{L}(\phi) := \text{MSE}(\mathbf{a}_t, D_{\theta}(\mathbf{o}_t, \tilde{\mathbf{a}}_t, k)), \quad (5)$$

260

261 where

$$262 \quad \tilde{\mathbf{a}}_t := \sqrt{\bar{\beta}^k} \mathbf{a}_t + \sqrt{1 - \bar{\beta}^k} \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad k \sim \text{Uniform}(\{1, \dots, K\}). \quad (6)$$

263

264 **Policy Design.** We employ our Part-Aware 3D Feature Field (PA3FF) as a frozen backbone to extract  
 265 point cloud embeddings. These embeddings are then fed into a trainable Transformer encoder to  
 266 aggregate per-point features into a global representation. Since the features provided by our backbone  
 267 are semantically meaningful, we use the semantic embedding of the task-critical part name as the  
 268 CLS token to guide this aggregation. Next, we concatenate the resulting global scene feature with the  
 269 agent's pos and pass it through a two-layer MLP to reduce its length, producing the encoder's final  
 output. Conditioned on the compact representation, a diffusion action head outputs the robot action.

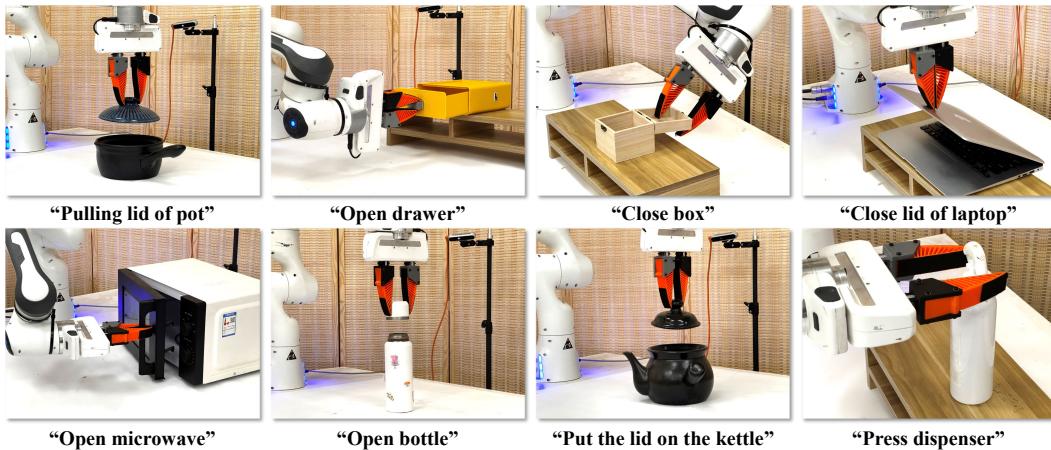


Figure 3: Task illustrations. We evaluate our model on eight downstream tasks.

## 4 EXPERIMENT

We systematically evaluate PA3FF and PADP through both simulation and real-world experiments, aiming to address the following questions: (1) How does the performance of our method compare to previous imitation approaches? (2) How well does our method generalize under object and environmental perturbations? (3) What factors contribute to the generalization of our method to novel instances? (4) Beyond imitation learning, what additional applications can PA3FF facilitate?

### 4.1 EXPERIMENTAL SETUP

We benchmark PADP in both simulated and real-world environments. The simulated environments serve as a controlled platform to ensure reproducible and fair comparisons. The real-world experiments demonstrate the method’s applicability to real-world settings.

**Setup.** In simulation, we conduct multi-task training on the PartInstruct benchmark (Yin et al., 2025), which focuses on part-level fine-grained manipulation tasks. For real-world experiments, we use a Franka Emika Panda robotic arm equipped with UMI fingers (Chi et al., 2024b) replacing the standard parallel gripper. Perception is handled by three Intel RealSense D415 depth cameras positioned around the workspace. Figure 9 illustrates our real-world setup and experimental objects.

**Tasks and Metrics.** We design 8 real-world tasks covering diverse manipulation scenarios (Figure 3). The Train split uses the same object instances/environment as demonstrations (with randomized initial poses); the Test split employs unseen objects/environments to evaluate Out-of-Distribution (OOD) generalization (Figure 5). Simulation adheres to PartInstruct’s five-level generalization protocol (object states [OS], object instances [OI], task-type part combinations [TP], task categories [TC], object categories [OC]); see Appendix C.2 for details.

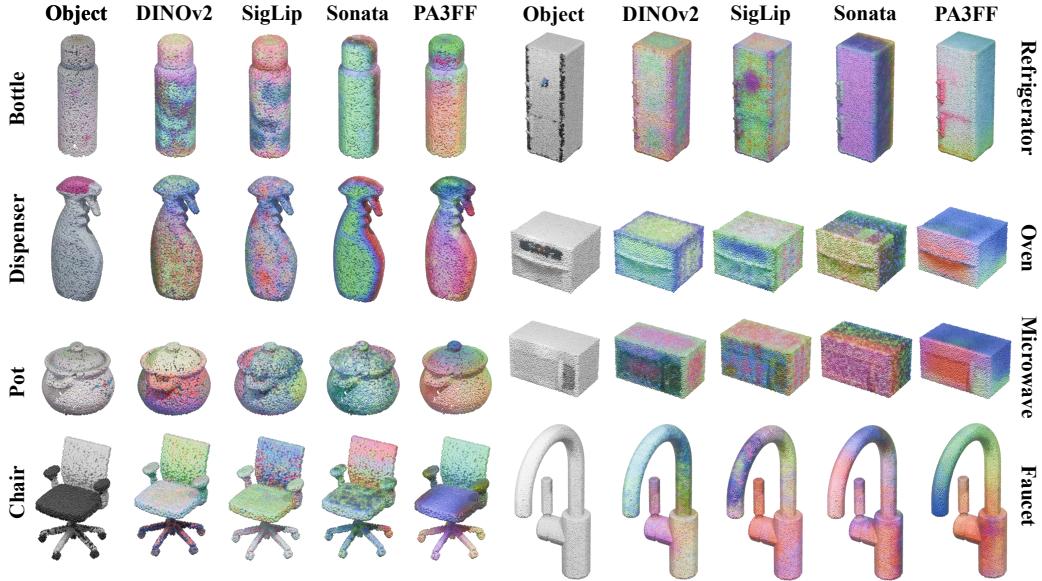
**Data Collections.** For the real-world experiments, we collect demonstrations by human teleoperation. The Franka arm and the gripper are teleoperated by the keyboard. Since our tasks contain more than one stage and include two robots and various objects, making the process of demonstration collection very time-consuming, we only provide 30 demonstrations for each task. For all six tasks, object poses are randomly initialized on the table. The action space contains the end-effector pose and gripper state, while observations include RGB images and corresponding depth images captured by three Intel RealSense D415 depth cameras. For simulation tasks, we leverage the demonstrations provided from Part-Instruct (Yin et al., 2025). More detailed settings can be found in Appendix E.

**Baselines.** In order to comprehensively evaluate PADP, we carefully select six baselines. These include image-to-action imitation learning baselines, *Diffusion Policy (DP)* (Chi et al., 2023). We also compare with models that have been specifically designed for 3D object manipulation including *Act3D* (Gervet et al., 2023), *RVT2* (Goyal et al., 2024), *3D Diffuser Actor (3D-DA)* (Ke et al., 2024b), *GenDP* (Wang et al., 2024c), *DP3* (Ze et al., 2024). These baselines show different 2D and 3D representations for policy. For DP, DP3, and GenDP, we add a language-conditioning module in the same manner as PADP to fuse language instructions. Details can be found in Appendix C.3

324 4.2 COMPARISON WITH BASELINES  
325326 Table 1: Simulated results across five test sets. The best-performing results are highlighted in bold  
327

| Method                       | Test 1 (OS)                     | Test 2 (OI)                     | Test 3 (TP)                     | Test 4 (TC)                     | Test 5 (OC)                     | Average                         |
|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Act 3D (Gervet et al., 2023) | 6.25 $\pm$ 1.8                  | 5.68 $\pm$ 1.7                  | 4.55 $\pm$ 1.6                  | 0.0                             | 2.08 $\pm$ 2.1                  | 3.88 $\pm$ 1.8                  |
| RVT2 (Goyal et al., 2024)    | 4.55 $\pm$ 2.0                  | 4.55 $\pm$ 2.0                  | 6.36 $\pm$ 2.3                  | 0.91 $\pm$ 0.9                  | 3.33 $\pm$ 3.3                  | 4.04 $\pm$ 2.1                  |
| 3D-DA (Ke et al., 2024a)     | 8.08 $\pm$ 2.7                  | 5.05 $\pm$ 2.2                  | 4.04 $\pm$ 1.9                  | 0.0                             | 3.70 $\pm$ 3.6                  | 4.26 $\pm$ 1.0                  |
| DP (Chi et al., 2023)        | 7.27 $\pm$ 1.8                  | 8.64 $\pm$ 1.9                  | 8.18 $\pm$ 1.8                  | 3.75 $\pm$ 2.1                  | 6.67 $\pm$ 3.2                  | 5.96 $\pm$ 2.2                  |
| DP3 (Ze et al., 2024)        | 23.18 $\pm$ 2.8                 | 23.18 $\pm$ 2.8                 | 18.18 $\pm$ 2.6                 | 7.73 $\pm$ 1.8                  | 6.67 $\pm$ 3.2                  | 15.40 $\pm$ 2.6                 |
| GenDP (Wang et al., 2024c)   | 24.34 $\pm$ 2.1                 | 23.36 $\pm$ 2.3                 | 24.53 $\pm$ 1.9                 | 10.00 $\pm$ 2.0                 | 14.61 $\pm$ 2.1                 | 19.36 $\pm$ 2.7                 |
| <b>Ours</b>                  | <b>36.76<math>\pm</math>2.3</b> | <b>34.33<math>\pm</math>3.6</b> | <b>32.45<math>\pm</math>1.6</b> | <b>13.75<math>\pm</math>2.0</b> | <b>26.67<math>\pm</math>3.2</b> | <b>28.79<math>\pm</math>2.5</b> |

336 **Comparision PA3FF with other foundation features.** For an intuitive understanding of PA3FF,  
337 Figure 4 illustrates the feature fields of various objects. DINOv2 and SigLip, two 2D methods, use  
338 rendered images from 16 views of the mesh as input. After each image is encoded, the resulting  
339 features are remapped onto the mesh surface to generate a feature map. Sonata and our PA3FF,  
340 however, directly utilize point clouds sampled from the mesh as input to generate feature maps. The  
341 feature maps shown here for the 2D methods represent the result of mapping mesh features onto  
342 the point clouds input to Sonata and PA3FF. Compared to 2D foundation features like DINOv2  
343 and SigLIP, our approach leverages the continuity of Sonata features, avoiding common **multi-view**  
344 **consistency** issues when aggregating 2D features from different views. As a result, the generated  
345 feature fields are smoother and less noisy (as shown in the faucet example). Our method also  
346 highlights key functional parts, such as microwave and refrigerator handles. Another limitation of 2D  
347 methods is their difficulty in **capturing small or thin parts**, which may occupy less than a patch  
348 or pixel in the 2D images and fail to be adequately represented (e.g., the refrigerator handle on the  
349 right). In contrast to Sonata, our approach explicitly promotes intra-part feature consistency and inter-  
350 part distinctiveness within specific object categories, leading to more semantically meaningful and  
351 discriminative part-level representations. More feature visualization can be found in Appendix A.3

371 Figure 4: The feature field visualizations of PA3FF and other foundation features.  
372

373 **Performance and Comparison.** Table 2 presents the main results on real-world tasks. PADP  
374 significantly outperforms several strong baselines across all tasks, by achieving a mean success rate  
375 of 58.75% under unseen objects, compared to the highest success rate of 35% achieved by baselines.  
376 Figure 9 presents snapshots of the real-world experiments. Table 1 shows the results on simulation  
377 tasks. Consistent with the real-world results, the simulation results also demonstrate that PADP  
enhances policy generalization.

378  
379  
380  
381 Table 2: Real-world task success rates across different methods (train/test). Each task is evaluated  
382 with 10 trials under randomized initial conditions. The best-performing results are highlighted in bold  
383  
384  
385  
386

| Method/Task                | Pulling lid of pot |             | Open drawer |             | Close box         |             | Close lid of laptop |             |
|----------------------------|--------------------|-------------|-------------|-------------|-------------------|-------------|---------------------|-------------|
|                            | Train              | Test        | Train       | Test        | Train             | Test        | Train               | Test        |
| DP (Chi et al., 2023)      | 4/10               | 2/10        | 1/10        | 1/10        | 2/10              | 1/10        | 4/10                | 3/10        |
| DP3 (Ze et al., 2024)      | 6/10               | 4/10        | 4/10        | 3/10        | 3/10              | 3/10        | 5/10                | 5/10        |
| GenDP (Wang et al., 2024c) | 7/10               | 6/10        | 5/10        | 5/10        | 3/10              | 3/10        | 6/10                | 4/10        |
| <b>PADP (Ours)</b>         | <b>8/10</b>        | <b>6/10</b> | <b>6/10</b> | <b>6/10</b> | <b>5/10</b>       | <b>5/10</b> | <b>7/10</b>         | <b>7/10</b> |
| Method/Task                | Open microwave     |             | Open bottle |             | Put lid on kettle |             | Press dispenser     |             |
|                            | Train              | Test        | Train       | Test        | Train             | Test        | Train               | Test        |
| DP (Chi et al., 2023)      | 1/10               | 0/10        | 5/10        | 2/10        | 1/10              | 0/10        | 0/10                | 0/10        |
| DP3 (Ze et al., 2024)      | 3/10               | 1/10        | 4/10        | 3/10        | 3/10              | 1/10        | 1/10                | 1/10        |
| GenDP (Wang et al., 2024c) | 4/10               | 3/10        | 5/10        | 4/10        | 4/10              | 2/10        | 2/10                | 1/10        |
| <b>PADP (Ours)</b>         | <b>6/10</b>        | <b>5/10</b> | <b>8/10</b> | <b>6/10</b> | <b>6/10</b>       | <b>5/10</b> | <b>4/10</b>         | <b>3/10</b> |

393  
394  
395 Table 3: Generalization evaluation of the **Open Bottle** task (10 trials).  
396

| Method             | Completion Rate (%) |                              |                              |                              |
|--------------------|---------------------|------------------------------|------------------------------|------------------------------|
|                    | Original            | Disturbance                  |                              |                              |
|                    |                     | Spatial                      | Object                       | Environment                  |
| DP                 | 50                  | 40 <small>↓10</small>        | 10 <small>↓40</small>        | 0 <small>↓50</small>         |
| DP3                | 40                  | 20 <small>↓20</small>        | 20 <small>↓20</small>        | 10 <small>↓30</small>        |
| GenDP              | 50                  | 20 <small>↓30</small>        | 30 <small>↓20</small>        | 30 <small>↓20</small>        |
| <b>PADP (ours)</b> | <b>80</b>           | <b>70 <small>↓10</small></b> | <b>60 <small>↓20</small></b> | <b>60 <small>↓20</small></b> |

405 Following (Wang et al., 2025), we evaluate generalization across three dimensions: *Spatial*, *Object*  
406 and *Environment*. **(1) Spatial Generalization:** When object poses change, baseline methods struggle  
407 to locate handles in the Open Microwave task. PADP consistently identifies correct grasping positions  
408 (Figure 15 in Appendix D) because its part-aware feature field effectively locates functional parts  
409 and understands object geometry. **(2) Object Generalization:** As demonstrated in Table 2, PADP  
410 maintains robust performance on unseen objects, while DP and DP3 fail on new instances. GenDP  
411 leverages semantic fields for improved generalization, but PADP surpasses all methods through  
412 PA3FF’s precise feature representation. For example, in the Open Microwave task (see Figure 15  
413 in Appendix D), Despite varying appearances across microwave models, PA3FF identifies shared  
414 functional structures (handles, bodies), enabling consistent manipulation regardless of shape or  
415 pose variations. **(3) Environment Generalization:** We evaluate robustness across four scenarios  
416 (Figure 5): original environment (*Situation 0*), added distractors (*Situation 1*), changed background  
417 (*Situation 2*), and combined changes (*Situation 3*). For the Open Bottle task, PADP maintains  
418 high performance across all conditions, while baselines degrade significantly in complex scenarios  
419 (Table 3). DP fails with background changes due to image dependency, DP3 resists color changes  
420 but struggles with distractors, and GenDP, despite outperforming other baselines, cannot handle the  
421 combined challenges of *Situation 3*.  
422

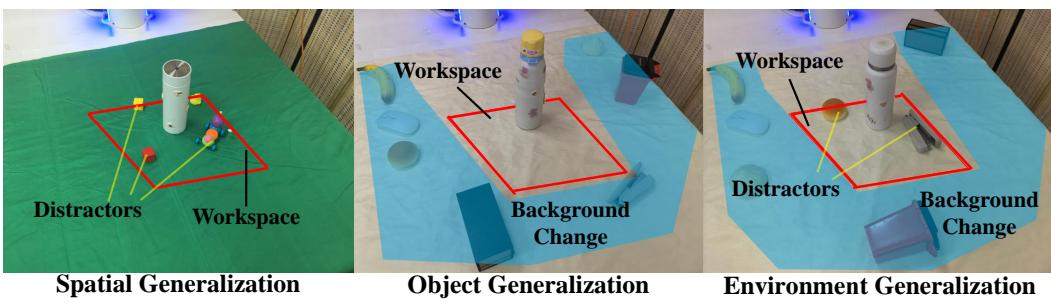
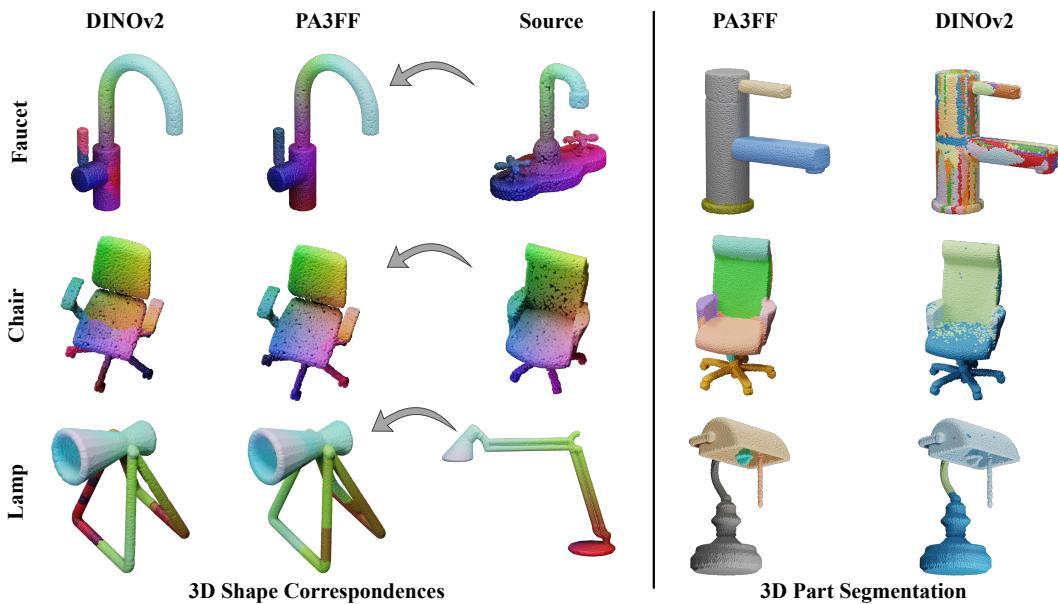


Figure 5: Generalization test set of the **Open Bottle** task.

432 4.3 VARIOUS DOWNSTREAM APPLICATIONS.  
433434 We evaluated the properties of the learned feature field in various applications, including part  
435 decomposition, 3D shape correspondences, and feature field consistency.  
436455 Figure 6: PA3FF exhibits consistency across shapes, enabling applications such as correspondence  
456 learning and part segmentation.  
457458  
459 **3D Shape Correspondences.** The cross-shape consistency embedded in PA3FF provides a robust  
460 prior for fine-grained point-to-point correspondence learning. As a promising application, we use  
461 Functional Maps Ovsjanikov et al. (2012) to establish correspondences between a source and a target  
462 shape. To begin, we initialize the correspondences by finding nearest neighbors in the PA3FF feature  
463 space. These initial correspondences are then refined using Smooth Discrete Optimization Magnet  
464 et al. (2022), which iteratively solves functional maps in a coarse-to-fine fashion to recover a smooth  
465 and accurate point-to-point mapping. As shown in Figure 6, we compare the performance of this  
466 method against DINOv2 Oquab et al. (2023) features. In particular, PA3FF excels in providing  
467 precise correspondences, even in challenging cases where the shapes differ significantly in topology  
468 or pose. Beyond capturing shape similarity, PA3FF is capable of encoding functional semantics of  
469 parts—allowing it to match parts based on their function rather than just appearance—while still  
470 maintaining smoothness in the resulting correspondences.471 **3D Part Segmentation.** PA3FF learns a part hierarchy implicitly through contrastive learning on  
472 diverse 3D data. This hierarchical structure can also be explicitly derived using agglomerative  
473 clustering. Figure 6 shows the results obtained from the clustering of the DINOv2 and PA3FF feature  
474 maps using identical parameters. Table 5 provide quantitative results of segmentation performance on  
475 the PartNet-Ensembled (PartNetE) (Liu et al., 2023) dataset. PA3FF successfully identifies significant  
476 relationships between parts, a feature that can be leveraged in a range of practical applications.  
477478 5 CONCLUSION  
479480 We propose Part-Aware 3D Feature Field (PA3FF), a novel 3D feature representation that enhances  
481 generalization for articulated object manipulation by focusing on functional parts. Combined with  
482 the Part-Aware Diffusion Policy (PADP), an imitation learning framework, PA3FF improves sample  
483 efficiency and generalization. Experimental results show that PADP outperforms existing 2D and 3D  
484 representations, including CLIP, DINOv2, and Grounded-SAM, in both simulated and real-world  
485 tasks. Beyond imitation learning, PA3FF enables a variety of downstream tasks, demonstrating its  
versatility and effectiveness in robotic manipulation.

486 ETHICS STATEMENT  
487488 This work does not involve human subjects, personally identifiable information, or sensitive data.  
489 The datasets used are publicly available, and all experiments comply with the ICLR Code of Ethics.  
490491 REPRODUCIBILITY STATEMENT  
492493 We have made extensive efforts to ensure reproducibility. The detailed methodology of our proposed  
494 approach is presented in Section 3, while the experimental settings, including training procedures and  
495 evaluation protocols, are described in Section 4. To further support reproducibility, we plan to release  
496 the complete source code and instructions upon the acceptance of this paper.  
497498 REFERENCES  
499500 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,  
501 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey  
502 Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James  
503 Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky.  $\pi_0$ : A vision-language-  
504 action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.505 Xiaotong Chen, Kaizhi Zheng, Zhen Zeng, Cameron Kisailus, Shreshtha Basu, James Cooney, Jana  
506 Pavlasek, and Odest Chadwicke Jenkins. Manipulation-oriented object perception in clutter through  
507 affordance coordinate frames. In *2022 IEEE-RAS 21st International Conference on Humanoid  
508 Robots (Humanoids)*, pp. 186–193. IEEE, 2022.509 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,  
510 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The  
511 International Journal of Robotics Research*, pp. 02783649241273668, 2023.512 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,  
513 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024a. URL  
514 <https://arxiv.org/abs/2303.04137>.515 Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ Tedrake,  
516 and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without in-the-wild  
517 robots, 2024b. URL <https://arxiv.org/abs/2402.10329>.518 Norman Di Palo and Edward Johns. On the effectiveness of retrieval, alignment, and replay in  
519 manipulation. *IEEE Robotics and Automation Letters*, 2024.520 Stephanie Fu, Mark Hamilton, Laura Brandt, Axel Feldman, Zhoutong Zhang, and William T.  
521 Freeman. Featup: A model-agnostic framework for features at any resolution, 2024. URL  
522 <https://arxiv.org/abs/2403.10516>.523 Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina Fragkiadaki. Act3d: 3d feature field  
524 transformers for multi-task robotic manipulation. In *7th Annual Conference on Robot Learning*,  
525 2023.526 Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise  
527 manipulation from few demonstrations. *arXiv preprint arXiv:2406.08545*, 2024.528 Haodi He, Colton Stearns, Adam W. Harley, and Leonidas J. Guibas. View-consistent hierarchical 3d  
529 segmentation using ultrametric feature fields, 2024. URL <https://arxiv.org/abs/2405.19678>.530 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
531 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,  
532 pp. 770–778, 2016.

540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL  
 541 <https://arxiv.org/abs/2006.11239>.  
 542

543 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,  
 544 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,  
 545 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin  
 546 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.  
 547 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,  
 548 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky.  $\pi_{0.5}$ : a  
 549 vision-language-action model with open-world generalization, 2025. URL <https://arxiv.org/abs/2504.16054>.  
 550

551 Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Pointgroup:  
 552 Dual-set point grouping for 3d instance segmentation, 2020. URL <https://arxiv.org/abs/2004.01658>.  
 553

554 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion  
 555 with 3d scene representations. *Arxiv*, 2024a.  
 556

557 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion  
 558 with 3d scene representations, 2024b. URL <https://arxiv.org/abs/2402.10885>.  
 559

560 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language  
 561 embedded radiance fields. *arXiv preprint arXiv:2303.09553*, 2023a.  
 562

563 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language  
 564 embedded radiance fields, 2023b. URL <https://arxiv.org/abs/2303.09553>.  
 565

566 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron  
 567 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021. URL <https://arxiv.org/abs/2004.11362>.  
 568

569 Chung Min Kim, Mingxuan Wu, Justin Kerr, Ken Goldberg, Matthew Tancik, and Angjoo Kanazawa.  
 570 Garfield: Group anything with radiance fields, 2024a. URL <https://arxiv.org/abs/2401.09419>.  
 571

572 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,  
 573 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source  
 574 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024b.  
 575

576 Mia Kokic, Johannes A Stork, Joshua A Haustein, and Danica Kragic. Affordance detection for  
 577 task-specific grasping using deep learning. In *2017 IEEE-RAS 17th International Conference on  
 578 Humanoid Robotics (Humanoids)*, pp. 91–98. IEEE, 2017.  
 579

580 Xingyu Lin, John So, Sashwat Mahalingam, Fangchen Liu, and Pieter Abbeel. Spawnnnet: Learning  
 581 generalizable visuomotor skills from pre-trained networks. *arXiv preprint arXiv:2307.03567*,  
 582 2023.  
 583

584 Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su. Partslip:  
 585 Low-shot part segmentation for 3d point clouds via pretrained image-language models, 2023. URL  
 586 <https://arxiv.org/abs/2212.01558>.  
 587

588 Robin Magnet, Jing Ren, Olga Sorkine-Hornung, and Maks Ovsjanikov. Smooth non-rigid shape  
 589 matching via effective dirichlet energy optimization. In *2022 International Conference on 3D  
 590 Vision (3DV)*, pp. 495–504. IEEE, 2022.  
 591

592 Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao  
 593 Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object  
 594 understanding, 2018. URL <https://arxiv.org/abs/1812.02713>.  
 595

596 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 597 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning  
 598 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.  
 599

594 Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Functional  
 595 maps: a flexible representation of maps between shapes. *ACM Transactions on Graphics*  
 596 (*ToG*), 31(4):1–11, 2012.

597 David Paulius, Yongqiang Huang, Roger Milton, William D Buchanan, Jeanine Sam, and Yu Sun.  
 598 Functional object-oriented network for manipulation learning. In *2016 IEEE/RSJ International  
 599 Conference on Intelligent Robots and Systems (IROS)*, pp. 2655–2662. IEEE, 2016.

600 Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.  
 601 Learning agile robotic locomotion skills by imitating animals. *arXiv preprint arXiv:2004.00784*,  
 602 2020.

603 Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning  
 604 on point sets in a metric space, 2017. URL <https://arxiv.org/abs/1706.02413>.

605 Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven physics-  
 606 based scene synthesis and editing, 2024. URL <https://arxiv.org/abs/2404.01223>.

607 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 608 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 609 models from natural language supervision. In *International conference on machine learning*, pp.  
 610 8748–8763. PMLR, 2021.

611 Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for  
 612 dexterous manipulation. In *2021 IEEE/RSJ International Conference on Intelligent Robots and  
 613 Systems (IROS)*, pp. 7865–7871. IEEE, 2021.

614 Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr, Lawrence Yunliang Chen, Angjoo  
 615 Kanazawa, and Ken Goldberg. Language embedded radiance fields for zero-shot task-oriented  
 616 grasping. In *7th Annual Conference on Robot Learning*, 2023.

617 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,  
 618 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing  
 619 Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks,  
 620 2024. URL <https://arxiv.org/abs/2401.14159>.

621 William Shen, Ge Yang, Alan Yu, Jensen Wong, Leslie Pack Kaelbling, and Phillip Isola. Distilled  
 622 feature fields enable few-shot manipulation. 2023.

623 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for  
 624 robotic manipulation. In *Conference on Robot Learning*, pp. 785–799. PMLR, 2023.

625 Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit  
 626 Agrawal, and Vincent Sitzmann. Neural descriptor fields: Se(3)-equivariant object representations  
 627 for manipulation, 2021. URL <https://arxiv.org/abs/2112.05124>.

628 Habib Slim, Xiang Li, Yuchen Li, Mahmoud Ahmed, Mohamed Ayman, Ujjwal Upadhyay,  
 629 Ahmed Abdelreheem, Arpit Prajapati, Suhail Pothigara, Peter Wonka, and Mohamed Elhoseiny.  
 630 3dcompat<sup>++</sup>: An improved large-scale 3d vision dataset for compositional recognition, 2025.  
 631 URL <https://arxiv.org/abs/2310.18511>.

632 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL  
 633 <https://arxiv.org/abs/2010.02502>.

634 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep  
 635 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot  
 636 policy. *arXiv preprint arXiv:2405.12213*, 2024.

637 Chenrui Tie, Yue Chen, Ruihai Wu, Boxuan Dong, Zeyi Li, Chongkai Gao, and Hao Dong. Et-seed:  
 638 Efficient trajectory-level se(3) equivariant diffusion policy, 2025. URL <https://arxiv.org/abs/2411.03990>.

639 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive  
 640 coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

648 Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, and Chang D. Yoo. Softgroup for  
 649 3d instance segmentation on point clouds, 2022. URL <https://arxiv.org/abs/2203.01509>.

650

651 Dian Wang, Stephen Hart, David Surovik, Tarik Kelestemur, Haojie Huang, Haibo Zhao, Mark  
 652 Yeatman, Jiuguang Wang, Robin Walters, and Robert Platt. Equivariant diffusion policy, 2024a.  
 653 URL <https://arxiv.org/abs/2407.01812>.

654

655 Qianxu Wang, Haotong Zhang, Congyue Deng, Yang You, Hao Dong, Yixin Zhu, and Leonidas  
 656 Guibas. Sparsedff: Sparse-view feature distillation for one-shot dexterous manipulation, 2024b.  
 657 URL <https://arxiv.org/abs/2310.16838>.

658

659 Shengjie Wang, Jiacheng You, Yihang Hu, Jiongye Li, and Yang Gao. Skil: Semantic keypoint  
 660 imitation learning for generalizable data-efficient manipulation, 2025. URL <https://arxiv.org/abs/2501.14400>.

661

662 Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas J Guibas, and Hao Dong.  
 663 Adaafford: Learning to adapt manipulation affordance for 3d articulated objects via few-shot  
 664 interactions. In *European conference on computer vision*, pp. 90–107. Springer, 2022.

665

666 Yixuan Wang, Guang Yin, Binghao Huang, Tarik Kelestemur, Jiuguang Wang, and Yunzhu Li.  
 667 Gendp: 3d semantic fields for category-level generalizable diffusion policy, 2024c. URL <https://arxiv.org/abs/2410.17488>.

668

669 Yixuan Wang, Mingtong Zhang, Zhuoran Li, Tarik Kelestemur, Katherine Driggs-Campbell, Jiajun  
 670 Wu, Li Fei-Fei, and Yunzhu Li. D<sup>3</sup>fields: Dynamic 3d descriptor fields for zero-shot generalizable  
 671 rearrangement, 2024d. URL <https://arxiv.org/abs/2309.16118>.

672

673 Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. You only demonstrate once: Category-  
 674 level manipulation from single visual demonstration. *Robotics: Science and Systems* 2022, 2022.

675

676 Ruihai Wu and Yan Zhao. Vat-mart: Learning visual action trajectory proposals for manipulating 3d  
 677 articulated objects. In *International Conference on Learning Representations (ICLR)*, 2022, 2022.

678

679 Ruihai Wu, Chuanruo Ning, and Hao Dong. Learning foresightful dense visual affordance for  
 680 deformable object manipulation. In *IEEE International Conference on Computer Vision (ICCV)*,  
 2023.

681

682 Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong  
 683 He, and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger, 2024. URL <https://arxiv.org/abs/2312.10035>.

684

685 Xiaoyang Wu, Daniel DeTone, Duncan Frost, Tianwei Shen, Chris Xie, Nan Yang, Jakob Engel,  
 686 Richard Newcombe, Hengshuang Zhao, and Julian Straub. Sonata: Self-supervised learning of  
 687 reliable point representations, 2025. URL <https://arxiv.org/abs/2503.16429>.

688

689 Zhou Xian, Nikolaos Gkanatsios, Theophile Gervet, Tsung-Wei Ke, and Katerina Fragkiadaki.  
 690 Chaineddiffuser: Unifying trajectory diffusion and keypose prediction for robotic manipulation. In  
 7th Annual Conference on Robot Learning, 2023.

691

692 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao  
 693 Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. Sapien: A  
 694 simulated part-based interactive environment, 2020. URL <https://arxiv.org/abs/2003.08515>.

695

696 Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,  
 697 Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,  
 698 images, and point clouds for 3d understanding, 2023. URL <https://arxiv.org/abs/2212.05171>.

699

700 Jingyun Yang, Zi ang Cao, Congyue Deng, Rika Antonova, Shuran Song, and Jeannette Bohg.  
 701 Equibot: Sim(3)-equivariant diffusion policy for generalizable and data efficient learning, 2024a.  
 URL <https://arxiv.org/abs/2407.01479>.

702 Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y. Lam, Yan-  
 703 Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects, 2024b. URL <https://arxiv.org/abs/2411.07184>.  
 704

705 Yifan Yin, Zhengtao Han, Shivam Aarya, Jianxin Wang, Shuhang Xu, Jiawei Peng, Angtian Wang,  
 706 Alan Yuille, and Tianmin Shu. Partinstruct: Part-level instruction following for fine-grained robot  
 707 manipulation, 2025. URL <https://arxiv.org/abs/2505.21652>.  
 708

709 Yanjie Ze, Ge Yan, Yueh-Hua Wu, Annabella Macaluso, Yuying Ge, Jianglong Ye, Nicklas Hansen,  
 710 Li Erran Li, and Xiaolong Wang. Gnfactor: Multi-task real robot learning with generalizable  
 711 neural feature fields. In *7th Annual Conference on Robot Learning*, 2023.  
 712

713 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion  
 714 policy: Generalizable visuomotor policy learning via simple 3d representations, 2024. URL  
 715 <https://arxiv.org/abs/2403.03954>.  
 716

717 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language  
 718 image pre-training, 2023. URL <https://arxiv.org/abs/2303.15343>.  
 719

720 Tong Zhang, Yingdong Hu, Hanchen Cui, Hang Zhao, and Yang Gao. A universal semantic-  
 721 geometric representation for robotic manipulation, 2023. URL <https://arxiv.org/abs/2306.10474>.  
 722

723 Tong Zhang, Yingdong Hu, Jiacheng You, and Yang Gao. Leveraging locality to boost sample  
 724 efficiency in robotic manipulation. *arXiv preprint arXiv:2406.10615*, 2024.  
 725

726 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual  
 727 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023a.  
 728

729 Yan Zhao, Ruihai Wu, Zhehuan Chen, Yourong Zhang, Qingnan Fan, Kaichun Mo, and Hao Dong.  
 730 Dualafford: Learning collaborative visual affordance for dual-gripper manipulation. In *International  
 Conference on Learning Representations*, 2023b.  
 731

732 Yuchen Zhou, Jiayuan Gu, Xuanlin Li, Minghua Liu, Yunhao Fang, and Hao Su. Partslip++:  
 733 Enhancing low-shot 3d part segmentation via multi-view instance segmentation and maximum  
 734 likelihood estimation, 2023. URL <https://arxiv.org/abs/2312.03015>.  
 735

736 Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli Ouyang, and Tong He. Point cloud matters:  
 737 Rethinking the impact of different observation spaces on robot learning, 2024. URL <https://arxiv.org/abs/2402.02500>.  
 738

739 Xueyan Zou, Yuchen Song, Ri-Zhao Qiu, Xuanbin Peng, Jianglong Ye, Sifei Liu, and Xiaolong Wang.  
 740 M3: 3d-spatial multimodal memory, 2025. URL <https://arxiv.org/abs/2503.16413>.  
 741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

## A DETAILS OF PA3FF

Table 4: Comparisons with Other Foundation Features

| Method                       | Part-Aware | 3D Representation | Dense | Semantic |
|------------------------------|------------|-------------------|-------|----------|
| DINOv2 (Oquab et al., 2023)  | ✗          | ✗                 | ✗     | ✗        |
| SigLip (Zhai et al., 2023)   | ✗          | ✗                 | ✗     | ✓        |
| CLIP (Radford et al., 2021)  | ✗          | ✗                 | ✗     | ✓        |
| ULIP (Xue et al., 2023)      | ✗          | ✓                 | ✗     | ✓        |
| NDF (Simeonov et al., 2021)  | ✗          | ✓                 | ✓     | ✗        |
| D3Field (Wang et al., 2024d) | ✗          | ✓                 | ✗     | ✓        |
| LERF (Kerr et al., 2023a)    | ✗          | ✓                 | ✗     | ✓        |
| Sonata (Wu et al., 2025)     | ✗          | ✓                 | ✓     | ✗        |
| <b>PA3FF(Ours)</b>           | ✓          | ✓                 | ✓     | ✓        |

## A.1 COMPARISONS WITH OTHER FOUNDATION FEATURES

A key to generalization in articulated object manipulation lies in understanding *functional parts* (e.g., door handles, drawer knobs), which indicate *where* and *how* to manipulate across diverse object categories and shapes. As shown in Table 4, existing methods fall short in some critical dimensions:

**Semantic-only methods (CLIP, SigLip)** provide global semantic understanding but lack 3D geometric grounding and dense spatial resolution. They cannot answer "which specific point on this handle should the robot grasp?"

**3D-aware methods (ULIP, LERF, D3Field)** lift 2D features into 3D space but remain *coarse-grained* and *non-part-aware*. They struggle with within-part geometric coherence: a handle on a round door versus one on a rectangular cabinet should share feature similarity despite shape differences.

**Dense geometric methods (NDF, Sonata)** achieve dense 3D representations but lack *semantic separability*. They cannot distinguish a handle from a knob based on functional semantics—only on geometric similarity.

**Our Solution: Part-Aware 3D Feature Fields.** We propose **PA3FF**, the first feature representation that simultaneously satisfies all four critical properties (Table 4): part-aware, 3D-native, dense, and semantically grounded. This is *essential* for manipulation: a robot must recognize that a point is not merely "part of the object" but specifically "the handle," consistently across unseen, topologically distinct objects. PA3FF uniquely addresses this gap, enabling true part-level generalization for the manipulation of articulated objects.

## A.2 LIMITATIONS OF FEATURE LIFTING UP

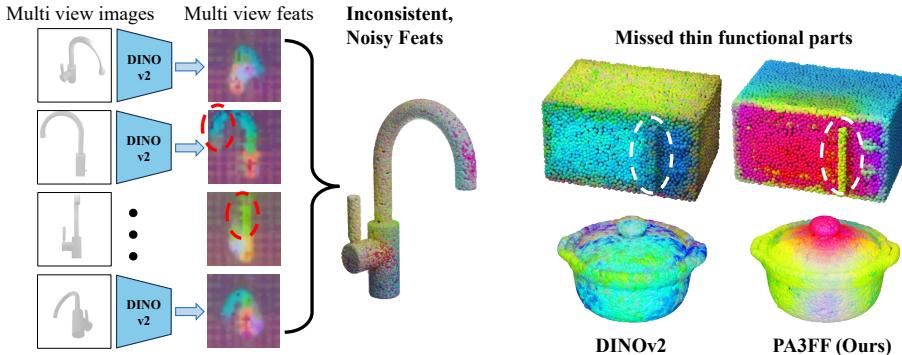
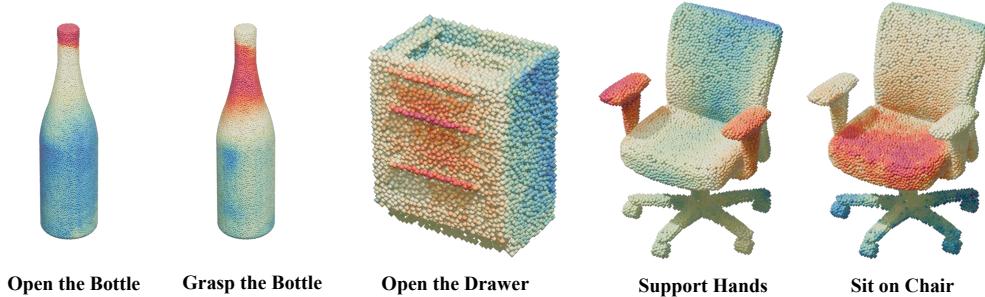


Figure 7: Flaws of lifting up method.

Although 3D priors are known to enhance generalization, lifting features from 2D to 3D introduces significant challenges. Models that naively average multi-view features from frozen 2D networks suffer from inconsistent visibility across views. Rendered 2D images can also miss thin or small parts like handles or buttons.

810  
811 A.3 MORE FEATURES' VISUALIZATIONS  
812  
813  
814  
815  
816  
817  
818  
819  
820821  
822 Figure 8: Heatmaps of point cloud features' similarity with several queries' text encoding.  
823  
824825 Since the features generated by PA3FF contain semantic information, calculating feature similarity  
826 using different task statements for the same object allows us to focus on different parts of the object.  
827 The figure shows the heatmap visualization of cosine similarity between different encoded instructions  
828 and features.  
829830 A.4 MORE QUANTITATIVE RESULTS OF PA3FF  
831832 Table 5: **Segmentation Results on the PartNetE Dataset.** Category mAP50s (%) are shown for  
833 different object categories. Higher values indicate better performance.  
834

| Method                         | Bottle      | Chair       | Display     | Lamp        | Storage Furniture | Table       | Average     |
|--------------------------------|-------------|-------------|-------------|-------------|-------------------|-------------|-------------|
| PointGroup Jiang et al. (2020) | 8.0         | 77.2        | 16.7        | 9.8         | 0.0               | 0.0         | 18.6        |
| SoftGroup Vu et al. (2022)     | 22.4        | 87.7        | 27.5        | 19.4        | 11.6              | 14.2        | 30.5        |
| PartSlip Liu et al. (2023)     | 79.4        | 84.4        | 82.9        | 68.3        | 32.8              | 32.3        | 63.4        |
| PartSlip++ Zhou et al. (2023)  | 78.5        | 86.0        | 74.1        | 66.9        | 36.7              | 33.5        | 62.6        |
| <b>Ours</b>                    | <b>94.6</b> | <b>90.0</b> | <b>86.5</b> | <b>69.5</b> | <b>49.6</b>       | <b>33.4</b> | <b>70.6</b> |

841  
842 A.5 ARCHITECTURAL DETAILS  
843844  
845 **Downsample layers:** The original PTv3 includes 4 downsample layers (implemented via Serialized-  
846 Pooling) in its encoder, used to reduce point cloud density. We removes all these downsample layers,  
847 replacing them with Linear layers for channel adjustment without reducing spatial resolution.  
848849 **Transformer blocks:** The original PTv3 has  $\text{enc\_depths} = (2, 2, 2, 6, 2)$  in the encoder, totaling 14  
850 Transformer blocks. We increases this to  $\text{enc\_depths} = (3, 3, 3, 6, 16)$ , totaling 31 blocks.  
851852 **Other configurations:** The final encoder channel dimension decreases from 512 to 384, with  
853 attention heads adjusted accordingly ( $\text{enc\_num\_head}$  from (2,4,8,16,32) to (2,4,8,16,24)).  
854855 A.6 LANGUAGE CONTRIBUTION AND ROBUSTNESS  
856857 **Vocabulary Construction.** The vocabulary of functional part names used for the Stage II PA3FF  
858 pre-training is derived directly from the ground truth labels provided by the PartNet-Mobility dataset.  
859 This is a finite, standardized set of functional terms (e.g., "handle," "knob," "slider," "door").  
860861 **Disambiguation.** This challenge is explicitly solved by the PA3FF Dual-Contrastive Loss in the  
862 pre-training stage. We enforce that the dense 3D features of all "handles" (e.g., drawer, microwave,  
863 faucet) must align with the diverse "handle" text embedding through Siglip. This forced semantic  
anchoring over a diverse dataset prevents semantic drift and ensures that the functional meaning of  
the part is consistent regardless of the object category.  
864

864     **Robustness:** We use the SigLip encoder, which is pre-trained on a massive scale of image-text pairs.  
 865     This foundation provides a naturally robust semantic space. As shown in Table 7, we substitute part  
 866     names with common synonyms (e.g., "handle" vs. "grip") or using hierarchical terms (e.g., "drawer  
 867     handle" vs. "handle") results in negligible performance degradation (e.g., remaining within  $\pm 2\%$   
 868     of the original success rate). This confirms that our semantic grounding is robust and leverages the  
 869     latent space of the pre-trained VLM.

870

871

872     Table 6: Language Robustness Evaluation

| 873     Method             | 874     Put in Drawer (%) | 875     Open Oven (%) |
|----------------------------|---------------------------|-----------------------|
| 874     PADP (Full Method) | <b>875     62</b>         | <b>876     86</b>     |
| 875     Synonyms Terms     | 62                        | 85                    |
| 876     Hierarchical Terms | 61                        | 86                    |

877

878     **Contribution:** The language module's primary contribution is resolving the semantic ambiguity  
 879     that plagues purely geometric 3D features, enabling robust cross-category transfer. The language  
 880     instruction (e.g., "Open the microwave") anchors the PA3FF-learned geometric-functional features  
 881     to a universal semantic concept ("handle"). This allows the policy to locate and manipulate a  
 882     geometrically novel part (e.g., a handle on a completely unseen faucet) because it is semantically  
 883     aligned with the instruction.

884

885

## 886     A.7 TRAINING DETAILS

887

888     **Initialization.** We initialize the common Transformer blocks with pre-trained weights from Sonata.  
 889     The new layers are randomly initialized.

890

891     **Refinement.** We fine-tune the entire backbone using the (1) Geometric Loss: a part-level SupCon  
 892     loss, and (2) Semantic Loss: an InfoNCE loss between each point feature and corresponding SigLIP  
 893     embedding.

894

895     **Policy.** The features, along with the full language instruction, are fed into the policy head. Only the  
 896     policy head is trained to generate the trajectory/action.

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **B ABLATION STUDY**  
919920 To validate the effectiveness of our proposed PADP framework, we conduct comprehensive ablation  
921 studies on the individual components of our method. Each ablation targets a specific design choice to  
922 understand its contribution to the overall performance.  
923  
924925 **B.1 ABLATION COMPONENTS**  
926927 We evaluate the following key components of our approach: **Stacking Additional Transformers:** We  
928 modify the PTv3 architecture by removing most downsampling layers and instead deepen the network  
929 through stacking additional transformer blocks. This architectural change enhances detail preservation  
930 while improving feature abstraction capabilities. **Feature Refinement via Contrastive Learning:** We  
931 apply feature refinement through contrastive learning across different objects(Geometric & Semantic)  
932 to enhance part-level consistency and distinctiveness in the learned representations.  
933934 Table 7: Ablation study results showing the impact of different components on task performance  
935 across diverse tasks.  
936

| Method                               | Put in Drawer (%) | Turn Tap (%) | Open Box (%) |
|--------------------------------------|-------------------|--------------|--------------|
| PADP (Full Method)                   | <b>62</b>         | <b>69</b>    | <b>66</b>    |
| w/o Stacking Additional Transformers | 58                | 63           | 59           |
| w/o Geometric Loss                   | 54                | 57           | 55           |
| w/o Semantic Loss                    | 46                | 53           | 52           |
| Sonata + DP3                         | 39                | 50           | 44           |
| DP3 (Baseline)                       | 37                | 47           | 39           |

945  
946 **B.2 ANALYSIS AND DISCUSSION**  
947948 Table 7 presents the quantitative results of our ablation study on the "Put in Drawer" task, demonstrating  
949 the contribution of each component to the overall performance. Our ablation study reveals several  
950 critical insights into the effectiveness of PADP:  
951952 **Limited Gains from Direct Combination:** The combination of Sonata with DP3 achieves only  
953 39% success rate, representing a modest improvement of 2% over the DP3 baseline (37%). This  
954 demonstrates that simply integrating existing methods without architectural modifications yields  
955 limited performance gains.  
956957 **Impact of Architectural Modifications:** Removing the feature refinement component while main-  
958 taining our transformer modifications results in 46% success rate. This 7% improvement over  
959 the baseline combination indicates that our architectural changes to the transformer stack provide  
960 meaningful benefits for manipulation tasks.  
961962 **Critical Role of Feature Refinement:** The most substantial performance degradation occurs when  
963 removing the feature refinement component, dropping from 62% to 46%. This 16% decrease high-  
964 lights the importance of contrastive learning for achieving part-level consistency and distinctiveness  
965 in the learned representations.  
966967 **Synergistic Effect of Components:** The full PADP method achieves 62% success rate, demonstrating  
968 that the combination of architectural modifications and feature refinement creates a synergistic effect  
969 that significantly outperforms individual components.  
970971 These findings underscore that PADP's performance gains stem primarily from our novel part-aware  
972 feature field learning approach rather than merely utilizing Sonata representations. The substantial  
973 improvement from 46% to 62% when including feature refinement confirms that our algorithmic  
974 contributions are essential for addressing part-level manipulation challenges, and that Sonata alone is  
975 insufficient for solving these complex robotic tasks.  
976

972 **C EXPERIMENT SETUP**  
973974 In this section, we provide a detailed description of the experimental setup, including both real-world  
975 and simulation configurations, as well as a discussion of the baselines.  
976977 **C.1 REAL-WORLD ENVIRONMENT SETUP**  
978979 **C.1.1 HARDWARE SETUP**  
980981 For the real-world experiments, our experimental platform is built around a Franka Emika Panda  
982 robotic arm, with its parallel gripper’s fingers replaced by UMI fingers (Chi et al., 2024b). For  
983 perception, we employ three Intel RealSense D415 depth cameras. Figure 9 shows our real-world  
984 setup and object used.  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
10071008 **Figure 9: Real-world experiment environment and assets utilized.**  
10091010 **C.1.2 TASKS DETAILS.**  
10111012 For the real-world experiments, we selected 8 representative tasks, covering a variety of manipulation  
1013 scenarios—including **pulling lid of pot**, **open drawer**, **close box**, **close lid of laptop**, **open**  
1014 **microwave**, **open bottle**, **put the lid on the kettle**, and **press dispenser** to evaluate our system’s  
1015 performance across diverse challenges, as shown in Figure 3.  
10161017

- 1018 • **Pulling lid of pot** : A pot with a detachable lid is placed on the workspace. The robot must  
1019 accurately grasp the lid’s handle, lift it vertically, and separate it from the pot.
- 1020 • **Open drawer**: A small drawer unit with a front handle is present. The robot must grasp the  
1021 handle and smoothly pull the drawer forward until it is fully open.
- 1022 • **Close box**: A small hinged box sits on the table. The robot must grasp the lid’s edge and  
1023 rotate it along its hinge axis until the box is fully closed.
- 1024 • **Close lid of laptop**: An open laptop lies on the workspace. The robot must grasp the top  
1025 edge of the screen and fold it down smoothly until the laptop is fully closed.

- **Open microwave:** A microwave oven with a front-mounted handle is present. The robot must grasp the handle and pull the door outward until it is fully open.
- **Open bottle:** A bottle with a screw-on cap stands on the table. The robot must grasp the cap, align its threads with the bottle neck, rotate it in the instructed direction by the required angle until the cap is fully unscrewed, and then lift the cap off vertically.
- **Put the lid on the kettle:** A kettle with a removable lid is placed on the workspace. The robot must grasp the lid, align it with the kettle opening, place it smoothly on top, and press down vertically until it is securely seated.
- **Press dispenser:** A dispenser bottle with a squeeze nozzle is placed on the workspace. The robot must grasp the nozzle section with its parallel gripper and apply a squeezing force to actuate the nozzle.

## C.2 SIMULATION ENVIRONMENT SETUP

Table 8: Summary of the five test sets and the type of generalization each addresses.

| Test Set    | Type of Generalization                                  |
|-------------|---------------------------------------------------------|
| Test 1 (OS) | Novel object positions and rotations                    |
| Test 2 (OI) | Novel object instances within the same category         |
| Test 3 (TP) | Novel part combinations within the same task categories |
| Test 4 (TC) | Novel part-level manipulation task categories           |
| Test 5 (OC) | Novel object categories                                 |

**Benchmarks.** PartInstruct contains 513 object instances across 14 categories (each annotated with part-level information) and 1302 fine-grained manipulation tasks grouped into 16 task classes. These 16 task classes include 10 seen categories for training and 6 unseen categories for testing, with each category defined by tasks that require the robot to perform a specific combination or sequence of part-level interactions.

**Evaluation.** To systematically evaluate the performance of the learned policy, PartInstruct designed a five-level evaluation protocol (see Table 8). Each test set evaluates a policy in one type of generalization condition. Specifically, they focus on generalizability over initial **object states (OS)**, novel **object instances (OI)**, novel part combinations in the same **task type (TP)**, novel **task categories (TC)**, and novel **object categories (OC)**. Detailed visualization can be viewed in Figure 10, 11, 12, 13, 14.



Figure 10: Left: Training set. Right: Test 1(OS). Novel object positions and rotations

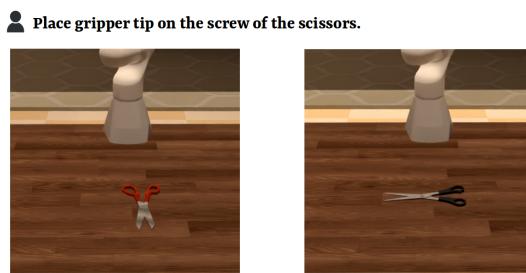
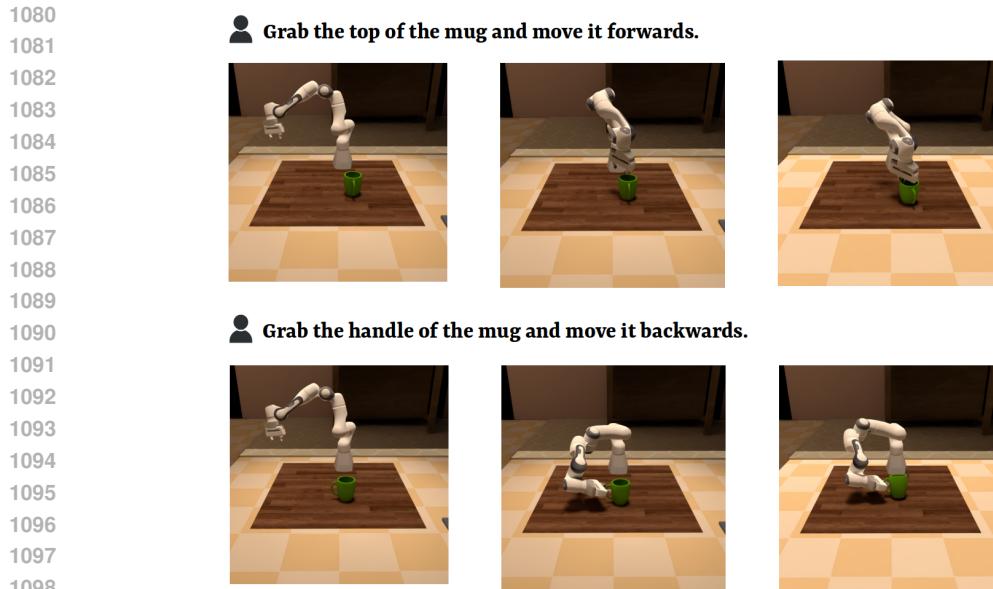
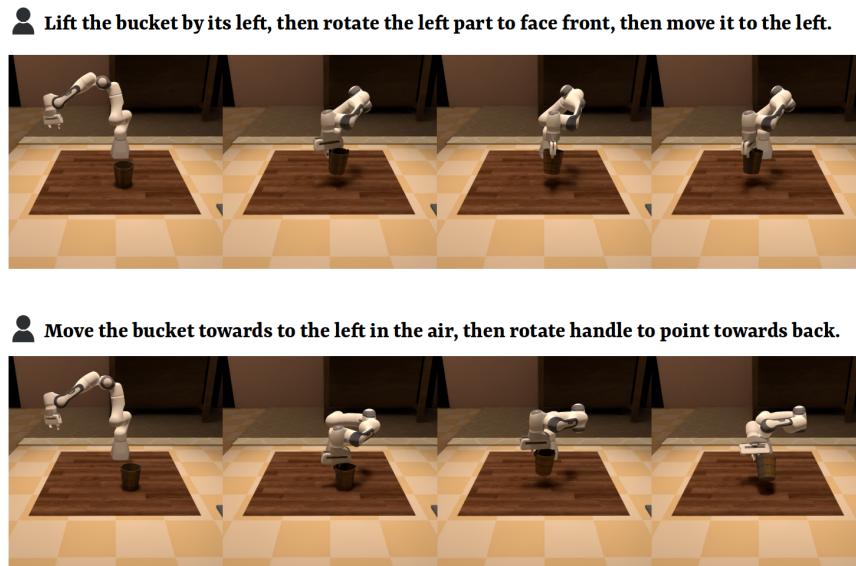


Figure 11: Left: Training set. Right: Test 2(OI). Novel object instances within the same category



1099     Figure 12: Above: Training set. Below: Test 3(TP). Novel part combinations within the same task  
1100     categories



1111     Figure 13: Above: Training set. Below: Test 4(TC). Novel part-level manipulation task categories



1127     Figure 14: Left: Training set. Right: Test 5(OC). Novel object categories

1134  
1135

## C.3 DETAILS OF BASELINES

1136 **Diffusion Policy (DP)** We train a CNN-based DP from scratch; the action prediction horizon is set  
 1137 to 16 steps, with an observation horizon of 2 steps and action steps of 8. The input RGB images  
 1138 are cropped to a size of  $76 \times 76$ . For language instructions, we use a pre-trained T5-small language  
 1139 encoder to obtain a language embedding of 512 dimensions. This language embedding is then  
 1140 concatenated with other features to form the final feature representation.

1141 **GenDP** Following the raw work (Wang et al., 2024c), we use DINOv2 and Grounding-DINO to  
 1142 extract information from multi-view 2D RGB images, and then project arbitrary 3D coordinates back  
 1143 to each camera, interpolate to compute representations from each view, and fuse these data to derive  
 1144 the descriptors associated with these 3D positions.

1145 **3D Diffusion Policy (DP3)** The DP3 model is trained under a similar setup as DP, with an action  
 1146 prediction horizon of 16 steps, an observation horizon of 2 steps, and action steps of 8. For the point  
 1147 cloud observations, we use an input size of 1024 points, which are downsampled from the original  
 1148 point cloud using the Iterative Farthest Point Sampling algorithm (Qi et al., 2017). The language  
 1149 instructions are processed in DP3 following the same approach as in DP.

1150 **Act3D** Act3D takes an image input size of  $256 \times 256$ . The action prediction horizon is set to 6  
 1151 steps, and the observation horizon is 1 step. Following the raw work Gervet et al. (2023), we use  
 1152 ResNet50He et al. (2016) as the vision encoder, and use CLIP Radford et al. (2021) embeddings for  
 1153 vision-language alignment. For 3D action map generation, the number of "ghost" points is set to be  
 1154 10,000, with a number of sampling level of 3.

1155 **3D Diffuser Actor (3D-DA)** For 3D-DA, we use the front-view RGB and scene point cloud as vision  
 1156 inputs. The RGB image has a resolution of  $256 \times 256$ . Following Ke et al. (2024a), we extract visual  
 1157 features with a pre-trained CLIP ResNet-50 encoder and use CLIP Radford et al. (2021) embeddings for  
 1158 vision-language alignment. We use an interpolation length of 5 steps and an observation history  
 1159 of 3 steps.

1160 **RTV2** We first convert the depth map from the static camera view into a point cloud in the camera  
 1161 coordinates, then apply camera extrinsic to transfer the point cloud into the world coordinates, where  
 1162 the action heat maps will be generated, and apply supervision. The action prediction horizon is  
 1163 chosen to be 6 steps, and the observation horizon is set to be 1 step.

1164  
1165

## D MORE REAL-WORLD EXPERIMENT RESULTS

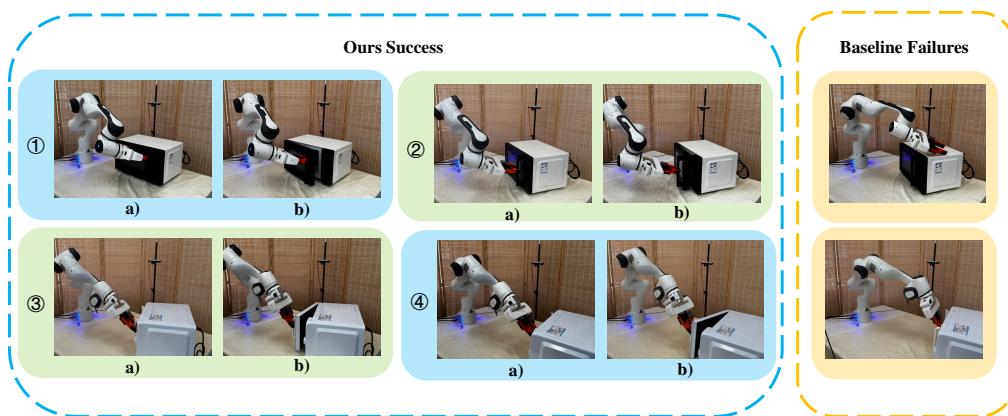
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

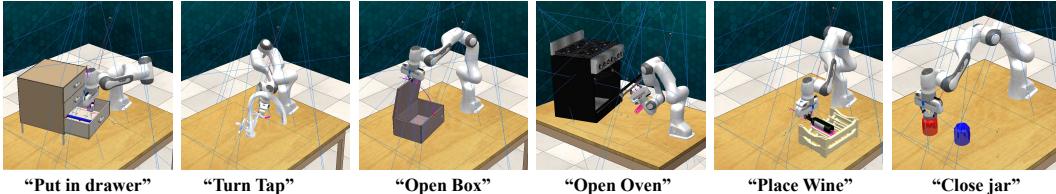
Figure 15: Our policy reliably detects variations in object parts across different positions and successfully executes the corresponding tasks, whereas the baseline method exhibits weaker spatial generalization and struggles to accurately perceive the object parts after positional changes.

1. **Spatial Generalization of PADP:** In the “Open microwave” task, our policy accurately perceives and localizes the door handle even when the microwave is spatially displaced,

1188 allowing it to reliably grasp the handle and pull the door open (shown in Figure 15 left).  
 1189 In contrast, the baseline method exhibits weaker spatial generalization: it fails to correctly  
 1190 identify the microwave and its handle after translation or rotation, often grasping incorrect  
 1191 regions and failing to open the door (shown in Figure 15 right).

1192 2. **Environment generalization of PADP:** Other than the “Open microwave” task, we also  
 1193 conducted environment generalization experiments on the “Open bottle” task. As shown  
 1194 in Table 3 and Figure 5, our policy maintains robust performance across varied spatial  
 1195 configurations, whereas baseline methods suffer a significant drop in success rate.

1197 **E MORE SIMULATION RESULT**



1207 Figure 16: Visualizations of simulation environments.

1209 **Benchmarks.** RLBench comprises 100 completely unique, hand-designed tasks performed using a  
 1210 7-DoF Franka Emika Panda arm with a parallel gripper. Observations include rich proprioceptive  
 1211 data (joint angles, velocities, forces, gripper state) and visual data (RGB, depth, segmentation masks)  
 1212 from an over-the-shoulder stereo camera and an eye-in-hand monocular camera. Each task provides  
 1213 an infinite supply of motion-planned demonstrations, supporting research in imitation and few-shot  
 1214 learning.

1215 **Tasks Details.** For our simulation experiments, we select 6 tasks from the RLBench, as shown in  
 1216 Figure 16.

- 1218 • **Put item in drawer** : In this scenario, a cabinet features three drawers—upper, middle, and  
 1219 lower—with a small cube resting on top. The objective is for the robot to grasp the bottom  
 1220 drawer’s handle, pull it open to an accessible position, and then precisely insert the cube  
 1221 into the opened drawer.
- 1222 • **Turn tap**: In this scenario, two taps—one on the left and one on the right—each equipped  
 1223 with a rotary handle, are present. The objective is for the robot to interpret grasp that left  
 1224 tap’s handle, and rotate it in the instructed direction until the tap is fully turned on.
- 1225 • **Open box**: In this scenario, a box with a hinged lid is placed before the robot. The objective  
 1226 is to accurately grasp the edge of the lid and lift it along its hinge axis until the box is fully  
 1227 open.
- 1228 • **Open oven**: In this scenario, an oven with a front-facing handle is present. The objective is  
 1229 for the robot to firmly grasp the oven door handle and pull it outward along its hinge until  
 1230 the oven is fully open.
- 1231 • **Stack wine**: In this scenario, a standard wine bottle and a horizontal-slot wine rack—designed  
 1232 to cradle bottles on their sides—are placed on the work surface. The objective is for the  
 1233 robot to securely grasp the bottle, slide it into the designated rack slot on its side, and ensure  
 1234 it is evenly supported and perfectly centered without tilting.
- 1235 • **Close jar**: In this scenario, two jars and a single lid are presented. The robot must grasp the  
 1236 lid, align its threads with the jar on the left, and rotate it in the instructed direction until the  
 1237 lid is fully tightened and sealed.

1239 **Training Details.** We collected expert demonstrations using the built-in scripted policies in RLBench,  
 1240 gathering 25 and 50 demonstrations per task for training. For DP and DP3, after training for at least  
 1241 2000 epochs, we select the single best-performing epoch for evaluation: we run each policy over 10  
 episodes, choose the top three success rates, and report their average as the final performance metric.

1242 For our policy, we instead select the best-performing epoch within the range of epochs **300** to **400**  
 1243 and apply the same evaluation protocol.

1244 **Results.** We evaluate our method on 6 RLBench tasks, as shown in Figure 16 and Table 9. Consistent  
 1245 with the real-world results, the simulation results also demonstrate that PADP enhances learning  
 1246 efficiency and generalization.

1247 Table 9: Simulated results with different numbers of demonstrations. Here we use the two seen  
 1248 objects in the training phase to test the success rate, and conduct five trials for each object with  
 1249 **random initialization** in each task.

| Method/Task<br>Number of Demos | Put in Drawer |            | Turn Tap   |            | Open Box   |            | Open Oven  |            | Place Wine |            | Close Jar  |            |
|--------------------------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                | 25            | 50         | 25         | 50         | 25         | 50         | 25         | 50         | 25         | 50         | 25         | 50         |
| DP                             | 16%           | 22%        | 19%        | 26%        | 13%        | 18%        | 23%        | 31%        | 11%        | 16%        | 4%         | 7%         |
| DP3                            | 31%           | 37%        | 41%        | 47%        | 34%        | 39%        | 51%        | 59%        | 41%        | 49%        | 9%         | 13%        |
| GenDP                          | 38%           | 44%        | 48%        | 55%        | 41%        | 48%        | 63%        | 68%        | 48%        | 56%        | 14%        | 19%        |
| PADP (Ours)                    | <b>52%</b>    | <b>62%</b> | <b>61%</b> | <b>69%</b> | <b>56%</b> | <b>66%</b> | <b>77%</b> | <b>86%</b> | <b>63%</b> | <b>74%</b> | <b>22%</b> | <b>30%</b> |

1259 Table 10: Runtime efficiency comparison of different policy learning methods.

| Method           | Inference Speed (FPS) |
|------------------|-----------------------|
| Diffusion Policy | 12.3                  |
| DP3              | <b>12.7</b>           |
| GenDP            | 0.67                  |
| PADP (Ours)      | 4.23                  |

## 1267 F RUNTIME EFFICIENCY ANALYSIS

1268 To evaluate the computational efficiency of our proposed PADP method, we conduct inference speed  
 1269 comparisons with state-of-the-art baselines. All experiments are performed on the same hardware  
 1270 configuration to ensure fair comparison. Table 10 presents the inference speed comparison across  
 1271 different methods, measured in frames per second (FPS) during policy execution. While our method  
 1272 is slower than DP3 approaches due to 3D processing overhead, it significantly outperforms GenDP  
 1273 and maintains practical real-time performance for robotic manipulation.

## 1276 G LIMITATION

1277 Our work focuses primarily on rigid and articulated objects. While it can be extended to handle  
 1278 flexible objects with relatively simple deformations—such as cables or ropes—it remains limited  
 1279 when applied to deformable objects exhibiting complex structural changes after deformation. The  
 1280 foundation model we rely on, Sonata, struggles to cope with such challenging cases. Addressing  
 1281 objects with complex deformations remains an open problem for future research. We hope our work  
 1282 can inspire further exploration in this direction.

## 1285 H THE USE OF LARGE LANGUAGE MODELS

1286 We used a Large Language Model (LLM) only as a writing assistant to polish the language of the  
 1287 manuscript (*e.g.*, grammar refinement, style adjustment, and clarity improvement). The research  
 1288 ideas, methodology design, experiments, and analysis were entirely conceived, implemented, and  
 1289 validated by the authors without reliance on the LLM. The LLM did not contribute to research  
 1290 ideation, experimental design, or result interpretation.