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Abstract

We introduce the Region Encoder Network (REN), a fast and effective model
for generating region-based image representations using point prompts. Recent
methods combine class-agnostic segmenters (e.g., SAM) with patch-based image
encoders (e.g., DINO) to produce compact and effective region representations,
but they suffer from high computational cost due to the segmentation step. REN
bypasses this bottleneck using a lightweight module that directly generates region
tokens, enabling 60X faster token generation with 35x less memory, while also
improving token quality. It uses a few cross-attention blocks that take point prompts
as queries and features from a patch-based image encoder as keys and values to
produce region tokens that correspond to the prompted objects. We train REN with
three popular encoders—DINO, DINOv2, and OpenCLIP—and show that it can be
extended to other encoders without dedicated training. We evaluate REN on seman-
tic segmentation and retrieval tasks, where it consistently outperforms the original
encoders in both performance and compactness, and matches or exceeds SAM-
based region methods while being significantly faster. Notably, REN achieves
state-of-the-art results on the challenging Ego4D VQ2D benchmark and outper-
forms proprietary LMMs on Visual Haystacks’ single-needle challenge. The code
and pretrained models are available athttps://github. com/savya08/ren!

1 Introduction

Do we really need hundreds of patch-based tokens to understand every image? Existing ViT encoders
divide images into a fixed grid of patch tokens. This approach is inefficient for two main reasons:
(1) images with few objects are represented using hundreds of tokens, leading to unnecessarily high
memory and compute costs for applications like video understanding; and (2) patch tokens do not
align with object boundaries, making tasks like retrieval and segmentation more challenging. A
more scalable and effective alternative is a region-based representation, which divides images into
object-level tokens and represents simpler images using far fewer tokens.

Recent region-based representations average-pool patch features over regions generated by class-
agnostic segmentation methods, such as SAM. These approaches improve semantic segmentation and
retrieval accuracy, but generating accurate segmentation masks for all objects in an image remains
computationally expensive, with high-quality segmentation models requiring up to 30 x more time
and memory than patch-based image encoders. This significantly limits the practical usability of
region-based representations. Furthermore, existing SAM-based methods for region token generation
rely on simple linear aggregation of patch features within object masks, which can remove fine-
grained details and discard valuable context surrounding objects. Current segmentation models also
tend to produce overlapping masks or miss parts of an image, resulting in over-representation of some
regions and no representation for others.
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To address these limitations, we propose the Region Encoder Network (REN), a point promptable
model that transforms patch-based features into region-based representations without requiring
explicit segmentation. The key idea is that image features already contain sufficient information to
segment objects. So instead of relying on external segmentation masks, we train REN to implicitly
segment and pool information through attention. Specifically, as shown in Figure[I] REN uses a
lightweight cross-attention module trained with two learning objectives—contrastive learning and
feature similarity—to extract high-quality region tokens directly from patch features. Given a point
prompt (query), REN applies cross-attention over patch features (keys/values) to produce a token
representing the object corresponding to the queried point. To generate region tokens for all objects,
REN can be prompted with a grid of points followed by a simple token aggregation step to merge
tokens that correspond to the same object.

We explore the design choices that make REN effective and apply it to multiple patch-based image
encoders—DINO [3]], DINOv2 [32], and OpenCLIP [17]]. Our experiments show that REN consis-
tently outperforms the patch-based feature backbone on semantic segmentation and object retrieval.
Further, it performs comparably to SAM-based approaches, while being more than 60 faster and
while using 35x less memory. Our main contributions can be summarized as follows:

* We introduce REN, a point promptable model that efficiently transforms patch-based feature
maps into semantically meaningful region tokens using a lightweight cross-attention module,
eliminating the need for costly segmentation models. We show that while REN can be trained for
any patch-based encoder, we can also extend it to other encoders without dedicated training.

* We study the design choices that affect the effectiveness and efficiency of transforming patch-based
features into region tokens. For instance, we investigate the impact of prompting strategies, how
to guide attention mechanisms effectively, how to preserve the information encoded in backbone
features, and how to move beyond simple pooling operations for feature aggregation—such as
average or max pooling—used in prior works.

* We train REN with multiple image encoders and will release the code and trained models to
facilitate future research and applications.

2 Related Works

Patch-Based Image Encoders. The Vision Transformer [9]] introduced the paradigm of representing
images as sequences of fixed-size patch tokens processed by Transformers [43]]. Building on this,
numerous patch-based image encoders have been developed to learn rich visual semantics [} 32,
14} 154, 2] or align vision with other modalities like text [33| 17, [50} 41} [53]]. These backbones
power a wide range of applications—for example, SAM [22]] uses MAE [14], and LLaVA [25]]
builds on CLIP [33]]. However, they represent each image with hundreds of tokens, regardless of
content, leading to high computational overhead. Techniques like token pruning [34} 26} 49} 31]] and
merging [28} 123} 147, 37,130, 27] aim to reduce token count, but they often trade off performance and
still rely on grid-based, semantically weak tokens. This motivates exploring beyond patch tokens.

Learning Objectness. The notion of objectness—that certain regions in an image correspond to
coherent, meaningful entities—has inspired many works. Self-supervised methods like LOST [40]
and TokenCut [45]] aim to segment objects by clustering image patches based on feature affinity. In
parallel, supervised models like DETR [4] and MaskFormer [8, [7]] learn to recognize objects using
cross-attention between learnable queries and patch features under dense supervision. More recently,
SAM and its variants [22} 35 55] have demonstrated that sparse prompts (e.g., points) can effectively
guide segmentation, showing that rich object-level information can emerge from simple supervision
signals. These works demonstrate that patch-level features can support object-level understanding.
Building on this, we propose a lightweight module that extracts generic object representations from
frozen patch features—without complex objectives or extensive supervision.

Region-Based Representations. Region-based representations have a long history in computer
vision, where regions were traditionally defined using low-level cues such as color, texture, and
intensity [12, [15 16l 29 136]. However, these early segmentation methods lacked precision. The
development of powerful class-agnostic segmenters like SAM [22]] has reignited interest in region-
based representations [38]. These methods use region masks from SAM to average-pool features
from patch-based encoders, producing region tokens that outperform patch tokens on tasks like
segmentation and retrieval, while significantly reducing token count per image. Follow-up works
further demonstrate their effectiveness in instance localization [20], embodied navigation [11], long-
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Figure 1: Overview of REN. Point prompts interact with patch-based features through cross-attention
blocks to produce region tokens. The training objective combines two components: (1) a contrastive
loss that aligns region tokens with those generated from an augmented view of the same image,
and (2) a feature similarity loss that aligns a linear projection of these tokens with average-pooled
patch features obtained using SAM masks. REN eliminates the need for explicit segmentation at
inference time while producing efficient and semantically rich region representations. We also show
thresholded attention maps for three query points inside the cross-attention block, which show that
the model learns to aggregate features primarily from the regions marked by the corresponding point
prompts.

tail object search [39], and multimodal concept learning [3]. While these SAM-based methods
have revived region-based representations, use remains limited due to high computational cost,
coarse feature aggregation, and incomplete image coverage. In contrast, REN uses lightweight
cross-attention from point prompts to patch features, enabling fast and memory-efficient region token
generation. This learned aggregation captures fine-grained, context-aware information and ensures
full image coverage with a compact set of region tokens. As a result, REN improves both efficiency
and performance across tasks while adapting the token count to image complexity.

3 REN

Figure [I] provides an overview of the proposed method. REN generates region tokens by cross-
attending features from a frozen image encoder with point prompts, where each point prompt is
represented using a 2D sinusoidal position embedding. We use a series of four cross-attention blocks.
The keys and values for each block are a linear projection of the image encoder features. The queries
for the first block are generated using a linear projection of the point prompts. For the subsequent
blocks, the queries are generated using a sum of point prompts and the previous block’s output. The
final block outputs region tokens for the queried points.

3.1 Training via Self-Supervised Learning and Knowledge Retention

We train REN using images from the Ego4D dataset [13]], which offers diverse scenes with objects at
varying scales and clutter. For each image encoder, a single REN model is trained and used across



(b) Image pairs showing SLIC-based point prompts (left) and token aggregated pomts (right).

Figure 2: Point prompting strategies and token aggregation results. Region tokens corresponding
to point prompts within the same-colored area are aggregated, and we show a representative point
prompt for each region. Thus, each image can be represented with a few dozen tokens instead of the
hundreds required by patch-based methods. (Best viewed in color)

all tasks. We preprocess the training dataset to extract segmentation masks using SAM [22]. These
masks are used to guide the contrastive and feature similarity losses, as described below.

Contrastive Token Learning. We use the InfoNCE loss [42] to ensure region tokens are consistent
across different views of the same object. Specifically, we identify regions in the training images
using SAM and assign an ID to each region. Then, we generate two augmented views of each
image using random horizontal flipping, rotation, cropping, color jitter, and sharpness adjustments.
REN is used to extract region tokens from both views. These "REN tokens" corresponding to prompt
points that fall inside the same region (i.e., are fully contained within the same SAM-generated mask)
are treated as positives, while all others are considered negatives. Specifically, we compute
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where r; denotes the i™ REN token, id; denotes the region ID of the ith token, N is the number of
region tokens in the image pair, 7 is a temperature hyperparameter set to 0.1, sim(+) represents the
cosine similarity function, and ]lH is an indicator function.

Feature Similarity. Training only on the contrastive loss could cause the model to drift away from
the original encoder’s feature space. This is undesirable, as the original models are well-trained
using large and carefully curated datasets, and we would like to retain their generalization capability.
To this end, we introduce a feature similarity objective that encourages alignment between region
tokens and the original encoder features. Specifically, for each region, we generate a target token ¢;
by average pooling encoder features within the SAM mask [38]], and apply cosine embedding loss

against the "aligned REN token" 7;, obtained via a linear projection of the REN token r;:

L = NZ< ||t||||n||> @

The linear projection is crucial because it allows the contrastive objective to flexibly learn more
discriminative region tokens, without being overly constrained by the structure of the original feature
space. At the same time, this objective ensures that the generated region representations retain
information to approximate the average backbone features via a simple linear projection.

Overall Loss. REN is trained using the following overall loss: £ = AcontLeont + AeatLtear- We set
>\cont = /\feat =1.0.



3.2 Inference via Prompting and Token Aggregation

Inference is straightforward when the target object is specified by the user or the task annotation. E.g.,
in object retrieval, a mask is provided for the query object, and REN can be prompted with points on
the annotated object mask to get region tokens for the query. However, for tasks requiring region
tokens for all objects, parts, and background, REN must be prompted with multiple point prompts
across the image, followed by token aggregation to merge tokens that correspond to the same object.

Point Prompting. We present two ways of prompting REN, as illustrated in Figure[2} (1) Grid-based
prompting, which uses a G x G grid of points as prompts; and (2) SLIC-based prompting, where we
segment the image into S = G? superpixels using SLIC [[1]] and use the center of each superpixel as
a point prompt. Grid-based prompting incurs no computational cost but may produce a few noisy
tokens from prompts at object boundaries. SLIC-based prompting eliminates ambiguous prompts at
the cost of an inexpensive grouping step. We use Fast-SLIC [21]] to get SLIC-based prompts.

Token Aggregation. We aggregate tokens by first computing the pairwise cosine similarity between
all REN tokens. Based on this similarity, we construct an adjacency matrix where edges are formed
for pairs with a similarity greater than . = 0.975. Connected components in this graph are identified,
and tokens within each component are average pooled to produce a single representative token. When
prompts are densely sampled (i.e., with high G x G or S), some points fall on object boundaries,
producing noisy region tokens that fail to group with others. These outlier tokens can be safely
discarded without impacting downstream performance. In particular, when using dense point prompts
(e.g., over 1000 points), we discard all groups that contain fewer than three tokens. Figure 2] shows
the output after token aggregation, demonstrating that this step significantly reduces the number of
tokens required to represent an image.

Variants of Region Representations. As mentioned in Section [3.I] REN produces two sets of
token-level representations: (1) REN tokens, which are directly optimized using the contrastive loss
(Equation (T))), and (2) Aligned REN tokens, which are trained to align with the original image features
via the feature similarity loss (Equation (2))). Since aligned REN tokens can be derived via a linear
projection of the REN tokens, the latter contains all the information needed to obtain the former.
As aresult, we use REN tokens for downstream tasks that involve further learning (e.g., semantic
segmentation). For learning-free setups, the choice depends on the task: REN tokens are better for
tasks requiring discriminative representations of the same object (e.g., visual query localization),
while aligned REN tokens are preferable for tasks that leverage the properties of the underlying
image encoders—for example, CLIP’s language alignment (e.g., visual haystacks) or DINOv2’s
category-level semantic understanding (e.g., image retrieval).

3.3 Extending Pretrained REN to Other Encoders

We can use a pretrained REN—for example, REN trained for DINO (RENpno)—to generate region-
based representations from any target image encoder without dedicated training. Specifically, given
an input image, we use SLIC-based point prompts to generate region tokens from RENpno, and track
which point prompts are grouped together during token aggregation. For each group of points, we get
a region mask by taking a union of the corresponding superpixels. Figure [2b|illustrates examples
of such region masks. To extract a feature representation for each region, we use the region masks
to constrain the global attention in the final layer of the target image encoder. Specifically, for each
region mask, we identify the set of patch tokens that overlap with the region. Then, we restrict the
attention of the CLS or query token (used for global aggregation) only to the patch tokens that fall
within the region. This can be efficiently implemented by duplicating the CLS/query token and
applying attention masking using the region masks. By doing this for each region, we obtain region
tokens that align with the feature space of the target encoder.

The REN-based approach offers two key advantages over the SAM-based method proposed by
Shlapentokh-Rothman et al. [38]: (1) substantially lower computational cost in both time and
memory, and (2) complete coverage of the image, as unlike SAM, the masks produced by REN do
not overlap and leave no area unsegmented.



Table 1: Runtime comparison. With 10x fewer SAM -=- Batched-SAM -#- EfficientViT-SAM - SAM 2 -8 REN
parameters, REN achieves over 60x speedup com- 50000

pared to the fastest SAM-based approach, as mea- 2 A
sured on a single NVIDIA A40 GPU. Evaluations 3 , o
use either a 32x32 grid prompts or 1024 SLIC- & 80355 23356
based prompts. Reported metrics exclude the patch- g
based image encoder (DINO ViT-B/8: 85.8M pa- & 50
rameters, 0.011 s/img). g
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Params  Time (s/im 64 256 1024 4096 16384
Method (M) ﬁ Point prompts per batch

Figure 3: Memory comparison. We measure

SAM [22] 641.1 2.310 . .
Batched-SAM [24] 6411 2048 peal; GPU memory used for processing a sin-
EfficientViT-SAM [51] 2033 1790  gle image across prompt batch sizes. REN can
SAM 2 [33] 224.4 1.898 handle larger batches and it uses substantially
REN (w/o TokAgg) 20.1 0.020 0017 less memory—for example, 35x less memory
REN (w/ TokAgg) 20.1 0.033  0.029 than the most efficient SAM-based approach

for a batch of 1024 prompts (32x32 grid).

4 Experiments

We compare the computational cost of REN and SAM-based methods in Section evaluate REN
on downstream tasks in Section[4.2] and present ablation studies in Section We additionally
discuss alternative approaches explored in Section B]of the supplementary.

4.1 Compute Requirements

We compare the computational requirements of REN with other SAM-based methods for region token
generation. This analysis is conducted on a single NVIDIA A40 using images from the ADE20K
dataset [52]]. We exclude the contributions of patch-based encoders from the evaluated metrics, as
these models are substitutable and contribute equally across approaches. Additionally, we use SAM
ViT-H for this analysis, as smaller SAM variants perform worse than the ViT-H-based approach [38].
Table [T)and Figure 3| present the results, which compare three key metrics:

Parameter Count. REN trained for DINO ViT-B/8 has 10.1x fewer parameters than EfficientViT-
SAM [51]], the most parameter-efficient SAM-based model.

Processing Time. For a 32x32 grid of point prompts, REN generates region tokens 61.7x faster than
EfficientViT-SAM, the fastest SAM-based approach. Batched-SAM [24] was evaluated using a batch
of 8 images—the largest it can handle without running out of memory on an A40. For fairness, REN
was also benchmarked for a batch size of 8, though it can process a much larger batch of images.

Peak GPU Memory. While REN can process dense grids of point prompts simultaneously, the
SAM-based methods split prompts into smaller batches and process them separately. On a single A40,
SAM, EfficientViT-SAM, and SAM 2 cannot handle 4096 prompts at once, and Batched-SAM fails
beyond this limit. In contrast, REN can process up to 16384 prompts (64 x64 grid) at once, while
using less memory than what the most efficient SAM-based approach requires for just 64 prompts.
For a 32x32 grid, REN uses 35.2x less GPU memory than the most efficient SAM-based method.

4.2 Downstream Tasks

We compare REN’s region representations to the original patch-based representations across several
tasks. REN consistently outperforms both patch-based baselines and prior region-based methods,
demonstrating its effectiveness and versatility.

Visual Query Localization. We evaluate REN on the Ego4D VQ2D benchmark, where the task is
to localize the last occurrence of a query object in a long video. Our approach follows a stage-wise
pipeline: (1) Use REN to extract region tokens from multi-resolution crops of video frames and the
visual query; (2) use cosine similarity to select candidate regions in the video that match the query;
(3) convert the point prompt of the selected candidates into bounding boxes using SAM 2 [35]] and
refine the selections by cropping around them; (4) use SAM 2 to track the last candidate as the initial



Table 2: Visual query localization on the Ego4D
VQ2D benchmark. Our method substantially
outperforms existing approaches, including those
specifically developed for this task. Baseline re-
sults are sourced from the official leaderboard.

Method stAP tAP Succ. Rec.

SiamRCNN 0.13 021 416 34.0
CocoFormer [48] 0.18 026 48.1 43.2 ’ ~
VQLoC [18] 024 032 559 451 . o e
HERO-VQL 028 037 607 453 Figure 4: Examples of query localization.
PRVQL [10] 028 037 594 45.7 REN effectively localizes target objects in long
RELOCATE [20] 035 043 60.1 50.6 videos despite challenges like clutter, occlusions,
RENDNOv2 040 052 612 493 background blending, motion blur, viewpoint
changes, and brief visibility.

Input DINOv2 REN
Table 3: Semantic segmentation using a lin- P T

ear classifier on frozen features. For ref-
erence, the absolute state-of-the-art results
from Chen et al. [6] and Wang et al. are
reported in the column heading. Results for
methods using external segmenters are taken
from Shlapentokh-Rothman et al. [38]].

VOC2012  ADE20K .
Method 89.0)  (63.0) - :
With External Segmenters
SAMbpiNov2 83.6 50.2
SAM+SLICD1N0V2 86.9 529
Direct Encoders

DINOv2 82.1 47.7
RENDNov2 86.5 50.9
DINO 66.4 31.8

RENDNo 714 Bl Figure 5: Qualitative comparison of semantic

OpenCLIP 714 39.3 segmentation on ADE20K. Region tokens from

RENopencrip 78.0 2.8 REN vyield cleaner, less noisy predictions com-

pared to patch-based features from DINOv2.

track; and (5) use REN to generate additional visual queries from the initial track, and repeat the
search, refinement, and tracking steps. This pipeline follows the approach proposed by Khosla et al.
[20]. They provide a detailed explanation of each step. The main difference from [20]]: they use
SAM-based pooling to extract region tokens, while we use REN, and, given a 60 speed-up realized
by eliminating SAM, we can process multi-resolution crops of video frames while still being faster.

The results are presented in Table[2] REN significantly outperforms previous models, achieving a new
state-of-the-art on this challenging task. Notably, the second-best method, RELOCATE, also uses
a region-based approach that relies on SAM for region token generation. The strong performance
of both RELOCATE and REN highlights the benefit of region-based representations for this task.
Moreover, REN outperforms RELOCATE by leveraging a contrastive learning objective that enables
it to capture fine-grained details of the query object. In contrast, RELOCATE generates region tokens
by averaging features within object masks, which can sometimes overlook subtle distinguishing
characteristics.

Semantic Segmentation. To evaluate representation quality, we follow the standard practice of
training a linear classifier on frozen features to predict semantic class labels for objects in an image.
The results are presented in Table 3] For each image encoder E, we compare two setups: (1) E: The
encoder E processes the input image to produce a low-resolution feature map. A linear classifier is
applied to this feature map to predict class logits, which are upsampled to the original resolution for
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Table 4: Visual Haystacks’ single-needle challenge. Pooling SigLIP 2 features with a pretrained
RENpNo leads to a substantial performance gain, outperforming proprietary LMMs, open-source
LMMs, and RAG-based methods—especially at larger values of N. Results for all methods except
REN and SigLIP 2 are from [46]. “E” indicates context overflow, execution failure, or API error.

Method N=1 N=2 N=3 N=5 N=10 N=20 N=50 N=100 N=500 N=1K
Detector Oracle 90.2 89.6 888 883  86.9 854 81.7 71.5 74.8 73.9

Gemini 1.5Pro 884 82.0 783 760 719 68.6 62.8 574 E E
GPT-40 825 799 715 733 682 65.4 59.7 55.3 E E
LongVILA 63.8 59.0 577 56.7 556 52.0 52.0 52.0 E E
Qwen2-VL 809 76.6 736 679 626 59.1 52.6 E E E
Phi-3 805 69.1 673 620 548 52.6 50.8 E E E
InternVL2 88.1 805 723 639 588 552 E E E E
mPLUG-OWL3 844 66.0 62.1 570 532 51.5 E E E E

LLaVA-v1.5 8.8 771 758 68.6 63.6 60.4 55.3 57.5 55.4 529
MIRAGE 832 778 766 728 70.5 66.0 63.6 62.0 58.7 55.7

SigLIP 2 720 692 68.1 653 641 60.3 58.7 58.3 56.6 54.9
RENpmo-sigLirz 812 786 774 760 74.0 72.1 68.3 65.5 62.3 59.2

Query Image
o

Some Images Retrieved from the Database
i t\ ’,
: 4 @V

Table 5: One-shot image retrieval.
Baseline results are taken from
Shlapentokh-Rothman et al. [38]].

Method mAP mRP@50 RN 1 i)
\ WA ?
DINOv2 0.13 0.33 . . . .
SAMpmow 045 0.58 Figure 6: Example of image retrieval on COCO. Given
RENpmow  0.52 0.65 an image of a query object (left), REN retrieves database

images containing the same object.

per-pixel predictions; and (2) RENg: REN generates region tokens for each point prompt on the
input image, and a linear classifier predicts the class label for each token. Predictions are mapped
back to the image by assigning the label to the patch/superpixel containing the corresponding prompt.

Tab1e|§|also includes results from Shlapentokh-Rothman et al. [38]], where external models are used to
segment regions and a linear head predicts labels for each region. Using SAM for segmentation pro-
vides these methods with high boundary precision at substantial computational costs (see Section[4.).
Nevertheless, RENpnoy2 outperforms SAMpnove due to better coverage of image regions.

Finding Needle in a Haystack. We evaluate our approach of extending pretrained REN to other im-
age encoders (Section [3.3) on the single-needle challenge from the Visual Haystacks benchmark [46].
The task involves answering queries of the form: “For the image with the [anchor object], is there a
[target object]?” We use RENpno to segment each image into regions and employ SigLIP 2 [41] to
generate text-aligned region tokens. Specifically, for each region identified by RENpno, we extract
the corresponding patch features from the final hidden state of SigLIP 2’s vision encoder and pool
them using its pooling head to produce a region token. To answer a query, we first retrieve the image
containing the anchor object by computing cosine similarity between region tokens of each image
and the SigLIP 2 text embedding of “This is a photo of [anchor object].” The image with the most
similar region token is selected. We then check whether this image contains the target object by
computing cosine similarity between its region tokens and the text embedding for “This is a photo of
[target object].” If the highest similarity exceeds 0.05, the answer is “Yes”; otherwise, “No.”

Table E| shows the results. While SigLIP 2 underperforms relative to the baselines, using RENpo to
pool its features into region tokens boosts the absolute performance by 8.7% on average. Furthermore,
our approach remains robust as the number of input images (N) increases, and we outperform
proprietary LMMs, open-source LMMs, and RAG-based methods reported in [46] by a substantial
margin. This underscores the effectiveness of region-based representations in large-scale retrieval.

Image Retrieval. We evaluate REN on single-shot object-based image retrieval, where the task is to
retrieve images from a database that contains a specified query object. Figure [f]illustrates an example.
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50651.051.0 509 Table 6: Effects of prompting technique and
30 4,,7}6 P e s e token aggregation. SLIC-based prompting im-
% 4 proves segmentation results on ADE20K, while
p 40 » image retrieval on COCO remains unaffected
§ 35 by the prompting strategy. Token aggregation
230 277 reduces the average token count per image by
25 " 19.5x without compromising performance. We
g0 L DINOv2 -=-REN use a similarity threshold of p = 0.975 for to-
0 20 40 60 80 NTA ken aggregation, which yields an average of
Average tokens per image 72.1 tokens per image.
Figure 7: Performance vs. token count. REN Token ADE20K COCO

matches the performance of the original image Prompt Aggregation (mAP)  (mRP)
encoder, which uses 1369 tokens/image, with

just 41 tokens/image, and surpasses it beyond gﬁg v ggj 822
that point. Performance stabilizes at 70 to- SLIC 50,9 0.66

kens/image. NTA denotes no token aggregation, SLIC v 51.0 065
i.e., 1369 tokens/image. ) ;

Table 7: Training loss ablation. A combination of contrastive loss and feature similarity loss yields
the best performance. The VQ2D performance is evaluated on 500 videos from the validation set.

Contrastive Loss  Feature Similarity VOC2012 VQ2D

v 71.7 46.9
v 86.0 49.7
v v 86.5 63.7

Following Shlapentokh-Rothman et al. [38], we use the COCO validation set as the image database,
and 50 images with corresponding object masks serve as query instances for each object class. Query
features are computed by averaging region tokens generated from 128 point prompts within each
query mask. These are compared to region features of all database images using cosine similarity,
and images are ranked by their highest similarity score. We report the mean Average Precision (mAP)
and mean Retrieval Precision at 50 (nRP@50) in Table[5] Region-based methods outperform the
patch-based baseline, and REN further surpasses the SAM-based baseline while offering faster and
more efficient region token generation.

4.3 Ablations

We discuss the design decisions that lead to an effective region encoder network. All ablations are
conducted using REN trained with DINOv2 as the image encoder.

Effect of Token Aggregation. As described in Section [3.2] the extent of token aggregation in
REN can be controlled by the aggregation threshold . Setting ;¢ > 1 disables aggregation, while
lower values result in more aggressive merging, reducing the token count. Figure [/|shows semantic
segmentation performance across different values of y ranging from 0.875 to 0.975. The horizontal
axis indicates the average number of tokens per image, and the vertical axis shows mAP. REN
matches the performance of the patch-based encoder using just 41 tokens and surpasses it beyond
that point. With ;¢ = 0.975, REN achieves a 19.5 x reduction in token count without compromising
performance. Unlike patch-based encoders, which use a fixed token count (1369 tokens per image in
this case), REN provides the flexibility to adjust the token count based on compute constraints.

Effect of Prompting Strategies. Table [f|compares grid-based and SLIC-based prompting strategies.
The SLIC-based approach performs better for semantic segmentation because it results in more
precise predictions at object boundaries, as illustrated in Figure[2] For image retrieval, both prompting
strategies perform similarly. This is expected because noisy tokens at object boundaries in grid-based
prompting are either attenuated during token aggregation or, if aggregation is not used, contribute
minimally to the overall similarity scores between the query token and the rest of the image tokens.

Training Loss Ablation. Table[7]presents the results of a loss ablation study, showing that combining
the contrastive loss and feature similarity loss yields the best performance.



5 Conclusion

In this work, we present REN, a model for efficiently generating region-based representations of
an image. By removing the reliance on segmentation models, REN greatly improves the efficiency
of region token extraction, making them more practical for a wide range of applications. Beyond
efficiency, our learning-based approach produces region representations that not only surpass tradi-
tional patch-based features but also outperform prior region-based methods. Overall, our findings
demonstrate that region tokens provide a compact, content-aware, and semantically rich alternative to
patch-based representations, and REN offers a practical and efficient way of generating them.

Limitations. Using point prompts can introduce ambiguity—whether to represent a whole object
or just a part. This is addressed by placing multiple prompts on the same object and adjusting the
aggregation threshold p based on the task: a high u favors full objects, while a low 4 favors parts.
Additionally, region segmentations from REN are less precise than those from SAM, limiting its
suitability for interactive segmentation, though they are sufficient for generating region tokens.

Future Works. Future work can explore using REN’s region tokens as inputs to vision-language or
multimodal models, potentially replacing patch-based tokens. Further directions include fine-tuning
the image encoder with task objectives and explicitly modeling region relationships to better support
complex scene understanding.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:

Justification: We confirm that the main claims made in the abstract and introduction ac-
curately reflect the paper’s contributions and scope, and are supported by experimental
results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:
Justification: We discuss the limitations of our work in Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:
Justification: We provide such details in Appendix [Al Section[3] and Section 4}

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

14



Justification: We use only publicly available datasets, as summarized in Table[9] Code and
trained models will be released upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:
Justification: Appendix [A]contains all training and evaluation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Three of the four downstream tasks are training-free, so no error bars are
reported. For the fourth, we follow prior works, which similarly omit error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We provide a detailed discussion on the compute requirements of REN in
Section Additional details needed for reproducing the experiments are mentioned in
Appendix [A]and Section[d.2]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:

Justification: We confirmed the research conducted in the paper conform with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: We discuss broader impact of our work in Appendix[C]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: All artifacts used in this work are standard academic datasets and publicly
available software, and each has been properly cited. We mention the licensing information
of each dataset in Table

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: Comprehensive details are provided in the paper to ensure the proposed assets
are easy to use and understand.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

This supplementary material is organized as follows: Appendix [A] provides implementation de-
tails; Appendix [B]discusses alternative approaches explored during the development of REN; and
Appendix [C]addresses broader societal impacts of our work.

A Implementation Details

We implement REN using PyTorch, with all training and evaluation performed on a single NVIDIA
A40 GPU. For the vision backbone, we use frozen features from three pretrained encoders—DINO
ViT-B/8, DINOvV2 ViT-L/14, and OpenCLIP ViT-g/14—as detailed in Table |8} The region encoder
comprises 4 cross-attention decoder layers with 8 attention heads.

Training. Training is performed on images sampled from the Ego4D dataset [[13]]. We use a batch
size of 16 and randomly sample up to 256 point prompts per image to generate region tokens.
Segmentation masks are precomputed for all training images using the SAM Automatic Mask
Generator [22]], with a 32x32 point grid and a stability threshold of 0.9. These masks are used
to assign region IDs for the contrastive loss and to average-pool encoder features for the feature
similarity loss. If multiple masks overlap a given point prompt, we select the mid-sized one.

To compute the contrastive loss, we create two augmented views of each image using a combination
of horizontal flipping, color jittering, sharpness adjustment, affine transformations (rotation and
shear), cropping, and resizing. Both the contrastive and feature similarity losses are weighted equally
during training. The model is optimized using AdamW with a learning rate of 0.001, cosine decay
schedule, 100 warmup steps, and gradient clipping with a maximum norm of 5.0.

Inference. For tasks where we do not extend a pretrained REN to a new image encoder, we use
either grid-based or SLIC-based prompting. For SLIC-based prompting, we use Fast-SLIC [21]] with
a compactness value of 256. The number of point prompts is set to match the number of patches
produced by the image encoder (e.g., 1369 for DINOv2). Token aggregation is then performed by
constructing an adjacency graph using SciPy [19]], where an edge is added between two region tokens
if their cosine similarity exceeds a threshold p. Connected components are identified via breadth-first
search (also using SciPy), and groups with fewer than three region tokens are discarded. Figure|[g]
reports the average number of region tokens per image for varying values of p; we find that © = 0.975
performs consistently well across tasks. Additional task-specific parameters are detailed in Section 4]

For tasks involving the extension of a pretrained REN to a new image encoder, we use SLIC-based
prompting with 576 point prompts and a compactness of 256. Among the available models, the REN
trained on DINO features performs best as a region segmenter, possibly due to its smaller patch size.
For these transfer settings, we use a lower aggregation threshold of 14 = 0.8.

Table Ol summarizes the datasets used in this work.

B Explored Alternatives

To better understand and validate the design decisions in REN, we experimented with some alternative
approaches. We discuss these explored alternatives below along with their empirical outcomes and
limitations.

Attention Supervision. We examine the effect of direct attention supervision during training,
which would encourage each region token to aggregate information from its corresponding object.

Table 8: Image encoders used for training REN. Each encoder is listed with its architecture, input
resolution, and output feature dimensionality used for region token extraction.

. Image Feature
Encoder Architecture Resolution  Dimension
DINO [5] ViT-B/8 384x384 768
DINOv2 [32] ViT-L/14 518518 1024
OpenCLIP [17] ViT-g/14 224x224 1408
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Dataset Task(s) License

Ego4D Training, Visual Query Localization MIT License
ADE20K Semantic Segmentation BSD-3-Clause License
VOC2012 Semantic Segmentation CCBY 25

COCO Visual Haystacks, Image Retrieval CCBY 4.0

Table 9: Summary of datasets used in this work. All datasets used in this work are standard
academic benchmarks and publicly available. Licensing information for each dataset is provided.
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Figure 8: Token count vs. aggregation thresh-
old. The average token count per image is com-
puted using the ADE20K validation set.

Figure 9: Point prompts vs. learnable queries
Using point prompts leads to a faster conver-
gence of feature similarity loss.

Specifically, for each point prompt, the model was trained to focus only on the relevant object by
aligning its attention map with the object’s SAM mask. Following Cheng et al. [7], we used a
combination of binary cross-entropy and DICE loss, assigning equal weight to both components:
Latn = Luce + Laice- In our experiments, applying attention supervision only to the attention maps of
the final cross-attention block proved to be the most effective strategy for supervising attention maps.
However, incorporating attention supervision ultimately degraded overall performance as shown in
Table We attribute this to the restrictive nature of direct attention supervision, which may hinder
the model’s ability to flexibly learn contextual representations and predict distinct representations for
different point prompts within the same region.

Point Prompts vs. Learnable Queries. In the early stages of developing REN, we explored an
alternative approach based on learnable queries, inspired by DETR [4] and MaskFormer [8]. In this
setup, a fixed set of learnable queries was used to cross-attend patch features and produce region
tokens. While this formulation yielded reasonable initial results, it introduced a complex optimization
problem—primarily due to the use of Hungarian matching to align the predicted set of tokens with the
target regions. In contrast, our current point-based formulation offers a significantly simpler and more
efficient training pipeline. It eliminates the need for set matching and allows for faster convergence
as shown in Figure[9] Moreover, point-based prompting offers greater flexibility and user control.
For example, in tasks like Visual Query Localization and COCO image retrieval (Section [)), it is
often desirable to generate region tokens for only a small subset of objects, such as a specific query
object. The point-based approach makes this possible in a straightforward manner, which is difficult
to achieve with fixed learnable queries.

C Broader Impact

REN’s efficiency supports broader accessibility by enabling high-quality visual understanding on
resource-constrained devices, such as mobile platforms or real-time systems in assistive technology
and low-bandwidth settings. It also contributes to scientific progress by advancing foundational
research in compact representation learning and enabling tasks like episodic memory retrieval.
Furthermore, by eliminating the need to process hundreds of patch tokens or run large segmentation
models, REN can help reduce the energy consumption and carbon footprint of large-scale video
understanding systems.
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Table 10: Evaluating attention supervision as a training objective. Incorporating attention super-
vision results in a performance drop for both semantic segmentation and visual query localization.

Contrastive Feature Attention
Loss Similarity Supervision voc2012. vQ2b
v v 86.5 63.7
v v v 86.4 60.3

At the same time, the ability to efficiently localize and track objects in video streams could be misused
for mass surveillance, particularly if deployed in real-time or without user consent. Additionally,
incorrect predictions—such as false positives in object localization—could lead to harmful outcomes
in safety-critical systems like autonomous vehicles or security monitoring. To mitigate these risks,
we recommend incorporating safeguards such as transparency in deployment, human-in-the-loop
oversight, and clear communication of failure modes. As foundational work, its societal impact will
depend heavily on downstream use.
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