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Abstract

Large Language Models (LLMs) are being explored for applications in scien-
tific research, including their capabilities to synthesize literature, answer research
questions, generate research ideas, and even conduct computational experiments.
Ultimately, our goal is for these to help scientists derive novel scientific insights.
In many areas of science, such insights often arise from processing and visualizing
data to understand its patterns. However, evaluating whether an LLM-mediated
scientific workflow produces outputs conveying the correct scientific insights is
challenging to evaluate and has not been addressed in past work. We introduce AS-
TROVISBENCH, the first benchmark for both scientific computing and visualization
in the astronomy domain. ASTROVISBENCH judges a language model’s ability to
both (1) create astronomy-specific workflows to process and analyze data and (2)
visualize the results of these workflows through complex plots. Our evaluation of
visualizations uses a novel LLM-as-a-judge workflow, which is validated against
annotation by five professional astronomers. Using ASTROVISBENCH we present
an evaluation of state-of-the-art language models, showing a significant gap in
their ability to engage in astronomy research as useful assistants. This evaluation
provides a strong end-to-end evaluation for AI scientists that offers a path for-
ward for the development of visualization-based workflows, which are central to a
broad range of domains from physics to biology. We release the code and data for
ASTROVISBENCH at astrovisbench.github.io.

1 Introduction

As large language models evolve, they hold increasing promise as assistants in scientific research to
synthesize literature [29, 11] and generate or execute research ideas [32, 25, 14]. However, end-to-end
AI science is still seriously lacking [23], as indicated by benchmarks that evaluate models’ capabilities
to deploy research in computer science [38] and machine learning [33], as well as coding for scientific
problems [34].

Useful AI assistants that can aid expert-led scientific progress need to have deep domain knowledge to
implement scientific workflows: understanding the scientists’ queries in the context of their workflow,
knowing when and how to use domain-specific APIs, navigating data sources, manipulating and
visualizing data for analyses. Although there are challenging code benchmarks, e.g., SWE-bench
[16] and BigCodeBench [45], evaluating whether an LLM-mediated scientific workflow produces
visualizations that convey the correct scientific insights is challenging to evaluate and has not been
addressed in past work.

https://astrovisbench.github.io/
https://astrovisbench.github.io


Evaluation: compare values

Evaluate results

Execute

Processing tasks

… 
ref_y, ref_x = skycoord_to_pixel(source_location, 
   wcs.WCS(ref_fits['SCI', 1], ref_fits)) 
ref_cutout = extract_array(ref_data, (11, 11), 
   (ref_x, ref_y)) 
…

Ground truth code

Once our environment is set up, the next step is 
to extract and process data necessary for 
photometric analysis. […] you should derive the 
exact coordinates to focus on by utilizing sky 
coordinate tools […]

Visualization tasks
For the final part of this assignment, let's visualize the PSF model derived earlier. We aim to create 
a clear representation of the data highlighting any potential faint sources by careful manipulation 
of image scaling. The objective is to produce a visually distinct image through which we're able to 
discern and identify the physical characteristics defined within the PSF model. […]

… 
ref_cutout = extract_array(psfs[0].data, 
(41, 41), (122, 122)) 
norm1 = simple_norm(ref_cutout, 
stretch='log', min_cut=0.0, max_cut=0.2) 
plt.imshow(ref_cutout, origin='lower', 
norm=norm1, cmap='gray') 
…

Ground truth code
… 
psf_data = psfs[0].data 
norm = simple_norm(psf_data, 
stretch='log', min_cut=1e-6, max_cut=1) 
plt.imshow(psf_data, origin='lower', 
norm=norm, cmap='viridis') 
…

Generated code

No error Minor error Major error

The under-test visualization, while showing the same basic PSF structure, fails to effectively 
highlight faint sources and background noise due to suboptimal scaling choices. The colormap 
choice and intensity scaling make it harder to discern subtle features that are visible in the ground 
truth. These are fixable issues but impact the visualization's ability to fulfill the stated goals.

Query

Task query

Generate codeContext
import space_phot 
… 
synphot_file = './
synphot5.tar.gz' 
…

ref_y: … 
ref_x: … 
ref_cutout: …

ref_y: … 
ref_x: … 
ref_cutout: …
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Figure 1: An overview of ASTROVISBENCH, evaluating astronomy research workflow implementa-
tion that leads to a visualization. In a Jupyter notebook environment, given a task query Q and the
task context (i.e., code prior to the cell-under-test), a subject LLM generates code ĉ that is validated
as to whether it correctly leads to the right visualization (Section 2.1). There are two types of tasks:
processing tasks tprocess involve scientific computing necessary to prepare for the visualization, and
visualization tasks tvisualize involve code that creates a visualization (Section 2.2). Processing tasks
are evaluated by executing the ground truth and generated code, and comparing the values of key
products necessary for the visualization (Section 3.1). Visualization tasks use a VLM-as-judge we
show to correlate highly with expert judgments from professional astronomers (Section 3.2).

This work presents ASTROVISBENCH, a benchmark targeting LLM’s capabilities to implement
research workflows that result in complex scientific visualizations in the astronomy domain. We
choose astronomy as the target domain because of three important characteristics. First, it is a data
intensive discipline with heavy reliance on, e.g., database queries, data manipulation, advanced
physics and mathematics, data visualization, and simulation modeling. Second, the astronomy
research ecosystem is based on large publicly available datasets and open source code, which creates
a rich landscape of research-level LLM training and testing material. Third, in contrast to some
other academic disciplines, the astronomy community is modest in size and relatively coherent in
research focus, meaning that any developed scientific LLM package or benchmark will apply to a
large fraction of the community.

Importantly, scientific visualization is a critical part of astronomy research. As an observational
science, astronomy has a rich history of data exploration via imaging, which dates back to the hand-
drawn sketches of the Moon, stellar clusters, and Jupiter recorded by Galileo in the first telescope
observations [9]. Present-day astronomical data are high-dimensional and often use heat maps to
illustrate spatially and spectrally varying properties of light [10]. These charts vary substantially from
those in standard chart understanding datasets from the machine learning literature [27, 37, 4, 43].
More critically, the evaluation of LLMs for scientific visualizations has not assessed their performance
at the end-to-end process of producing visualizations.

ASTROVISBENCH contains 864 tasks sourced from 110 Jupyter notebooks that were curated by the
NSF National Optical-Infrared Astronomy Research Laboratory (NOIRLab) and the Space Telescope
Science Institute to work with data taken by ground-based and space-based observatories, respectively.
Intended as tutorials and example use cases, the notebooks span a range of astronomical research
applications from simple to advanced tasks and feature different types of data (catalogs, spectra,
images). These notebooks illustrate research workflows from data processing to visualization.

Given a query within a Jupyter notebook, the task of an LLM is to generate code to implement the
query using the context of the previous cells in the notebook. Our queries are synthesized from LLMs
to reflect the style of query that an astronomer would pose if they did not know the precise step-by-step
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details in accomplishing a task, unlike other potential sources of natural language annotation such as
code comments. The benchmark consists of two types of tasks, each with a novel evaluation pipeline
that we introduce:

(1) Processing tasks: to evaluate code for data analyses leading up to the visualization, we use
execution-based evaluation that directly compares the values of key variables that visualizations
would depend on, after executing the LLM-generated code with the ground truth values.

(2) Visualization tasks: to evaluate the LLM-generated code for visualizations, we engaged six
domain experts (post-PhD researchers and faculty members) to establish a set of 270 gold-standard
judgments of visualization quality. We further develop an LLM-as-judge that achieves a high
correlation with the expert judgments, serving as the automatic evaluator.

When executed on ASTROVISBENCH, even the most advanced models have difficulty in accurately
completing the tasks posed in this benchmark, revealing a significant gap in their ability to helpfully
engage in these domain-specific visualization-based workflows. In particular, we found many of
these models lack the knowledge necessary to use niche, domain-specific libraries and APIs, and
they also lack the ability to visualize results in a manner consistent with research standards in the
astronomy domain.

2 Benchmark Construction

In constructing ASTROVISBENCH, our main consideration for evaluation is testing whether a subject
model (e.g., an LLM) can act as a useful coding assistant to correctly perform scientific tasks in
astronomy, from data processing to visualization. We address the following challenges: (1) developing
a methodology for evaluating the success of accomplishing research tasks with specific fine-grained
aims, especially those involving visualization, and (2) ensuring the tasks are representative of typical-
use interaction between an expert astronomer and an LLM.

2.1 Task Setup

Target 
visualization

Visualization

Processing

Setup

❶ Extract 
dependencies

❷ Split into stages
• Identify stages

• Merge cells

• Generate queries

Figure 2: To construct benchmark tasks,
we trace dependencies from visualiza-
tion cells within a notebook, and split
these dependencies into three stages,
jointly merging these original cells and
generating queries for each stage.

We collect code from Jupyter notebooks, which contain
text in markdown cells, code in executable cells, and visu-
alizations as figures rendered in the same document. We
denote by C = c1, ..., ck the set of notebook code cells in
a notebook. We select notebooks such that cell ck always
contains code that produces a visualization when executed,
and the previous cells c1, ..., ck−1 are extracted dependen-
cies of ck (i.e., they are not necessarily consecutive in the
original notebook, see Figure 2).

We define a visualization pipeline as a set of tasks T =
(tprocess, tvisualize) given setup code (such as import state-
ments and environmental variables). Each ttask is a bundle
(c1...j , cj...k, q, y), where c1...j denotes setup cells prior to
the current task, cj+1...k denotes the “core” cells for the
task, q is a natural language query expressing the func-
tionality of the core cells, and y is an expected result.
Our task is for an LLM to compute ĉ = M(c1...j , q),
a code cell predicted from the LLM. We then evaluate
v(Exec(c1,...,j , ĉ), y) with a validator that compares the
results of executing our predicted code Exec(c1,...,j , ĉ)
with an expected result y.

2.2 Sourcing and Construction

Notebook Collection We gathered notebooks from collections curated by the Astro Data Lab1

[8, 28] and by the Space Telescope Science Institute.2 Both publicly available notebook collections
1https://github.com/astro-datalab/notebooks-latest
2https://spacetelescope.github.io/notebook-infrastructure/
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are developed to serve as tutorials and example scientific use cases for a target audience composed
of astronomy graduate students and professional researchers [17]. While spanning a broad range in
difficulty levels, the notebooks are detailed and feature tasks such as querying databases (with SQL
and astronomy-specific ADQL), reading astronomical data (tables, spectra or images), performing
data processing and analysis, and creating visualizations suitable for publication in scientific journals.
In Section 4, we discuss and showcase the diversity of the visualization types present in this collection.

Visualization Task Extraction The code in these Jupyter notebook cells is a mixture of code for
data analysis and code for visualizing the results of these analyses. This structure, where visualization
cells depend on data analysis, suggests that a Jupyter notebook can be split into several stages:

• Setup: This stage involves importing the necessary libraries and other environment setup
necessary to proceed with the task (not evaluated).

• Processing tprocess: This is where the core of the data analysis prior to visualization occurs.
• Visualization tvisualize: This is where the visualization is generated.

We adopt this setup to avoid overly fine-grained or trivial cells present in the notebooks. We use
gpt-4o to simultaneously split notebooks into these clearly defined stages, and produce natural
language queries for each stage (prompt in Appendix B).

Query Generation Desiderata ASTROVISBENCH evaluates the ability of a model to respond
to typical-use queries from astronomers as an AI assistant (without step-by-step specifics), as if it
were an expert itself. This is distinct from the explanations sometimes present in the cells, which are
typically explanations rather than queries.

Importantly, we need to ensure that queries do not leak information and domain knowledge to
the model that would be expected for an expert in astronomy to be aware of. Our team of expert
astronomers verified a subset of the generated queries while inspecting the generated visualizations
(Section 3.2.1), in which they confirm that these queries do not leak such information and represent
typical research queries.

The natural language queries also need to be specific enough to enable consistent and reliable
evaluation. However, critical underspecifications within queries, such as the omission of the name
of a data file or the omission of a subjective threshold used to filter data, can make this difficult.
Therefore, we use gpt-4o again to map underspecified spans within a query to numerical values and
string literals in the ground truth code. In our evaluation of LLMs using ASTROVISBENCH (See
Section 5), we append these underspecification clarifications to the processing query when generating
responses from our target LLMs (see Figure 1, “Processing tasks”).

3 Evaluating Generated Code

With the natural language queries eliciting our subject model to respond with code, the next step in
the benchmarking process lies in the evaluation of that code. While accuracy is critical in scientific
computing and visualization, it is important to stress that there can be multiple ways to perform an
analysis, and a figure can be correct even when it differs from the ground truth, e.g., it may adopt
different symbols, colors, or axis ranges. Therefore, we opt for execution-based evaluation rather
than those based on surface-level code similarity [31, 44].

Our evaluation setup is depicted in Figure 1. First, we check if the code executes without error. If it
does the execution results will be passed on to different validators depending on the type of task.

3.1 Evaluating tprocess: Variable Inspection

The processing stage is where most of the scientific computing and data manipulations take place,
in preparation for data visualization. In ASTROVISBENCH, such processing includes operations
on numerical data from catalogs (e.g., filtering, regression, supervised classification with a labeled
training set, unsupervised classification with clustering) as well as operations on astronomical images
(e.g., astrometric alignment, convolution or smoothing, coaddition, mosaic creation, extraction of
photometric fluxes, shape determination, morphological classification). Additional processing may
include cosmological calculations to infer physical sizes and distances or more advanced computations
such as the two-point correlation function or Fourier decomposition.
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Since the resulting program state of the processing stage entails variables that the visualization stage
needs, we view the intersection of the variables created/modified during tprocess, and the variables that
the corresponding tvisualize is dependent on, as the key products of the processing stage. Specifically,
for each processing task, we define the key products in the ground truth code as VG, and the set of
variables that received an assignment in the generated code as VM . We then report the recall of VM

as the variable inspection score: VIscore = |VM ∩ VG|/|VG|.

3.2 Evaluating tvisualize: Expert-informed Visualization Evaluation

To evaluate the code that produces the visualization, we execute the code and visually compare the
generated and ground truth visualizations to determine whether the generated visualization conveys
the same key information using domain-specific standards of quality as the ground truth visualization.

The ideal judges for this task are astronomy researchers. However, human expert evaluation is not
scalable and is therefore impractical for a benchmark. Instead, we automate this process by deploying
a VLM as a judge to compare the generated visualization to the ground truth (Section 3.2.2). To guide
and validate the VLM judge, we first collected gold-standard quality judgments from professional
astronomers (Section 3.2.1).

Evaluation Setup The quality of a generated visualization is judged given: (1) the visualization
query, (2) the ground truth visualization and its code, (3) the LLM-generated visualization and its
code. Each judge evaluates the severity of errors using the following categories:

• No Error (1): The LLM-generated visualization conveys the same key information as the
ground truth visualization.

• Minor Error (2): The LLM-generated visualization could be fixed by making minor
adjustments to the code or by clarifying underspecified details in the visualization query.

• Major Error (3): The LLM-generated visualization deviates severely from the ground truth
visualization, ultimately conveying very different information from what is being asked in
the visualization query.

In addition to labeling the LLM-generated visualization according to the above classes, each judge
provides a short explanation of the determination.

3.2.1 Expert Evaluation of Visualizations

Type κ (↑) Pairwise ρ

Error Category 0.53 0.69
Preference 0.44 –

Table 1: Collective and pairwise human
expert agreement as measured through
Fleiss’ κ and Spearman’s ρ on 30 visual-
ization tasks. Correlation is significant
at p < 1e−29.

We worked with five professional astronomers, all of
whom have a doctoral degree in astronomy, astrophysics,
or physics, and are working as researchers or faculty mem-
bers. Together with these researchers, we developed the
aforementioned evaluation schema and guidelines. In total,
we had 6 hours of group discussions, not accounting for
individual annotation done asynchronously.

For each ground truth visualization, we provide two LLM-
generated visualizations (produced by two different LLMs
listed in Section 5) for our experts to evaluate.3 In addition
to determining error categories for each visualization individually, the experts also provided a
preference judgment for the pair of generated visualizations for each query, if both fall under the
same error category.

In total, our experts evaluated 135×2 LLM-generated visualizations. Out of these 135 tasks, 30 were
annotated by all five experts to calculate agreement (Table 1). Overall, we see moderate agreement
on error category assignments, but lower agreement on preference judgments. This is expected, as
these preferences are subjective depending on the annotator’s background and aesthetic preferences.

3.2.2 Automatic Evaluation of Visualizations

3The experts also had access to the original Jupyter notebooks from which the query task was constructed.
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Field Library

Spectroscopy specutils, astropy.modeling, astropy.io.fits, scipy.optimize, scipy.stats, lmfit,
dust_extinction, astroML

Photometry photutils, lightkurve, astroquery.mast, astropy.table, astropy.stats, space_phot,
regions

Image Processing numpy, scipy.ndimage, astropy.nddata,astropy.convolution, PIL, cv2, astrocut,
wfc3tools, jwst

Time Series Analysis astropy.timeseries, lightkurve, pandas, scipy.signal, gatspy
Cosmology &
Large-Scale Structure

astropy.cosmology, healpy, astropy.coordinates, reproject, shapely

Simulation & Modeling astropy.modeling, keras, tensorflow, sklearn, webbpsf, acstools, stistools, refstis

Table 4: API distribution across astronomy fields within ASTROVISBENCH.

Model ρ (avg) ρ (maj)

Gemini 2.5 Flash 0.816 0.769
Gemini 2.0 Flash 0.753 0.775
Claude 3.7 Sonnet 0.723 0.714
Claude 3.5 Sonnet 0.822 0.828
Claude 3.5 Haiku 0.749 0.586

Table 2: The Spearman correlations be-
tween vLLM judges and expert judges
(averaged scores or majority labels).
Correlations are significant (p < 1e−29).

We use a VLM as the automatic evaluator for visualiza-
tions created from LLM-generated code. The prompt of
the VLM is shown in Appendix B.1. Table 2 shows the
Spearman correlation between each VLM we evaluated
and expert judgments (for the 30 tasks in the agreement
set) Claude 3.5 Sonnet achieved the highest correla-
tion, hence it used as the automatic evaluator for visualiza-
tion tasks in ASTROVISBENCH.

4 Benchmark Statistics

The benchmark consists of 432 processing and 432 visu-
alization tasks, extracted from 110 Jupyter notebooks. On
average, each task covers 6.2 cells in the original note-
books. We present the average token count for every task
query and for the ground truth code for each stage in Ta-
ble 3.

Type Field Avg # Token

Query
Setup 102.04

Processing 108.69
Visualization 107.05

Ground
Truth

Setup 87.80
Processing 373.96

Visualization 116.44

Table 3: Number of tokens in the queries
and ground truth code in ASTROVIS-
BENCH.

API Diversity Table 4 shows the type of libraries/APIs
represented in ASTROVISBENCH and their relation to
subfields and tasks within astronomy and astrophysics.
We cover 38 libraries specialized for scientific and visu-
alization use-cases, with 26 of these libraries designed
for astronomy in particular. We provide a more detailed
breakdown along with function calls in Appendix A.

Processing Products In the variable inspection test we
perform for evaluating the processing tasks, the key prod-
ucts created in this section are stored in a pickled format. This approach can store most Python
objects. However, generator objects, lambda functions, nested functions, and objects that hold
OS-level resources, such as file descriptors and network sockets, cannot be pickled. We inspected
the pickled key products in 359 processing tasks (spanning 101 Jupyter notebooks). These 886 key
products span 47 different data types. For each processing task, the average number of key products
is 2.46.

Types of Visualizations ASTROVISBENCH covers a diverse collection of domain-specific visualiza-
tions with a sample of these visualizations shown in Figure 3. The visualizations featured astronomy
specific data with several varied data types and plotting modalities. Data types included catalogs
of object information (e.g., paired sets of galaxy visual color and brightness), one-dimensional
datasets (e.g., time series information about stellar luminosity as a function of time, or spectral
energy distributions indicating object intensity as a function of wavelength), and image data with
varied levels of calibration. The visualizations themselves required appropriate representation of the
underlying dataset with prompt specified constraints. For example, catalog data was in some cases
best represented with a scatter plot and in other cases with a two-dimensional histogram. Images
were always presented as images, but with varied levels of raw-data pre-processing (e.g., background
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a) b) c) d) 

e) f) g) h) 

Figure 3: Examples of visualizations in ASTROVISBENCH showing (a) a color-magnitude diagram
before and after point spread function correction, (b) a spatially integrated spectral energy distribution
(left) and associated spatially resolved intensity map (right), (c) a wide-field all-sky projection of
galaxy source counts within a survey footprint, (d) a Kepler mission source pixel map, (e) a pixel-level
flux map, (f) galaxy spectra featuring bright emission lines, (g) corrected and uncorrected time-series
light curves, and (h) a wide-field image.

Model Processing Visualization
Crash % VIscore Crash % VisFail % NoE % MiE % MaE %

Gemini 2.5 Pro 30.8 0.600 20.1 9.3 15.7 25.9 28.5
Claude Sonnet 3.7 50.9 0.633 34.7 21.3 9.5 14.6 19.2
Claude Opus 4 50.3 0.644 33.1 12.7 9.3 28.9 16.0
o3-mini 51.4 0.694 30.3 2.8 10.4 26.4 29.6
GPT-4o 53.7 0.480 32.6 6.0 8.6 23.4 28.5
QwQ 64.1 0.472 60.9 3.9 8.2 12.6 14.9
Qwen-2.5 56.9 0.527 35.4 3.7 10.4 20.1 29.9
Llama-4 Maverick 55.3 0.546 28.7 9.0 9.7 21.5 30.6

Table 5: Results of the LLM evaluation on ASTROVISBENCH for both processing and visualization
tasks. We show the percent of test instances that crashed (Crash %) for each type of task, the variable
inspection score (VIscore), the percent of instances where the model failed to produce only one
visualization (VisFail %), and the breakdown of no error (NoE %), minor error (MiE %) and major
errors (MaE %) resulting from the automatic visualization evaluation.

subtraction) and with requirements that the visualization match the objective (e.g., applying an
appropriate image stretch to prominently feature faint objects).

5 LLM Performance on ASTROVISBENCH

Using ASTROVISBENCH, we conducted an evaluation of eight state-of-the-art LLMs, covering open-
source and proprietary models, with and without advanced reasoning capabilities: Gemini 2.5
Pro, Claude 3.7 Sonnet, Claude 4.0 Opus, GPT-o3-mini, GPT-4o, Qwen 2.5 72B, QwQ
32B, and Llama-4 Maverick (17Bx128E). We provide detailed descriptions of these models in
Appendix D.

5.1 Results

Processing Tasks We present the results of tprocess on the left side of Table 5. The % of crashed
code shows a significant gap in the SOTA LLMs’ ability to produce executable code for these tasks.
Only Gemini 2.5 Pro has managed to produce such code for over half of the processing tasks.

We also see a gap in these models’ ability to produce the same processing products as the ground
truth when the code it generates does indeed execute without raising errors. This is evident in the
results of the variable inspection test, with the highest VIscore among all models being 0.694 from
o3-mini. Although this indicates that on average the generated code from o3-mini produces nearly
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70% of the needed processing products, the remaining wrong products will still lead to failures to
produce the target visualizations correctly.

Finally, while Gemini 2.5 Pro dominated in its ability to produce code that executes without errors,
its VIScore was not among the highest. This means that a better ability to generate code that runs
does not necessarily always mean a better ability to perform the right scientific computing.

Visualization Results The right portion of Table 5 shows the visualization evaluation results. For
code execution success, Gemini 2.5 Pro again performs the best. The absolute percentages of code
that executes are higher than that in processing tasks. This is expected as the models are exposed to
more context in the visualization stage, and these sub-tasks usually involve the usage of well-known
visualization libraries (e.g., matplotlib), unlike the niche, domain-specific libraries prominently
featured in most processing sub-tasks. However, the percentage of crashed code is still high.

The columns NoE, MiE, and MaE illustrate that the percentage of cases where the VLM judged the
model-produced visualization as correct is much lower than those with errors, and the % of major
errors are high. Gemini 2.5 Pro leads the other models in terms of producing visualizations judged
as no error; however, despite this, and despite it producing code that executes, the percentage of major
errors remains high. This also means that at least 58% of the time, the best models today produce
code that either does not result in a visualization, or results in visualizations that contain major errors.

6 Error Analysis

0 50 100 150 200
Count

FileNotFoundError
queryClientError

AttributeError
TypeError

SyntaxError
KeyError

ValueError
IndexError
HTTPError

StdinNotImplementedError

Processing

0 50 100 150 200
Count

ValueError
SyntaxError

TypeError
AttributeError

KeyError
NameError

FileNotFoundError
IndexError

UnitConversionError
NoConvergence

Visualization

Figure 4: Breakdown on the types
and counts of execution errors result-
ing from the LLM evaluation on both
processing and visualization tasks.

Execution Errors Around 43% of all the code generated
by all the subject LLMs fails to execute without errors. In
Figure 4, we show the top ten most frequent execution errors
that resulted from running LLM-generated code for both
processing and visualization tasks. The largest type of error
for processing tasks is the FileNotFoundError, which is
caused by an attempt to act on a file that does not exist.
These may be caused by the LLM hallucinating a file path,
sometimes because the model is unable to infer it from the
context provided. A less common source of such error is
introduced by unaddressed underspecification, despite our
effort to clarify them (Section 2.2). However, We estimate
that this issue affects only 6% of all the execution errors
raised during the evaluation.

Other execution errors for both the processing and visual-
ization tasks arise from a lack of knowledge about how to
interact with domain-specific scientific tools. LLMs may hal-
lucinate arguments and function calls, provide the wrong type
of input, and incorrectly access the data structures produced
by such tools. One common error in the LLM response to
processing tasks is the failure to generate appropriate ADQL
queries, which are needed to collect data from astronomy
databases; these manifest as a queryClientError. In visualization tasks, more errors result from
interactions with the objects generated during the processing stage, e.g., ValueError, TypeError,
and KeyError, as the model fails to understand the internal structure of these objects, often due to
function calls from niche astronomy-specific libraries.

Visualization Errors In analyzing the rationales provided by our experts (Section 3.2.1) and in
further discussions with them, we identify several common issues in the generated visualizations
(with examples shown in Appendix E). First, the experts noticed that the generated visualizations
frequently overlook domain-specific plotting conventions, such as the order of the sky coordinates or
magnitudes on the axes. Incorrect domain-specific conventions are also evident in an “inappropriate”
choice of axis scale. Another issue flagged by the experts is the failure of the LLMs to judge the
qualities of the data it is visualizing. Frequently, the plot ranges unnecessarily cut off part of the data;
in visualizations depicting images, the LLMs are not able to optimize to highlight faint or subtle
features while de-emphasizing noise. Sometimes, this issue is linked with the LLMs inability to
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iteratively analyze and tweak its own visualizations like humans, who are able to determine optimal
values, such as the stretching scale and range, for their visualizations through such an iterative
approach. Finally, experts occasionally flagged issues in the readability of some visualizations, with
axis labels and legends having font sizes that were not easily readable.

7 Related Work

Recent work has explored automating various parts of scientific research [25, 14], particularly
machine learning research and development [13, 41, 22]. However, end-to-end evaluation of research
products such as an autogenerated scientific paper that passed workshop peer review has found such
work to be seriously lacking [23]. Our work starts from the premise that scientific insights or the
ability to assist in particular scientific workflows is a more realistic target for near-term, quantifiable
progress. Other work subscribes to a similar view: for instance, in physics, Gravity-Bench-v1 [19]
tests an LLM agent’s ability for scientific discovery, evaluating how it answers complex, open-ended
questions by engaging with a gravity simulation using a few benchmark-specific tools. It differs
from ASTROVISBENCH in that our work covers a much more diverse set of scientific workflows in
astronomy, requires the use of a large set of domain-specific tools and APIs, and is visualization-
focused.

Benchmarks targeting coding tasks currently evaluate models in their general-domain coding ca-
pabilities, including solving self-contained tasks [3, 1, 24], using libraries and tools [20, 36, 15],
resolving software issues [15], and making diverse function calls [45, 39]. However, scientific
research tasks involve much deeper domain knowledge and the ability to perform scientific computing
using domain-specific APIs. More recent work like PaperBench and MLEBench [33, 2] targets
such capabilities in the machine learning domain. SciCode [34] tests LLMs on their ability to solve
computation problems in natural science. However, these are not the workflow tasks targeted in this
work, nor do they test the ability to use niche domain-specific research libraries.

Researchers have conducted human evaluations to assess LLM-generated code for charts [6, 35] and
visualization design [5, 18]. Automatic evaluation methods have also been developed that span rule-
based evaluations [21, 26], self-evaluation [7, 12], and structured LLM-as-a-judge approaches [30, 4]
like the one used in ASTROVISBENCH. EvaLLM [30] is one such method that uses an LLM to judge
generated Vega-lite visualizations against the ground truth by comparing their JSON representations,
yet this approach relies on surface-level code similarity rather than code execution. VisEval [4] uses an
execution-based, automatic evaluation method that directly evaluates a visualization as produced from
executing LLM-generated code, using a combination of rule-based methods and a VLM. However,
they only assess readability, while we focus on scientific utility informed by professional astronomers.
In addition to these benchmarks, there have also been work on dedicated solutions for visualization
code generation. Zhao et al. [42] tackles a chart-to-code task by synthetically generating a large
dataset and using it to fine-tune an LLM. MatPlotAgent [40] is an agentic framework for visualization
code generation given a user query and tabular data. ASTROVISBENCH stands out by evaluating how
well models support end-to-end research workflows in this domain, which existing methods with
standardized data access and no domain focus do not address. Finally, prior work has also evaluated
the capacity for models to understand charts [43, 37]. Here, we tackle the opposite problem: chart
generation.

We present a table summarizing this related work for easy viewing in Appendix C.

8 Conclusion

We present ASTROVISBENCH: the first benchmark for scientific computing and visualization in the
astronomy domain. Our work includes the construction of a rich, diverse set of benchmark tasks, the
development of an automated framework that directly evaluates the products of execution, including
visualizations, and an evaluation of eight state-of-the-art language models, revealing a significant
gap in these models ability to engage in astronomy research as useful assistants. This benchmark
paves the way for the future development of models that can aid researchers across a wide range of
domains in visualization-based workflows.
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Limitations. Due to factors of time and cost, we adopt an automatic LLM-based method to aid in
constructing ASTROVISBENCH as opposed to manually building it entirely through human experts.
This method may introduce noise into the benchmark through hallucinations. However, as experts
verify a sizable subset of the benchmark tasks, we are confident that the presence of hallucinations is
minimal. Similarly, the automatic evaluation of visualizations in this benchmark heavily relies on a
vision LLM, which could make judgments that are not aligned with those of experts. Nevertheless,
since a subset of these judgments are well-correlated with those of experts, such judgments are
unlikely to significantly influence the overall evaluation. The evaluation of processing products
is limited by the inability to store certain runtime objects in a persistent state. Nonetheless, this
best-effort method covers a large amount of key objects that informs the ability of LLMs to complete
processing tasks correctly.
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specutils, astropy.modeling, 
astropy.io.fits, scipy.optimize, 
scipy.stats, lmfit, 
dust_extinction, astroML

Specutils.fitting.fit_lines,
astropy.modeling.models.Voigt1D, 
astropy.io.fits.getval, scipy.optimize.curve_fit, 
scipy.stats.poisson.pmf,lmfit.Model, 
dust_extinction.shapes.P92,
astroML.datasets.fetch_sdss_spectrum…

photutils, lightkurve, 
astroquery.mast, astropy.table, 
astropy.stats, space_phot, 
regions

photutils.aperture.CircularAperture,
lightkurve.search_lightcurve, 
lightkurve.RegressionCorrector,
astroquery.mast.Catalogs.query_region, 
astroquery.mast.Tesscut.get_cutouts,
astropy.stats.sigma_clipped_stats, 
space_phot.get_jwst_psf, regions.Regions.read…

numpy, scipy.ndimage, 
astropy.nddata, 
astropy.convolution, PIL, cv2, 
astrocut, wfc3tools, jwst

numpy.pad, numpy.histogram2d,scipy.ndimage.rotate, 
scipy.ndimage.shift,astropy.nddata.extract_array, 
astropy.convolution.Gaussian2DKernel, 
astropy.convolution.convolve,PIL.Image.open, 
cv2.resize, astrocut.fits_cut, wfc3tools.calwf3, 
jwst.datamodels.ImageModel…

astropy.timeseries, lightkurve, 
pandas, scipy.signal, gatspy

astropy.timeseries.LombScargle,
lightkurve.LightCurveCollection,
lightkurve.TessTargetPixelFile,
Pandas.to_datetime, scipy.signal.correlate, 
scipy.signal.correlation_lags,
gatspy.periodic.LombScargleFast…

astropy.cosmology, healpy, 
astropy.coordinates, reproject, 
shapely

astropy.cosmology.LambdaCDM,
healpy.mollview, healpy.ang2pix,
astropy.coordinates.SkyCoord, 
astropy.coordinates.search_around_sky,
reproject.reproject_interp,
shapely.geometry.Polygon, shapely.geometry.Point…

astropy.modeling, keras, 
tensorflow, sklearn, webbpsf, 
acstools, stistools, refstis

astropy.modeling.fitting.LinearLSQFitter,
keras.layers.Conv1D, keras.models.Model,
tensorflow.GradientTape, tensorflow.reduce_mean,
sklearn.ensemble.RandomForestRegressor, 
sklearn.decomposition.PCA, webbpsf.MIRI, 
acstools.focus_diverse_epsfs.psf_retriever, 
stistools.calstis.calstis, 
refstis.basedark.make_basedark…

Figure 5: Overview of astronomy-specific Python libraries and functions grouped by technical or
topical field.

A Libraries and Function Calls in ASTROVISBENCH

Figure 5 shows the different categories of astronomy fields and their respective libraries that are
included in ASTROVISBENCH. The benchmark covers a broad range of topics and commonly used
packages to ensure that important tasks in the domain are represented.
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B Prompts Used for Benchmark Construction and Evaluation

VLM Evaluation Prompt B.1 shows the instruction given to the judge model, as well as what
information from each query execution is included. In addition to the instructions and example
information, the VLM is given a JSON format output as an example of how to return judgments and
rationales.

B.1 Instructions to VLM for error judgments in automatic visualization evaluation

System: Your task is to evaluate the correctness and visual validity of the under-test data visualization
related to astronomy that will be sent to you. You will return either "No Error", "Minor Error", or "Major
Error" along with your rationale. The definitions of these errors are:

No Error: This indicates that this visualization conveys the same key information as the Ground Truth
Visualization.

Minor Error: This indicates that this visualization could be fixed by making minor adjustments to the code or
by clarifying under-specified details in the Visualization Query.

Major Error: This indicates that this visualization has a major deviation from the ground truth visualization,
ultimately conveying very different information.

You will be given the visualization query that the visualization was created to fulfill, a "gold image" that is a
completely correct fulfillment of the query that you can use to compare, and the corresponding "under-test"
visualization created based on that requirement that you will assess the validity of.

These instructions must be followed when making your judgment: When you are evaluating a visualization,
compare that visualization against the Ground Truth Visualization. You can also use the visualization
query, and the code corresponding to the visualization query to inform your judgments. However, the main
question you are being asked is: Does this visualization convey the same key information as the ground truth
visualization?

In addition to the gold image and under-test image, you will receive the gold visualization code responsible
for creating the visualization, and also the under-test code for the under-test visualization to help you analyze
the differences. Note that this is a supplement and the bulk of your judgment should come from evaluating
the images, because we are assessing what the images convey visually.

Please think carefully and provide your reasoning and score.
Input:
Visualization Query: {{Segment 1}}
Ground-Truth Code: {{Segment 2}}
Ground-Truth Visualization (Base64): {{Segment 3}}
Generated Code: {{Segment 4}}
Generated Visualization (Base64): {{Segment 5}}
Output Format:
"Rationale": "a brief reason", "Errors": "No Error", "Minor Error", or "Major Error",

Notebook Distillation Prompt B.2 is used to convert a compressed chain of notebook cells con-
taining a mixture of markdown and code cells into query-code pairs for the three sub-tasks (Setup,
Processing, and Visualization) broken down from the task being described in the input notebook
cells. The output from this prompt is then tested to ensure if the code present in it matches with
the ground truth code from the notebook cells. If the output fails this test then new outputs will
be regenerated until either that output is a match for the ground truth code or when the maximum
number of regenerations is reached. Only query-code pairs in which this test passes are allowed to
become a part of ASTROVISBENCH.

B.2 Notebook cell to code task distillation prompt

System:
You are being provided with markdown and python code cells from a jupyter notebook. You need to convert
this notebook into a special notebook assignment, without changing any of the code, using the following
these guidelines:
- This assignment will be split into 3 sections
- The first section is the **setup** section. In this section, you will include only import statements and any
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additional lines of code that sets up the enviornment or macros for this notebook
- The second section is the **processing** section. In this section, you will include any code that processes
or analyzes data prior to visualization after setup.
- The third section is the **visualization** section. In this section, you will only include code that enables
the end visualization as desired by the original notebook. The code in this section should output only ONE
visualization.
- It is okay if there are visualizations made prior to the visualization section. This code should still be
included.
- For each of these sections, you must include only ONE natural language query describing the code and
ONE code cell which contains the code that corresponds to the query. The code must match to the code in
the original notebook. Any deviation is UNACCEPTABLE.
- Only the code should be enclosed in tick marks (“‘). There should only be 3 such code blocks, one for each
section.
- Your output must end with the visualization code block.

Make sure to write your queries using these guidelines:
- Format your instructions like you are a astronomer needing help with the task. Talk like you are talking to a
fellow astronomer who understands all the astronomy lingo. Don’t simplify jargon or acronyms.
- Make sure your query is between 100 and 150 words.
- For the query describing the visualization, make sure the query naturally describes the provided output
visualization in a way that is understandable and reproducible.
- Don’t include specifics in your query (variable names, modules, packages, etc.). You are playing the role of
someone who doesn’t know much about Python.
- Don’t be too vague as to leave too much room for interpretation. Your query should be such that the code in
the corresponding *code cell* should be the only valid answer for it.
- Don’t refer to cells or sections in your instructions. It should be formatted like a query to another person.

The queries you are generating should correspond to the code in the provided jupyter notebook. Indicate that
you are doing this by:
- Filling in the code cells with the EXACT code from the provided jupyter notebook it corresponds to. Any
kind of deviation is absolutely intolerable.
- If the original code cells are empty, do not bother writing anything down in these code cells.
- This can be checked by seeing whether all the code you have written combined is equivalent to all the code
in provided notebook combined.

Input:
NOTEBOOK:

{{Compressed Task Notebook Cells}}

Output Format:

An assignment notebook with queries and code for the 3 stages inter-spliced. Code is specifically demarcated
by being wrapped in tick marks (“‘).

Underspecification Clarifications The prompt for generating clarifications for underspecifications
within queries is shown in Prompt B.3. This prompt takes in as input the text query and the code
associated with it and output a mapping of text spans in the query to strings and numerical values
found in the ground truth code.

B.3 Prompt for Clarifying Underspecifications

System:
You will be given code and a text query which describes the task being performed by the code. Your task is
to resolve underspecifications in this text query.
Instructions:
- Underspecifications are details which are necessary to reproduce the same result as the given code. These
details are limited to string literals and numerical values found in the given code that are not specified either
explicitly or implicitly in the text query.
- Format these underspecifications as follows. Separate each instance in a new line. In each line, high-
light the span of text in the query that is underspecified followed by the value found in the code that clarifies it.
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Input:
CODE:
{{code}}
TEXT QUERY:
{{query}}

Output Format:
Text span to value mappings that clarify underspecifications in the query.

Code Generation Prompt B.4 is used to elicit code responses from LLMs to the queries present in
ASTROVISBENCH. This main purpose of this prompt is to condition the model to only generate code
in response to the query as opposed to a mix of code and natural language.

B.4 Prompt for Querying Models to Generate Code

System:
You are tasked with completing a jupyter notebook about astronomy. You will be given some markdown cells
and some python code cells for context, and in response you must output only python code that accurately
fulfills the goals of the notebook as described by the markdown text.

Input:
For Processing Sub-task:
{{Setup Query}}
{{Ground Truth Setup Code}}
{{Processing Query + Processing Underspecifications}}

For Visualization Sub-task:
{{Setup Query}}
{{Ground Truth Setup Code}}
{{Processing Query}}
{{Ground Truth Processing Code}}
{{Visualization Query}}

Output Format:
code generated for the respective sub-tasks
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Benchmark / Approach Domain Task Focus

CodexEval [3] General Code Synthesis General programming tasks
DS-1000 [20] General Library Use Tool-grounded coding & data analysis
SWE-Bench [15] SWE Issue Resolution Resolving real-world software issues
BigCodeBench [45] General Function Calling Correctness of API calls
Gravity-Bench-v1 [19] Physics Scientific Discovery Simulation-based scientific Q&A
PaperBench [33] MLR Workflow Reasoning Automating steps in research papers
MLEBench [2] MLR Experiment Automation ML experimentation pipeline tasks
SciCode [34] Natural Sci. Math Computation Scientific mathematical computation

challenges
EvaLLM [30] General Visualization Evaluation JSON-level matching for plot evaluation
VisEval [4] General Visualization Evaluation Readability and execution-based scoring
ChartCoder [42] General Chart-to-Code Synthesizing datasets for chart generation
MatPlotAgent [40] General Agentic Code Gen. Agentic, data-driven plot generation
DomainCQA [43] Astronomy Chart Understanding Visual question answering on charts
CharXiv [37] Natural Sci. Chart Understanding Reasoning over scientific chart data

ASTROVISBENCH (ours) Astronomy Research Workflows End-to-end research assistance for
astronomers

Table 6: Comparison of ASTROVISBENCH with prior benchmarks and approaches. Our benchmark
is unique in its focus on end-to-end, domain-specific scientific workflows in astronomy that require
both specialized tools and visualization generation. Abbreviations: Software Engineering (SWE),
ML Research (MLR).

C Related Work Table

Table 6 details a tabular summary of relevant related work compared to ASTROVISBENCH. This
benchmark distinguishes itself through its specialization in the astronomy domain as well as through
its focus on evaluating LLMs on their ability to assist in scientific workflows, which require the
use of specialized libraries and APIs and the need to visualize results according to domain-specific
conventions.

Beyond just its value within the domain of astronomy, ASTROVISBENCH uniquely targets an LLM’s
capability to implement research workflows to produce interpretable scientific visualizations, from
which insights are derived. To elaborate:

Existing generic coding benchmarks [1, 3, 16, 20, 24, 36, 39, 45] Compared to these benchmarks,
ASTROVISBENCH targets long-tail knowledge, focusing especially on the usage of domain-specific
APIs and visualization generation.

Scientific coding benchmarks [19, 33, 34, 2] Existing work has benchmarked models’ ability to
solve scientific computation problems [33], reproduce ML experiments as described from a small set
of 20 papers [33], engage with a simulation using benchmark-specific tools [19], and solve problems
in ML engineering competitions [2]. ASTROVISBENCH differentiates itself from these benchmarks
by evaluating whether models’ can assist in a wide variety of tasks as a research assistant, aiding
scientists amidst their own workflows when they do not know step-by-step workflows and may not
know, in advance, the kinds of scientific utility a visualization would bring.

Visualization benchmarks [4, 7, 12, 21, 26, 30] Many benchmarks exist in evaluating models’
ability to generate visualizations. Most of these works focus on relatively simple visualizations (bar
charts, line charts, etc.) with standard data formats, and they assess models’ ability to follow highly
explicit instructions. ASTROVISBENCH, on the other hand, additionally evaluates whether models’
are able to apply domain-specific knowledge to understand domain-adapted queries and interact
with a variety of data formats to create diverse visualizations that comply with expert standards (see
Figure 3).
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D Evaluated Subject Models

We evaluated on a collection of open-source and closed-source LLMs, representing the latest models
in each series at the time of this paper’s writing.

• GPT-4o is an autoregressive “omni” model, accepting any combination of text, audio, image,
and video and outputting any combination of text, audio, and image.

• Claude 3.7 Sonnet is a “hybrid reasoning model” that can accept inputs in different
modalities.

• Claude 4.0 Opus is the latest and most capable of the Claude series of models trained for
more advanced coding capabilities.

• Qwen-2.5 (72B) is the strongest open-source LLM at its size available at the time of this
writing.

• Llama-4 Maverick (17Bx128E) is Meta’s leading model, using an MoE architecture,
and focuses on multimodality in text and image inputs.

• Gemini 2.5 Pro is Google’s most advanced model to date, and obtains top results on most
current benchmarks involving code generation, image understanding, and science.

• o3-mini is a smaller and more cost-efficient version of OpenAI’s reasoning series models,
with strong reported performance in science, math, and coding capabilities.

• QwQ (32B) is an open-source reasoning model specialized for math and coding.

Hyperparameter Settings For the proprietary models that we evaluated (GPT-4o, o3-mini,
Claude 3.7 Sonnet, Claude 4.0 Opus, Gemini 2.5 Pro), we used the default hyperparame-
ters as defined by their respective APIs. For the open source models (Qwen 2.5, Llama-4 Maverick,
QwQ), we used the Together.AI API with default hyperparameters. In terms of temperature, this means
that all the models we evaluated were set with temperature of 1. The default top_p is also 1 for
most models/APIs except for Gemini, where the default value is set at 0.95. There is no default
value for the max_tokens hyperparameter in the Anthropic API, so we set it to be 1024 tokens for
Claude 3.7 Sonnet generations. We checked the token counts of all the 864 responses generated
by Claude 3.7 Sonnet and found that only ten responses ever hit this limit. For Claude 4.0
Opus, we additionally activated the extended thinking option to enable all its reasoning capabilities
and set it to have max_tokens of 8000 while having 3000 tokens budgeted for thinking.

E Expert Judgment Rationales

Shown in Figures 6, 7, 8 are examples of astronomer annotations on correct, minor error and major
error generations, respectively. Experts are given the original query, the ground truth visualization
code and image, the generated visualization code and image, as well as the original notebooks. They
then determine an error category as well as a justifying rationale. Visualizations that have “no error”
can still have slight deviations from ground truth images, as shown in Figure 6. Mainly, the scientific
utility of the visualization determines the error judgment. In Figure 7, it can be seen that while there
are visual errors mentioned by the expert in the generated plot, the key scientific information being
shown is still equivalent to the ground truth. Meanwhile, in Figure 8, there is an incorrect calculation
being applied (as pointed out by the expert) that results in a plot that is very different from the ground
truth. Because the scientific utility of the plot is compromised, this is a major error.

F Computation Resources

We ran the execution-based evaluation framework for ASTROVISBENCH on a system using two
56-Core Intel Xeon MAX 9480 CPUs with 128GB of RAM in total. Running the execution-based
framework for a single LLM also required around 100GB of storage, with the execution environment
taking around 50GB of space while these remain 50GB is required for storing pickled Python objects
resulting from the variable inspection test described in Section 3.1.
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Figure 6: An example of expert judgment on a “no error” example. There are slight differences
between the ground truth and generated visualizations, most notably an extra intensity gradient, but
this does not detract from the scientific value of the visualization.

Figure 7: An example of expert judgment on a “minor error” example. The correct data are used
but an incorrect transformation of coordinates has been applied causing the footprint to be shown
off-center. The choice of color scheme makes it hard to see the grid lines, which was also considered
as part of the judgment.

Figure 8: An example of expert judgment on a “major error” example. The code has performed a
mathematical operation that is different from the ground truth, and as a result is not displaying the
requested image.

G License Information

We gathered Jupyter notebooks from publicly-available collections curated by the Astro Data Lab
and by the Space Telescope Science Institute (STScI). Most of these notebooks fall under the BSD-3
License with the exception of notebooks sourced from two repositories authored by STScI that do
not have any license information attached.4 However, STScI’s content use policy asserts no claim to
copyright for any material it produces as per its contract with NASA.5 We release ASTROVISBENCH
under the Creative Commons License-BY-3.

4https://github.com/spacetelescope/jdat_notebooks, https://github.com/
spacetelescope/hellouniverse

5https://www.stsci.edu/copyright
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