
Expert-level protocol translation for self-driving labs

Yu-Zhe Shi‹, Fanxu Meng‹, Haofei Hou‹, Zhangqian Bi, Qiao Xu,
Lecheng Ruan�, Qining Wang�

Department of Advanced Manufacturing and Robotics,
College of Engineering, Peking University

‹Equal contribution � ruanlecheng@ucla.edu, qiningwang@pku.edu.cn

Abstract

Recent development in Artificial Intelligence (AI) models has propelled their ap-
plication in scientific discovery, but the validation and exploration of these discov-
eries require subsequent empirical experimentation. The concept of self-driving
laboratories promises to automate and thus boost the experimental process fol-
lowing AI-driven discoveries. However, the transition of experimental protocols,
originally crafted for human comprehension, into formats interpretable by ma-
chines presents significant challenges, which, within the context of specific expert
domain, encompass the necessity for structured as opposed to natural language,
the imperative for explicit rather than tacit knowledge, and the preservation of
causality and consistency throughout protocol steps. Presently, the task of proto-
col translation predominantly requires the manual and labor-intensive involvement
of domain experts and information technology specialists, rendering the process
time-intensive. To address these issues, we propose a framework that automates
the protocol translation process through a three-stage workflow, which incremen-
tally constructs Protocol Dependence Graphs (PDGs) that approach structured on
the syntax level, completed on the semantics level, and linked on the execution
level. Quantitative and qualitative evaluations have demonstrated its performance
at par with that of human experts, underscoring its potential to significantly expe-
dite and democratize the process of scientific discovery by elevating the automa-
tion capabilities within self-driving laboratories.

1 Introduction

The evolution of AI techniques has significantly accelerated the processes inherent to scientific dis-
covery, with a notable impact observed within the domain of experimental sciences (Wang et al.,
2023b). This influence is manifested through a variety of avenues: the generation of hypothesis
spaces informed by extensive literature analysis (Jablonka et al., 2022; Kim et al., 2024), the inter-
pretation of observational data via the identification of high-dimensional correlations (Jumper et al.,
2021; Abramson et al., 2024), the engineering of novel structures that meet predefined specifica-
tions (Grisoni et al., 2021; Park et al., 2023), and the implementation of comprehensive simulations
to ascertain the characteristics of potential products (Hie et al., 2021; Singh et al., 2023).

However, the findings facilitated by AI-driven research require further validation and exploration via
empirical experiments, and may even entail a cyclical process where AI-generated hypotheses are
refined based on the outcomes of real-world experiments, which demands the assembly of a sizable
cohort of experienced experimenters to carry out these investigations in accordance with established
protocols (McNutt, 2014). Unfortunately, the formation and sustenance of such a dedicated exper-
imental cadre are fraught with considerable financial demands, and the collaborative engagement
between people oriented towards AI methodologies and those grounded in experimental sciences is
frequently encumbered by the communication gaps between distinct intellectual paradigms (Baker,
2016; Freedman et al., 2015; Munafò et al., 2017; Baker, 2021; Shi et al., 2023a).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Syntax

Structured protocolNL-based protocol

ExecutionSemantics

Completed protocol Linked protocol
add_constraint
add_constraint

split
slot
branch_num
container

check check
heat

slot
container
temperature
heater
duration
stirring

wait

cool
slot
temperature

add_constraint
add_constraint

add
slot1
slot2
volume
container

(.);

(.);

( 
 = , 
 = , 
 = [,] 
); 

, = . ,
. ;

(() ()) 

 (

 = [,],

 = [,],

 = [,],

 = [,],

 = [,],

 = [,]

);

 ();
 

( 
 = [,], 
 =
);

(.);

(.);

( 
 = [,],

 = [,], 
 = [,],

 = [,]

);

flask1 vol
flask2 vol

mixture

flask1 flask2

T1 T2 flask1 temperature
flask2 temperature

T1 T2

mixture1 mixture2
flask1 flask2

“oil bath” “oil bath”

mixture1 mixture2

flask3 vol
flask4 vol

“ice water” “ice water”
mixture1 mixture2

flask3 flask4

>=
>=

while == && ==

True False

>=
>=

30mL
30mL

2

85°C 75°C

85°C 75°C

1h 1h

10min

25°C 

60mL
60mL

20mL 20mL

split
slot
branch_num
container

check check
heat

slot
container
temperature
heater
duration
stirring

wait

cool
slot
temperature

add
slot1
slot2
volume
container

( 
 = , 
 = , 
 = [,] 
);

 

, = . ,
. ;

(() ()) 
 (

 = [,],

 = [,],

 = [,],

 = [,],

 = [,],

 = [,]

);

 ();
 

( 
 = [,], 
 =
);

( 
 = [,],

 = [,], 
 = [,],

 = []

);

mixture

flask1 flask2

T1 T2 flask1 temperature
flask2 temperature

T1 T2

mixture1 mixture2
flask1 flask2

“oil bath” “oil bath”

mixture1 mixture2

“ice water” “ice water”
mixture1 mixture2

flask1, flask2

2

85°C 75°C

85°C 75°C

1h 1h

10min

25°C 

20mL 20mL

while == && ==

True False

split
slot
branch_num
container

check check
heat

slot
container
temperature

 duration
stirring

wait

cool
slot
temperature

add
slot1
slot2
volume
container

( 
 = , 
 = , 
 = [,] 
); 

, = . ,
. ;

(() ()) 

 (

 = [,],

 = [,],

 = [,],

 = [,],

 = [,]

);

 ();
 

( 
 = [,], 
 =
);

( 
 = [,],

 = [,], 
 = [,],

 = [,]

);

mixture

flask1 flask2

T1 T2 flask1 temperature
flask2 temperature

T1 T2

mixture1 mixture2
flask1 flask2

mixture1 mixture2
“Room Temperature” 

“ice water” “ice water”
mixture1 mixture2

flask1 flask2

2

85°C 75°C

85°C 75°C

1h 1h

10min

20mL 20mL

while == && ==

True False

[...

 Split the mixture equally into 2
separate round-bottom flasks for the
next steps

 Heat the first flask to 85°C and
maintain this temperature while
stirring for 1 hour. Check the
temperature every 10 minutes.
Maintain the second flask at 75°C

 Allow the mixture to cool to room
temperature

 Add 20 mL of ice water into the
flask.

[...]

25°C 25°C

25°C 25°C
ice water ice water

oil bath oil bath

oil bath oil bath

Figure 1: Illustration of the protocol translation problem. An NL-based protocol is translated to a struc-
tured protocol, then to a completed protocol, and finally to a linked protocol that is ready for self-driving
laboratories along with a corresponding PDG, after being processed through the syntax, semantics, and execu-
tion levels. The three colors of arrows and text/ code highlights indicate the three translation steps respectively.

To bridge the aforementioned gap, the paradigm of self-driving laboratories has garnered attention,
which automates experimental protocols via robotic systems, potentially revolutionizing the way ex-
periments are conducted (Bédard et al., 2018; Steiner et al., 2019; Mehr et al., 2020; Rohrbach et al.,
2022; Burger et al., 2020; Szymanski et al., 2023). Despite the promising outlook, designing such
labs relies largely on the translation of protocols, primarily designed for human experimenters, into
machine-readable instructions. This translation process necessitates extensive collaboration between
domain experts, who possess the requisite scientific knowledge; and information technology special-
ists, who encode this knowledge into software and hardware systems. The inherently labor-intensive
nature of such translation significantly prolongs the development of self-driving laboratories. The
primary challenges are rooted in the discrepancies across three critical aspects (see Fig. 1):

Syntax Human experimenters can effortlessly comprehend protocols articulated in Natural Lan-
guage (NL), whereas automated systems frequently necessitate dedicated syntax parsers to con-
vert these protocols into a sequence of actionable steps. Consider the protocol: “Split the mixture
equally into 2 separate 50 mL round-bottom flasks for the next steps.” This example highlights the
meticulous control over experimental procedures, explicitly directing the “split” of the mixture into
precisely measured volumes — a crucial factor for achieving uniform outcomes in subsequent reac-
tions. It is imperative at this level to uphold a structured representation of the mapping of operation
conditions and the control flows of operations.

Semantics Human experimenters can infer implicit knowledge and context relying on the flexibil-
ity and adaptability of human understanding. In contrast, machine instructions necessitate a level of
precision and rigidity that human communication does not inherently require. For instance, consider
the protocol: “Stir the mixture at room temperature for 5 minutes.” While a human expert might
inherently understand that “room temperature” denotes a temperature range of 20-25 ˝C drawing
on their prior knowledge, an automation system necessitates explicit information regarding such
implicit details, which therefore need to be completed before execution.

Execution Human experimenters can simulate possible intermediate states and outcomes by con-
sidering the cumulative effects of a sequence of actions. For instance, given the two instructions
adjacently: “Add 35 mL water to the flask“ and “Add 25 mL water to the flask”, an experimenter
can deduce that the flask’s minimal capacity comes over 60 mL to prevent errors. For an automated
system to perform a similar function, the actions need to be linked along their execution order.

Great efforts have been made on such translation tasks, among which Chemputer is representa-
tive (Mehr et al., 2020). This algorithm parses the NL-based protocol into XDL, a Domain-Specific
Language (DSL) specially designed to describe chemical synthesis reactions. The completeness and

2

linkages are constructed with a set of manually-written constraints, with which the correctness of
protocols can be further checked. This methodology has gained widespread acceptance in automated
chemical synthesis, as a testament to the intensive efforts by domain and IT experts in developing
XDL and the corresponding constraints. However, the application of a similar framework in other
domains of experimental sciences, such as Genetics, Medicine, Ecology, and Bioengineering, would
necessitate repeating these labor-intensive tasks on a case-by-case basis, thus underscoring the crit-
ical need for a more generally applicable, human-free protocol translator.

In this work, we propose a novel framework of human-free translator, designed to potentially facil-
itate applications across diverse experimental science domains without requiring extensive manual
intervention. This framework decomposes the translation challenge into three hierarchical stages:
structured on the syntax level, completed on the semantics level, and linked on the execution level,
mirroring the cognitive steps undertaken by human experts in similar translation tasks. In the pro-
posed work, the DSL, its constraints, and linkages are generated automatically, based on protocols
tailored for human experimenters, thereby eliminating the need for labor-intensive manual processes.

Our contributions are threefold: (i) We conduct a systematic analysis of the existing discrepancies
in protocol translation between human experimenters and automated systems in self-driving labo-
ratories. From this analysis, we derive design principles that emulate human cognitive processes
involved in protocol translation (Sec. 2). (ii) We devise an autonomous protocol translator through a
tripartite framework that incrementally constructs PDGs, encapsulating the spatial-temporal dynam-
ics of protocol execution across syntax, semantics, and execution levels (Sec. 3). (iii) Through both
quantitative and qualitative evaluations in various experimental science domains, we demonstrate
that our translator, when integrated as an auxiliary module for Large Language Models (LLMs),
approaches the efficacy of skilled human experimenters and substantially surpasses the performance
of purely LLMs-based alternatives in protocol translation tasks (Sec. 4).

2 Protocol translation for self-driving laboratories

In this section, we explore the translation of protocols for human experimenters to those suitable
for self-driving laboratories. We analyze the task requirements across syntax (Sec. 2.1), semantics
(Sec. 2.2), and execution (Sec. 2.3) levels. We pinpoint challenges at each level for both humans and
machines, delving into systematic methods for addressing these issues. Leveraging expert insights,
we delineate fundamental design principles for achieving effective protocol translation (Sec. 2.4).

2.1 Syntax level

Operation-condition mapping In NL-based protocols, operations and their corresponding pa-
rameters such as input reagents and conditions, are entangled with each other. For example, “Dis-
solve 10 g of sodium chloride in 100 mL of distilled water at 80˝C”, the entanglements of actions
and conditions highlight the complexity machines face in parsing such protocols. Human experi-
menters can recognize them without information loss thanks to the internalized language for parsing
NL (Chomsky, 1956, 2007). In contrast, protocols for machines must be represented precisely, with
proper extraction of keys and values, and matching between them with appropriate data structures.

Operation control flows In NL-based protocols, both linear and non-linear control flows are im-
plicitly embedded in the text. While linear control flows, i.e., workflows in sequential execution
order, can be straightforward, non-linear control flows such as iterative loops and parallel operations
can be hard to detect because the signal and the operational domain can be separated. Consider the
protocol: “Repeat the titration until the endpoint is reached, then record the volume of titrant used”.
These steps embody a non-linear control flow, challenging machines to correctly interpret the iter-
ative process involved. Even human experts have to read the protocols carefully to understand the
local and global structures to match the signals with operational domains, let alone machines.

2.2 Semantics level

Latent semantics of known unknowns Some assigned values of parameters are regarded as com-
mon sense knowledge of domain experts by default, thus the values are omitted for simplicity or
referred to via a proxy name following the domains’ conventions. For example, the protocol instruc-
tion “Dry the purified product at room temperature” relies on the experimenter’s understanding

3

Split the mixture equally
into 2 separate flasks.

Check the temperature
every 10 minutes.

Allow the mixture to cool
to room temperature.

Add 20 mL of ice water
into the flask.

split
split

2 flask
s

equallymixture

add

add

20 mL
flaskice water

check

10 mins
everytemperature

...

split

slot
branch_num
container

(

 : ,

 : ,

 :
)

/*equally split*/

reagent

int
resource

split

slot
vols
container

(

 : ,

 : (),

 :
)

/*specified split*/

reagent
array int

resource

add

slot1
vol1
slot2

(

 : ,

 : ,

 : ,...

)

/*external add*/

reagent
int
reagent

add

slot1
slot2
vol

(

 : ,

 : ,

 : ,...

)

/*internal add*/

reagent
reagent

int

Joint
Optimization

DSL program hypothesis space Operation dependence graph

heat addcool
mixture1 mixture1 mixture+...

mixture1;

mixture1;

 T: 85°C
 container:
flask1

 duration:
10min;

precon:

postcon:

conditions:
mixture1;

mixture1;

 T: >25°C
 contain
er: flask1;

precon:

postcon:

conditions:

[ice water,
mixture1];

mixture+;

 T: <25°C
 container:
flask1;

precon:

postcon:

conditions:

mixture | split
mixture1 | split
mixture1 | cool
ice water | add

Pushdown Automaton for reagent flow Reagents’ lifecycles Reagent flow graph

mixture;

T: 85°C;

Vol: 20mL;

component:
mixture;

T:25°C;

Vol: 20mL;

component:
mixture+;

T: >0°C, <25°C;

Vol: 40mL;

component:

water;

T: 0°C;

Vol: 20mL;

component:

 mixture 1 mixture 1 mixture+

ice water

cool add ...

add

ice water

cool

add

...
split heat/check cool add

mixture+

ice water

mixture1

mixture2

mixture

Semantics level

Execution level

Completed protocol

Linked protocol

Syntax level Structured protocol

precon

postcon
conditions

precon

postcon
conditions

precon

postcon
conditions

heat cool ...

component
T
Vol

component
T
Vol 20 mL

component
T
Vol ?mL

 mixture 1 mixture+

T<85°C

T>25°C

ice water

precon

postcon
conditions

precon

postcon
conditions

precon

postcon
conditions

heat addcool ...

component
T
Vol

component
T
Vol

component
T
Vol

component
T
Vol

 mixture 1 mixture 1 mixture+

T<25°C

T>0°C

ice water

Protocol dependence graph at step t Protocol dependence graph at step t+1Spatial-temporal dynamics of execution

Additional spatial constraint

Additional temporal constraint

mixture1.Vol(20mL) and
ice_water.Vol(20mL) :=
add_constraint(add.conditions
.container.Vol > 60mL)

cool.T > 25°C and

add.T < 25°C :=
add_constraint(add.conditions
.pace < 1mL/min)

40 mL

Static Dynamic

Static Dynamic

Static Dynamic

Context-free Context-aware

Context-free Context-aware

Context-free Context-aware

add

component
T
Vol 20 mL

 mixture 1

Figure 2: The design principles and the resulting pipeline of our translator. (Syntax level) Operation
dependence synthesis on the syntax level, through the joint optimization of DSL program syntax space and
the parsing tree of the NL-based protocols. This process is static and context-free. (Semantics level) Reagent
flow analysis on the semantics level, through an automaton scheme maintaining the lifecycles of reagents and
intermediate products. This process is static and context-free. (Execution level) Spatial-temporal dynamics
analysis on the execution level, through the partial execution trace model based on the spatial-temporal dual
constraint representation. This process is dynamic and context-aware.

of what constitutes “room temperature”. However, machines substantially suffer from such latent
semantics, implying that every value of parameters should be made explicit.

Latent semantics of unknown unknowns Sometimes, even required parameters for a specific
operation are omitted from the protocols either or not intentionally, causing unknown unknowns
that one may even be not aware of the absence of such information. For instance, the protocol
instruction “Centrifuge the sample after adding the enzyme” does not specify the key controlling
parameter, speed or duration, for the “centrifuge” operation, before describing its specific value.
Both human and machines require every parameter of operations to be grounded.

2.3 Execution level

Capacity of resources Protocols often omit explicit specifications of resource capacities, lead-
ing to potential execution errors like exceeding a device’s maximum capacity. This issue, inherent
in the execution sequence, is undetectable by analyzing single operations alone. For example, the
instruction “Transfer the mixture to a beaker” requires choosing a beaker with adequate capac-
ity, a decision based on the cumulative volume from previous steps. Humans intuitively manage
this through a mental simulation of the experimental process (Gallese and Goldman, 1998). Ma-
chines, therefore, need a pre-execution verification mechanism to ensure resource capacities are not
exceeded, highlighting the need for an integrated understanding of the experimental sequence.

Safety of operations In addition to managing resource capacities, another source of runtime errors
stems from operations that, while semantically valid, may lead to adverse or dangerous outcomes
in certain execution contexts. Such scenarios necessitate a dual-constraint approach, where experi-
menters are mindful not only of the actions required what I should do but also of potential missteps
to avoid what I must not do. For instance, the instruction “Heat the reaction mixture to 70˝C” can
be appropriate or hazardous, depending on the mixture’s composition — safe with a heat-stable cat-
alyst, but risky with a heat-sensitive component due to potential decomposition. To navigate these
complexities, human experts effectively run mental simulations, conducting "What if?" queries and
counterfactual reasoning (Hoch, 1985) to anticipate the consequences of their actions. Similarly,
machines need a system to draw upon domain-specific knowledge and historical context to assess
the safety of each operation, ensuring that all actions are contextually appropriate and safe.

4

2.4 Design principles inspired by human experimenters

Human experts’ cognitive capabilities on the translation of protocols serve two key roles: under-
standing protocols for in-hand experiments and manually developing translators for self-driving
laboratories. Inspired by these practices, we outlined design principles for our translator and as-
sessed the strengths and weaknesses of current DSLs for NL-based protocols, such as XDL (Steiner
et al., 2019), ULSA (Wang et al., 2022), ORD (Kearnes et al., 2021), Biocoder (Ananthanarayanan
and Thies, 2010), Autoprotocol (Strateos, 2023), and the family of DSLs (hereinafter called ADSL)
which are automatically designed by the AutoDSL tool driven by domain corpora (Shi et al., 2024a).

Operation dependence synthesis for the syntax level To precisely comprehend the complicated
operation-condition mappings and non-linear control flows, machines should equip with an exter-
nalized language in parallel with humans’ internalized language (Chomsky, 2007). A machine-
recognizable language commonly possesses a Context-Free Grammar (CFG) which externally de-
fines the key-value structures on different hierarchies: (i) operation as key, reagents and conditions
as values; (ii) condition as key, the corresponding parameters as values; and (iii) signal of control
flow as key, the corresponding operational domains as values. If a protocol can be parsed into an
Abstract Syntax Tree (AST) with the CFG, it is verified on the syntax level (Hopcroft et al., 1996),
resulting in the dependency structures of the operation flow (see Fig. 2 Top). All DSLs mentioned
before are context-free languages with CFGs (Fowler, 2010), echoing this design principle.

Reagent flow analysis for the semantics level Despite the merits of DSLs based on CFGs, the
context-free nature hinders verification on the semantics level, which is pivotal in protocols es-
sentially describing procedures, where the preconditions and postconditions between temporally
adjacent operations can be end-to-end connected. To be specific, although a CFG defines a struc-
tural space with hierarchies of operations, conditions, parameters, and control flows, i.e., “There
must be several parameters corresponding to a condition”, it does not constrain the mappings under
the context of domain-specific knowledge, i.e., “There are parameters controlling the Temperature,
Duration, and Acidity of the condition”. If the exact mapping between keys and values cannot be
specified, the self-driving laboratories can hardly be aware of the loss of completeness, i.e., being
aware of the omitted conditions given an operation or the missing value given a parameter, due to
the extremely large search space over all symbols given by the corresponding DSLs (Gulwani et al.,
2017). The design choices of DSLs diverge on this level, where Autoprotocol only supports ver-
ification on the syntax level and does not possess any domain knowledge, ORD and ULSA offer
the relations between operations and conditions without more fine-grained parameters, while XDL,
Biocoder, and ADSL offer the find-grained key-value relation below the hierarchy of operations
without more constraints about the values, e.g., suggested values of specific parameters. Hence, we
require a mechanism for completing the structures of reagent flow (see Fig. 2 Middle), while the
completeness of the fine-grained parameters is guaranteed by the DSLs.

Spatial-temporal dynamics analysis for the execution level Completion on the semantics level
is conducted statically because the semantics of operations are viewed individually rather than con-
textualized in the execution sequence. Regrettably, such effort cannot guarantee that the protocols
can be executed successfully without any errors in the run time, which is unacceptable by self-
driving laboratories (Christensen et al., 2021; Seifrid et al., 2022). One way is to have domain
experts write down all of the potential bad cases as constraints and use them for verification. How-
ever, run-time errors raised in the dynamic context of operations are heavily long-tail distributed.
This makes it extremely hard to predict such errors from statistical hindsight (Pearl, 2019), i.e., the
set of collected post-hoc bad cases. Thus, we leverage the powerful foresight based on simulation,
which spans the full probabilistic worlds of each operation by its semantic constraints, both on the
spatial dimension, e.g., capacity of resources captured by the reagent dependency, and the tempo-
ral dimension, e.g., safety of operations captured by the operation dependency. The simulation is
conducted along the topological order of the corresponding execution flow graph. At each opera-
tion unit, both historical operations in the same protocols and similar operations in other protocols
are recalled dynamically, checking and refining the dual-constraint spaces accordingly (see Fig. 2
Bottom). Interestingly, none of the DSLs in our discussion take this feature as part of language de-
sign and only XDL employs an external compiler with hand-crafted rules for error detection. Such
consideration is reasonable because in mainstream DSL design, verification on the execution level
is not guaranteed by the DSLs themselves for design simplicity and user convenience (Mernik et al.,
2005). Consequently, we require an environment to dynamically check the correctness of execution
both spatially and temporally, through synthesizing operation and reagent dependencies.

5

3 The framework of protocol translation

In this section, we introduce the three-stage framework for human-free protocol translation, which
gradually constructs a structural representation of protocols, called the Protocol Dependence Graph
(PDG). The PDG makes explicit both the operation and reagent dependencies for a protocol. Opera-
tion dependence echoes the concept of program control flow, which derives the condition of sequen-
tial, branch, or loop execution of protocol operations (Sec. 3.1). Reagent flow provides an explicit
representation of the reagent instantiate-exploit relationships implicitly in the protocol (Sec. 3.2).
Additionally, we simulate the protocol execution process using the PDG, checking and refining op-
eration sequences under the spatial and temporal dynamics of execution (Sec. 3.3).

3.1 Operation dependence synthesis for the syntax level

The operation dependence models the topological order for executing operations in a protocol. The
procedure is executed sequentially from the first operation in the protocol to the last, unless the
experimenter encounters structures that change the execution flow, such as branches and loops. In
practice, we extract the operation dependence by compiling the protocol to DSL programs.

Input The compilation process is conducted based on the corresponding DSL L “ tS,Λu.
The CFG-based syntax S “ pS, V,Σ, Rq includes (i) the start symbol S; (ii) the variable set
V “ tVctrl, Vop, Vcond, Vparu with placeholders for control flow signals Vctrl, operations Vop,
conditions Vcond, and parameters Vpar; (iii) the set of terminals Σ, which are the grounded values
of parameters; (iv) the set of production rules R defining the structural space between the four vari-
able sets. The semantics Λ “ pTctrl, Top, Tcond, Tpar, TRq constrains the variables and production
rules, assigning the placeholders with substantial meanings. To note, according to the design choice
discussed in Sec. 2.4, the DSL used here should be one of XDL, Biocoder, and ADSL, i.e. the DSLs
with the most fine-grained structural representation compared with their counterparts.

Pre-processing Given an input protocol c for translation, we first parse the NL sentences by an
off-the-shelf tool and extract the actions accordingly. Then, the extracted actions are matched with
the operations o P Top of the DSL, according to both exact match score and semantic similarity.
Afterwards, we extract the arrays of entities related to the extracted action et P E by an off-the-shelf
tool, where we regard the output labels to the entities and relations as pseudo-labels because they
can possibly be noisy. Please refer to Appx. C.1 for implementation details.

DSL program synthesis Synthesizing structural representation given unstructured signal is chal-
lenging (Billard, 2000, 2006). Specifically, the one-to-many mappings of many DSL operations
bring uncertainty into the matching. For example, the operation add possesses distinct patterns:
two or three input slots. This further distorts the matching of reagents, conditions, and parameters
because off-the-shelf tools can hardly detect the exact categories of these entities deeply rooted in
domain-specific knowledge. Since the observation and hypothesis spaces are both noisy, we propose
to jointly optimize the patterns of operations and the pseudo-labels. We denote the set of all possible
program patterns generated by operation o as o˚ “ tp|o ñ˚ p, TR ñ˚ p,p P T˚

ctrl Y T˚
op Y

T˚
cond Y T˚

paru. A synthesized DSL program is defined as ppcq “ xppo1q,ppo2q, . . . ,ppo|ppcq|qy,
where ppotq is the program of an operation assembled with its corresponding conditions and param-
eters under the selected pattern in o˚. Let spcq “ xe1, e2, . . . , e|spcq|y represent the sequence of
operation-related entities, the objective of optimization can be

arg min
ppotq,et

ÿ

t

ÿ

o˚
t

D
`

ppcq
›

›spcq
˘

, (1)

where Dp¨}¨q is a divergence function with three indicators: (i) the selected pattern examples should
be as close as possible to the text span; (ii) the selected pattern should be as similar as possible with
the extracted subject-verb-object structure; and (iii) as many labeled entities as possible should be
mapped to the parameter space (see Fig. 3B). Though |o˚| is not a large value, the whole sequence
of operations can yield an exponential complexity. Hence, to make the joint optimization tractable,
we separate the search of solution into two steps in the spirit of Expectation Maximization (EM):
(i) Expectation: sampling programs from the legal space defined by the corresponding DSL, with a
program-size-sensitive prior |ppotq|´1; (ii) Maximization: randomly alternating symbols in spcq by
matching them with those in ppcq and greedily select the edits that decrease the objective function.

6

3.2 Reagent flow analysis for the semantic level

Algorithm 1 Reagent flow analysis

procedure TRANSITION(M , o)
Ź Context Transition
ERASE(MpΓq, KILLSpMpΓq, oq)
APPEND(MpΓq, DEFINESpoq)
Ź State Transition
Mpqq Ð pMpqq z oq Y NEXTOPSpoq

procedure FLOW(ppcq, M)
R “ t u Ź Set of reagent dependence
Mpqq Ð to1u Ź Initial State
MpΓq Ð x y Ź Initial Memory
while Mpqq ‰ ϕ do

TRANSITION(M , Mpqq)

The DSL programs are further contextualized
by associating operations with reagent flow.
Reagent flow indicates the transfer of reagents
among operations, reflecting how one opera-
tion impacts the subsequent ones. We define
the reagent flow following the reaching defi-
nitions schema (Alfred et al., 2007), which is
commonly used to capture the life cycle of a
variable in compiler design. This schema de-
termines a set of reagents reachable at each
point in a protocol, and subsequently tracks
the kills and defines of an operation, i.e.,
whether a reachable reagent is consumed, or
a new reagent is yielded, in an operation.

Input We denote the reagents consumed and the intermediate products yielded by each op-
eration o as INpoq and OUTpoq respectively. The objective is to find a set of operation pairs
t xoi, ojy | OUTpoiq X INpojq ‰ ϕu such that OUTpoiq is required as input by INpoiq.

The reaching definitions schema We determine the availability of a reagent at each step by locat-
ing where it is defined in a protocol when execution reaches each operation. A reagent r reaches an
operation o, if there is a path from the point following r to o, such that r is not killed, i.e., consumed,
along that path. Any reagent r that reaches an operation o might be killed at that point, and o may
yield new intermediate products r1 that reach future operations. Notably, according to statistics on
corpora of protocols (Vaucher et al., 2020), for about 90% operations of a target DSL, if oi ă oj are
two adjacent operations, OUTpoiq X INpojq ‰ ϕ holds. This implies that the reagent generated by
preceding operation is likely to be used and then be killed instantly by the following operation.

Reagent flow analysis via operation flow traversal We traverse the DSL program in execution
order to leverage the reagent locality revealed from statistical results, determining the reachability
and life cycle of reagents. A Pushdown Automaton (PDA) with a random access memory is adopted
to record reachable reagents as operation context, defining and killing reagents at each operation
point along the computation1. A PDA is formally defined as a 7-tuple M “ pQ,Σ,Γ, δ, q0, Z, F q,
where Q Ď Top indicates the set of states, Σ “ Top represents the domain of inputs, Γ Ď Tpar de-
notes possible memory elements, δ Ď QˆΣˆΓ Ñ QˆΓ˚ is the transition procedure (TRANSITION
in Alg. 1), q0 “ o1 defines the initial state, Z “ ϵ is the initial memory element, and F denotes the
set of accepting states. The reagent dependence construction process (FLOW in Alg. 1) traverses the
DSL program in execution order by leveraging the NEXTOPS utility, which evaluates to subsequent
operations. In every transition step with input, the killed reagents are removed from the memory,
and the defined reagents are added to the memory. After a reagent is killed, the pair of the operations
that defined it and killed it will be added to the set of reagent flow constraints. The accepting state
is reached if the memory is empty at the end of execution, i.e., all reagents defined in operations are
killed by other operations. We employ state-of-the-art LLMs to extract reagent entities from NL-
based protocol descriptions for the two utilities KILLS and DEFINES through instruction-following
in-context learning (Wei et al., 2021; Brown et al., 2020) (refer to Appx. C.2 for details).

3.3 Spatial-temporal dynamics for the execution level

While the pre-specified PDG analysis indicates the things should be done to follow operation and
reagent flow, we still need to care about the things must not be done by describing the activities
that may be performed and the constraints prohibiting undesired execution behavior. Therefore,
we introduce a constrained-based execution model to support dynamic protocol simulation, getting
grounded in the theories of process modeling and execution (Dourish et al., 1996; Pesic et al., 2007).

A constraint-based protocol execution model We extend the DSL program ppcq by a constraint
set C “ Cop Y Creg Y Cs Y Ct to construct a constraint-based execution model S “ pppcq, Cq.
The execution of a program is represented by a trace σ “ xpo1, c1q, po2, c2q, . . . , po|ppcq|, c|ppcq|qy,

1It is worth noting that this extended PDA with random access can be shown to be in the same computation
class as Turing machines (Aho and Ullman, 1972), and we employ this extended PDA due to its simplicity.

7

where the order of oi reflects the temporal sequence. The execution context ci defines the spatial
environment in which each operation is performed. Each constraint c P SpCq is a predicate that
maps the execution trace σ to a binary condition denoting satisfy or not. An execution trace σ is said
to satisfy the program constraint if and only if |σ| “ |ppcq| and cpσq holds for all c P C.

Leveraging partial execution trace for spatial and temporal constraints Explicit constraints,
namely operation and reagent flow, are easy to satisfy. Unfortunately, deriving implicit constraints,
e.g., the capacity of resources and safety of operations, is case-by-case for each protocol, requiring
expert efforts. We propose profiling the context through execution to derive implicit spatial and tem-
poral constraints that meet domain-specific requirements. An execution trace is defined as partially
satisfying the constraints C if it follows the operation and reagent flow; that is, for any xoi, ojąiy in
trace σ, there exists at least a pair of valid operation flow path and reagent flow path from oi to oj .

4 Results

In this section, we compete our framework with human experts on the overall translation task, and
assess the utility of each component of the framework by comparing with alternative approaches.

4.1 Experimental setting

Materials We select 75 complicated experiments with 1,166 steps in total as the testing set, from
the domains of Chemical Synthesis (235 steps in 10 experiments; 235 in 10 for simplicity; “Synthe-
sis” for abbreviation), Genetics (396 in 34), Medical and Clinical Research (307 in 23, “Medical”),
Bioengineering (218 in 17), and Ecology (10 in 1). Please refer to Appx. D for details.

Expert-created protocol translation We recruited five groups of experienced experimenters,
each specializing in a different domain, with seven participants in each group. Every participat-
ing experimenter holds at least a Master’s degree related to the corresponding domain, has obtained
at least six years’ experience in manually conducting pre-designed experiments of the domain, has
acquired elementary programming skills, and has at least heard of self-driving laboratories. These
human experts are asked to translate the original NL-based protocols for their domains into those
suitable for self-driving laboratories. Their outputs are subjected to DSL-based representations and
complete PDGs to evaluate machines’ behaviors, which are clearly demonstrated by a running exam-
ple and the examples in the DSL documentation. Outputs from experts are carefully cross-validated
and the individual divergence between them is minimized through an expert-panel-driven workshop
discussion following the established workflow (Reilly et al., 2023). Translation results of human
experts and machines are serialized and are compared through ROUGE and BLEU metrics (Lin,
2004; Papineni et al., 2002). Please refer to Appx. B for ethics considerations.

Alternative methods We compare our translator with alternative methods on the first two levels,
to investigate the effects of early stages on the overall translation result. On the syntax level, we
compare the syntactic synthesis method (referred to as Ours-SY) with ConDec-SY (Wang et al.,
2023a), which synthesizes DSL programs by LLMs with external DSL grammars as constraint,
and a baseline DSL-LLM-SY leveraging the minimal realization used in Shi et al. (2024a). On
the semantics level, we compare the deductive verification method (referred to as Ours-SE) with
NL-RAG-LLM-SE, which retrieves on the embedded vector database of original NL-based proto-
cols, and a baseline NL-LLM-SE implemented by pure prompt-engineering on LLMs. Since the
I/Oes of all stages are unified in the pipeline, we implement an overall baseline Best-Baseline
that combines the strongest alternative methods within the evaluation of the first two stages.

4.2 Overall assessment on expert-created protocol translation

Result Comparing the overall output of our translator and ideal human experimenters, we find that
our translator approaches the level of experts with average performance higher than 85% across all
indicators. Our translator significantly outperforms the alternative pipeline Best-Baseline on
the (tp148q “ ´17.71, µd ă 0, p ă .0005; see Fig. 3C).

Discussion We find that our translator demonstrates similar performance to human experts in
translating protocols with complete parameters and clear descriptions (see Fig. 4A). However, in
cases where the linear description of the experimental protocol is lacking, our translator and human

8

Corpora DSL

BioEng

Ecology

Genetics
Medica

l

Synthesis
BioEng

Ecology

Genetics
Medica

l

Synthesis

BioEng

Ecology

Genetics

Medical

Synthesis

0.00

0.25

0.50

0.75

1.00A

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100
Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
sc

or
e

B

parameter structure text

**** **** **** ****
BLEU−1 ROUGE−L(F1) ROUGE−L(Precision) ROUGE−L(Recall)

Best−Baseline Ours Best−Baseline Ours Best−Baseline Ours Best−Baseline Ours
0.0

0.5

1.0

Sc
or

e

C

BLEU−1 ROUGE−L(F1) ROUGE−L(Precision) ROUGE−L(Recall)

ConD
ec−S

Y

DSL−
LLM−

SY
Ours

−SY
ConD

ec−S
Y

DSL−
LLM−

SY
Ours

−SY
ConD

ec−S
Y

DSL−
LLM−

SY
Ours

−SY
ConD

ec−S
Y

DSL−
LLM−

SY
Ours

−SY
0.0

0.5

1.0

Sc
or

e

D

**

**

**

**

BLEU−1 ROUGE−L(F1) ROUGE−L(Precision) ROUGE−L(Recall)

NL−L
LM−S

E

NL−R
AG−

LLM−
SE

Ours
−SE

NL−L
LM−S

E

NL−R
AG−

LLM−
SE

Ours
−SE

NL−L
LM−S

E

NL−R
AG−

LLM−
SE

Ours
−SE

NL−L
LM−S

E

NL−R
AG−

LLM−
SE

Ours
−SE

0.0

0.5

1.0

Sc
or

e

E

Expert

Figure 3: Results of experiment. (A) Distinctions between various domains regarding domain-specific cor-
pora and the corresponding DSLs. (B) Convergence of the three indicators in the objective function for program
synthesis. (C) Our translator significantly outperforms the best baseline and approaches human-level perfor-
mance. (D) Our translator significantly outperforms alternative methods on the syntax level. (E) Our translator
significantly outperforms alternative methods on the semantics level.

experts diverge. Specifically, our translator tends to translate based on the information within the
sentence or between adjacent sentences, while human experts tend to consider the overall experi-
mental process comprehensively. Though there are minor gaps, these observations suggest that our
translator is approaching the level of performance of experienced human experimenters. Please refer
to Appx. E.3 for case studies on the distinctions between the behaviors of experts and machines.

4.3 Comparison between alternative models

Result On the syntax level, our Ours-SY significantly outperforms alternative approaches
(tp148q “ ´17.07, µd ă 0, p ă .0005 for ConDec-SY; tp148q “ ´15.47, µd ă 0, p ă .0005
for DSL-LLM-SY; see Fig. 3D). On the semantics level, our Ours-SE significantly outperforms
alternative approaches (tp148q “ ´2.52, µd ă 0, p ă .05 for NL-RAG-LLM-SE; tp148q “

´3.07, µd ă 0, p ă .005 for NL-LLM-SE; see Fig. 3E).

Discussion Compared with alternative methods on the syntax level, our translator excels in en-
suring the accuracy of translations across different protocols thanks to the PDG representation, as
shown in Fig. 4B. On the semantics level, our translator performs better in translating incomplete
protocols with missing information than other baselines, as shown in Fig. 4C. We explain these
merits with the properties of structural representation, which defines a representation space with

9

Syntax

NL-based protocol

Semantics

Groudtruth

cell lysate

scintillation vial

:

: ,

:
:

:

:

action transfer
output 3H-Penciclovir

reagent
volume
container

480 μL

Groudtruth

slides DAPI nucleic acid stain]

PBS

:

(

[,);

(

 = []

 = [])

stain
reagent =
wash
reagent
time three times

Ours

slides DAPI nucleic acid stain

PBS

slide-beakers

:

(

 = [,]

 = []);

(

 = []

 = []

 = [])

stain
reagent
time
wash
reagent
time
container

30 seconds

three times

Ours

cell lysate

scintillation vial

:

:
:
:
:

:

action transfer

output 3H-Penciclovir

reagent
volume
container

480 μL

Original Text:

Transfer the remaining cell lysate (480 μL) to a scintillation vial .

Original Text:
 Stain the slides with DAPI nucleic acid stain
 Wash three times with PBS applying gentle shaking.

for 30 seconds
in slide-beakers

DSL-LLM-SY:

:

:
:
:

action transfer

container
output radiolabeled cells

volume

scintillation vial

5 mL

ConDec-SY:

:

:
:

:

:

:

action transfer

concentration
container
output
reagent
volume

scintillation

scintillation vial

Cytoscint fluid

5 mL

NL-LLM-SE:

(

 = []);

time = [5 min]

(

 = []

container = [...]

 = [])

stain
reagent

wash
reagent

time

slides

PBS

three times

NL-LLM-SE:

(

 = []);

time = [1 min]

(

 = []

 = [])

stain
reagent

wash
reagent
time

DAPI nucleic acid stain

PBS
three times

B

A

C

Original Text:
 Incubate slides in EDTA at

95°C for 50 min for antigen
unmasking

 Cool slides for 20 min at
room temperature

 Wash in H₂O
 Incubate slides in 3% H₂O₂
for 5 min at room
temperature

 Wash twice in TBS.

Expert

Ours

Best-Baseline

incubate cool incubate washwash

EDTA

50 min, 95 °C

H₂O 3% H₂O₂

5 min,

Room Temperature
TBS

Repeat=2
20min,

Room Temperature

slides slides slidesslides slides

incubate cool incubate washwash

50 min, 95 °C H₂O 3% H₂O₂ TBS
20min,

Room Temperature

slides slides slidesslides slides

EDTA
component:

EDTA
component:

EDTA/water
component:

EDTA
component:

EDTA/3% H₂O₂
component:

incubate cool incubate washwash
slides slides slidesslides

slides;

slides;

 T: 95 °C
 container: heating bath
 duration: 50 min;

precon:

conditions:

postcon:

slides;

slides;

 T: 25 °C
 container: staining dish
 duration: 20 min;

precon:

conditions:

postcon:

slides;

slides;

 T: 25 °C
 container: staining dish;

precon:

conditions:

postcon:

slides;

slides;

 T: 25 °C
 container: staining dish
 duration: 5 min;

precon:

conditions:

postcon:

slides;

slides;

 T: 25 °C
 container: staining dish
 repeat: 2 times;

precon:

conditions:

postcon:

slides

Figure 4: Showcases of the results. (A) Examples of the final PDGs generated by our translator, the alternative
method, and human experts. (B) Examples of structured protocols output by our translator and alternative
methods. (C) Examples of completed protocols output by our translator and alternative methods.

high expressive power (Felleisen, 1991; Lloyd, 2012), capturing information along the spectrum of
granularity, from local details like fine-grained parameter-value relations to global-structure of con-
trol flows. By contrast, the original NL representation and its embedding space may not possess
such extent of expressive power (Zhang et al., 2021). Consequently, mapping the protocols into a
structural latent space for query or retrieval should be more suitable than directly operating on the
original space. Please refer to Appxs. E.1 and E.2 for details on the utilities of different approaches.

5 General discussions

In this work, we study the problem of translating protocols for human experimenters into those
proper for self-driving laboratories. We design a human-free protocol translator under the inspiration
of human experts’ cognitive processes in protocol translation. Results suggest that our translator
is comparable with experienced human experimenters in protocol translation, further implying its
potential to serve as a plug-and-play module for fully automated scientific discovery.

Closing the loop of automatic scientific discovery The realization of automatic protocol trans-
lation closes the last-mile of closed-loop scientific discovery. Integrating the translator with other
cutting-edge techniques, we can expect such a pipeline in the future: after AI models for scien-
tific discovery have output insights from initial observations, there is a self-driving laboratory ready
for producing and testing the designs. The creation of this laboratory is also automatic (Shi et al.,
2024c). In the conventional creation process, we must employ a cohort of experienced domain
experts to hand-craft a DSL tailored for representing protocols of the target domain, and then hand-
craft a translator with pre-defined production rules and constraints to translate the protocols into
machine executables. Hence, the status quo has been changed: we can exploit the AutoDSL tool
to obtain the DSL based on a corpus of the target domain (Shi et al., 2024a), and then set up our
automatic translator for final execution; we can also integrate the DSLs and our translator into LLM-
based “scientist agents” for a more reliable and flexible domain specification (Boiko et al., 2023;
Bran et al., 2023). The integration of these approaches facilitates the grounding of AI for scientific
discovery, which helps AI researchers test, produce and deploy their discoveries more seamlessly.

Valuing domain experts One might worry that the full realization of closed-loop scientific dis-
covery would pose a severe impact on conventional experimental scientists. Indeed, AI for scientific
discovery and self-driving laboratories do not compete with conventional scientific discovery. As
interdisciplinary methodologies, they still demand the supervision of scientists for tacit knowledge,
creativity, and integrity (Shi et al., 2024b). Also, such techniques free domain experts from those
time-consuming and labor-intensive low-level workloads and focus them on high-level thinking.

10

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under
Grants 91948302 and 52475001. Part of the authors are visiting students at Peking University during
this work. In particular, Z. Bi is visiting from Huazhong University of Science and Technology and
Q. Xu is visiting from University of Science and Technology of China. The authors would also like
to thank Jiawen Liu for her assistance in figure drawings.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore,

L., Ballard, A. J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular
interactions with alphafold 3. Nature, pages 1–3.

Aho, A. V. and Ullman, J. D. (1972). The theory of parsing, translation, and compiling, volume 1.
Prentice-Hall Englewood Cliffs, NJ.

Alfred, V. A., Monica, S. L., and Jeffrey, D. U. (2007). Compilers Principles, Techniques & Tools.
pearson Education.

Ananthanarayanan, V. and Thies, W. (2010). Biocoder: A programming language for standardizing
and automating biology protocols. Journal of Biological Engineering, 4:1–13.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604).

Baker, M. (2021). Five keys to writing a reproducible lab protocol. Nature, 597(7875):293–294.

Bédard, A.-C., Adamo, A., Aroh, K. C., Russell, M. G., Bedermann, A. A., Torosian, J., Yue, B.,
Jensen, K. F., and Jamison, T. F. (2018). Reconfigurable system for automated optimization of
diverse chemical reactions. Science, 361(6408):1220–1225.

Billard, L. (2000). Regression analysis for interval-valued data. Data Analysis, Classification, and
Related Methods.

Billard, L. (2006). Symbolic data analysis: what is it? In Proceedings in Computational Statistics:
17th Symposium Held in Rome, Italy.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. (2023). Autonomous chemical research
with large language models. Nature, 624(7992):570–578.

Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White, A., and Schwaller, P. (2023). Augmenting
large language models with chemistry tools. In NeurIPS 2023 AI for Science Workshop.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. In Advances in
Neural Information Processing Systems.

Burger, B., Maffettone, P. M., Gusev, V. V., Aitchison, C. M., Bai, Y., Wang, X., Li, X., Alston,
B. M., Li, B., Clowes, R., et al. (2020). A mobile robotic chemist. Nature, 583(7815):237–241.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information
Theory, 2(3):113–124.

Chomsky, N. (2007). Approaching ug from below. Interfaces + recursion = language, 89:1–30.

Christensen, M., Yunker, L. P., Shiri, P., Zepel, T., Prieto, P. L., Grunert, S., Bork, F., and Hein, J. E.
(2021). Automation isn’t automatic. Chemical Science, 12(47):15473–15490.

Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and Zbyslaw, A. (1996). Freeflow: medi-
ating between representation and action in workflow systems. In Proceedings of the 1996 ACM
conference on Computer supported cooperative work.

Felleisen, M. (1991). On the expressive power of programming languages. Science of computer
programming, 17(1-3):35–75.

11

Fowler, M. (2010). Domain-specific languages. Pearson Education.

Freedman, L. P., Cockburn, I. M., and Simcoe, T. S. (2015). The economics of reproducibility in
preclinical research. PLoS Biology, 13(6):e1002165.

Gallese, V. and Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading.
Trends in Cognitive Sciences, 2(12):493–501.

Grisoni, F., Huisman, B. J., Button, A. L., Moret, M., Atz, K., Merk, D., and Schneider, G. (2021).
Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci-
ence Advances, 7(24):eabg3338.

Gulwani, S., Polozov, O., Singh, R., et al. (2017). Program synthesis. Foundations and Trends® in
Programming Languages, 4(1-2):1–119.

Hie, B., Zhong, E. D., Berger, B., and Bryson, B. (2021). Learning the language of viral evolution
and escape. Science, 371(6526):284–288.

Hoch, S. J. (1985). Counterfactual reasoning and accuracy in predicting personal events. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 11(4):719.

Honnibal, M. and Johnson, M. (2015). An improved non-monotonic transition system for depen-
dency parsing. In Annual Conference on Empirical Methods in Natural Language Processing.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (1996). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Longman Publishing Co., Inc.

Jablonka, K. M., Patiny, L., and Smit, B. (2022). Making the collective knowledge of chemistry
open and machine actionable. Nature Chemistry, 14(4):365–376.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589.

Kearnes, S. M., Maser, M. R., Wleklinski, M., Kast, A., Doyle, A. G., Dreher, S. D., Hawkins, J. M.,
Jensen, K. F., and Coley, C. W. (2021). The open reaction database. Journal of the American
Chemical Society, 143(45):18820–18826.

Kim, C., Gadgil, S. U., DeGrave, A. J., Omiye, J. A., Cai, Z. R., Daneshjou, R., and Lee, S.-I.
(2024). Transparent medical image ai via an image–text foundation model grounded in medical
literature. Nature Medicine, pages 1–12.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out.

Lloyd, J. W. (2012). Foundations of logic programming. Springer Science & Business Media.

McNutt, M. (2014). Reproducibility. Science, 343(6168):229–229.

Mehr, S. H. M., Craven, M., Leonov, A. I., Keenan, G., and Cronin, L. (2020). A universal system for
digitization and automatic execution of the chemical synthesis literature. Science, 370(6512):101–
108.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR), 37(4):316–344.

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Percie du Sert,
N., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J., and Ioannidis, J. (2017). A manifesto for
reproducible science. Nature Human Behaviour, 1(1):1–9.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the 40th annual meeting of the Association for
Computational Linguistics.

12

Park, N. H., Manica, M., Born, J., Hedrick, J. L., Erdmann, T., Zubarev, D. Y., Adell-Mill, N., and
Arrechea, P. L. (2023). Artificial intelligence driven design of catalysts and materials for ring
opening polymerization using a domain-specific language. Nature Communications, 14(1):3686.

Pearl, J. (2019). The seven tools of causal inference, with reflections on machine learning. Commu-
nications of the ACM, 62(3):54–60.

Pesic, M., Schonenberg, M., Sidorova, N., and van der Aalst, W. M. (2007). Constraint-based
workflow models: Change made easy. In OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems".

Reilly, J., Shain, C., Borghesani, V., Kuhnke, P., Vigliocco, G., Peelle, J., Mahon, B., Buxbaum,
L., Majid, A., Brysbaert, M., et al. (2023). What we mean when we say semantic: A consensus
statement on the nomenclature of semantic memory. OSF preprint.

Rohrbach, S., Šiaučiulis, M., Chisholm, G., Pirvan, P.-A., Saleeb, M., Mehr, S. H. M., Trushina,
E., Leonov, A. I., Keenan, G., Khan, A., et al. (2022). Digitization and validation of a chemical
synthesis literature database in the chempu. Science, 377(6602):172–180.

Seifrid, M., Pollice, R., Aguilar-Granda, A., Morgan Chan, Z., Hotta, K., Ser, C. T., Vestfrid, J.,
Wu, T. C., and Aspuru-Guzik, A. (2022). Autonomous chemical experiments: Challenges and
perspectives on establishing a self-driving lab. Accounts of Chemical Research, 55(17):2454–
2466.

Shi, Y.-Z., Hou, H., Bi, Z., Meng, F., Wei, X., Ruan, L., and Wang, Q. (2024a). AutoDSL: Au-
tomated domain-specific language design for structural representation of procedures with con-
straints. In Annual Meeting of the Association for Computational Linguistics.

Shi, Y.-Z., Li, H., Ruan, L., and Qu, H. (2024b). Constraint representation towards precise data-
driven storytelling. In IEEE Visualization and Visual Analytics Gen4DS.

Shi, Y.-Z., Li, S., Niu, X., Xu, Q., Liu, J., Xu, Y., Gu, S., He, B., Li, X., Zhao, X., et al. (2023a).
PersLEARN: Research training through the lens of perspective cultivation. In Annual Meeting of
the Association for Computational Linguistics.

Shi, Y.-Z., Xu, M., Hopcroft, J. E., He, K., Tenenbaum, J. B., Zhu, S.-C., Wu, Y. N., Han, W., and
Zhu, Y. (2023b). On the complexity of Bayesian generalization. In International Conference on
Machine Learning.

Shi, Y.-Z., Xu, Q., Meng, F., Ruan, L., and Wang, Q. (2024c). Abstract Hardware Grounding
towards the Automated Design of Automation Systems. In International Conference on Intelligent
Robotics and Applications.

Singh, S. H., van Breugel, F., Rao, R. P., and Brunton, B. W. (2023). Emergent behaviour and neural
dynamics in artificial agents tracking odour plumes. Nature Machine Intelligence, 5(1):58–70.

Steiner, S., Wolf, J., Glatzel, S., Andreou, A., Granda, J. M., Keenan, G., Hinkley, T., Aragon-
Camarasa, G., Kitson, P. J., Angelone, D., et al. (2019). Organic synthesis in a modular robotic
system driven by a chemical programming language. Science, 363(6423):eaav2211.

Strateos (2023). Autoprotocol specification. https://autoprotocol.org/specification/.

Szymanski, N. J., Rendy, B., Fei, Y., Kumar, R. E., He, T., Milsted, D., McDermott, M. J., Gallant,
M., Cubuk, E. D., Merchant, A., et al. (2023). An autonomous laboratory for the accelerated
synthesis of novel materials. Nature, 624(7990):86–91.

Vaucher, A. C., Zipoli, F., Geluykens, J., Nair, V. H., Schwaller, P., and Laino, T. (2020). Automated
extraction of chemical synthesis actions from experimental procedures. Nature Communications,
11(1):3601.

Wang, B., Wang, Z., Wang, X., Cao, Y., A Saurous, R., and Kim, Y. (2023a). Grammar prompting
for domain-specific language generation with large language models. In Advances in Neural
Information Processing Systems.

13

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., Van Katwyk, P., Deac,
A., et al. (2023b). Scientific discovery in the age of artificial intelligence. Nature, 620(7972):47–
60.

Wang, Z., Cruse, K., Fei, Y., Chia, A., Zeng, Y., Huo, H., He, T., Deng, B., Kononova, O., and
Ceder, G. (2022). ULSA: Unified language of synthesis actions for the representation of inorganic
synthesis protocols. Digital Discovery, 1(3):313–324.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V.
(2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Xie, T., Li, Q., Zhang, Y., Liu, Z., and Wang, H. (2024). Self-improving for zero-shot named entity
recognition with large language models. arXiv preprint arXiv:2311.08921.

Zhang, J., Chen, B., Zhang, L., Ke, X., and Ding, H. (2021). Neural, symbolic and neural-symbolic
reasoning on knowledge graphs. AI Open, 2:14–35.

14

A Additional remarks

A.1 Rationale for the evaluation metrics

Direct comparisons across entire sentences under BLEU and ROUGE scores would indeed pose a
problem — it may be problematic considering instructions that look similar could have very different
semantics. Therefore, to circumvent this issue, we convert all results into a standardized JSON-style
format for data representation, and comparisons are made between key-value pairs rather than entire
sentences, effectively resolving the metric concern.

Let us consider comparing similarity between the following two instructions “... pour hot water ...”
and “... pour cold water ...”. We transform them into the following JSON-style format:

1 {

2 ...

3 function_name: "pour",

4 reagent: "water",

5 temperature: "hot",

6 ...

7 }

8 ...

9 {

10 ...

11 function_name: "pour",

12 reagent: "water",

13 temperature: "cold",

14 ...

15 }

The comparison between the two sentences is then transformed into a comparison between two
JSON code blocks. We calculate the similarity score cumulatively based on the similarity between
the values of matched pairs of keys. For instance, for the key “temperature”, the values “hot” and
“cold” yield a low similarity score under the ROUGE, BLEU, and even the Exact Match metrics.
As “temperature” is one of the major keys within configuration parameters, a high penalty in this
dimension significantly affects the cumulative similarity score. With this fine-grained comparison
metric, we can comprehensively track the distinctions and commonalities between results without
losing expressivity regarding the quantities.

We also acknowledge that there are advanced evaluation metrics, especially in the recent works
where LLMs are leveraged as external judges and achieve considerable performance in general
testing cases. Our choice of less advanced metrics is driven by the intention to focus specifically on
domain-specific knowledge, which constitutes the primary scope of this paper and may be relatively
sparse in general LLMs. Nonetheless, the exploration of more sophisticated evaluation metrics
represents a promising avenue for future research.

A.2 Insight behind the design of PDG

We have constructed the operation dependence graph on the syntax level and the reagent flow graph
on the semantics level. Indeed, the two analytical results come with a duality. In the operation
dependence graph, vertices represent operations and edges represent reagents passed between them.
In contrast, the reagent flow graph uses vertices for reagent states and edges for operations causing
state transitions. Interestingly, the vertices of one of the two graphs can be one-to-one mapped to
the edges of another, echoing the duality. On a higher level, we say that the former provides an
experimenter-centered view while the latter offers a reagent-centered view. These two perspectives
are complementary on encoding both the information of the interventions to the environment and
the status of the environment itself. Consequently, by leveraging such duality, we are able to track
spatial dynamics, e.g., the variance of required resources, and temporal dynamics, e.g., the context
of sequential operations, simultaneously on the PDG.

A1

A.3 Computational complexity of the framework

Let us consider a new coming protocol with k steps, with each step configured by a constant number
of parameters, denoted as c. On the syntax level, the primary computation bottleneck arises during
DSL program synthesis, where the EM Algorithm exhibits a worst-case complexity of Opckq. This
is a highly conservative estimate, as mainstream optimization approaches can solve the EM much
more efficiently. On the semantics level, the bottleneck occurs during reagent flow analysis, which
consumes Opk2q complexity. Notably, only approximately 10% of the steps are included in the
nested loop for reagent flow construction, as about 90% of the steps are linearly connected. On the
execution level, the protocol execution model also exhibits Opk2q complexity, encompassing both
forward and backward tracing. This can be optimized by replacing the full tracing strategy with a
sliding window built upon the topological dependencies between steps. Although the complexities
of the algorithms at these three levels are tractable, there is substantial room for improving the
efficiency of the framework. Investigating methods to speed up the translation process for protocols
with extremely high complexity would be a valuable area of research.

A.4 Generality of the framework

The general applicability of our proposed framework beyond experimental sciences can indeed be
a common concern. The core value of translating NL-based protocols into formats suitable for ma-
chine execution substantially lies in facilitating experiments in self-driving laboratories, thereby ac-
celerating scientific discovery. Experimental protocols come with unique properties and challenges,
such as the fine-grained incorporation of domain-specific knowledge, the non-trivial dependency
topologies between operations, the long-horizon lifecycles of intermediate productions, and the ne-
cessity for precise execution without run-time errors. These factors shape the scope of our research
problem, emphasizing the need to handle protocols with stringent terminology and formatting.

Despite the specific scope of this paper, we are open to exploring the potential for generalizing
our framework to other domains with similar properties and challenges as those found in scientific
experiments — such as cooking. Imagine a self-driving kitchen that automatically prepares all
ingredients and executes all procedures for cooking a meal according to NL-based recipes. Such
self-driving kitchens would also benefit significantly from translating human-oriented recipes into
formats suitable for machine execution. In the following, we present a running example of such a
translation, adapted from a use case of the Corel1 DSL.

The protocol after pre-processing is as follows.

1 Pasta Bolognese

2
3 Yield: 2 plates

4
5 Ingredients:

6
7 - 8 [ounces] white fresh {pasta}

8
9 - 1 [floz] olive {oil}

10
11 - 1/4 [ounce] {garlic}; minced

12
13 - 4 [ounces] {onions}; chopped

14
15 - 4 [ounces] shallow fried {beef}; minced

16
17 - 1 - 1 1/2 [ounce] lean prepared {bacon}

18
19 - 1/3 [cup] red {wine}

1Visit https://fse.studenttheses.ub.rug.nl/25731/ for documentation.

A2

https://fse.studenttheses.ub.rug.nl/25731/

20
21 - 150 [gram] raw {carrots}; thinly sliced

22
23 - 2/3 [ounce] concentrated {tomato puree}

24
25 - 4 [ounces] red {sweet pepper}; cut julienne

26
27 - 1 [ounce] {parmesan} cheese

28
29 Instructions:

30
31 Add the @oil@ to a large saucepan, heat to <300 F>, and saute the

@onions@.

32
33 After |2 minutes|, add the @garlic@. Keep on medium to high heat, and don

't stir.

34
35 After |2 minutes| more, add the @beef@.

36
37 Fry the @bacon@ in a separate pan, on high heat. Remove liquified fat

when done.

38
39 Boil @pasta@ in a medium pan, until al dente (~|8 minutes|). Drain when

done.

40
41 Once the @beef@ is done, add the @carrots@, @sweet pepper@ and @tomato

puree@.

42
43 Slowly add the @wine@ as well, to not lower the temperature. Let it

simmer (but not boil) for |5-10 minutes|.

Given the protocol as the input of our framework, the resulting DSL program is as follows.

1 add(slot = "oil", target = "large saucepan", container = plate_1, emit =

mixture_1);

2
3 heat(target = mixture_1, temperature = 300F, container = plate_1, postcon

= stop());

4
5 saute(target = "onions", container = plate_2, duration = 2mins);

6
7 add(slot = "garlic", target = mixture_1, container = plate_1, emit =

mixture_2);

8
9 heat(target = mixture_2, temperature = 325F, container = plate_1,

duration = 2mins);

10
11 add(slot = "beef", target = mixture_2, container = plate_1, emit =

mixture_3);

12
13 heat(target = mixture_2, temperature = 325F, container = plate_1,

postcond = check_done(target = "beef"));

A3

14
15 fry(target = "bacon", temperature = 350F, container = pan_1, postcond =

remove(target = "liquified fat"));

16
17 boil(target = "pasta", temperature = 212F, container = pan_2, duration =

8mins, postcond = drain());

18
19 add(precond = check_done(target = "beef"), slot = ["carrots", "sweet

pepper", "tomato puree"], target = mixture_3, container = plate_1,

emit = mixture_4);

20
21 add(slot = "wine", target = mixture_4, container = plate_1, pace = 1mL/s)

;

22
23 simmer(target = mixture_4, temperature = 211F, duration = 7.5mins);

In this example, we observe that the NL-based recipe possesses ambiguities and omissions. Our
translation framework addresses these challenges by structuring the recipe on the syntax level, com-
pleting the latent information on the semantics level, and linking the programs with necessary re-
sources, such as the usage of plates, on the execution level. Due to the modularity of DSLs, although
Corel’s distribution of syntactic and semantic features differs significantly from those of DSLs used
for representing experimental protocols, our translator can generalize to this new target domain
through the structure of rules, namely rule-based generalization (Shi et al., 2023b).

A.5 The motivations behind this work

In this work, we study the problem of translating experimental protocols designed for human ex-
perimenters into formats suitable for machine execution. Our primary motivation is to bridge the
existing gap between machine learning algorithms in the field of AI for science, such as molecular
design, and the grounded experimental verification facilitated by self-driving laboratories. Con-
ventional workflows for setting up self-driving laboratories and conducting physical experiments
necessitate deep integration with domain experts, significantly impeding the progress of machine
learning researchers in verifying and iterating their findings. Consequently, our framework aims to
provide an infrastructure that enables these researchers to advance their machine learning algorithms
and seamlessly validate their findings, thereby closing the loop of automatic scientific discovery.

To meet the requirements of such infrastructure, we conduct a systematic study to identify existing
gaps in protocol translation between human experimenters and automatic translators in self-driving
laboratories. From the study, we derive design principles that emulate human cognitive processes
involved in protocol translation. Under the guidance of these design principles, we develop the
three-stage framework that integrates cognitive insights from human experts with approaches from
program synthesis, automaton construction, and counterfactual analysis. On the syntax level, we
synthesize the operation dependence graph to transform NL-based protocols into structured repre-
sentations, thereby making explicit the operation-condition mappings and the control flows. On
the semantics level, we analyze the reagent flow graph to reconstruct the complete lifecycles of
intermediate products, addressing the latent, missing, or omitted properties and values. On the ex-
ecution level, we contextualize both the operation dependence graph and the reagent flow graph
within spatial and temporal dynamics, resulting in the protocol dependence graph. This graph con-
ducts counterfactual reasoning to detect potential conflicts or shortages of execution resources and
to identify inappropriate combinations of operations in execution sequences.

B Ethics statement

B.1 Human participants

The meta-evaluation included in this work has been approved by the Institutional Review Board
(IRB) of Peking University. We have been committed to upholding the highest ethical standards in

A4

conducting this study and ensuring the protection of the rights and welfare of all participants. We
paid the domain experts a wage of $22.5/h, which is significantly higher than the standard wage.

We have obtained informed consent from all participants, including clear and comprehensive infor-
mation about the purpose of the study, the procedures involved, the risks and benefits, and the right
to withdraw at any time without penalty. Participants were also assured of the confidentiality of
their information. Any personal data collected (including name, age, and gender) was handled in
accordance with applicable laws and regulations.

B.2 Corpora collection

We carefully ensure that all experimental protocols incorporated into our corpora strictly adhere to
open access policies, governed by the Creative Commons license. This approach guarantees full
compliance with copyright and intellectual property laws, eliminating any potential infringement or
unauthorized use of protected materials. By exclusively utilizing resources that are freely available
and legally distributable, we uphold the highest standards of ethical conduct in research, fostering
an environment of transparency and respect for the intellectual property rights of others. This com-
mitment ensures that our work not only advances the frontiers of knowledge but does so in a manner
that is both legally sound and ethically responsible.

C Implementation details

C.1 Details of pre-processing

We employ the SpaCy Dependency Parser to analyze the syntactic structure of protocol c, which
allows for the extraction of verbs and the identification of associated objects and modifiers (Honnibal
and Johnson, 2015). After parsing, these verbs are aligned with corresponding operational actions
o P Top in the DSLs by maximizing the cosine similarity between their word2vec representations
and those of the DSL operations. Furthermore, we utilize an advanced few-shot Named Entity
Recognition (NER) algorithm, based on large language models, to accurately identify and classify
entities et P E within the text (Xie et al., 2024). The rationale of integrating LLMs with classical
parsing techniques lies in leveraging the advanced natural language processing capabilities of LLMs
while mitigating their inherent uncertainties.

The prompt for NER is as follows.

1 Given entity label set: {label_set}.

2 Please name the entities in the given text. Based on the given entity

label set, provide answer in the following JSON format: [{"Entity

Name": "Entity Label"}]. If there is no entity in the text, return

the following empty list: [].

3 Please note that entities have already been annotated with [], no need to

extract and analyze other entities.

4 {cases}

5 Text: {query}

6 Answer:

C.2 Details of reagent flow analysis

We extract reagents from the natural language descriptions of protocols using two utility functions,
KILLS and DEFINES. KILLS identifies the reagent consumed in an operation, while DEFINES iden-
tifies the reagent introduced in an operation. Due to the potential for a single chemical substance
to have multiple names among other factors, it is impractical to rely solely on string matching to
determine if a reagent is killed in a given operation. Instead, we employ a method based on prompt
engineering with LLMs for this analysis.

The following prompt is used to analyze whether the input of the current operation is the output of
a previous operation:

A5

1 This instruction describes a step in an experimental process, which

includes one action, multiple parameters, and one output.

2 Please help analyze the output of this instruction. I will provide a list

of potential outputs. You need to assist in determining which of

these outputs is most suitable for this instruction.

3 Note that you must choose one output from the list. Please output only a

string without any explanation.

4
5 [Examples]

6 Instruction: {"action": "add", "reagent": ["glycoblue"], "output": ""}

7 Potential output list: "RNA", "mRNA"

8 Output: "RNA"

9
10 Instruction: {"action": "add", "concentration": ["1:10 volume 5 M NaCl"],

"output": ""}

11 Potential output list: "a µMACS column", "solution"

12 Output: "solution"

13
14 Instruction: {"action": "heat", "reagent": ["limestone"], "output": ""}

15 Potential output list: "water", "NaCl"

16 Output:

17
18 [Question]

19 Instruction: {Instruction}

20 Potential output list: {Input}

21 Output:

Additionally, this prompt is used to determine if reagents in the current memory MpΓq are killed by
the current operation:

1 This instruction describes a step in an experimental process, which

includes one action, multiple parameters-including various reagents-

and one output.

2 Please help analyze the missing reagents of this instruction. I will

provide a list of potential reagents. You need to help me analyze

which of these reagents might be the ones omitted from the current

instruction.

3 Please note how many reagent parameters are missing from the current

instruction. It is possible that some reagent parameters cannot be

completed with the list provided. Please output only a comma-

separated list of strings without any explanation.

4
5 [Examples]

6 Instruction: {"action": "add", "reagent": [""], "output": ""}

7 Potential reagent list: "RNA", "glycoblue"

8 Reagents: "glycoblue"

9
10 Instruction: {"action": "add", "concentration": ["1:10 volume"], "reagent

": ["", ""], "output": ""}

11 Potential reagent list: "µMACS", "solution", "NaCl"

12 Reagents: "NaCl", "µMACS"

13

A6

14 Instruction: {"action": "use", "reagent": ["BamHI", "XhoI", ""], "device

": ["PCR amplification"], "output": ""}

15 Potential reagent list: "agar", "food"

16 Reagents:

17
18 [Question]

19 Instruction: {Instruction}

20 Potential reagent list: {Memory}

21 Reagents:

In the process of synthesizing operation dependencies on the syntax level, we implement the DE-
FINES function. This involves pattern matching after pre-processing to accurately define reagents in
each operation.

C.3 Cost of the implementation

The computational cost of our algorithm primarily arises from the expenses associated with API
calls to LLMs. We selected OpenAI’s gpt-3.5-turbo-0125 model for our experiments.
Across 75 test protocols, we executed 1816 queries to achieve syntax-level translation, resulting
in structured protocols. At the semantic level, we conducted 4062 queries for completion tasks (in-
cluding translating protocols retrieved from training dataset). During these experiments, the cost
model charged US$0.50 per million tokens for inputs and US$1.50 per million tokens for outputs.
Consequently, our expenditures were approximately US$10. Additionally, we utilized OpenAI’s
text-embedding-ada-002 model to embed the training dataset and build a vector database,
which incurred a cost of about US$7.

D The testing set

D.1 Collection

The real experiments for the testing set are retrieved from open-sourced websites run by top-tier pub-
lishers, including Nature’s Protocolexchange2, Cell’s Star-protocols3, Bio-protocol4, Wiley’s Cur-
rent Protocols5, and Jove6.

D.2 Showcases

1 [Protocol 1 - Biochemistry]

2 Preparation of lysates

3 1. Harvest approximately 1 x 10^7 cells by centrifugation at 2000 RPM for

5 min. Aspirate media and resuspend cell pellet with 1 mL of ice-

cold PBS and transfer to a 1 mL centrifuge tube. Microcentrifuge at

2000 RPM for 5 min at 4 ˝C.

4 2. Aspirate PBS, and then add Hypotonic Buffer (supplemented with 1%

Triton X-100, to disrupt membrane and cytoskeleton-bound MEKK1

fractions).

5 3. Cell lysates are homogenized by passing through 22-gauge needles, and

tubes are put on ice for 15 min to complete the lysis. Crude extracts

are then centrifuged at 2500 RPM for 5 min. Supernatants are

transferred to fresh centrifuge tubes, and cold 5 M NaCl is added to

2https://protocolexchange.researchsquare.com/
3https://star-protocols.cell.com/
4https://bio-protocol.org/en
5https://currentprotocols.onlinelibrary.wiley.com/
6https://www.jove.com/

A7

https://protocolexchange.researchsquare.com/
https://star-protocols.cell.com/
https://bio-protocol.org/en
https://currentprotocols.onlinelibrary.wiley.com/
https://www.jove.com/

each sample to make a salt concentration of between 0.7-1.0 M to

disrupt protein-protein interactions.

6 4. Spin the crude extracts by ultracentrifugation at 55000 RPM to

properly pellet residual insoluble proteins from the extract.

Transfer supernatants into fresh centrifuge tubes.

7 Immunoprecipitation

8 5. Rinse Protein A beads in Hypotonic Buffer and place on ice until ready

for use.

9 6. Take a volume of cell lysates (prepared as described above), and

dilute with Hypotonic Buffer to 250-500 mM salt to enable protein-

protein interactions.

10 7. Add 2 µg of preclearing antibody to the diluted lysate (e.g., anti-Myc

or anti-p65), vortex, add 50 µL of Protein A beads, and rock for 45

min.

11 8. Touchspin samples, and transfer supernatant to a fresh tube.

12 9. Add 2 µg of polyclonal anti-MEKK1 to the lysates, and rock for 1 h.

After this period, add 50 µL of Protein A beads and rock tubes at 4 ˝

C for 1 h.

13 10. Touchspin beads, wash beads with hypotonic buffer (supplemented with

NaCl to a concentration of 300 mM), vortex, and rock for 10 min. In

total, 3-5 washes of the beads are performed.

14 11. Finally, wash once with Hypotonic Buffer, and resuspend in Kinase

Assay Buffer. Purified MEKK1 may be stored by snap-freezing in liquid

nitrogen and long-term storage at -80 ˝C. Kinase assay Following

preparation of MEKK1 immunoprecipitates (as above), incubate with 7 µ

g of JNKK1(K131M) along with 5 µCi of ATP in Kinase Assay Buffer for

30 min at 30 ˝C."

15
16 [Protocol 2 - Genetics]

17 1. Note that everything is in DEPC water. Inoculate W303a cells

expressing different TOR1-RR variants in 2 mL SC medium overnight.

18 2. Subculture the cells starting from OD600=0.1 in 10 mL SC media, shake

vigorously at 30 ˝C, 300 RPM for around 4-6 h until OD600=0.4-0.5.

19 3. Collect the cells by spinning down without freezing on ice. Discard

supernatant.

20 4. Re-suspend cells with 1 mL water and transfer to a 1.5 eppendorf tube,

quickly spin down at 3,000 x g for 15 sec.

21 5. Re-suspend cell pellet in 400 µL of AE buffer at room temperature.

22 6. Add 40 µL 10% SDS (final around 1%) and vortex briefly at room

temperature (RT).

23 7. Immediately add 500 µL hot phenol/AE (put in 65 ˝C for 10 min before

use), vortex vigorously for 1 min. Incubate at 65 ˝C for 5 min.

Briefly vortex every 30 sec.

24 8. Immediately freeze by dumping into liquid nitrogen. Wait to thaw at RT

(put in 30 ˝C to thaw may crack the tube).

25 9. Centrifuge for 10 min on a standard laboratory microfuge at 20,000 x g

at RT.

26 10. Transfer around 400 µL supernatant to a new eppendorf tube. Recycle

the lower phenol fraction carefully following the chemical safety

protocol in your laboratory.

A8

27 11. Add equal volume (400 µL) phenol: CHCl3/AE-Na. Vortex vigorously for

1 min at RT.

28 12. Spin down at 20,000 x g for 5 min in a standard laboratory microfuge.

29 13. Transfer supernatant (around 350 µL) to a fresh 1.5 mL eppendorf tube

. Add CHCl3: isoamyl alcohol (24:1). Vortex vigorously for 1 min at

RT.

30 14. Transfer aqueous supernatant to a fresh 1.5 mL microfuge tube. If

white cloudy precipitate is observed between the aqueous phase and

organic phase, repeat steps 17-18.

31 15. Add 1/10 volume of 3 M NaOAc (pH 5) and vortex vigorously. Add 2.5

volumes of ethanol. Vortex again.

32 16. Place at -20 ˝C for at least 30 min.

33 17. Spin down in the microfuge at 20,000 x g, 15 min at 4 ˝C. RNA pellet

is usually visible.

34 18. Add ice-cold 75% EtOH, place at 4 ˝C for around 10 min. Vortex and

spin down on microfuge 20,000 x g, 15 min at 4 ˝C. Discard

supernatant. Suck out the liquid droplets in the tube. The white RNA

pellet will turn clear when it dries out. Add 30-50 µL ddH2O (DEPC)

immediately after it becomes clear. Do not let the RNA over-dry,

which will make it difficult to dissolve. If RNA pellet is over-dry,

dissolve RNA at 37 ˝C for 30 min. Store RNAs at -80 ˝C for more than

2 months."

35
36 [Protocol 3 - Biomedical]

37 1. Passage through a 45 µm filter. Add 100 µL/well of 100 µg/mL salmon

sperm DNA to a 96-well Microtest assay plate.

38 2. Wrap the plate with plastic wrap and incubate at 4 ˝C overnight.

39 3. Discard the coating antibody solution and wash the plate with 1x PBS-

Tween 6 times.

40 4. Dry the plate and add 100 µL of blocking solution per well to the

plate.

41 5. Incubate the plate at room temperature (RT) for 1.5 h.

42 6. Discard the blocking solution and wash the plate with 1x PBS-Tween 5

times.

43 7. Dry the plate and keep it at 4 ˝C for later use.

44 8. Harvest the spleen and create a single-cell suspension by gently

smashing spleen pieces with the frosted surface of a pair of

microscope slides in 5 mL of DMEM.

45 9. Transfer the cells into 50 mL conical tubes and spin down the cells at

300 RCF for 5 min at 4 ˝C.

46 10. Discard the supernatant with aspiration without disturbing the pellet

.

47 11. Re-suspend the cells with 5 mL of 0.17 M ammonium chloride and keep

the cells on ice for 5 min.

48 12. Add 15 mL DMEM to the cells and spin at 300 RCF for 5 min at 4 ˝C.

49 13. Discard the supernatant and re-suspend the cells with 20 mL of DMEM

and count the cells.

50 14. Re-suspend 2 x 10^7 cells in 2 mL of 10% DMEM and make a three-fold

serial dilution (a total of 8 dilutions) with 10% DMEM.

51 15. Add 50 µL/well of the serial dilutions on the DNA-coated plate and

centrifuge at 300 RCF for 5 min at 4 ˝C.

A9

52 16. Incubate the cells at 30 ˝C for 2 h in a cell-culture incubator with

6% CO2.

53 17. Add 50 µL/well of biotin-conjugated anti-IgM or anti-IgG (1:350 in

10% DMEM) to the cells.

54 18. Centrifuge the cells at 300 RCF for 5 min at 4 ˝C and incubate the

cells overnight in a cell-culture incubator with 6% CO2.

55 19. Discard the cells and wash the plates 10 times with 10x PBS-Tween 20.

56 20. Dry the plates and add 50 µL of streptavidin alkaline phosphatase

(1:1,000 in 1% BSA/PBS) to the plate.

57 21. Incubate the plate at RT for 1 h and wash the plate 10 times with 10x

PBS-Tween 20.

58 22. Dry the plate and add 50 µL/well of 1 mg/mL BCIP in AMP buffer to

develop the plate.

59 23. When the spots are clearly visible under a dissecting microscope,

stop the development by discarding the BCIP solution and rinsing the

plate with tap water thoroughly.

60 24. Spots can be counted using a dissecting microscope or using an

ELISpot reader."

D.3 Instruction for human experts

1 Instruction for Human Study on Protocol Translation and Parameter

Completion

2 [Objective]

3 The purpose of this study is to evaluate the accuracy and completeness of

translating natural language laboratory protocols into a structured

JSON representation and to assess the manual completion of missing

parameters within these protocols.

4 [Experimental Tasks]

5 Participants in this study will perform two main tasks:

6 1. Translation of Natural Language Protocols to JSON-Structured

Representation

7 2. Manual Parameter Completion in JSON-Structured Protocols

8 [Task 1: Translation of Natural Language Protocols to JSON-Structured

Representation]

9 [Description]

10 Participants will be provided with a set of laboratory protocols written

in natural language. The task is to translate each protocol into a

JSON-structured format. This involves accurately mapping the

operations, input reagents, and conditions specified in the natural

language description to a precise JSON schema.

11 [Procedure]

12 1. Read the provided natural language protocol carefully.

13 2. Identify and extract the key elements of the protocol, including:

Operations (e.g., dissolve, mix, heat)/Input reagents (e.g., sodium

chloride, distilled water)/Conditions (e.g., temperature, time,

concentration)

14 3. Construct a JSON representation that clearly reflects the structure

and content of the protocol. Ensure that each element is correctly

mapped to its corresponding key and value pairs.

15 [Example]

A10

16 Extract total RNA from at least 2 x 10^6 cells using TRIZOL reagent.

17 {"action": "extract", "output": "total RNA", "reagent": ["TRIZOL reagent

"], "volume": ["at least 2 x 10^6 cells"], "container": [""]}

18 [Manual Parameter Completion in JSON-Structured Protocols]

19 [Description]

20 Participants will receive a set of JSON-structured protocols with certain

parameters intentionally left incomplete. The task is to manually

complete these parameters based on domain knowledge and logical

inference.

21 [Procedure]

22 1. Review the provided JSON-structured protocol.

23 2. Identify any missing or incomplete parameters.

24 3. Use your expertise to infer the missing information. This may include:

Estimating reasonable values for missing quantities or conditions;

25 Ensuring consistency and coherence within the protocol.

26 4. Complete the JSON structure with the inferred parameters, maintaining

accuracy and logical consistency.

27 [Example]

28 {"action": "apply", "output": "known DHB cluster signals", "device":

["<<<MASK>>>"]}

29 {"action": "apply", "output": "known DHB cluster signals", "device":

["<<<a pneumatic sprayer system>>>"]}

A11

E Case studies

E.1 Contributions of the components in our translator

We provide a series of case studies to illustrate the distinctions between the behaviors of the compo-
nents within our proposed framework and those of the baselines qualitatively in Tab. A1.

Table A1: Distinctions between the behaviors of the three components within our proposed framework
Original Text Stage 1 Feature Stage 2 Feature Stage 3 Feature

Kill most the
contaminating
spores that have
germinated.
Centrifuge the
spore mixture
at <MASK>
for 5 min.

ELIMINATE:
[[Reg:
contaminating
spores]];
SPIN: [[Reg:
spore
mixture],
[Time:
5min],
[Force:
MASK]]

IN: [[con-
taminating
spores],
[spore mix-
ture]]

ELIMINATE:
[[Reg:
contaminating
spores]];
SPIN: [[Reg:
spore
mixture],
[Time:
5min],
[Force:
1,200g]]

Latent se-
mantics of
unknown
unknowns
(force)

ELIMINATE:
[[Reg:
contaminating
spores]]
-> spore
mixture;
SPIN: [[Reg:
spore
mixture],
[Time:
5min],
[Force:
1,200g]]

Reg:
spore
mixture;
No specific
volume
provided

Add pre-hybr
soln directly to
the hybridiza-
tion reaction
to get hybrid
molecule.
Incubate for
<MASK>.

ADD: [[Reg:
pre-hybr
soln], [Reg:
hybridization
reaction]]
-> hybrid
molecule;
INCUBATE:
[[Time:
MASK]]

IN: [[pre-
hybr soln],
[hybridization
reaction]]
-> hybrid
molecule

ADD: [[Reg:
pre-hybr
soln], [Reg:
hybridization
reaction]]
-> hybrid
molecule;
INCUBATE:
[[Time:
10min]]

Latent
semantics
of known
unknowns
(time)

ADD: [[Reg:
pre-hybr
soln], [Reg:
hybridization
reaction]]
-> hybrid
molecule;
INCUBATE:
[[Reg:
hybrid
molecule],
[Time:
10min]]

Reg:
pre-hybr
soln, hy-
bridization
reaction;
No specific
volume
provided

Confirm pos-
itive colonies
by PCR. Take
fluorescence
images under
<MASK>.

CONFIRM:
[[Device:
PCR]] ->
positive
colonies;
TAKE:
[[Device:
MASK]] ->
fluorescence
images

IN: [PCR]]
-> positive
colonies;
IN: [[positive
colonies]] ->
fluorescence
images

CONFIRM:
[[Device:
PCR]] ->
positive
colonies;
TAKE:
[[Device:
microscope]]
->
fluorescence
images

Latent se-
mantics of
unknown
unknowns
(device)

CONFIRM:
[[Device:
PCR], [Reg:
RNAs]] ->
positive
colonies;
TAKE:
[[Device:
microscope]]
->
fluorescence
images

Reg:
RNAs;
No specific
volume
provided

A12

E.2 Running cases of our translator handling specific challenges

Ensuring the safety and correctness of translated protocols is an exceptionally challenging task. Sev-
eral factors contribute to these challenges, including accurately mapping operations to their corre-
sponding configuration parameters (Tab. A2), precisely parsing control flows from natural language
(Tab. A3), completing latent semantics with domain-specific knowledge (Tab. A4), inferring miss-
ing or omitted key information (Tab. A5), tracking resource capacities (Tab. A6), and verifying the
safety of run-time execution of experiments (Tab. A7). Consequently, we have made specific efforts
in response to these challenges, resulting in our design of translator. Here we provide several running
examples to demonstrate our translator’s capability on handling the challenging factors respectively.

Table A2: Running cases on the syntax level regarding operation-condition mapping
Original Text Syntax Level Action Conditions

Spin media at 500-1,000 x g for
10 min (optional), pre-x g for
10 min, filter with 0.22 um PES
membrane, freeze at -80°C.

SPIN: [[Speed: 500-1,000 x g], [Time:
10 min]] -> filtered media, FILTER:
[[Device: 0.22 um PES membrane]] ->
filtered media, FREEZE: [[Temperature:
-80°C]] -> frozen media

Spin,
Filter,
Freeze

Speed: 500-1,000 x
g, Time: 10 min, De-
vice: 0.22 um PES
membrane, Tempera-
ture: -80°C

Thaw 4 ml supernatant on ice,
add 4 ml XBP buffer.

THAW: [[Volume: 4 ml], [Reagent:
supernatant]] -> thawed supernatant, ADD:
[[Reagent: XBP buffer], [Volume: 4 ml]]
-> sample/XBP mix

Thaw,
Add

Volume: 4 ml, Tem-
perature: On ice

Add sample/XBP mix to ex-
oEasy maxi spin column, cen-
trifuge 1-3 min at 500 x g, dis-
card flow-through.

ADD: [[Reagent: sample/XBP mix],
[Container: spin column]] ->
flow-through, CENTRIFUGE: [[Speed: 500
x g], [Time: 1-3 min]] -> flow-through,
DISCARD: [[Reagent: flow-through]] ->

Add,
Cen-
trifuge,
Discard

Container: Spin col-
umn, Speed: 500 x g,
Time: 1-3 min

Add 10 ml XWP to spin col-
umn, centrifuge 5 min at 5,000
x g, transfer column to fresh
collection tube.

ADD: [[Reagent: XWP], [Volume: 10
ml]] -> , CENTRIFUGE: [[Speed: 5,000 x
g], [Time: 5 min], [Container: spin
column]] -> , TRANSFER: [[Container:
fresh collection tube]] ->

Add,
Cen-
trifuge,
Transfer

Volume: 10 ml,
Speed: 5,000 x g,
Time: 5 min, Con-
tainer: Spin column,
Fresh collection tube

Add 700 uL Qiazol to spin col-
umn, centrifuge 5 min at 5,000
x g, spin PLG tubes 30 s at
16,000 x g.

ADD: [[Reagent: Qiazol], [Volume: 700
uL]] -> , CENTRIFUGE: [[Speed: 5,000 x
g], [Time: 5 min]] -> , SPIN: [[Speed:
16,000 x g], [Time: 30 s], [Container:
PLG tubes]] ->

Add,
Cen-
trifuge,
Spin

Volume: 700 uL,
Speed: 5,000 x g,
Time: 5 min, Speed:
16,000 x g, Time: 30
s, Container: Spin
column, PLG tubes

Add flow-through to PLG tube,
vortex 5 s, incubate 5 min at
RT.

ADD: [[Reagent: flow-through],
[Container: PLG tube]] -> , VORTEX:
[[Time: 5 s]] -> , INCUBATE: [[Time: 5
min], [Temperature: RT]] ->

Add,
Vortex,
Incubate

Container: PLG tube,
Time: 5 s, Time:
5 min, Temperature:
RT

Add 90 uL chloroform. ADD: [[Volume: 90 uL], [Reagent:
chloroform]] ->

Add Volume: 90 uL

Shake vigorously for 15 s, in-
cubate 2-3 min at RT.

SHAKE: [[Time: 15 s]] -> , INCUBATE:
[[Time: 2-3 min], [Temperature: RT]]
->

Shake,
Incubate

Time: 15 s, Time: 2-
3 min, Temperature:
RT

Centrifuge 15 min at 12,000 x
g, transfer upper aqueous phase
to new tube.

CENTRIFUGE: [[Speed: 12,000 x g], [Time:
15 min]] -> upper aqueous phase, TRANSFER:
[[Container: new tube]] -> upper aqueous
phase

Centrifuge,
Transfer

Speed: 12,000 x g,
Time: 15 min, Con-
tainer: New tube

Add 2 volumes 100 ethanol,
mix.

ADD: [[Volume: 2 volumes], [Reagent:
100 ethanol]] -> ethanol mixture, MIX:
[[Reagent: ethanol mixture]] ->

Add,
Mix

Volume: 2 volumes

A13

Table A3: Running cases on the syntax level regarding operation control flows
Original Text Syntax Level Action Control Flows

Centrifuge the cell suspension
at 200 x g at room temperature
for 5 min.

CENTRIFUGE: [[Force: 200 x g], [Temperature:
room temperature], [Time: 5 min]] -> cell
pellet

Centrifuge Linear

Remove the supernatant. REMOVE: [[Output: supernatant]] -> Remove Linear
Suspend the cell pellet with 2
ml ACK lysing buffer for 1 min
to deplete red blood cells.

SUSPEND: [[Volume: 2 ml], [Reagent: ACK
lysing buffer], [Time: 1 min]] -> depleted
cell suspension

Suspend Linear

If red blood cells are not com-
pletely depleted, repeat the
ACK lysing buffer step until
they are.

REPEAT: [[Reagent: ACK lysing buffer],
[Condition: if red blood cells are not
completely depleted]] ->

Repeat Non-linear

Filter the cell suspension
through a 40 um nylon strainer.

FILTER: [[Container: 40 um nylon strainer]]
-> filtered cell suspension

Filter Linear

Wash the strainer with 2 ml 1x
DPBS for 5 min.

WASH: [[Container: strainer], [Reagent: 1x
DPBS], [Volume: 2 ml], [Time: 5 min]] ->

Wash Linear

Wash the cell pellet with 1x
DPBS with 20 ng/ml murine
M-CSF in a 100 mm Petri dish.

WASH: [[Reagent: 1x DPBS with 20 ng/ml
murine M-CSF], [Container: 100 mm Petri
dish]] ->

Wash Linear

Suspend in 15 ml complete
DMEM medium.

SUSPEND: [[Volume: 15 ml], [Reagent:
complete DMEM medium]] -> cell suspension
in DMEM

Suspend Linear

Incubate at 37 °C, 5 CO2. INCUBATE: [[Temperature: 37 °C],
[Environment: 5 CO2]] -> incubated cells

Incubate Linear

After 3 days, replace half of
the medium with fresh com-
plete DMEM medium.

REPLACE: [[Reagent: fresh complete DMEM
medium], [Time: after 3 days]] ->

Replace Linear

Repeat this step every 2 days. REPEAT: [[Reagent: fresh complete DMEM
medium], [Frequency: every 2 days]] ->

Repeat Non-linear

Table A4: Running cases on the semantics level regarding known unknowns
Original Text Semantic Level Known Un-

knowns

Transfer the sample (plasma, cell suspension)
into a glass centrifuge vial.

TRANSFER: [[Reagent: the sample (plasma,
cell suspension)], [Container: a glass
centrifuge vial]] ->

Adjust the volume to 1 ml with PBS. MODIFY: [[Output: heparinized blood.1 ml
medium], [Volume: «<1 ml»>]] ->

"1 ml"

50-200 ul plasma was taken from heparinized
blood.1 ml medium.

TAKE: [[Reagent: heparinized blood.1 ml
medium]] ->

Plasma was directly taken from cell culture. TAKE: [[Output: a plasma sample]] ->

Add 10 ul of the internal standard (10 uM C17-
S1P in MeOH). Add 300 ul of 18.5 HCl.

ADD: [[Reagent: 18.5 HCl], [Volume: «<300
ul»>]] ->

"300 ul"

As an example, S1P extraction from a plasma
sample is shown in step A7.

SHOW: [[Output: step A7], [Reagent: a
plasma sample]] ->

The CHCl3-phase is extracted by directly pipet-
ting through the upper aqueous phase.

EXTRACT: [[Output: the CHCl3], [Container:
the upper aqueous phase], [Reagent: step
A7]] ->

Add this CHCl3-phase to the transferred
CHCl3-phase of step A7.

ADD: [[Reagent: this CHCl3-phase]] ->

Vacuum-dry the CHCl3 in the vacuum rotator
at 60 °C for 45 min.

DRY: [[Reagent: «<the CHCl3»>],
[Temperature: 60 °C], [Time: «<45 min»>]]
->

"the
CHCl3",
"45 min"

Alternatively, the samples can be dried under
nitrogen gas flow.

DRY: [[Reagent: samples], [Time: 1-20 min]]
->

Re-equilibrate with 90 solution A. EQUILIBRATE: [[Output: S1P], [Concentration:
90 solution]] ->

S1P is analyzed with the mass transition 380
m/z -> 264 m/z. For quantitative analysis, a
standard curve with S1P amounts of 1 pmol to
100 pmol as the internal standard is generated.

EXAMINE: [[Output: quantitative analysis],
[Reagent: S1P]] ->

A14

Table A5: Running cases on the semantics level regarding unknown unknowns
Original Text Semantic Level Unknown Un-

knowns

Harvest approximately 1×107 cells by centrifu-
gation for 5 min.

HARVEST: [[Device: centrifugation],
[Time: 5 min], [Force: «<2000 RPM»>]]
->

"«<2000 RPM»>"

Cell lysates are homogenized by passing
through 22-gauge needles.

HOMOGENIZE: [[Reagent: cell lysates]]
->

Tubes are put on ice for 15 min to complete the
lysis.

INCUBATE: [[Container: tubes], [Time:
15 min], [Temperature: on ice]] ->

Crude extracts are then centrifuged. CENTRIFUGE: [[Force: «<2500 RPM»>],
[Time: «<5 min»>]] ->

"«<5 min»>"

Supernatants are transferred to fresh centrifuge
tubes.

TRANSFER: [[Container: fresh centrifuge
tubes]] ->

Cold 5 M NaCl is added to each sample to make
a salt concentration of between 0.7 – 1.0 M to
disrupt protein-protein interactions.

ADD: [[Container: each sample],
[Reagent: 5 M NaCl], [Concentration:
0.7 - 1.0 M]] -> sample with NaCl

Spin the crude extracts by ultracentrifugation to
properly pellet residual insoluble proteins from
the extract.

SPIN: [[Device: ultracentrifugation],
[Force: «<55000 RPM»>], [Reagent:
residual insoluble proteins]] ->
Hypotonic Buffer

"«<55000 RPM»>"

Transfer supernatants into fresh centrifuge
tubes.

TRANSFER: [[Reagent: supernatants],
[Container: fresh centrifuge tubes]] ->

Rinse Protein A beads in Hypotonic Buffer un-
til ready for use.

RINSE: [[Reagent: Hypotonic Buffer]] ->
use

Take a volume of cell lysates (prepared as de-
scribed above).

TAKE: [[Volume: cell lysates]] ->
Hypotonic Buffer

Dilute with Hypotonic Buffer to 250 – 500 mM
salt to enable protein-protein interactions.

DILUTE: [[Reagent: Hypotonic Buffer]]
-> antibody

Add 2 ug of preclearing antibody to the diluted
lysate (e.g., anti), vortex, add 50 uL of Protein
A beads.

ADD: [[Reagent: antibody, Protein A
beads]] -> polyclonal anti-MEKK1

Add 2 ug of polyclonal anti-MEKK1 to the
lysates, add 50 uL of Protein A beads at 4 °C
for 1 h.

ADD: [[Reagent: polyclonal anti-MEKK1],
[Container: the lysates], [Temperature:
4 °C], [Time: 1 h]] ->

Touchspin beads, wash beads with hypotonic
buffer (supplemented with NaCl).

WASH: [[Reagent: hypotonic buffer],
[Concentration: «<300 mM»>]] ->

"«<300 mM»>"

In total, 3 – 5 washes of the beads are per-
formed.

PERFORM: [[Reagent: hypotonic buffer],
[Frequency: 3 - 5]] ->

Finally, wash once with Hypotonic Buffer. WASH: [[Reagent: Hypotonic Buffer]] ->

Purified MEKK1 may be stored by snap-
freezing in liquid nitrogen.

STORE: [[Method: snap-freezing],
[Reagent: liquid nitrogen]] -> M

Following preparation of MEKK1 immuno-
precipitates (as above), incubate with 7 ug
of JNKK1(K131M) along with 5 uCi of [y-
32P]ATP for 30 min.

INCUBATE: [[Reagent: JNKK1(K131M),
[y-32P]ATP], [Container: «<Kinase Assay
Buffer»>], [Temperature: «<30 °C»>],
[Time: 30 min]] ->

"«<Kinase Assay
Buffer»>", "«<30
°C»>"

A15

Table A6: Running cases on the execution level regarding capacity of resources
Original Text Execution Level Reagent Flow Graph

Prepare annealing solution of 50
uM RNA/DNA oligos with 50 mM
NaCl in DNase/RNase-free water,
aliquot 50 ul in PCR tube.

PREPARE: [[Output: annealing solution],
[Concentration: 50 uM RNA/DNA oligos,
50 mM NaCl], [Reagent: DNase/RNase-free
water], [Volume: 50 ul], [Container:
PCR tube]] ->

in: DNase/RNase-free water (50
ul), RNA/DNA oligos (50 uM),
NaCl (50 mM); out: annealing so-
lution (50 ul)

Dissolve inhibitor compound in
DMSO to 10 mM, if needed, pre-
pare serial dilutions in Milli-Q wa-
ter.

DISSOLVE: [[Output: inhibitor compound
solution], [Reagent: inhibitor
compound, DMSO]] ->

in: inhibitor compound, DMSO;
out: inhibitor compound solution
(volume depends on dilution)

Add water (20 ul in blanks, 10 ul
in controls) to 96-well plate.

ADD: [[Output: water in wells],
[Reagent: water], [Container: 96-well
plate]] ->

in: water (20 ul for blanks, 10 ul
for controls); out: water in 96-well
plate (20 ul in blanks, 10 ul in con-
trols)

Add 80 ul RT reaction mix
(1.25x).

ADD: [[Output: RT reaction mix in
wells], [Volume: 80 ul]] ->

in: RT reaction mix (80 ul); out:
RT reaction mix in 96-well plate
(80 ul)

Add 10 ul inhibitor dilution to
samples, to each well.

ADD: [[Output: samples with inhibitor],
[Volume: 10 ul], [Reagent: inhibitor
dilution]] ->

in: inhibitor dilution (10 ul); out:
samples with inhibitor (10 ul)

Stop reaction with 50 ul EDTA
(0.5 M, pH 8.0).

STOP: [[Output: stopped reaction],
[Reagent: EDTA], [Volume: 50 ul]] ->

in: EDTA (50 ul); out: stopped re-
action with EDTA (50 ul)

Quantify reaction with Victor 3 at
490/528 nm, report inhibitor val-
ues as percentage of control.

QUANTIFY: [[Output: quantified
reaction], [Device: Victor 3]] ->

in: reaction; out: quantified reac-
tion at 490/528 nm

Subtract blank value from sam-
ples.

SUBTRACT: [[Output: corrected samples],
[Reagent: blank value]] ->

in: blank value, samples; out: cor-
rected sample values

Calculate IC50 value as the con-
centration reporting 50 reduction
of signal compared to control.

CALCULATE: [[Output: IC50 value],
[Reagent: signal]] ->

in: signal; out: IC50 value

Table A7: Running cases on the execution level regarding safety of operations
Original Text Execution Level Reagent Flow Graph

Replace medium after 12 hours
(Day 2).

REPLACE: [[Output: medium replaced],
[Container: medium]] ->

in: old medium; out: new medium

Digest mESCs with 0.05 trypsin,
prepare for FACS into 96-well
plates (Day 10).

DIGEST: [[Output: mESCs], [Reagent:
0.05 trypsin], [Container: 96-well
plates]] ->

in: mESCs, 0.05 trypsin; out:
digested mESCs (ensure trypsin
is neutralized to avoid over-
digestion)

Remove single colonies from 96-
well plates to 24-well plates.

REMOVE: [[Output: single colonies],
[Container: 96-well plates, 24-well
plates]] ->

in: single colonies; out: single
colonies in 24-well plates

Confirm positive colonies by tran-
sient transfection of sgRNAs anal-
ysis (SPH primers) (Day 14-15).

CONFIRM: [[Output: positive colonies],
[Reagent: SPH primers]] ->

in: single colonies, SPH primers;
out: positive colonies

Sort single cells into 96-well
plates by FACS.

SORT: [[Output: single cells], [Device:
FACS], [Container: 96-well plates]] ->

in: single cells; out: sorted sin-
gle cells in 96-well plates (en-
sure proper calibration of FACS to
avoid sorting errors)

Confirm insertion by PCR (Day
18).

CONFIRM: [[Output: insertion
confirmed]] ->

in: single cells; out: confirmed in-
sertion

Confirm positive colonies by PCR
(Day 22).

CONFIRM: [[Output: positive colonies]]
->

in: single colonies; out: positive
colonies

Measure fluorescent intensity of
colonies by FACS, take fluores-
cence images under confocal mi-
croscope (Day 27).

TAKE: [[Output: fluorescence images],
[Device: confocal microscope],
[Container: colonies]] ->

in: colonies; out: fluorescence
images (handle samples to avoid
photobleaching)

A16

E.3 Types of errors made by our translator

We present a detailed analysis of the errors made by our proposed automatic translator compared to
human experts. We discuss the potential improvements of the translator accordingly.

Distinctions on the syntax level Difference between the translation results of our system and those
of experts is subtle, with the biggest difference being in the analysis of long sentences in natural
language. For human experts, it is natural and easy to analyze the parameters of events/actions or
multiple actions in long sentences, while for our approach, there are sometimes problems with the
correspondence between action and parameter, which need to be improved in future work.

This series of examples in Tab. A8 demonstrates the superior performance of our system at the
syntax level when processing relatively short sentences.

Table A8: Distinctions on the syntax level when processing relatively short sentences
Original Text Syntax Level Remarks

Transfer 200 ul of serum into a 1.5
ml microfuge tube.

TRANSFER: [[Output: buffer], [Reagent:
serum], [Container: a 1.5 ml microfuge
tube], [Volume: 200 ul]] ->

Add 200 ul of buffer XBP. ADD: [[Output: the sample/XBP mixture],
[Reagent: buffer], [Volume: 200 ul]]
->

Add the sample/XBP mixture onto
the exoEasy spin column.

ADD: [[Output:], [Reagent: the
sample/XBP mixture]] ->

Add 10 ml of buffer XWP to the
exoEasy spin column.

ADD: [[Output:], [Reagent: buffer
XWP], [Volume: 10 ml]] ->

Transfer the spin column to a fresh
collection tube.

TRANSFER: [[Output: Qiazol],
[Container: a fresh collection tube]]
->

Add 700 ul Qiazol to the mem-
brane of the spin column.

ADD: [[Output:], [Reagent: Qiazol],
[Volume: 700 ul]] ->

Transfer the flow-through, which
is the lysate, to a PLG tube.

TRANSFER: [[Output: flow-through],
[Container: PLG tube]] ->

Incubate at room temperature for 5
minutes.

INCUBATE: [[Output:], [Temperature:
room temperature], [Time: 5 minutes]]
->

Add 90 ul chloroform. ADD: [[Output:], [Volume: 90 ul]] ->

This series of examples in Tab. A9 illustrates the challenges faced with longer sentences due to the
diversity of actions and the multiple parameters.

Table A9: Distinctions on the syntax level when processing longer sentences
Original Text Syntax Level Remarks
Rinse MSC with 2 ml PBS. RINSE: [[Output: MSC with 2 ml PBS],

[Reagent: PBS], [Volume: 2 ml]] ->

Trypsinize with 0.5 ml trypsin. TRYPSINIZE: [[Output:], [Reagent:
trypsin], [Volume: 0.5 ml]] ->

Transfer to 15 ml tube. TRANSFER: [[Output:], [Container: 15
ml tube]] ->

Add 10 ml DMEM with 10 FBS. ADD: [[Output:], [Reagent: DMEM,
FBS], [Volume: 10 ml]] ->

Incubate overnight at 37 °C, 5
CO2.

INCUBATE: [[Output:], [Temperature:
37 °C]] ->

Lack of parameter

Wash cells twice with 2 ml
PBS, add osteogenic differentia-
tion medium.

WASH: [[Output:], [Volume: 2 ml PBS],
[Reagent: osteogenic differentiation
medium]] ->

Lack of action in single sentence

Change medium every 2 days for
10 days.

CHANGE: [[Output: Alizarin red S],
[Time: every 2 days for 10 days]] ->

At day 10, stain with Alizarin red
S for 5 min.

STAIN: [[Output:], [Reagent: Alizarin
red S], [Time: 5 min]] ->

A17

Distinctions on the semantics level When supplementing known unknowns, human experts tend
to rely on contextual reasoning. Since experts are not familiar with protocols from all fields, they
often infer parameters based on context for protocols outside their expertise. The primary source
of their errors is a lack of understanding of protocols in specific domains, which is fundamentally
consistent with the approach of our system. When supplementing unknown unknowns, human ex-
perts tend to transfer their knowledge from familiar domains, such as instruments used or common
parameters, to protocols in various fields, using this as a basis for parameter supplementation. Our
system, however, completes parameters based on all collected protocols, which is essentially the
opposite of the transfer process used by human experts.

The example presents as follows — the completion of two types of parameters at the semantic level
is included: for instance, determining the configuration parameter for an operation, where human
experts rely on personal experimental experience; and inferring the required reagents for one step,
where human experts use contextual reasoning. When the context is not sufficiently clear, human
experts cannot infer the known unknowns within a single sentence.

Table A10: Machine results on the semantics level
Original Text Machine Result Remarks

Add 700 ul of buffer RWT to the
RNeasy MinElute spin column.

ADD: [[Output:], [Reagent: «<buffer
RWT»>], [Volume: 700 ul]] ->

known unknown

Discard the flow-through. DISCARD: [[Output: the flow-through],
[Volume:]] ->

Discard the collection tube with
the flow-through.

DISCARD: [[Output: the flow-through],
[Container: the collection tube],
[Volume:], [Reagent: the
flow-through]] ->

Transfer the RNeasy MinElute
spin column into a new 2 ml col-
lection tube (supplied).

TRANSFER: [[Output:], [Device: RNeasy
MinElute], [Container: a new 2 ml
collection tube (supplied)], [Volume:
]] ->

Open the lid of the spin column. OPEN: [[Output:], [Container: «<spin
column»>]] ->

known unknown

Centrifuge at full speed (14,000
xg) to dry the membrane.

CENTRIFUGE: [[Output:], [Speed:
full speed (14,000 xg)], [Container:
membrane], [Time: «<5 min»>]] ->

unknown unknown

Discard the collection tube with
the flow-through.

DISCARD: [[Output: the flow-through],
[Container: the collection tube],
[Volume:], [Reagent: the
flow-through]] ->

Transfer the RNeasy MinElute
spin column into a new 1.5 ml col-
lection tube.

TRANSFER: [[Output: RNase-free
water], [Device: RNeasy MinElute],
[Container: a new 1.5 ml collection
tube (supplied)], [Volume:]] ->

Add 14 ul RNase-free water di-
rectly to the center of the spin col-
umn membrane.

ADD: [[Output:], [Reagent:
«<RNase-free water»>], [Volume: 14 ul]]
->

known unknown

A18

Table A11: Human results on the semantics level
Original Text Human Study Result Remarks

Add 700 ul of buffer RWT to the
RNeasy MinElute spin column.

ADD: [[Output:], [Reagent: «<NONE»>],
[Volume: 700 ul]] ->

known unknown

Discard the flow-through. DISCARD: [[Output: the flow-through],
[Volume:]] ->

Discard the collection tube with
the flow-through.

DISCARD: [[Output: the flow-through],
[Container: the collection tube],
[Volume:], [Reagent: the
flow-through]] ->

Transfer the RNeasy MinElute
spin column into a new 2 ml col-
lection tube (supplied).

TRANSFER: [[Output:], [Device: RNeasy
MinElute], [Container: a new 2 ml
collection tube (supplied)], [Volume:
]] ->

Open the lid of the spin column. OPEN: [[Output:], [Container: «<spin
column»>]] ->

known unknown

Centrifuge at full speed (14,000
xg) to dry the membrane.

CENTRIFUGE: [[Output:], [Speed:
full speed (14,000 xg)], [Container:
membrane], [Time: «<5 min»>]] ->

unknown unknown

Discard the collection tube with
the flow-through.

DISCARD: [[Output: the flow-through],
[Container: the collection tube],
[Volume:], [Reagent: the
flow-through]] ->

Transfer the RNeasy MinElute
spin column into a new 1.5 ml col-
lection tube.

TRANSFER: [[Output: RNase-free
water], [Device: RNeasy MinElute],
[Container: a new 1.5 ml collection
tube (supplied)], [Volume:]] ->

Add 14 ul RNase-free water di-
rectly to the center of the spin col-
umn membrane.

ADD: [[Output:], [Reagent:
«<water»>], [Volume: 14 ul]] ->

known unknown

A19

Distinctions on the execution level Human experts track capacity primarily based on prior knowl-
edge, subsequently using context to judge the appropriateness of the equipment used. In contrast,
the machine extracts the entire flow process, enabling it to calculate each step and ensure that the
capacity tracking is scientifically sound and reasonable.

This series of examples in Tab. A12 demonstrates how our system tracks the required capacities at
each step of the protocol by contextualizing the step into the spatial dimension.

Table A12: Distinctions on the execution level (spatial dimension)
Original Text Execution Level Resources

Add 4 ul of 160 mM KMnO4 to
radiolabeled DNA (40 ng, 5,000-
10,000 cpm) in 40 ul total volume.

ADD: [[Output: reaction mixture],
[Reagent: 160 mM KMnO4, radiolabeled
DNA], [Volume: 4 ul, 40 ul]] ->

"radiolabeled DNA"

Precipitate with ethanol. PRECIPITATE: [[Output: precipitate],
[Reagent: ethanol]] ->

"reaction mixture"

Dissolve in 70 ul 10 piperidine. DISSOLVE: [[Output: dissolved DNA],
[Reagent: 10 piperidine], [Volume: 70
ul]] ->

"precipitate"

Incubate at 90 °C for 30 min. INCUBATE: [[Output: incubated DNA],
[Temperature: 90 °C], [Time: 30 min]]
->

"dissolved DNA"

Precipitate with ethanol. PRECIPITATE: [[Output: pellets],
[Reagent: ethanol]] ->

"incubated DNA"

Wash pellets with 70 ethanol, dry,
dissolve in 5 ul electrophoresis
loading buffer.

RINSE: [[Output: non-labeled DNA],
[Reagent: 70 ethanol, electrophoresis
loading buffer], [Volume: 5 ul]] ->

"pellets"

This series of examples in Tab. A13 illustrates how our system tracks the preconditions and post-
conditions at each step of the protocol by contextualizing the step into the temporal dimension.

Table A13: Distinctions on the execution level (temporal dimension)
Original Text Execution Level Resources

Freeze cells for 1 hour at -80°C,
thaw at 37°C for 1 hour.

FREEZE: [[Output: DLFR004], [Reagent:
cells], [Time: 1 hour], [Temperature:
-80°C]], THAW: [[Output: DLFR004],
[Reagent: cells], [Time: 1 hour],
[Temperature: 37°C]] ->

"DLFR004"

If not using DLFR004, lyse cells
with lysis buffer.

LYSE: [[Output: cell lysate], [Reagent:
lysis buffer], [Condition: not using
DLFR004]] ->

"DLFR004"

Prepare serological pipette by cut-
ting at the 3 mL mark, sealing bot-
tom with parafilm.

PREPARE: [[Output: modified pipette],
[Device: serological pipette],
[Modification: cutting at the 3 mL
mark, sealing bottom with parafilm]]
->

"lysis buffer"

Secure serological pipette to a ver-
tical surface.

SECURE: [[Output: secured pipette],
[Device: serological pipette]] ->

"modified pipette"

Fill pipette with at least 2.5 mL
cell lysate, measure distance from
2 mL to 1 mL mark.

FILL: [[Output: filled pipette],
[Volume: at least 2.5 mL], [Reagent:
cell lysate]] ->

"secured pipette"

Position cell phone camera to
record pipette, drop a glass bead
inside, repeat two more times.

POSITION: [[Output: recorded
experiment], [Device: cell phone
camera, pipette], [Reagent: glass
bead]] ->

"filled pipette"

Remove parafilm seal. REMOVE: [[Output:], [Container:
parafilm seal]] ->

"recorded experiment"

Rinse pipette. RINSE: [[Output: cleaned pipette],
[Device: pipette]] ->

"next sample"

Repeat with next sample to obtain
triplicates.

REPEAT: [[Output: triplicates]] -> "triplicates"

A20

E.4 Properties of the pre-processing pipeline

Significant differences exist between various stages of the pre-processing pipeline. We present sev-
eral real-world examples to illustrate these distinctions in Tab. A14.

Table A14: Showcases of action extraction, entity extraction, and classification in protocol steps
Original Text Action

Extraction
Entity
Extraction

Classification with
LLM

Preprocess Result LLM-Pure

Stain with DAPI
nucleic acid stain
for 30 seconds.

stain [Reagent:
DAPI
nucleic
acid
stain],
[Time: 30
seconds]

[Reagent: DAPI
nucleic acid
stain], [Time:
30 seconds]

STAIN:
[[Output:
], [Reagent:
DAPI nucleic
acid stain],
[Time: 30
seconds]]

STAIN:
[[Duration:
30 seconds],
[Reagent: DAPI
nucleic acid
stain]]

Purify CD4+
by magnetic
isolation using
the Auto MACS
sorter (Miltenyi
Biotec) using
POSSELD2
program.

purify [Reagent:
CD4+],
[Device:
the Auto
MACS
sorter
(Miltenyi
Biotec)],
[Device:
POSSELD2
program]

[Reagent:
CD4+], [Device:
the Auto MACS
sorter (Miltenyi
Biotec)],
[Device:
POSSELD2
program]

PURIFY:
[[Device:
the Auto
MACS sorter
(Miltenyi
Biotec),
POSSELD2
program],
[Output:],
[Reagent:
CD4+]]

PURIFY: [[Device:
the Auto MACS
sorter (Miltenyi
Biotec),
POSSELD2],
[Method:
magnetic
isolation],
[Reagent: CD4+]]

Measure baseline
oxidative status
every 20 s for at
least 5 min, then
add stimulating
substances (e.g.,
thapsigargin).

measure,
add

[Output:
baseline
oxidative
status],
[Time:
every 20
s], [Time:
5 min],
[Reagent:
stimulating
substances]

[Output:
baseline
oxidative
status], [Time:
every 20 s],
[Time: 5 min],
[Reagent:
stimulating
substances]

MEASURE:
[[Output:
baseline
oxidative
status],
[Time: every
20 s, 5
min]]; ADD:
[[Reagent:
stimulating
substances]]

MEASURE:
[[Output:
baseline
oxidative
status],
[Reagent:
stimulating
substances],
[Time: every 20
s, 5 min]]

Spin the crude
extracts by ultra-
centrifugation at
55000 RPM to
properly pellet
residual insolu-
ble proteins from
the extract.

spin [Device:
ultracentrifugation],
[Force:
55000
RPM],
[Reagent:
residual
insoluble
proteins],
[Container:
the
extract]

[Device:
ultracentrifugation],
[Force: 55000
RPM], [Reagent:
residual
insoluble
proteins],
[Container: the
extract]

SPIN:
[[Device:
ultra-
centrifugation],
[Force: 55000
RPM], [Output:
], [Reagent:
residual
insoluble
proteins]]

SPIN: [[Reagent:
crude extracts],
[Method: ultra-
centrifugation],
[Purpose:
to properly
pellet residual
insoluble
proteins from the
extract], [Speed:
55000 RPM]]

Confirm pos-
itive colonies
by transient
transfection of
sgRNAs analysis
(SPH primers).

confirm [Output:
positive
colonies],
[Reagent:
sgRNAs
analysis
(SPH
primers)]

[Output:
positive
colonies],
[Reagent:
sgRNAs analysis
(SPH primers)]

CONFIRM:
[[Output:
positive
colonies],
[Reagent:
sgRNAs
analysis (SPH
primers)]]

CONFIRM:
[[Device: SPH
primers],
[Method:
transient
transfection of
sgRNAs analysis],
[Output:
positive
colonies]]

A21

F Reproducibility

The project page with supplementary files for reproducing the results of this paper will be available
at https://autodsl.org/procedure/papers/neurips24shi.html.

G Limitations

As a systematic study with a proof-of-concept framework, the design and evaluation of the pipeline
come with limitations, leading to further investigations:

• We majorly exploit the approaches of empirical study to observe the behavior of DSLs and human
experts for extracting design principles. Can we draw theories from information theory to rigor-
ously prove the expression capacity of DSLs and other structural knowledge representations, to
advance our design choice?

• We majorly consider the imperative programming DSLs as the vehicle of PDGs in this work.
This raises the question of whether incorporating alternative programming paradigms, such as
functional and object-oriented models, could enhance the representation of complex entities within
protocols, particularly the properties of reagents.

• Can we extend the protocol translator to a larger set of experiments, especially those with hetero-
geneous hardware devices such as mobile robots?

• Can we find similar mechanism in other critical domains with the requirements on protocol exe-
cution, such as advanced manufacturing, and generalize our translator for such applications?

With many questions unanswered, we hope to explore more on automated protocol translation for
self-driving laboratories and beyond.

A22

https://autodsl.org/procedure/papers/neurips24shi.html

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we systematically study the problem of translating protocols for
human experimenters into those suitable for self-driving laboratories, in order to standard-
ize and automate the translation process. Further, we propose the initial proof-of-concept
framework that fully frees domain experts from hand-crafting protocol translators.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the potential limitations at Appx. G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

A23

Answer: [NA]
Justification: No theoretical result is included in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided them with the implementation details at Appx. C. We will
also release our codes upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

A24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We have provided them with the implementation details Appx. C. We will
also release our codes upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of them are carefully illustrated in implementation details Appx. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes. Please refer to Fig. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

A25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appx. C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. Please refer to the main text.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the general discussions at Sec. 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

A26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. Their licenses are checked and their published works are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

A27

paperswithcode.com/datasets
paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [Yes]
Justification: Please refer to Appx. B and Appx. D.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have obtained an approved IRB in advance. Please refer to Appx. B.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

A28

	Introduction
	Protocol translation for self-driving laboratories
	Syntax level
	Semantics level
	Execution level
	Design principles inspired by human experimenters

	The framework of protocol translation
	Operation dependence synthesis for the syntax level
	Reagent flow analysis for the semantic level
	Spatial-temporal dynamics for the execution level

	Results
	Experimental setting
	Overall assessment on expert-created protocol translation
	Comparison between alternative models

	General discussions
	Additional remarks
	Rationale for the evaluation metrics
	Insight behind the design of PDG
	Computational complexity of the framework
	Generality of the framework
	The motivations behind this work

	Ethics statement
	Human participants
	Corpora collection

	Implementation details
	Details of pre-processing
	Details of reagent flow analysis
	Cost of the implementation

	The testing set
	Collection
	Showcases
	Instruction for human experts

	Case studies
	Contributions of the components in our translator
	Running cases of our translator handling specific challenges
	Types of errors made by our translator
	Properties of the pre-processing pipeline

	Reproducibility
	Limitations

