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ABSTRACT

The use of machine learning in sequential decision-making tasks has grown sub-
stantially, intensifying concerns regarding the safety of learned policies and mo-
tivating research on policy verification. We present a new policy verification
method based on the well-known IC3 algorithm. Unlike existing approaches, ours
decouples reasoning about policy decisions from reasoning about the effects of
these decisions on the environment in which the policy is executed. This sepa-
ration allows us to leverage the latest advances in machine learning certification
tools to handle the former subproblem, whilst relying on specialized solvers for
the latter. Experiments confirm that our approach scales better and supports a
wider variety of policy architectures than current state-of-the-art methods.

1 INTRODUCTION

Sequential decision-making is a central problem in artificial intelligence, concerned with choosing
a course of actions that accomplishes a given objective. In the past decade, data-driven learning
approaches such as reinforcement learning (RL) have achieved remarkable success in this field,
surpassing human performance in a multitude of complex tasks in areas like game playing (e.g.,
Silver et al., 2016), finance (e.g., Yang et al., 2020), and robotics (e.g., Singh et al., 2022).

Despite this success, achieving reliable, predictable, and safe behavior remains a major challenge
and a barrier to real-world deployment (e.g., Garcı́a & Fernández, 2015; Chan et al., 2020; Giannaros
et al., 2023). The learned action policies–often represented as deep neural networks–are complex,
non-linear functions that operate as black boxes. Although they may exhibit strong performance
according to training statistics, their behaviour may not align perfectly with the desired objective.
Moreover, their response to novel or unexpected situations is a priori unclear, and there is generally
no guarantee that they will adhere to critical safety constraints.

A growing line of research tackling these issues focuses on verifying that a learned policy meets
desired behavior specifications under all circumstances (Bacci & Parker, 2022; Tambon et al., 2022;
Vinzent et al., 2022; Abate et al., 2022; Schilling et al., 2023; Gross et al., 2023; Jain et al., 2024;
Rober et al., 2024). To reason about the consequences of successive action decisions in a rigorous,
exhaustive, and efficient manner, these verification methods leverage traditional model-checking
techniques operating on a symbolic model of the environment that succinctly represents the (expo-
nentially larger) state space. To integrate a learned policy into such techniques, existing works use
specialized solvers capable of simultaneously reasoning over individual policy decisions and over
their effects on the environment in a tightly coupled manner (Vinzent et al., 2022; Jain et al., 2024).
This restricts their applicability to policy function architectures (e.g. feed forward neural networks
with certain activation functions) that the specialized solvers support. Moreover, despite significant
progress (e.g., Wu et al., 2024), the scalability of these solvers remains a major issue.

In this paper, we consider the verification of safety properties of the form “can executing my policy
from an environment state satisfying formula ϕS ever reach an environment state satisfying formula
ϕR?”. Building on the well-known hardware verification algorithm IC3 (Bradley, 2011), we in-
troduce a new policy verification method which decouples the reasoning about the policy from the
reasoning about the environment model, resulting in greater scalability and generality. This is made
possible thanks to the following key contributions:

• We carefully identify and separate four core methods of the IC3 algorithm, yielding a
generic verification algorithm that can be instantiated to diverse contexts. We analyze prop-
erties of the four methods that preserve the correctness of the overall algorithm.
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• We instantiate this generic IC3 version to policy verification. A key step towards this goal is
efficiently handling the so called frame transition problem, which asks whether, given two
constraints r and F identifying environment source and target states, the policy can cause a
transition from r to F under the environment model. We develop sound approximations of
this problem and show how to efficiently solve these approximations with the help of state-
of-the-art neural network and tree-ensemble certification tools (e.g., Zhang et al., 2018;
Tjeng et al., 2019; Devos et al., 2021; Xu et al., 2021).

We empirically evaluate our new method on both existing and new benchmarks over a collection
of feed-forward neural network and decision-tree ensemble policies. The results demonstrate that
it is more efficient and often solves more problems than the current state of the art. Moreover,
experimenting with policies produced by recent generalized planning approaches, namely ASNets
(Toyer et al., 2020), we show that our method is capable of handling policies with complex function
architectures that were previously out of reach.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

We consider sequential decision-making problems in the form of Markov decision processes
(MDPs). An MDP is a tuple M = ⟨S,A,P, µ0,R, γ⟩, where S is a set of states, A is a set of
actions, P : S × A 7→ Dist(S) is the transition-probability function, µ0 ∈ Dist(S) is the initial
state distribution, R : S × A 7→ R is the reward function, and γ ∈ (0, 1] is the discount factor.
For a state s ∈ S, A(s) ⊆ A denotes the actions applicable in s, where a ∈ A(s) if P(s′|s, a) > 0
for some state s′. We assume for simplicity that A(s) ̸= ∅. A policy is a function π : S 7→ A
mapping each state s ∈ S to an applicable action π(s) ∈ A(s). The value of π in the state s is
the expected discounted cumulative reward when executing π from s. An optimal solution of M
is a policy maximizing the expected value for the initial states. Even if M is not known explic-
itly, approximately optimal policies can be computed automatically via reinforcement learning (RL)
(Arulkumaran et al., 2017) or imitation learning (IL) (Hussein et al., 2017). In the following, we
consider policies represented by a parameterized function fθ : S 7→ R|A| (e.g., neural networks).
fθ induces the policy πθ(s) := argmaxa∈A(s) fθ(s)[a] that maps each state s to the action ranked
highest by fθ, while masking inapplicable actions.

2.2 POLICY VERIFICATION

The learning algorithms typically provide only statistical estimates of some performance metric for
the delivered policy πθ. In contrast, policy verification rigorously analyzes πθ based on a declarative
specification of the environment, in order to obtain strict guarantees that the behaviour of πθ fulfills
desired properties that may or may not align with the reward objective.

We consider environment models in a guarded-command language. An environment model is a
tuple E = ⟨Vars,L, C⟩, where Vars is a set of integer variables v ∈ Vars with bounded domains
identified by lower and upper bounds Lv, Uv ∈ Z, L is a set of labels, and C is a set of (guarded)
commands. We call any Boolean combination of linear constraints over Vars with coefficients in
Z a linear condition. A guarded command c ∈ C has the form lc : grdc ▷ effc, where lc ∈ L
is the label of c, the guard grdc is a linear condition, and the effect effc maps each variable to a
linear expression over Vars with coefficients in Z. A state of E assigns each variable in Vars to a
value in that variable’s domain. SE denotes the set of all states. A command c is applicable in the
state s if s |= grdc. Applying c in s results in the state sJcK defined such that for all v ∈ Vars,
sJcK(v) := χv[s], where χv = effc(v) is the linear expression assigned by c to v, and χv[s] is
the result of the evaluation of χv in s. A label l is applicable in the state s, if a command c with
label lc = l is applicable in s. The applicable labels are denoted by L(s) ⊆ L. The semantics of
the environment model E is captured via the transition system ΘE = ⟨SE ,L, TE⟩ with transitions
TE := {⟨s, lc, sJcK⟩ | s ∈ SE , c ∈ C, s |= grdc}. A path in ΘE is a sequence s0, l0, s1, l1, . . . , sn
so that ⟨si, li, si+1⟩ ∈ TE holds for all i ∈ {0, . . . , n − 1}. A safety property, or simply property,
is a pair P = ⟨ϕS , ϕR⟩ consisting of a linear start condition ϕS and a linear reach condition
ϕR. P is satisfied in a transition system Θ, if Θ contains a path from a state satisfying ϕS to a
state satisfying ϕR. An environment model E satisfies P , if P is satisfied in the transition system
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ΘE , i.e., if there is a path s0, a0, s1, a1, . . . , sn such that (i) s0 |= ϕS , and (ii) sn |= ϕR, and
(iii) ∀i ∈ {0, . . . , n− 1} : ⟨si, ai, si+1⟩ ∈ TE .

A policy for E is a function π : SE 7→ L such that π(s) ∈ L(s) for all states s ∈ SE . Let πθ : S 7→ A
be a policy trained based on the MDP M. We assume for simplicity that πθ is a policy for the model
E . In particular, S = SE and A = L, i.e., the policy’s input and output match the states and labels
of the environment model. We remark, however, that this does not impose any restriction as long
as it is possible to represent the necessary interface functions, translating between M and E , in the
function space of πθ. The behavior of πθ in E is formally defined as the transition sub-system Θπθ

E =
⟨SE ,A, T πθ

E ⟩ with the transitions T πθ

E ⊆ TE , where ⟨s, a, s′⟩ ∈ T πθ

E if πθ(s) = a. πθ satisfies the
property P if P is satisfied in the transition sub-system Θπθ

E , i.e., if there is path s0, a0, s1, a1, . . . , sn
such that (i) s0 |= ϕS , and (ii) sn |= ϕR, and (iii’) ∀i ∈ {0, . . . , n − 1} : ⟨si, ai, si+1⟩ ∈ T πθ

E .
Note the subtle but important difference between the conditions (iii) and (iii’). In the latter, one is
interested in the specific transition choices made by the given policy only. That difference apart,
verifying whether πθ satisfies a property P inherits the worst-case PSPACE-complete complexity
from the model verification problem (Demri & Schnoebelen, 1998).

2.3 NEURAL-NETWORK AND TREE-ENSEMBLE CERTIFICATION

Certifying the decisions of learned neural networks and tree ensembles has become a standard prob-
lem in the machine learning literature. In the following, we will leverage such certification methods
in order to verify efficiently properties of learned policies. We consider two approaches specifically.
To handle neural network policies, we consider LiRPA (Zhang et al., 2018; Singh et al., 2019). Let
fθ : Rn 7→ R be a neural network mapping an n-dimensional input to a single real number. More-
over, let Φ denote an interval constraint L ≤ x ≤ U where L,U ∈ Rn; x denoting the input to fθ.
LiRPA is a state-of-the-art method certifying that

∀x ∈ Rn, x |= Φ : fθ(x) ≥ 0. (1)

For tree ensembles, we rely on Veritas (Devos et al., 2021). Let gθ : Rn 7→ Rm be a tree ensemble
mapping an n-dimensional input to scores of m different classes, and Φ be an interval constraint
as before. Let C denote the index of a target class. Then, amongst other variations, Veritas is an
efficient tool for certifying whether

∀x ∈ Rn, x |= Φ : gθ(x)[C] < max
C′ ̸=C

gθ(x)[C
′], (2)

i.e., that no input identified by Φ is classified as C.

3 METHOD

We extend the reach of the IC3 algorithm to policy verification. In Sec. 3.1, we introduce a generic
version of the IC3 algorithm, adapted from the literature (Bradley, 2011; Eén et al., 2011). This
generic version leaves open the implementation of core functions, and depending on their imple-
mentation, the algorithm can be adapted to different settings. In Sec. 3.2, we will instantiate the
functions for verifying environment models. This lays down the basis for our development of IC3
for policy verification in Sec. 3.3. For space reasons, we describe only central parts for understand-
ing the algorithm. Further details are provided in Appendix A.

3.1 GENERIC IC3 ALGORITHM

Let Θ = ⟨S,A, T ⟩ be a transition system, and P = ⟨ϕS , ϕR⟩ be a property. We next present our IC3
variant for verifying whether Θ satisfies P . Θ is accessed only implicitly via the sub-procedures, so
is treated by the general algorithm like a black box and does not need to be provided directly.

Alg. 1 shows the pseudocode. We assume for simplicity that no state satisfies both ϕS and ϕR, in
which case P is trivially satisfiable. IC3 incrementally builds path-length dependent reachability
information in the form of linear conditions, called frames, F0,F1, . . . ,FN . All frames but F0 are
conjunctions of clauses of the form ¬r, where r ⊆ s is a partial variable assignment derived from
a state s. We describe how r is computed below. With some abuse of notion, we treat frames as
sets of such clauses. The frames are constructed in such a way that the n-th frame Fn identifies a
necessary condition for a state to have a path of length n or less to some state satisfying ϕR. F0
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Input : Implicitly defined transition system Θ = ⟨S,A, T ⟩, property P = ⟨ϕS , ϕR⟩
Output: true if P is satisfied in Θ and false otherwise

1 F0 ← ϕR; F1 ← ∅; N ← 1 ; // initialize frames and path-length limit

2 while forever do
3 sstart ← selectStartState() ; // get state s ∈ S s.t. sstart |= ϕS and sstart |= FN

4 if selection not possible then
5 FN+1 ← ∅; // open new frame

6 propagateClauses() ; // try pushing clauses from Fm into Fm+1, for all m

7 if FN = FN+1 then return false ; // ϕR is not reachable

8 else N ← N + 1; continue ; // increase path length limit and reselect sstart

9 end
// find path of length N from sstart to some sN |= F0 in Θ, or remove sstart from FN

10 Q← empty queue; insert ⟨sstart, N⟩ into Q;
11 while Q is not empty do
12 ⟨s, n⟩ ← pop element with minimal n from Q;
13 if n = 0 then return true; // found a path from sstart |= ϕS to sN |= ϕR ;
14 s′ ← selectSuccessorState(s, n− 1) ; // get transition⟨s, a, s′⟩ s.t. s′ |=Fn−1

15 if selection not possible then
// compute small reason r ⊆ s for the absence of such a transition

16 r ← generalizeReason(s, n− 1);
17 foreach m = 1, . . . , n do Fm ← Fm ∪ {¬r} ;
18 else
19 insert ⟨s, n⟩ into Q ; // allow revisiting s if one later backtracks from s′

20 insert ⟨s′, n− 1⟩ into Q ; // continue with s′

21 end
22 end
23 end

Algorithm 1: Generic IC3 algorithm checking whether P is satisfied in Θ. Θ is accessed by
sub-procedures only. The sub-procedures are deliberately left open, see text.

is set to ϕR, while the other frames are generated during the execution of IC3. The purpose of the
main loop (line 2) is finding a path s0 = sstart, a0, s1, a1, . . . , sN in Θ from a start state sstart |= ϕS

to a state satisfying the desired reach condition sN |= ϕR.

Given the mentioned property of the frames, every such path must necessarily traverse the frame
segments in reverse direction, i.e., it must hold for all n ∈ {0, . . . , N} that sn |= FN−n. The
frames can hence be used to guide the search for the path. The selectStartState procedure
initiates path construction by selecting the start state with sstart |= FN directly (line 3).

Assertion 1. selectStartState() returns s ∈ S s.t. s |= ϕS ∧ FN , or throws an error.

The inner loop (line 11) then incrementally extends the current path prefix s0, a0, . . . , sn, for n =
0, . . . , N − 1, by finding a transition from sn to some sn+1 that is one step closer to ϕR:

Assertion 2. selectSuccessorState(s, n − 1) returns s′ ∈ S such that s′ |= Fn−1 and
there is a transition ⟨s, a, s′⟩ ∈ T , for some a ∈ A, or throws an error.

The construction process might however fail at two points. First, there might be no state sstart
satisfying sstart |= ϕS ∧ FN (line 4). If this is the case, then, as per the frame definition, the start
states cannot reach ϕR within the length limit of N . Ignoring the additional termination check for
the moment, IC3 opens a new frame FN+1, initialized so that it is satisfied by all states, and tries
strengthening the frames by moving clauses from lower to higher frames:

Assertion 3. propagateClauses() moves a clause ¬r ∈ Fm into Fm+1 only if no state
satisfying r has a transition into Fm, i.e., is at least m + 1 steps away from ϕR. Formally, s |= r
must imply that s′ ̸|= Fm, for all ⟨s, a, s′⟩ ∈ T .

The main loop restarts with the increased length limit N + 1.

Secondly, since the frame Fn may over-approximate the n-steps bounded reachability of ϕR, it may
happen that the incumbent state s |= Fn (from line 12) does actually not have any path to ϕR with
length of at most n. In particular, the desired transition ⟨s, a, s′⟩ to s′ |= Fn−1 might not exist (line
15). This situation causes a frame refinement. To this end, generalizeReason distills a small
reason r ⊆ s for when at least n+ 1 steps are necessary to reach ϕR.
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Assertion 4. generalizeReason(s, n − 1) returns a partial variable assignment r ⊆ s that
(i) entails ¬ϕR, i.e., for all states t, if t |= r, then t ̸|= ϕR, and (ii) is only satisfied by states without
transition into Fn−1, i.e., if t |= r, then t′ ̸|= Fn−1 holds for all ⟨t, a, t′⟩ ∈ T .
(i) ensures that the states satisfying r are at least one step away from ϕR. With the absence of transi-
tions into Fn−1 as per (ii), the states satisfying r can hence not reach ϕR in n steps. This information
is incorporated into the algorithm by adding ¬r to the corresponding frames. In particular, s ̸|= Fn

is true after the refinement. Note that for the effectiveness of the overall algorithm, it is absolutely
essential that the reasons generalize, i.e., ruling out many states at once in a single refinement step.

After the refinement, the search resumes at the previous state looking for a successor s′ that satisfies
the refined frame Fn. The backtracking may then further continue. The main loop repeats until the
desired path is found, showing the satisfaction of P . In order to not repeat this process indefinitely
if P is unsatisfiable, a convergence check is conducted in line 7. Once FN = FN+1, IC3 has
computed a condition that is invariant under transitions and separates the start states ϕS from ϕR. In
other words, IC3 has found an unsatisfiability proof. To ensure that FN = FN+1 is guaranteed to
hold eventually, we must make sure that redundant knowledge can be added to the frames without
affecting the syntactic equality check:
Assertion 5. If generalizeReason(s, n − 1) returns r and ¬r ∈ Fm for some m ≤ n − 1,
propagateClauses would have moved ¬r into Fn.
Theorem 1. Provided that the sub-procedures guarantee the stated properties, Alg. 1 terminates
and returns true if and only if the property P is satisfied in the transition system Θ.

3.2 IC3 FOR ENVIRONMENT MODEL VERIFICATION

Let E = ⟨Vars,A, C⟩ be an environment model. To verify whether E satisfies the property P using
IC3, we need to provide implementations of the four sub-procedures of Alg. 1 for the transition sys-
tem ΘE . Importantly, in order for the algorithm to be efficient, it is crucial that the implementations
operate on the description of E itself rather than on ΘE directly. In the original setting (Bradley,
2011; Eén et al., 2011), where the model was described in propositional logic, the backbone to this
end were SAT solvers (Biere et al., 2021). Here, we instead consider constraint systems over integer
variables with linear constraints, which can be solved via SMT (Barrett et al., 2021).

selectStartState can be straightforwadly implemented by representing the requirements of
Assert. 1 as a constraint system, and getting a solution to that system from an SMT solver.

The three remaining sub-procedures reason over the model’s transitions TE . Their implementation
commonly requires a method for deciding decision problems of the following general form
Definition 1. Let r be a (partial) variable assignment, and let n ∈ {0, . . . , N}. The frame transition
problem for r and n is

∃s ∈ SE : ∃a ∈ A : ∃s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE (3)

In words, this decision problem asks whether it is possible to transition into the frame Fn if r is
satisfied. Importantly, it can be formulated as the SMT problem FrameTransition[r, n], without
having to enumerate SE and TE explicitly. The encoding follows that in (Eén et al., 2011).

selectSuccessorState and propagateClauses can be implemented using
FrameTransition in a straightforward manner. To implement generalizeReason(s, n − 1),
we follow a greedy state minimization procedure as in earlier works (Bradley, 2011; Eén et al.,
2011). We initialize the reason to r := s, which is guaranteed to satisfy (i) and (ii) of Assert. 4.
Afterwards, we iterate over all variables v ∈ Vars, checking whether r \ {v 7→ r(v)} still satisfies
(i) and (ii) using FrameTransition. If yes, we update r accordingly. If no, we skip directly to the
next variable. The resulting r obviously guarantees Assert. 4.

3.3 IC3 FOR POLICY VERIFICATION

Let πθ : SE 7→ A be a neural-network or tree-ensemble policy. To analyze πθ, we have to instantiate
the four sub-procedures of Alg. 1 for the transition sub-system Θπθ

E . Since selectStartState
is completely independent of the policy, its implementation from Sec. 3.2 can be used as is. To
implement the remaining sub-procedures, we first adapt the decision problem from Def. 1 to policies,
and develop a method for solving it efficiently.
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3.3.1 POLICY FRAME TRANSITION PROBLEM

Recall the decision problem from Def. 1. To handle policies, the problem changes slightly:
Definition 2. Let r and n be as before. The policy frame transition problem for r and n is

∃s ∈ SE : ∃a ∈ A : ∃s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE ∧ πθ(s) = a (4)

Compared to (3), (4) includes the requirement that the policy chooses the action of the desired tran-
sition. This subtle difference unfortunately complicates solving this decision problem tremendously.

In principle, it is possible to extend the previous SMT-based approach to solve (4), provided that
the policy function πθ allows compiling the condition πθ(s) = a into SMT constraints. For feed-
forward neural networks with relu activation units and decision trees, this is possible (e.g., Tjeng
et al., 2019; Ceccon et al., 2022). Such a direct encoding however has two major disadvantages.
First, the encoding is possible only for limited families of functions. Secondly, the encoding has
to mimic the function structure of πθ, which can significantly increase the size of the SMT prob-
lem even up to the point where solving it becomes completely unpractical already for small neural
networks and decision trees (cf. e.g., Xu et al., 2021; Vinzent et al., 2022; Jain et al., 2024). While
in recent years, some research was spent on SMT solvers that include dedicated neural network
reasoning methods, scalability remains a major bottleneck (e.g., Wu et al., 2024).

3.3.2 APPROXIMATING THE POLICY FRAME TRANSITION PROBLEM

To avoid the mentioned deficiencies, we abstain from solving the decision problem exactly, instead
decomposing (4) into separate transition and action selection parts. More specifically, after moving
the action quantification to the front, we split the remaining inner condition as follows:

∃a ∈ A : (5.1) ∃s, s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE and
(5.2) ∃s ∈ SE : s |= r ∧ πθ(s) = a

(5)

Note that due to the independent state quantifications in (5.1) and (5.2), this formulation is not
equivalent to (4). However, it is easy to show that it constitutes a necessary condition:
Theorem 2. If there is no action satisfying (5), then also (4) is not satisfiable.

The motivation behind separating conditions (5.1) and (5.2) is to enable using separate solvers ded-
icated for the different parts; in particular, without compiling the policy function πθ into SMT. Let
a ∈ A. (5.1) can be checked via the SMT FrameTransition[r, n, a], similar to Sec. 3.2.

In order to check condition (5.2) efficiently, we want to leverage the certification tools from Sec. 2.3.
Let fθ : SE 7→ R|A| be the neural network or tree ensemble underlying πθ. By the definition of
πθ, πθ(s) = a is true if fθ(s)[a] ≥ maxa′∈A(s):a′ ̸=a fθ(s)[a

′]. Unfortunately, the restriction to
the applicable actions still induces a dependency on the environment model. So, (5.2) cannot be
tackled by the certification tools directly. We further relax the condition by moving the applicable
actions computation out of the equation. Specifically, let A ⊆ A be an under-approximation of the
applicable actions, i.e., such that A ⊆ A(s) holds for all the states s ∈ SE with s |= r.
Theorem 3. Consider the condition

∀s ∈ SE , s |= r : fθ(s)[a] < max
a′∈A,a′ ̸=a

fθ(s)[a
′] (6)

If (6) is satisfied, then πθ(s) ̸= a holds for all states s ∈ SE where s |= r, i.e., (5.2) is not satisfiable.

In words, (6) requires for all states satisfying r that the score of a is worse than that of an action in
the under-approximation A. The computation of the under-approximation A can be delegated to an
SMT solver. Given A, (6) can be compiled into the certification problems from Sec. 2.3, as described
below. In summary, this leads to the following algorithm, called APFT(r, n), approximating the
policy frame transition problem (4). APFT iterates over all actions a ∈ A. It checks whether a
satisfies (5.1) through SMT. If so, APFT obtains an applicable actions under-approximation A, and
checks whether a satisfies (6) via the detour to the certification problem. If (6) is satisfiable, then
(5.2) and therewith (4) is not. APFT continues with the next action. Otherwise, APFT returns true.
Corollary 1. APFT(r, n) returns false only if (4) is not satisfiable.

Tree ensembles To solve (6) for the tree ensemble fθ using VERITAS (Devos et al., 2021), we
need to get rid of the restriction in the maximization of (6). To this end, we use a simple masking
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FFNN DTE ASNET

beluga blocks npuzzle transport beluga blocks transport blocks npuzzle
(3) (24) (6) (5) (6) (18) (6) (116) (97)

BRFS 0 17 4 3 0 16 2 33 71
PPA 0 14 6 4 2 13 4 – –
POLIC3-nog 0 5 5 3 0 0 2 63 95
POLIC3 0 14 6 3 4 15 6 96 93

Table 1: Coverage table (number of solved instances). Per benchmark domain best values are high-
lighted in bold. Results for the different policy types FFNN (feed-forward neural networks), DTE
(decision-tree ensembles), and ASNET are separated. Total instance count shown in braces.

approach, constructing a tree ensemble gθ that guarantees that (6) is satisfied iff gθ satisfies the
certification problem (2). gθ is constructed by adding to fθ the penalty term −Pmax for all actions
different from a and A. The desired relation holds for Pmax such that Pmax > fθ(s)[a

′] for all s and
a′, which can be computed based on the leaf values in the decision trees.

Neural networks For neural networks, we compile the problem into a neural network gθ that satis-
fies the certification problem (1) iff (6) is not satisfied. gθ is constructed by appending two additional
layers to fθ. The first auxiliary layer has |A| outputs, returning za′ := relu(fθ[a′] − fθ[a]) for all
a′ ∈ A. The final layer returns

∑
a′∈A za′ − ϵ for a small ϵ > 0. If gθ(s) < 0 then

∑
a′∈A za′ < ϵ.

Since za′ ≥ 0, it follows for all a′ ∈ A that fθ(s)[a] + ϵ > fθ(s)[a
′]. So, if ϵ is sufficiently small,

(6) must be violated. Hence, gθ satisfies (1) iff (6) is violated.

3.3.3 IMPLEMENTATION OF IC3 SUB-PROCEDURES

We finally have all tools ready to implement the three remaining sub-procedures of IC3. In-
stead of relying on the approximation of the policy frame transition problem, we implement
selectSuccessorState(s, n − 1) by searching for the desired state s′ directly. Note that
the relevant transitions can be enumerated efficiently through a single iteration over the commands
C. This simple procedure obviously satisfies Assert. 2, and avoids the SMT related problems.

Since generalizeReason and propagateClauses require solving (4) for conditions r that
are satisfied by potentially many states, this simple enumeration approach is unfortunately not fea-
sible. We adopt the general procedures from Sec. 3.2, substituting the exact frame transition test
by APFT. The use of the approximation in APFT does not affect Assert. 3 and 4. The resulting
propagateClauses function satisfies Assert. 3 since it moves a clause ¬r ∈ Fm only into
Fm+1 if APFT(r,m) returns false. It follows from Cor. 1 that there is no policy transition from r
into Fm, as required. Similarly, for generalizeReason, recall that the state minimization pro-
cess removes a variable assignment only if the frame transition test is false. Since by Cor. 1, APFT
returns false only if (4) is not satisfiable, condition (ii) of Assert. 4 is preserved. Condition (i) is not
affected by the use of APFT. Finally, Assert. 5 is satisfied since both functions rely on APFT.

4 EXPERIMENTAL EVALUATION

Our implementation, called POLIC3, is in C++ and supports the analysis of neural-network and
tree-ensemble policies. Environment models are provided in the JANI guarded-command language
(Budde et al., 2017). We re-implemented LIRPA (Zhang et al., 2018) for neural networks certifi-
cation. To certify tree ensembles, we interface with the open-source tool VERITAS (Devos et al.,
2021). We use the Z3 SMT solver (de Moura & Bjørner, 2008). The code is publicly available.1

Our experiments aim at answering the following main questions:

(Q1) How does POLIC3 compete against state-of-the-art approaches?

(Q2) Can POLIC3 cope with more complex policy architectures, such as those underlying state-
of-the-art generalized planning policies?

1Link omitted to preserve anonymity; but code is available as supplemental material
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Figure 1: Per-instance runtime (in seconds) comparison of POLIC3 (y-axes) to PPA and BRFS (x-
axes). “n/s“ marks instances not solved in the resource limits.

Benchmarks We consider all benchmarks with integer-variable environments from prior work
(Vinzent et al., 2022; Jain et al., 2024). This encompasses four different problem domains (beluga,
blocks, npuzzle, transport) with a total of 72 benchmark instances, where 38 instances contain a
feed-forward neural-network (FFNN) policy and 34 contain a decision-tree ensemble (DTE) policy.
We further extended this collection by learning new policies in blocks and npuzzle using ASNET
(Toyer et al., 2020), one of the state of the art approaches in generalized planning. ASNET constructs
graph neural networks, leveraging a clever weight sharing scheme to instantiate policies for differ-
ent planning problem instances. ASNET requires planning problem descriptions in PDDL (Fox &
Long, 2003), not JANI. For training, we manually created the necessary PDDL encodings. The
training instances are randomly generated. In order to verify the learned ASNET policies πASNET,
we implemented translation functions F , mapping a JANI state into a PDDL state, and G, mapping
a PDDL action into a JANI action, as feed-forward neural networks using relu activation units, and
consider the concatenation G ◦ πASNET ◦ F for verification. We created additional 116 benchmark
instances in blocks and 97 instances in npuzzle in this manner.

Baselines and configurations We compare POLIC3 to policy predicate abstraction (PPA), the
current state-of-the-art algorithm for policy verification (Vinzent et al., 2022; Jain et al., 2024).
Moreover, as an additional baseline, we include an exhaustive search method (BRFS), which runs
multiple breadth-first searches in ΘE to find a property satisfying path. It enumerates the set of start
states and ΘE incrementally, and if the desired path is found, might terminate before either of them
has been fully constructed. Finally, we also experiment with a POLIC3 variant, called POLIC3-nog,
which does not use reason generalization, instead just using the entire state for the frame refinements.

Setup All experiments were run on Intel Xeon E5-2695 servers. Like in previous setups, each run
was limited to a single CPU thread, 12 hours runtime, and 4 GB memory.

Results Tab. 1 compares the number of instances each method could solve. We do not have re-
sults for PPA on ASNET policies, because the implementation by Vinzent et al. (2022) does not
support this type of policy, and adding that support is absolutely non-trivial. Comparing POLIC3 to
the state-of-the-art policy verifier PPA, POLIC3 achieves the same or better coverage in all but one
benchmark domains and across both remaining policy types. For FFNN policies, coverage is identi-
cal except for transport, where PPA is able to handle one more instance. For DTE policies, POLIC3
improves coverage in all three benchmark domains. In contrast to the DTE policies, for the FFNN
policies, we observed that POLIC3’s reason generalization method frequently fails to find small,
and thus generalizing, reasons. We attribute this to a lack of consistent structure in the decisions
made by the FFNN policies, owed to the way these policies were trained by Vinzent et al. (2022)
(Q-learning). The importance of reason generalization becomes evident when disabling in POLIC3
the generalization method entirely. The coverage of POLIC3-nog drops tremendously with a single
exception. That POLIC3 can also excell on neural network policies can be observed for the ASNET
policies. It achieves significantly higher coverage than our second baseline BRFS, indicating the
ability of POLIC3 to handle even current state-of-the-art policies. This is true despite the fact that
the ASNET policies are significantly larger than the FFNN ones (average number of neurons: blocks
157 (FFNN) vs. 8245 (ASNET); npuzzle 153 vs. 33990). On the other benchmarks, BRFS actually
turned out competetive overall. It even achieved the highest coverage in blocks, though lagging be-
hind in the other benchmark domains. Comparing the runtimes of POLIC3 to the two competitors
PPA and BRFS (Fig. 1), the picture is even more striking. In all points below the diagonal, POLIC3
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required less time to solve the instance. POLIC3 is able to improve over the competitors’ runtime,
often by several orders of magnitude.

5 RELATED WORK

Safe reinforcement learning Learning decision policies satisfying some safety constraints has re-
ceived significant attention in safe reinforcement learning (Garcı́a & Fernández, 2015; Gu et al.,
2024). There are two decisive differences to our work. First, safe RL considers quantitative proper-
ties, requiring that the discounted expected value of the policy for secondary cost functions remain
within some limits. Secondly, safe RL optimizes for the satisfaction of the safety constraints, but at
no time guarantees that the constraints are indeed satisfied.

Policy verification in continous environments Policy verification has been considered especially
in the context of dynamic system control (Tran et al., 2020; Tambon et al., 2022; Schilling et al.,
2023; Rossi et al., 2024). In contrast to our work, they consider continuous environment models.
This avoids the complications arising from discrete choices, but requires fundamentally different
techniques to, e.g., deal with sets of infinitely many environment states (e.g., Fan et al., 2020).

Policy verification in discrete environments Policy verification for discrete action spaces has also
been subject of many works. Bastani et al. (2018) present a method to obtain policies with verified
performance guarantees. To this end, they synthesize a single decision tree from a deep neural
network expert policy, and cast the entire policy verification problem as a single SMT. Carr et al.
(2021) follow a similar idea, using standard model checkers to verify a symbolic approximation
of a a given neural network policy. Both approaches provide no guarantees for the input policy.
(Gross et al., 2022; 2023) verify neural network policies by implementing an interface between an
off-the-shelf model checker and policy function evaluation. Policy verification however requires
enumeration of the policy induced transition system, which is intractable in all but the smallest
cases. Lastly, in contrast to our method, adding the support of different policy architectures in PPA
(Vinzent et al., 2022; Jain et al., 2024) requires major engineering efforts.

Other policy analysis methods Besides verification, there has also been significant work on al-
ternate analysis methods. Gros et al. (2023); Lampacrescia et al. (2024) consider statistical model
checking methods for analyzing neural network policies. Steinmetz et al. (2022) applied techniques
from software testing to spot undesired policy behavior within a symbolic environment model.
Eniser et al. (2022); Mazouni et al. (2024) adopted this idea, but instead tested the policy’s be-
havior using an environment simulator in place of a model. All these works cannot make formal
guarantees about their analysis results.

6 CONCLUSION

We introduced POLIC3, a new policy verification algorithm, which differs from previous algorithms
in its clear separation of the reasoning about the policy and the reasoning about the environment
model. The former can be handled efficiently via off-the-shelf neural network and decision-tree
ensemble certification tools, and the latter through standard encodings into SMT. Our experiments
demonstrated that POLIC3 is more efficient and often solves more problems than state-of-the-art
methods, and that it is even capable of handling policies with complex function architectures, exam-
plified by ASNET policies, that were previously out of reach.

That said, we have not unleashed the full power of IC3 yet. In hardware verification, a range of
optimizations have been introduced that significantly boost performance, including parallelization,
obligation minimization, obligation rescheduling, and reverse IC3. Our future work includes ex-
ploring those optimizations for policy verification. During our experiments, we observed that the
variable order during reason minimization has a huge influence on the performance of the overall
algorithm. Another highly promising direction is improving the generalization method by clever
selections of the variable order. Finally, a clear limitation of policy verification so far is the need for
a symbolic environment model. Through decoupling policy from environment reasoning, POLIC3
also paves the way for supporting environment models learned from data, such as those produced by
model-based reinforcement learning. Exploring this potential can advance the reach of this field.
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i = n, . . . , 1, looking for the state si−1 that has a transition going to si. In the original setting,
the directions can be exchanged easily, only requiring minor adaptations in the SAT encodings. In
POLIC3, this is more difficult. In particular, the explicit search in selectSuccessorState is
no longer possible in this manner.

In the original IC3 algorithm, the pairs ⟨s, n⟩ at line 12 of Alg. 1 are called obligations.
An optimization missing in our presentation is obligation minimization. Instead of search-
ing over individual states, the original IC3 algorithm considers obligations ⟨p, n⟩ where p is
a partial variable assignment, thus implicitly considering many states at once. Accordingly,
selectSuccessorState(p, n − 1) returns a partial variable assignment p′ that (1) entails
Fn−1, i.e., such that s′ |= p′ implies s′ |= Fn−1, and (2) all states s with s |= p have a transition
⟨s, a, s′⟩ ∈ T so that s′ |= p′. Importantly, to consider in the next search step such p′ that represent
as many states as possible, selectSuccessorState contains an additional minimization step
similar to reason generalization, which attempts to iteratively remove variable assignments from p′

while maintaining (1) and (2). Like above, considering partial variable assignments as obligations in
POLIC3 would make the implementation of selectSuccessorState significantly more com-
plicated.

Lastly, the original IC3 algorithm comes with the option to reschedule an obligation ⟨s, n⟩, insert-
ing ⟨s, n + 1⟩ into the queue, when s was shown to have no length-n path to ϕR (line 15). Our
implementation supports this, but it turned out detrimental in our experiments.

A.2 CORRECTNESS OF GENERIC IC3 (THM. 1)

Let Θ = ⟨S,A, T ⟩ be the transition system and P = ⟨ϕS , ϕR⟩ be the property to be verified. The
following frame invariants are preserved at all time during the execution of the algorithm

(FI) For all i ∈ {1, . . . , N − 1}: Fi+1 ⊆ Fi.
(FII) For all i ∈ {1, . . . , N}, and all states s ∈ S: if s |= Fi, then s ̸|= ϕR.

(FIII) For all i ∈ {0, . . . , N − 1}, and all states s ∈ S: if s |= Fi, then s ̸|= ϕS .
(FIV) For all i ∈ {1, . . . , N − 1}, all states s′ ∈ S, and all transitions ⟨s, a, s′⟩ ∈ T into s′: if

s′ |= Fi, then s |= Fi+1.

Proof of invariants.

• (FI) is satisfied as per the frame refinement step in line 17 of Alg. 1.
• (FII) is guaranteed by condition (i) of Assert. 4.
• (FIII) is guaranteed since a new frame is opened only when there is no start state sstart |= ϕS

that satisfies FN (Assert. 1), i.e., upon opening FN+1, the start states have been removed
from all previous frames. Since frames are only strengthened, it is not possible that a start
state gets reinserted into some frame.

• (FIV) is guaranteed by condition (ii) of Assert. 4.

□

From the invariants, the intended property of frames follows immediately:
Lemma 1. Let n ∈ {1, . . . , N}, and s0 ∈ S be such that s0 ̸|= Fn. It holds for all paths
s0, a0, s1, a1, . . . , sm in Θ such that sm |= ϕR that m > n.

Proof. Proof by induction on n. The induction beginning, n = 0, holds trivially given that F0 = ϕR,
i.e., if s0 ̸|= ϕR then obviously there is no 0-length path from s0 to ϕR. For the induction step, let
s0 ∈ S be some state with a path s0, a0, . . . , sm to a state sm |= ϕR with length m ≤ n+ 1. From
(FII), it follows that m ≥ 1. Consider the successor state s1 of s0. Obviously, s1 has a path with
length n to ϕR. As per the induction hypothesis, s1 |= Fn. Therefore, with (FIV), s0 |= Fn+1, as
desired.

We are now ready to show the correctness of Alg. 1. The proof is split in three parts: correctness of
the two return values, and termination.
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Proof that Alg. 1 correctly returns true. Let s0, a0, . . . , sN be the path found by Alg. 1 upon
returning true. The path can be easily reconstructed by tracking for each state in the queue the
transition that selectSuccessorState used to generate that state. In order to show that this
path is indeed a witness for the satisfaction of the property, we need to show that (i) s0 |= ϕS , (ii)
sN |= ϕR, and (iii) for all i ∈ {1, . . . , N}, ⟨si−1, ai−1, si⟩ ∈ T .

(i) is guaranteed by Assert. 1.
(ii) By Assert. 2, it holds that sN |= F0 when ⟨sN , 0⟩ was inserted into the queue for the first

time. Since F0 is not refined, sN |= F0 still holds when ⟨sN , 0⟩ is popped from the queue,
and at that moment the algorithm terminates.

(iii) is guaranteed by Assert. 2.

□

Proof that Alg. 1 correctly returns false. It holds that FN = FN+1. Suppose for contradiction that
there was a path s0, a0, s1, a1, . . . , sm from some start state s0 |= ϕS to some state sm such that
sm |= ϕR. Since s0 ̸|= FN (Assert. 1), it follows from Lemma 1 that m > N . Let m′ := m −N .
In other words, sm′ has a path of length N to ϕR. Applying Lemma 1 again, it must hold that
sm′ |= FN . Via (FIV), it inductively follows that s0 |= FN+1, and hence also s0 |= FN . This is a
contradiction to Assert. 1.

□

Proof that Alg. 1 terminates. The inner loop (line 11) must terminate eventually, since in each
step either the remaining path length counter n is decremented, or a state is removed from some
frame. Given that the algorithm terminates when n = 0 and since there are only finitely many
states, both things cannot repeat forever. If the property P is satisfied by Θ, IC3 must eventually
find a corresponding path given the correctness of the frame construction (Lemma 1) and since each
start state will have to be considered eventually (Assert. 1). Assume that P is not satisfied. We need
to show that FN = FN+1 holds eventually. To this end, assume that Fn = Fn+1 holds for some
n ∈ {1, . . . , N} after the call to propagateClauses. By Assert. 5, propagateClauses
could have propagated every ¬r ∈ Fn into Fn+1. But then, propagateClauses must have
also propagated ¬r into Fn+2, and in fact into all Fm with m ≥ n. In particular, Fi ⊆ FN and
Fi ⊆ FN+1. It follows from (FI) that Fi = FN and Fi = FN+1, i.e., IC3 will terminate. Finally,
note that such an index i must exist eventually, given that there are only finitely many possible
reasons. We conclude that IC3 has to terminate eventually.

□

A.3 IC3 FOR ENVIRONMENT MODELS: ADDITIONAL DETAILS

We provide a detailed description of the implementation of the four sub-procedures of Alg. 1 to
verify whether an environment model E = ⟨Vars,A, C⟩ satisfies the property P = ⟨ϕS , ϕR⟩.

Solving the frame transition problem The implementation of selectSuccessorState,
generalizeReason, and propagateClauses commonly requires a method efficiently de-
ciding the frame transition problem (Def. 1). This can be done via SMT. Specifically, the SMT
contains integer variables vv for v ∈ Vars representing the state s, integer variables v′v representing
the state s′, and Boolean variables cc for c ∈ C indicating the choice of the command responsible
for the transition. The conditions s |= r and s′ |= Fn of (3) are mapped one-to-one into constraints
of the SMT over the variables v and v′ respectively. The condition that ⟨s, a, s′⟩ ∈ TE , for some a,
is encoded as the disjunction of cc ∧ guard(c)∧ effect(c) over all commands c ∈ C, where guard(c)
translates the guard grdc into a constraint over the variables v (representing the condition s |= grdc),
and effect(c) binds the variables v′ to the result of the application of c on the values of v (repre-
senting the condition s′ = sJcK) by conjoining the constraints v′v = χv[v] for all v ∈ Vars, where
χv = effc(v) is the expression assigned to v by the command’s effect. We refer to the resulting SMT
problem as FrameTransition[r, n].

Start state selection The implementation of selectStartState via SMT is straightforward.
To find a state sstart ∈ SE such that sstart |= ϕS ∧ FN without enumerating the set of all states
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SE , we generate a constraint system with the integer variables Vars of the environment model, and
we translate the conditions ϕS and FN into constraints. The requested state can be read off of any
solution of this system. If there is no solution, then sstart does not exist. All in all, the implementation
meets the specification as per Assert. 1.

Successor state selection With FrameTransition at hand, the implementation of
selectSuccessorState(s, n − 1) is trivial. We solve FrameTransition[s, n − 1] and
reconstruct s′ from the solution. Assert. 2 is guaranteed by the correctness of the SMT encoding.

Pushing clauses Similarly, to decide in propagateClauseswhether a clause ¬r ∈ Fm can be
pushed to the next higher frame Fm+1, we solve FrameTransition[r,m]. The clause can be pushed
if the SMT is unsatisfiable. Assert. 4 again follows from the correctness of the SMT encoding. The
implementation also guarantees Assert. 5 given that FrameTransition[r,m] represents the condition
under which ¬r can be moved into Fm+1 exactly, i.e., it pushes a clause forward if and only if this
is possible while preserving the frame properties.

Reason generalization Finally, to obtain small reasons in generalizeReason(s, n− 1), we
follow a greedy state minimization procedure as in earlier works (Bradley, 2011; Eén et al., 2011).
We initialize the reason to r := s. Note that this r satisfies (i) and (ii) of Assert. 4 initially. (i) holds
by the definition of the frames and since n > 0; (ii) is satisfied for each call made by Alg. 1 (line
15). We then iteratively remove individual variable assignments from r while maintaining (i) and
(ii). Namely, for each v ∈ Vars, we consider r′ := r \ {v 7→ r(v)}. Checking whether r′ satisfies
(i) is an easy exercise, formulated as an SMT. For condition (ii), we solve FrameTransition[r′, n],
which has no solution exactly if (ii) is still satisfied. If we find that r′ satisfies both conditions, we
set r := r′ and continue with the next variable. Otherwise, we do not change r and proceed directly
to the next variable. Given that (i) and (ii) remain satisfied by r at all times by the design of the
algorithm, this method obviously satisfies Assert. 4.

A.4 IC3 FOR POLICY VERIFICATION: ADDITIONAL DETAILS

A.4.1 PROOF OF THM. 2

Let r be a partial variable assignment and n ∈ {0, . . . , N}. Assume that (4) is satisfied, and let
s, a, s′ be the corresponding witness, i.e., such that (i) s |= r, (ii) s′ |= Fn, (iii) ⟨s, a, s⟩ ∈ TE , and
(iv) πθ(s) = a. We show that (5) is satisfied. To this end, note that the states s and s′ satisfy (5.1)
for action a: s |= r holds by (i), s′ |= Fn by (ii), and ⟨s, a, s′⟩ ∈ TE by (iii). (5.2) is satisfied since
s |= r by (i) and πθ(s) = a by (iv). This concludes the proof.

□

A.4.2 PROOF OF THM. 3

Let r be a partial variable assignment, and let A ⊆ A be an under-approximation of the applicable
actions of the states represented by r, i.e., such that A ⊆ A(s) holds for all s ∈ SE where s |= r.
Let s ∈ SE be any state that satisfies s |= r. Assume that (6) is satisfied, i.e., that

fθ(s)[a] < max
a′∈A,a′ ̸=a

fθ(s)[a
′].

Let â := πθ(s). By the definition of πθ, it holds that â ∈ A(s) and that

fθ(s)[â] = max
a′∈A(s)

fθ(s)[a
′].

Since A ⊆ A(s), in particular,

fθ(s)[â] ≥ max
a′∈A

fθ(s)[a
′] ≥ max

a′∈A,a′ ̸=a
fθ(s)[a

′].

Therefore,
fθ(s)[a] < fθ(s)[â].

Based on the definition of πθ, we conclude that πθ(s) ̸= a.

□
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B EXPERIMENTS

B.1 BENCHMARK DESCRIPTIONS

We provide a brief description of the used benchmarks. We took the models, properties, and policies
from (Vinzent et al., 2022; Jain et al., 2024), and trained new policies using ASNET (Toyer et al.,
2020) in two problem domains. We describe the ASNET training below. The original benchmark
set contains feed-forward neural network with relu units (FFNN) and decision-tree ensemble (DTE)
policies. The FFNN policies were trained using Q-learning. The FFNN policies generally had 2
hidden layers, whose size was varied in the different benchmark domains (as described below). The
DTE policies were trained via imitation learning from those teacher FFNN policies considering both
gradient-boosted trees as well as random forests. The size of the ensembles was generally controlled
using depth limits in {4, 6, 8, 10, 15} and number of trees in {5, 10, 20, 30}.

beluga A factory logistics problem, where cargo needs to be unloaded from n arriving airplanes
and stored in some intermediate rack storage facilities until being requested by the production line.
The start condition considers all possible orderings in which cargo can arrive. The reach condition
asks whether all racks are occupied. The benchmarks vary n ∈ {4, 5, 6}. The FFNN policies have 2
hidden layers with m ∈ {64, 256} neurons each.

blocks A variant of the classic blocksworld planning problem. There are n differently colored
blocks which must be stacked on top of each other in a certain way. This benchmark variant comes
with the additional constraint that only a limited number of blocks are allowed to be placed on
the table at the same time, which is represented by the reach condition. The start state condition
represents all configuration of the blocks where the constraint is satisfied. The number of blocks
was ranged in n ∈ {4, 6, 8, 10}. The FFNN policies have 2 hidden layers with m ∈ {16, 32, 64}
neurons each.

npuzzle Models the classic sliding tiles puzzle on a 3 × 3 grid. There are 8 numbered tiles and
an empty tile. The tiles need to be arranged in a certain manner. The empty tile can be swapped
with tiles horizontally or vertically adjacent to it. The start condition imposes a partial order over
the tiles. The reach condition characterizes some unsafe tile positions to be avoided. The FFNN
policies have 2 hidden layers with m ∈ {16, 32, 64} neurons each.

transport Models a transportation problem, where packages must be moved from left to right
crossing a bridge. The truck has inertia, and can be accelerated/decelerated by one speed unit at a
time. The start condition represents all states where packages are distributed arbitrary at the left side
of the bridge. The reach condition asks whether the truck ever crosses the bridge with too much
load. The FFNN policies have 2 hidden layers with m ∈ {16, 32, 64} neurons each.

B.2 TRAINING ASNET POLICIES

blocks npuzzle

Training problem sizes {4, 5, . . . , 10} blocks,
(25 instances in total)

3× 3 grids
(30 instances in total)

Module layers 2, 3 2, 3, 4
Module dimensions 4, 8 4, 8, 16, 32
Activation relu relu
Weight decay 2e-4 2e-4
Dropout rate 0.1 0.1
Regularization L1 L1
Batch size 64 64
Max epochs 300 300
Train steps 700 700
Policy rollout limit 1000 steps 1000 steps

Table 2: ASNET training hyperparameters
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We trained additional policies in blocks and npuzzle using ASNET (Toyer et al., 2020). To train
a policy, ASNET requires a planning problem domain and a collection of problem instances with
increasing difficulty in PDDL. To this end, we manually created PDDL encodings of blocks and
npuzzle, and implemented random instance generators in python. For both domains, we let ASNET
train multiple policies with different sizes. The hyperparameters are shown in Tab. 2. For each
size configuration, we selected the best performing policies. The resulting generalized policies were
instantiated according to the size of the models considered for verification. For npuzzle we obtained
97 additional policies in this manner. For blocks, we obtained 29 additional policies for each of the
four model sizes, so 116 in total.

B.3 ADDITIONAL RESULTS

Benchmark # solved avg. N avg. runtime (s) fraction reason generalization

beluga FFNN (3) 0 – – –
blocks FFNN (24) 14 12.1 213.78 42.6%
npuzzle FFNN (6) 6 16.3 4224.55 49.0%
transport FFNN (5) 3 1 1.6 48.5%
beluga DTE (6) 4 5.2 0.4 45.9%
blocks DTE (18) 15 29.7 3779.72 76.2%
transport DTE (6) 6 11.5 55.04 70.1%
blocks ASNET (116) 96 7.2 2090.63 63.7%
npuzzle ASNET (97) 93 1 106.61 53.5%

Table 3: Per benchmark domain aggregated statistics about the POLIC3 runs. Total number of
instances in braces. “# solved”: number of instances solved. “avg. N” average path-length limit
N upon termination of POLIC3. “avg. runtime” runtime in seconds averaged over the solved
instances. “fraction reason generalization” runtime fraction (in percent) of reason generalization
from total runtime, averaged over the solved instances.
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Figure 2: POLIC3 runtime (seconds) as a function of policy size for the benchmarks with neural
network policies. FFNN policies in blue, ASNET in brown. Policy size is measured in number of
neurons. The lines show the sliding average.

Tab. 3 and Fig. 2 show additional performance statistics for the POLIC3 runs. Runtime strongly
correlates with how quickly a property satisfying path could be found. In transport (FFNN) and
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npuzzle (ASNET) the paths were generally very short, on average a single step from some start
state was enough. Runtime is comparatively small in those two domains. Comparing the FFNN and
DTE policies for blocks, the data indicates that proving unsolvability of a property tends to be in
general harder than showing solvability. For DTE, a satisfying path was only found in one of the 15
solved instances (in the other instances the property is unsatisfiable), compared to 5 out of 14 for the
FFNN policies. In general, a big fraction of the runtime is spent on reason minimization. Similar
observations were made in the original hardware verification context (cf. Eén et al., 2011). Taking a
look at the runtime for neural network policies (Fig. 2), we see that the runtime generally increases
steeply with the network sizes (note that the axes use log-scale). The plot also shows the importance
of a structure of the policies. Despite being orders of magnitude larger, the ASNET policies can still
be verified much more efficiently than the FFNN policies.
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