
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IS MY ACTION POLICY SAFE? POLIC3 TO THE RESCUE

Anonymous authors
Paper under double-blind review

ABSTRACT

The use of machine learning in sequential decision-making tasks has grown sub-
stantially, intensifying concerns regarding the safety of learned policies and mo-
tivating research on policy verification. We present a new policy verification
method based on the well-known IC3 algorithm. Unlike existing approaches, ours
decouples reasoning about policy decisions from reasoning about the effects of
these decisions on the environment in which the policy is executed. This sepa-
ration allows us to leverage the latest advances in machine learning certification
tools to handle the former subproblem, whilst relying on specialized solvers for
the latter. Experiments confirm that our approach scales better and supports a
wider variety of policy architectures than current state-of-the-art methods.

1 INTRODUCTION

Sequential decision-making is a central problem in artificial intelligence, concerned with choosing
a course of actions that accomplishes a given objective. In the past decade, data-driven learning
approaches such as reinforcement learning (RL) have achieved remarkable success in this field,
surpassing human performance in a multitude of complex tasks in areas like game playing (e.g.,
Silver et al., 2016), finance (e.g., Yang et al., 2020), and robotics (e.g., Singh et al., 2022).

Despite this success, achieving reliable, predictable, and safe behavior remains a major challenge
and a barrier to real-world deployment (e.g., Garcı́a & Fernández, 2015; Chan et al., 2020; Giannaros
et al., 2023). The learned action policies–often represented as deep neural networks–are complex,
non-linear functions that operate as black boxes. Although they may exhibit strong performance
according to training statistics, their behaviour may not align perfectly with the desired objective.
Moreover, their response to novel or unexpected situations is a priori unclear, and there is generally
no guarantee that they will adhere to critical safety constraints.

A growing line of research tackling these issues focuses on verifying that a learned policy meets
desired behavior specifications under all circumstances (Bacci & Parker, 2022; Tambon et al., 2022;
Vinzent et al., 2022; Abate et al., 2022; Schilling et al., 2023; Gross et al., 2023; Jain et al., 2024;
Rober et al., 2024). To reason about the consequences of successive action decisions in a rigorous,
exhaustive, and efficient manner, these verification methods leverage traditional model-checking
techniques operating on a symbolic model of the environment that succinctly represents the (expo-
nentially larger) state space. To integrate a learned policy into such techniques, existing works use
specialized solvers capable of simultaneously reasoning over individual policy decisions and over
their effects on the environment in a tightly coupled manner (Vinzent et al., 2022; Jain et al., 2024).
This restricts their applicability to policy function architectures (e.g. feed forward neural networks
with certain activation functions) that the specialized solvers support. Moreover, despite significant
progress (e.g., Wu et al., 2024), the scalability of these solvers remains a major issue.

In this paper, we consider the verification of safety properties of the form “can executing my policy
from an environment state satisfying formula ϕS ever reach an environment state satisfying formula
ϕR?”. Building on the well-known hardware verification algorithm IC3 (Bradley, 2011), we in-
troduce a new policy verification method which decouples the reasoning about the policy from the
reasoning about the environment model, resulting in greater scalability and generality. This is made
possible thanks to the following key contributions:

• We carefully identify and separate four core methods of the IC3 algorithm, yielding a
generic verification algorithm that can be instantiated to diverse contexts. We analyze prop-
erties of the four methods that preserve the correctness of the overall algorithm.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We instantiate this generic IC3 version to policy verification. A key step towards this goal is
efficiently handling the so called frame transition problem, which asks whether, given two
constraints r and F identifying environment source and target states, the policy can cause a
transition from r to F under the environment model. We develop sound approximations of
this problem and show how to efficiently solve these approximations with the help of state-
of-the-art neural network and tree-ensemble certification tools (e.g., Zhang et al., 2018;
Tjeng et al., 2019; Devos et al., 2021; Xu et al., 2021).

We empirically evaluate our new method on both existing and new benchmarks over a collection
of feed-forward neural network and decision-tree ensemble policies. The results demonstrate that
it is more efficient and often solves more problems than the current state of the art. Moreover,
experimenting with policies produced by recent generalized planning approaches, namely ASNets
(Toyer et al., 2020), we show that our method is capable of handling policies with complex function
architectures that were previously out of reach.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

We consider sequential decision-making problems in the form of Markov decision processes
(MDPs). An MDP is a tuple M = ⟨S,A,P, µ0,R, γ⟩, where S is a set of states, A is a set of
actions, P : S × A 7→ Dist(S) is the transition-probability function, µ0 ∈ Dist(S) is the initial
state distribution, R : S × A 7→ R is the reward function, and γ ∈ (0, 1] is the discount factor.
For a state s ∈ S, A(s) ⊆ A denotes the actions applicable in s, where a ∈ A(s) if P(s′|s, a) > 0
for some state s′. We assume for simplicity that A(s) ̸= ∅. A policy is a function π : S 7→ A
mapping each state s ∈ S to an applicable action π(s) ∈ A(s). The value of π in the state s is
the expected discounted cumulative reward when executing π from s. An optimal solution of M
is a policy maximizing the expected value for the initial states. Even if M is not known explic-
itly, approximately optimal policies can be computed automatically via reinforcement learning (RL)
(Arulkumaran et al., 2017) or imitation learning (IL) (Hussein et al., 2017). In the following, we
consider policies represented by a parameterized function fθ : S 7→ R|A| (e.g., neural networks).
fθ induces the policy πθ(s) := argmaxa∈A(s) fθ(s)[a] that maps each state s to the action ranked
highest by fθ, while masking inapplicable actions.

2.2 POLICY VERIFICATION

The learning algorithms typically provide only statistical estimates of some performance metric for
the delivered policy πθ. In contrast, policy verification rigorously analyzes πθ based on a declarative
specification of the environment, in order to obtain strict guarantees that the behaviour of πθ fulfills
desired properties that may or may not align with the reward objective.

We consider environment models in a guarded-command language. An environment model is a
tuple E = ⟨Vars,L, C⟩, where Vars is a set of integer variables v ∈ Vars with bounded domains
identified by lower and upper bounds Lv, Uv ∈ Z, L is a set of labels, and C is a set of (guarded)
commands. We call any Boolean combination of linear constraints over Vars with coefficients in
Z a linear condition. A guarded command c ∈ C has the form lc : grdc ▷ effc, where lc ∈ L
is the label of c, the guard grdc is a linear condition, and the effect effc maps each variable to a
linear expression over Vars with coefficients in Z. A state of E assigns each variable in Vars to a
value in that variable’s domain. SE denotes the set of all states. A command c is applicable in the
state s if s |= grdc. Applying c in s results in the state sJcK defined such that for all v ∈ Vars,
sJcK(v) := χv[s], where χv = effc(v) is the linear expression assigned by c to v, and χv[s] is
the result of the evaluation of χv in s. A label l is applicable in the state s, if a command c with
label lc = l is applicable in s. The applicable labels are denoted by L(s) ⊆ L. The semantics of
the environment model E is captured via the transition system ΘE = ⟨SE ,L, TE⟩ with transitions
TE := {⟨s, lc, sJcK⟩ | s ∈ SE , c ∈ C, s |= grdc}. A path in ΘE is a sequence s0, l0, s1, l1, . . . , sn
so that ⟨si, li, si+1⟩ ∈ TE holds for all i ∈ {0, . . . , n − 1}. A safety property, or simply property,
is a pair P = ⟨ϕS , ϕR⟩ consisting of a linear start condition ϕS and a linear reach condition
ϕR. P is satisfied in a transition system Θ, if Θ contains a path from a state satisfying ϕS to a
state satisfying ϕR. An environment model E satisfies P , if P is satisfied in the transition system

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ΘE , i.e., if there is a path s0, a0, s1, a1, . . . , sn such that (i) s0 |= ϕS , and (ii) sn |= ϕR, and
(iii) ∀i ∈ {0, . . . , n− 1} : ⟨si, ai, si+1⟩ ∈ TE .

A policy for E is a function π : SE 7→ L such that π(s) ∈ L(s) for all states s ∈ SE . Let πθ : S 7→ A
be a policy trained based on the MDP M. We assume for simplicity that πθ is a policy for the model
E . In particular, S = SE and A = L, i.e., the policy’s input and output match the states and labels
of the environment model. We remark, however, that this does not impose any restriction as long
as it is possible to represent the necessary interface functions, translating between M and E , in the
function space of πθ. The behavior of πθ in E is formally defined as the transition sub-system Θπθ

E =
⟨SE ,A, T πθ

E ⟩ with the transitions T πθ

E ⊆ TE , where ⟨s, a, s′⟩ ∈ T πθ

E if πθ(s) = a. πθ satisfies the
property P if P is satisfied in the transition sub-system Θπθ

E , i.e., if there is path s0, a0, s1, a1, . . . , sn
such that (i) s0 |= ϕS , and (ii) sn |= ϕR, and (iii’) ∀i ∈ {0, . . . , n − 1} : ⟨si, ai, si+1⟩ ∈ T πθ

E .
Note the subtle but important difference between the conditions (iii) and (iii’). In the latter, one is
interested in the specific transition choices made by the given policy only. That difference apart,
verifying whether πθ satisfies a property P inherits the worst-case PSPACE-complete complexity
from the model verification problem (Demri & Schnoebelen, 1998).

2.3 NEURAL-NETWORK AND TREE-ENSEMBLE CERTIFICATION

Certifying the decisions of learned neural networks and tree ensembles has become a standard prob-
lem in the machine learning literature. In the following, we will leverage such certification methods
in order to verify efficiently properties of learned policies. We consider two approaches specifically.
To handle neural network policies, we consider LiRPA (Zhang et al., 2018; Singh et al., 2019). Let
fθ : Rn 7→ R be a neural network mapping an n-dimensional input to a single real number. More-
over, let Φ denote an interval constraint L ≤ x ≤ U where L,U ∈ Rn; x denoting the input to fθ.
LiRPA is a state-of-the-art method certifying that

∀x ∈ Rn, x |= Φ : fθ(x) ≥ 0. (1)

For tree ensembles, we rely on Veritas (Devos et al., 2021). Let gθ : Rn 7→ Rm be a tree ensemble
mapping an n-dimensional input to scores of m different classes, and Φ be an interval constraint
as before. Let C denote the index of a target class. Then, amongst other variations, Veritas is an
efficient tool for certifying whether

∀x ∈ Rn, x |= Φ : gθ(x)[C] < max
C′ ̸=C

gθ(x)[C
′], (2)

i.e., that no input identified by Φ is classified as C.

3 METHOD

We extend the reach of the IC3 algorithm to policy verification. In Sec. 3.1, we introduce a generic
version of the IC3 algorithm, adapted from the literature (Bradley, 2011; Eén et al., 2011). This
generic version leaves open the implementation of core functions, and depending on their imple-
mentation, the algorithm can be adapted to different settings. In Sec. 3.2, we will instantiate the
functions for verifying environment models. This lays down the basis for our development of IC3
for policy verification in Sec. 3.3. For space reasons, we describe only central parts for understand-
ing the algorithm. Further details are provided in Appendix A.

3.1 GENERIC IC3 ALGORITHM

Let Θ = ⟨S,A, T ⟩ be a transition system, and P = ⟨ϕS , ϕR⟩ be a property. We next present our IC3
variant for verifying whether Θ satisfies P . Θ is accessed only implicitly via the sub-procedures, so
is treated by the general algorithm like a black box and does not need to be provided directly.

Alg. 1 shows the pseudocode. We assume for simplicity that no state satisfies both ϕS and ϕR, in
which case P is trivially satisfiable. IC3 incrementally builds path-length dependent reachability
information in the form of linear conditions, called frames, F0,F1, . . . ,FN . All frames but F0 are
conjunctions of clauses of the form ¬r, where r ⊆ s is a partial variable assignment derived from
a state s. We describe how r is computed below. With some abuse of notion, we treat frames as
sets of such clauses. The frames are constructed in such a way that the n-th frame Fn identifies a
necessary condition for a state to have a path of length n or less to some state satisfying ϕR. F0

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input : Implicitly defined transition system Θ = ⟨S,A, T ⟩, property P = ⟨ϕS , ϕR⟩
Output: true if P is satisfied in Θ and false otherwise

1 F0 ← ϕR; F1 ← ∅; N ← 1 ; // initialize frames and path-length limit

2 while forever do
3 sstart ← selectStartState() ; // get state s ∈ S s.t. sstart |= ϕS and sstart |= FN

4 if selection not possible then
5 FN+1 ← ∅; // open new frame

6 propagateClauses() ; // try pushing clauses from Fm into Fm+1, for all m

7 if FN = FN+1 then return false ; // ϕR is not reachable

8 else N ← N + 1; continue ; // increase path length limit and reselect sstart

9 end
// find path of length N from sstart to some sN |= F0 in Θ, or remove sstart from FN

10 Q← empty queue; insert ⟨sstart, N⟩ into Q;
11 while Q is not empty do
12 ⟨s, n⟩ ← pop element with minimal n from Q;
13 if n = 0 then return true; // found a path from sstart |= ϕS to sN |= ϕR ;
14 s′ ← selectSuccessorState(s, n− 1) ; // get transition⟨s, a, s′⟩ s.t. s′ |=Fn−1

15 if selection not possible then
// compute small reason r ⊆ s for the absence of such a transition

16 r ← generalizeReason(s, n− 1);
17 foreach m = 1, . . . , n do Fm ← Fm ∪ {¬r} ;
18 else
19 insert ⟨s, n⟩ into Q ; // allow revisiting s if one later backtracks from s′

20 insert ⟨s′, n− 1⟩ into Q ; // continue with s′

21 end
22 end
23 end

Algorithm 1: Generic IC3 algorithm checking whether P is satisfied in Θ. Θ is accessed by
sub-procedures only. The sub-procedures are deliberately left open, see text.

is set to ϕR, while the other frames are generated during the execution of IC3. The purpose of the
main loop (line 2) is finding a path s0 = sstart, a0, s1, a1, . . . , sN in Θ from a start state sstart |= ϕS

to a state satisfying the desired reach condition sN |= ϕR.

Given the mentioned property of the frames, every such path must necessarily traverse the frame
segments in reverse direction, i.e., it must hold for all n ∈ {0, . . . , N} that sn |= FN−n. The
frames can hence be used to guide the search for the path. The selectStartState procedure
initiates path construction by selecting the start state with sstart |= FN directly (line 3).

Assertion 1. selectStartState() returns s ∈ S s.t. s |= ϕS ∧ FN , or throws an error.

The inner loop (line 11) then incrementally extends the current path prefix s0, a0, . . . , sn, for n =
0, . . . , N − 1, by finding a transition from sn to some sn+1 that is one step closer to ϕR:

Assertion 2. selectSuccessorState(s, n − 1) returns s′ ∈ S such that s′ |= Fn−1 and
there is a transition ⟨s, a, s′⟩ ∈ T , for some a ∈ A, or throws an error.

The construction process might however fail at two points. First, there might be no state sstart
satisfying sstart |= ϕS ∧ FN (line 4). If this is the case, then, as per the frame definition, the start
states cannot reach ϕR within the length limit of N . Ignoring the additional termination check for
the moment, IC3 opens a new frame FN+1, initialized so that it is satisfied by all states, and tries
strengthening the frames by moving clauses from lower to higher frames:

Assertion 3. propagateClauses() moves a clause ¬r ∈ Fm into Fm+1 only if no state
satisfying r has a transition into Fm, i.e., is at least m + 1 steps away from ϕR. Formally, s |= r
must imply that s′ ̸|= Fm, for all ⟨s, a, s′⟩ ∈ T .

The main loop restarts with the increased length limit N + 1.

Secondly, since the frame Fn may over-approximate the n-steps bounded reachability of ϕR, it may
happen that the incumbent state s |= Fn (from line 12) does actually not have any path to ϕR with
length of at most n. In particular, the desired transition ⟨s, a, s′⟩ to s′ |= Fn−1 might not exist (line
15). This situation causes a frame refinement. To this end, generalizeReason distills a small
reason r ⊆ s for when at least n+ 1 steps are necessary to reach ϕR.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Assertion 4. generalizeReason(s, n − 1) returns a partial variable assignment r ⊆ s that
(i) entails ¬ϕR, i.e., for all states t, if t |= r, then t ̸|= ϕR, and (ii) is only satisfied by states without
transition into Fn−1, i.e., if t |= r, then t′ ̸|= Fn−1 holds for all ⟨t, a, t′⟩ ∈ T .
(i) ensures that the states satisfying r are at least one step away from ϕR. With the absence of transi-
tions into Fn−1 as per (ii), the states satisfying r can hence not reach ϕR in n steps. This information
is incorporated into the algorithm by adding ¬r to the corresponding frames. In particular, s ̸|= Fn

is true after the refinement. Note that for the effectiveness of the overall algorithm, it is absolutely
essential that the reasons generalize, i.e., ruling out many states at once in a single refinement step.

After the refinement, the search resumes at the previous state looking for a successor s′ that satisfies
the refined frame Fn. The backtracking may then further continue. The main loop repeats until the
desired path is found, showing the satisfaction of P . In order to not repeat this process indefinitely
if P is unsatisfiable, a convergence check is conducted in line 7. Once FN = FN+1, IC3 has
computed a condition that is invariant under transitions and separates the start states ϕS from ϕR. In
other words, IC3 has found an unsatisfiability proof. To ensure that FN = FN+1 is guaranteed to
hold eventually, we must make sure that redundant knowledge can be added to the frames without
affecting the syntactic equality check:
Assertion 5. If generalizeReason(s, n − 1) returns r and ¬r ∈ Fm for some m ≤ n − 1,
propagateClauses would have moved ¬r into Fn.
Theorem 1. Provided that the sub-procedures guarantee the stated properties, Alg. 1 terminates
and returns true if and only if the property P is satisfied in the transition system Θ.

3.2 IC3 FOR ENVIRONMENT MODEL VERIFICATION

Let E = ⟨Vars,A, C⟩ be an environment model. To verify whether E satisfies the property P using
IC3, we need to provide implementations of the four sub-procedures of Alg. 1 for the transition sys-
tem ΘE . Importantly, in order for the algorithm to be efficient, it is crucial that the implementations
operate on the description of E itself rather than on ΘE directly. In the original setting (Bradley,
2011; Eén et al., 2011), where the model was described in propositional logic, the backbone to this
end were SAT solvers (Biere et al., 2021). Here, we instead consider constraint systems over integer
variables with linear constraints, which can be solved via SMT (Barrett et al., 2021).

selectStartState can be straightforwadly implemented by representing the requirements of
Assert. 1 as a constraint system, and getting a solution to that system from an SMT solver.

The three remaining sub-procedures reason over the model’s transitions TE . Their implementation
commonly requires a method for deciding decision problems of the following general form
Definition 1. Let r be a (partial) variable assignment, and let n ∈ {0, . . . , N}. The frame transition
problem for r and n is

∃s ∈ SE : ∃a ∈ A : ∃s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE (3)

In words, this decision problem asks whether it is possible to transition into the frame Fn if r is
satisfied. Importantly, it can be formulated as the SMT problem FrameTransition[r, n], without
having to enumerate SE and TE explicitly. The encoding follows that in (Eén et al., 2011).

selectSuccessorState and propagateClauses can be implemented using
FrameTransition in a straightforward manner. To implement generalizeReason(s, n − 1),
we follow a greedy state minimization procedure as in earlier works (Bradley, 2011; Eén et al.,
2011). We initialize the reason to r := s, which is guaranteed to satisfy (i) and (ii) of Assert. 4.
Afterwards, we iterate over all variables v ∈ Vars, checking whether r \ {v 7→ r(v)} still satisfies
(i) and (ii) using FrameTransition. If yes, we update r accordingly. If no, we skip directly to the
next variable. The resulting r obviously guarantees Assert. 4.

3.3 IC3 FOR POLICY VERIFICATION

Let πθ : SE 7→ A be a neural-network or tree-ensemble policy. To analyze πθ, we have to instantiate
the four sub-procedures of Alg. 1 for the transition sub-system Θπθ

E . Since selectStartState
is completely independent of the policy, its implementation from Sec. 3.2 can be used as is. To
implement the remaining sub-procedures, we first adapt the decision problem from Def. 1 to policies,
and develop a method for solving it efficiently.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.1 POLICY FRAME TRANSITION PROBLEM

Recall the decision problem from Def. 1. To handle policies, the problem changes slightly:
Definition 2. Let r and n be as before. The policy frame transition problem for r and n is

∃s ∈ SE : ∃a ∈ A : ∃s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE ∧ πθ(s) = a (4)

Compared to (3), (4) includes the requirement that the policy chooses the action of the desired tran-
sition. This subtle difference unfortunately complicates solving this decision problem tremendously.

In principle, it is possible to extend the previous SMT-based approach to solve (4), provided that
the policy function πθ allows compiling the condition πθ(s) = a into SMT constraints. For feed-
forward neural networks with relu activation units and decision trees, this is possible (e.g., Tjeng
et al., 2019; Ceccon et al., 2022). Such a direct encoding however has two major disadvantages.
First, the encoding is possible only for limited families of functions. Secondly, the encoding has
to mimic the function structure of πθ, which can significantly increase the size of the SMT prob-
lem even up to the point where solving it becomes completely unpractical already for small neural
networks and decision trees (cf. e.g., Xu et al., 2021; Vinzent et al., 2022; Jain et al., 2024). While
in recent years, some research was spent on SMT solvers that include dedicated neural network
reasoning methods, scalability remains a major bottleneck (e.g., Wu et al., 2024).

3.3.2 APPROXIMATING THE POLICY FRAME TRANSITION PROBLEM

To avoid the mentioned deficiencies, we abstain from solving the decision problem exactly, instead
decomposing (4) into separate transition and action selection parts. More specifically, after moving
the action quantification to the front, we split the remaining inner condition as follows:

∃a ∈ A : (5.1) ∃s, s′ ∈ SE : s |= r ∧ s′ |= Fn ∧ ⟨s, a, s′⟩ ∈ TE and
(5.2) ∃s ∈ SE : s |= r ∧ πθ(s) = a

(5)

Note that due to the independent state quantifications in (5.1) and (5.2), this formulation is not
equivalent to (4). However, it is easy to show that it constitutes a necessary condition:
Theorem 2. If there is no action satisfying (5), then also (4) is not satisfiable.

The motivation behind separating conditions (5.1) and (5.2) is to enable using separate solvers ded-
icated for the different parts; in particular, without compiling the policy function πθ into SMT. Let
a ∈ A. (5.1) can be checked via the SMT FrameTransition[r, n, a], similar to Sec. 3.2.

In order to check condition (5.2) efficiently, we want to leverage the certification tools from Sec. 2.3.
Let fθ : SE 7→ R|A| be the neural network or tree ensemble underlying πθ. By the definition of
πθ, πθ(s) = a is true if fθ(s)[a] ≥ maxa′∈A(s):a′ ̸=a fθ(s)[a

′]. Unfortunately, the restriction to
the applicable actions still induces a dependency on the environment model. So, (5.2) cannot be
tackled by the certification tools directly. We further relax the condition by moving the applicable
actions computation out of the equation. Specifically, let A ⊆ A be an under-approximation of the
applicable actions, i.e., such that A ⊆ A(s) holds for all the states s ∈ SE with s |= r.
Theorem 3. Consider the condition

∀s ∈ SE , s |= r : fθ(s)[a] < max
a′∈A,a′ ̸=a

fθ(s)[a
′] (6)

If (6) is satisfied, then πθ(s) ̸= a holds for all states s ∈ SE where s |= r, i.e., (5.2) is not satisfiable.

In words, (6) requires for all states satisfying r that the score of a is worse than that of an action in
the under-approximation A. The computation of the under-approximation A can be delegated to an
SMT solver. Given A, (6) can be compiled into the certification problems from Sec. 2.3, as described
below. In summary, this leads to the following algorithm, called APFT(r, n), approximating the
policy frame transition problem (4). APFT iterates over all actions a ∈ A. It checks whether a
satisfies (5.1) through SMT. If so, APFT obtains an applicable actions under-approximation A, and
checks whether a satisfies (6) via the detour to the certification problem. If (6) is satisfiable, then
(5.2) and therewith (4) is not. APFT continues with the next action. Otherwise, APFT returns true.
Corollary 1. APFT(r, n) returns false only if (4) is not satisfiable.

Tree ensembles To solve (6) for the tree ensemble fθ using VERITAS (Devos et al., 2021), we
need to get rid of the restriction in the maximization of (6). To this end, we use a simple masking

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

FFNN DTE ASNET

beluga blocks npuzzle transport beluga blocks transport blocks npuzzle
(3) (24) (6) (5) (6) (18) (6) (116) (97)

BRFS 0 17 4 3 0 16 2 33 71
PPA 0 14 6 4 2 13 4 – –
POLIC3-nog 0 5 5 3 0 0 2 63 95
POLIC3 0 14 6 3 4 15 6 96 93

Table 1: Coverage table (number of solved instances). Per benchmark domain best values are high-
lighted in bold. Results for the different policy types FFNN (feed-forward neural networks), DTE
(decision-tree ensembles), and ASNET are separated. Total instance count shown in braces.

approach, constructing a tree ensemble gθ that guarantees that (6) is satisfied iff gθ satisfies the
certification problem (2). gθ is constructed by adding to fθ the penalty term −Pmax for all actions
different from a and A. The desired relation holds for Pmax such that Pmax > fθ(s)[a

′] for all s and
a′, which can be computed based on the leaf values in the decision trees.

Neural networks For neural networks, we compile the problem into a neural network gθ that satis-
fies the certification problem (1) iff (6) is not satisfied. gθ is constructed by appending two additional
layers to fθ. The first auxiliary layer has |A| outputs, returning za′ := relu(fθ[a′] − fθ[a]) for all
a′ ∈ A. The final layer returns

∑
a′∈A za′ − ϵ for a small ϵ > 0. If gθ(s) < 0 then

∑
a′∈A za′ < ϵ.

Since za′ ≥ 0, it follows for all a′ ∈ A that fθ(s)[a] + ϵ > fθ(s)[a
′]. So, if ϵ is sufficiently small,

(6) must be violated. Hence, gθ satisfies (1) iff (6) is violated.

3.3.3 IMPLEMENTATION OF IC3 SUB-PROCEDURES

We finally have all tools ready to implement the three remaining sub-procedures of IC3. In-
stead of relying on the approximation of the policy frame transition problem, we implement
selectSuccessorState(s, n − 1) by searching for the desired state s′ directly. Note that
the relevant transitions can be enumerated efficiently through a single iteration over the commands
C. This simple procedure obviously satisfies Assert. 2, and avoids the SMT related problems.

Since generalizeReason and propagateClauses require solving (4) for conditions r that
are satisfied by potentially many states, this simple enumeration approach is unfortunately not fea-
sible. We adopt the general procedures from Sec. 3.2, substituting the exact frame transition test
by APFT. The use of the approximation in APFT does not affect Assert. 3 and 4. The resulting
propagateClauses function satisfies Assert. 3 since it moves a clause ¬r ∈ Fm only into
Fm+1 if APFT(r,m) returns false. It follows from Cor. 1 that there is no policy transition from r
into Fm, as required. Similarly, for generalizeReason, recall that the state minimization pro-
cess removes a variable assignment only if the frame transition test is false. Since by Cor. 1, APFT
returns false only if (4) is not satisfiable, condition (ii) of Assert. 4 is preserved. Condition (i) is not
affected by the use of APFT. Finally, Assert. 5 is satisfied since both functions rely on APFT.

4 EXPERIMENTAL EVALUATION

Our implementation, called POLIC3, is in C++ and supports the analysis of neural-network and
tree-ensemble policies. Environment models are provided in the JANI guarded-command language
(Budde et al., 2017). We re-implemented LIRPA (Zhang et al., 2018) for neural networks certifi-
cation. To certify tree ensembles, we interface with the open-source tool VERITAS (Devos et al.,
2021). We use the Z3 SMT solver (de Moura & Bjørner, 2008). The code is publicly available.1

Our experiments aim at answering the following main questions:

(Q1) How does POLIC3 compete against state-of-the-art approaches?

(Q2) Can POLIC3 cope with more complex policy architectures, such as those underlying state-
of-the-art generalized planning policies?

1Link omitted to preserve anonymity; but code is available as supplemental material

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10−1 100 101 102 103 104 105

n
/s

10−1

100

101

102

103

104

105
n/s

PPA

P
o
l
IC

3

FFNN
DTE

10−1 100 101 102 103 104 105

n
/s

10−1

100

101

102

103

104

105
n/s

BrFS

P
o
l
IC

3

FFNN
DTE
ASNet

Figure 1: Per-instance runtime (in seconds) comparison of POLIC3 (y-axes) to PPA and BRFS (x-
axes). “n/s“ marks instances not solved in the resource limits.

Benchmarks We consider all benchmarks with integer-variable environments from prior work
(Vinzent et al., 2022; Jain et al., 2024). This encompasses four different problem domains (beluga,
blocks, npuzzle, transport) with a total of 72 benchmark instances, where 38 instances contain a
feed-forward neural-network (FFNN) policy and 34 contain a decision-tree ensemble (DTE) policy.
We further extended this collection by learning new policies in blocks and npuzzle using ASNET
(Toyer et al., 2020), one of the state of the art approaches in generalized planning. ASNET constructs
graph neural networks, leveraging a clever weight sharing scheme to instantiate policies for differ-
ent planning problem instances. ASNET requires planning problem descriptions in PDDL (Fox &
Long, 2003), not JANI. For training, we manually created the necessary PDDL encodings. The
training instances are randomly generated. In order to verify the learned ASNET policies πASNET,
we implemented translation functions F , mapping a JANI state into a PDDL state, and G, mapping
a PDDL action into a JANI action, as feed-forward neural networks using relu activation units, and
consider the concatenation G ◦ πASNET ◦ F for verification. We created additional 116 benchmark
instances in blocks and 97 instances in npuzzle in this manner.

Baselines and configurations We compare POLIC3 to policy predicate abstraction (PPA), the
current state-of-the-art algorithm for policy verification (Vinzent et al., 2022; Jain et al., 2024).
Moreover, as an additional baseline, we include an exhaustive search method (BRFS), which runs
multiple breadth-first searches in ΘE to find a property satisfying path. It enumerates the set of start
states and ΘE incrementally, and if the desired path is found, might terminate before either of them
has been fully constructed. Finally, we also experiment with a POLIC3 variant, called POLIC3-nog,
which does not use reason generalization, instead just using the entire state for the frame refinements.

Setup All experiments were run on Intel Xeon E5-2695 servers. Like in previous setups, each run
was limited to a single CPU thread, 12 hours runtime, and 4 GB memory.

Results Tab. 1 compares the number of instances each method could solve. We do not have re-
sults for PPA on ASNET policies, because the implementation by Vinzent et al. (2022) does not
support this type of policy, and adding that support is absolutely non-trivial. Comparing POLIC3 to
the state-of-the-art policy verifier PPA, POLIC3 achieves the same or better coverage in all but one
benchmark domains and across both remaining policy types. For FFNN policies, coverage is identi-
cal except for transport, where PPA is able to handle one more instance. For DTE policies, POLIC3
improves coverage in all three benchmark domains. In contrast to the DTE policies, for the FFNN
policies, we observed that POLIC3’s reason generalization method frequently fails to find small,
and thus generalizing, reasons. We attribute this to a lack of consistent structure in the decisions
made by the FFNN policies, owed to the way these policies were trained by Vinzent et al. (2022)
(Q-learning). The importance of reason generalization becomes evident when disabling in POLIC3
the generalization method entirely. The coverage of POLIC3-nog drops tremendously with a single
exception. That POLIC3 can also excell on neural network policies can be observed for the ASNET
policies. It achieves significantly higher coverage than our second baseline BRFS, indicating the
ability of POLIC3 to handle even current state-of-the-art policies. This is true despite the fact that
the ASNET policies are significantly larger than the FFNN ones (average number of neurons: blocks
157 (FFNN) vs. 8245 (ASNET); npuzzle 153 vs. 33990). On the other benchmarks, BRFS actually
turned out competetive overall. It even achieved the highest coverage in blocks, though lagging be-
hind in the other benchmark domains. Comparing the runtimes of POLIC3 to the two competitors
PPA and BRFS (Fig. 1), the picture is even more striking. In all points below the diagonal, POLIC3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

required less time to solve the instance. POLIC3 is able to improve over the competitors’ runtime,
often by several orders of magnitude.

5 RELATED WORK

Safe reinforcement learning Learning decision policies satisfying some safety constraints has re-
ceived significant attention in safe reinforcement learning (Garcı́a & Fernández, 2015; Gu et al.,
2024). There are two decisive differences to our work. First, safe RL considers quantitative proper-
ties, requiring that the discounted expected value of the policy for secondary cost functions remain
within some limits. Secondly, safe RL optimizes for the satisfaction of the safety constraints, but at
no time guarantees that the constraints are indeed satisfied.

Policy verification in continous environments Policy verification has been considered especially
in the context of dynamic system control (Tran et al., 2020; Tambon et al., 2022; Schilling et al.,
2023; Rossi et al., 2024). In contrast to our work, they consider continuous environment models.
This avoids the complications arising from discrete choices, but requires fundamentally different
techniques to, e.g., deal with sets of infinitely many environment states (e.g., Fan et al., 2020).

Policy verification in discrete environments Policy verification for discrete action spaces has also
been subject of many works. Bastani et al. (2018) present a method to obtain policies with verified
performance guarantees. To this end, they synthesize a single decision tree from a deep neural
network expert policy, and cast the entire policy verification problem as a single SMT. Carr et al.
(2021) follow a similar idea, using standard model checkers to verify a symbolic approximation
of a a given neural network policy. Both approaches provide no guarantees for the input policy.
(Gross et al., 2022; 2023) verify neural network policies by implementing an interface between an
off-the-shelf model checker and policy function evaluation. Policy verification however requires
enumeration of the policy induced transition system, which is intractable in all but the smallest
cases. Lastly, in contrast to our method, adding the support of different policy architectures in PPA
(Vinzent et al., 2022; Jain et al., 2024) requires major engineering efforts.

Other policy analysis methods Besides verification, there has also been significant work on al-
ternate analysis methods. Gros et al. (2023); Lampacrescia et al. (2024) consider statistical model
checking methods for analyzing neural network policies. Steinmetz et al. (2022) applied techniques
from software testing to spot undesired policy behavior within a symbolic environment model.
Eniser et al. (2022); Mazouni et al. (2024) adopted this idea, but instead tested the policy’s be-
havior using an environment simulator in place of a model. All these works cannot make formal
guarantees about their analysis results.

6 CONCLUSION

We introduced POLIC3, a new policy verification algorithm, which differs from previous algorithms
in its clear separation of the reasoning about the policy and the reasoning about the environment
model. The former can be handled efficiently via off-the-shelf neural network and decision-tree
ensemble certification tools, and the latter through standard encodings into SMT. Our experiments
demonstrated that POLIC3 is more efficient and often solves more problems than state-of-the-art
methods, and that it is even capable of handling policies with complex function architectures, exam-
plified by ASNET policies, that were previously out of reach.

That said, we have not unleashed the full power of IC3 yet. In hardware verification, a range of
optimizations have been introduced that significantly boost performance, including parallelization,
obligation minimization, obligation rescheduling, and reverse IC3. Our future work includes ex-
ploring those optimizations for policy verification. During our experiments, we observed that the
variable order during reason minimization has a huge influence on the performance of the overall
algorithm. Another highly promising direction is improving the generalization method by clever
selections of the variable order. Finally, a clear limitation of policy verification so far is the need for
a symbolic environment model. Through decoupling policy from environment reasoning, POLIC3
also paves the way for supporting environment models learned from data, such as those produced by
model-based reinforcement learning. Exploring this potential can advance the reach of this field.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Abate, Alec Edwards, and Mirco Giacobbe. Neural abstractions. In Proc.
of the Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
a922b7121007768f78f770c404415375-Abstract-Conference.html.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep re-
inforcement learning: A brief survey. IEEE Signal Process. Mag., 34(6):26–38, 2017. doi:
10.1109/MSP.2017.2743240. URL https://doi.org/10.1109/MSP.2017.2743240.

Edoardo Bacci and David Parker. Verified probabilistic policies for deep reinforcement learning. In
Proc. of the 14th International Symposium on NASA Formal Methods, NFM 2022, volume 13260
of Lecture Notes in Computer Science, pp. 193–212, 2022. doi: 10.1007/978-3-031-06773-0\ 10.
URL https://doi.org/10.1007/978-3-031-06773-0_10.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications, pp. 1267–1329. IOS Press, 2021. doi: 10.3233/FAIA201017. URL
https://doi.org/10.3233/FAIA201017.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via pol-
icy extraction. In Advances in Neural Information Processing Systems 31, NeurIPS 2018, pp.
2499–2509, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6d8545daa42d5ced125a4bf747b3688-Abstract.html.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (eds.). Handbook of Satisfiability -
Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2021. ISBN 978-1-64368-160-3. doi: 10.3233/FAIA336. URL https://doi.org/10.
3233/FAIA336.

Aaron R. Bradley. Sat-based model checking without unrolling. In Proc. of the 12th International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2011, volume
6538 of Lecture Notes in Computer Science, pp. 70–87, 2011. doi: 10.1007/978-3-642-18275-4\
7. URL https://doi.org/10.1007/978-3-642-18275-4_7.

Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges, and
Andrea Turrini. JANI: quantitative model and tool interaction. In Proc. of the 23rd Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS
2017, volume 10206 of Lecture Notes in Computer Science, pp. 151–168, 2017. doi: 10.1007/
978-3-662-54580-5\ 9. URL https://doi.org/10.1007/978-3-662-54580-5_9.

Steven Carr, Nils Jansen, and Ufuk Topcu. Task-aware verifiable rnn-based policies for partially
observable markov decision processes. J. Artif. Intell. Res., 72:819–847, 2021. doi: 10.1613/
JAIR.1.12963. URL https://doi.org/10.1613/jair.1.12963.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D. Laird,
and Ruth Misener. OMLT: optimization & machine learning toolkit. J. Mach. Learn. Res., 23:
349:1–349:8, 2022. URL https://jmlr.org/papers/v23/22-0277.html.

Stephanie C. Y. Chan, Samuel Fishman, Anoop Korattikara, John F. Canny, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. In 8th International Conference on
Learning Representations, ICLR 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SJlpYJBKvH.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof (eds.), Proc. of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2008, volume 4963 of Lecture
Notes in Computer Science, pp. 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3\ 24.
URL https://doi.org/10.1007/978-3-540-78800-3_24.

10

http://papers.nips.cc/paper_files/paper/2022/hash/a922b7121007768f78f770c404415375-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a922b7121007768f78f770c404415375-Abstract-Conference.html
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1007/978-3-031-06773-0_10
https://doi.org/10.3233/FAIA201017
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1613/jair.1.12963
https://jmlr.org/papers/v23/22-0277.html
https://openreview.net/forum?id=SJlpYJBKvH
https://openreview.net/forum?id=SJlpYJBKvH
https://doi.org/10.1007/978-3-540-78800-3_24

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stéphane Demri and Philippe Schnoebelen. The complexity of propositional linear temporal logics
in simple cases (extended abstract). In Proc. of the 15th Annual Symposium on Theoretical As-
pects of Computer Science, STACS 98, volume 1373 of Lecture Notes in Computer Science, pp.
61–72. Springer, 1998. doi: 10.1007/BFB0028549. URL https://doi.org/10.1007/
BFb0028549.

Laurens Devos, Wannes Meert, and Jesse Davis. Versatile verification of tree ensembles. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 2654–2664. PMLR, 2021. URL
http://proceedings.mlr.press/v139/devos21a.html.

Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient implementation of property directed
reachability. In Proc. of the International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2011, pp. 125–134, 2011. URL http://dl.acm.org/citation.cfm?
id=2157675.

Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis.
Metamorphic relations via relaxations: an approach to obtain oracles for action-policy test-
ing. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2022, pp. 52–63. ACM, 2022. doi: 10.1145/3533767.3534392. URL
https://doi.org/10.1145/3533767.3534392.

Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. Reachnn*: A tool for reachability
analysis of neural-network controlled systems. In Proc. of the 18th International Symposium on
Automated Technology for Verification and Analysis, ATVA 2020, volume 12302 of Lecture Notes
in Computer Science, pp. 537–542. Springer, 2020. doi: 10.1007/978-3-030-59152-6\ 30. URL
https://doi.org/10.1007/978-3-030-59152-6_30.

Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning
domains. J. Artif. Intell. Res., 20:61–124, 2003. doi: 10.1613/JAIR.1129. URL https://
doi.org/10.1613/jair.1129.

Javier Garcı́a and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res., 16:1437–1480, 2015. doi: 10.5555/2789272.2886795. URL https:
//dl.acm.org/doi/10.5555/2789272.2886795.

Anastasios Giannaros, Aristeidis Karras, Leonidas Theodorakopoulos, Christos N. Karras, Pana-
giotis Kranias, Nikolaos Schizas, Gerasimos Kalogeratos, and Dimitrios Tsolis. Autonomous
vehicles: Sophisticated attacks, safety issues, challenges, open topics, blockchain, and fu-
ture directions. J. Cybersecur. Priv., 3(3):493–543, 2023. doi: 10.3390/JCP3030025. URL
https://doi.org/10.3390/jcp3030025.

Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, and Marcel Steinmetz. An-
alyzing neural network behavior through deep statistical model checking. Int. J. Softw. Tools
Technol. Transf., 25(3):407–426, 2023. doi: 10.1007/S10009-022-00685-9. URL https:
//doi.org/10.1007/s10009-022-00685-9.

Dennis Gross, Nils Jansen, Sebastian Junges, and Guillermo A. Pérez. COOL-MC: A compre-
hensive tool for reinforcement learning and model checking. In Proc. of the 8th International
Symposium on Dependable Software Engineering, Theories, Tools, and Applications, SETTA
2022, volume 13649 of Lecture Notes in Computer Science, pp. 41–49, 2022. doi: 10.1007/
978-3-031-21213-0\ 3. URL https://doi.org/10.1007/978-3-031-21213-0_3.

Dennis Gross, Christoph Schmidl, Nils Jansen, and Guillermo A. Pérez. Model checking for
adversarial multi-agent reinforcement learning with reactive defense methods. In Proceedings
of the Thirty-Third International Conference on Automated Planning and Scheduling, ICAPS
2023, pp. 162–170. AAAI Press, 2023. doi: 10.1609/ICAPS.V33I1.27191. URL https:
//doi.org/10.1609/icaps.v33i1.27191.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories, and applications. IEEE Trans. Pat-
tern Anal. Mach. Intell., 46(12):11216–11235, 2024. doi: 10.1109/TPAMI.2024.3457538. URL
https://doi.org/10.1109/TPAMI.2024.3457538.

11

https://doi.org/10.1007/BFb0028549
https://doi.org/10.1007/BFb0028549
http://proceedings.mlr.press/v139/devos21a.html
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/3533767.3534392
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://dl.acm.org/doi/10.5555/2789272.2886795
https://dl.acm.org/doi/10.5555/2789272.2886795
https://doi.org/10.3390/jcp3030025
https://doi.org/10.1007/s10009-022-00685-9
https://doi.org/10.1007/s10009-022-00685-9
https://doi.org/10.1007/978-3-031-21213-0_3
https://doi.org/10.1609/icaps.v33i1.27191
https://doi.org/10.1609/icaps.v33i1.27191
https://doi.org/10.1109/TPAMI.2024.3457538

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2):21:1–21:35, 2017. doi: 10.1145/3054912.
URL https://doi.org/10.1145/3054912.

Chaahat Jain, Lorenzo Cascioli, Laurens Devos, Marcel Vinzent, Marcel Steinmetz, Jesse Davis, and
Jörg Hoffmann. Safety verification of tree-ensemble policies via predicate abstraction. In Proc. of
the 27th European Conference on Artificial Intelligence, ECAI 2024, volume 392 of Frontiers in
Artificial Intelligence and Applications, pp. 1189–1197, 2024. doi: 10.3233/FAIA240614. URL
https://doi.org/10.3233/FAIA240614.

Marco Lampacrescia, Michaela Klauck, and Matteo Palmas. Towards verifying robotic systems
using statistical model checking in STORM. In Proc. of the Second International Conference
on Bridging the Gap Between AI and Reality, AISoLA 2024, volume 15217 of Lecture Notes in
Computer Science, pp. 446–467. Springer, 2024. doi: 10.1007/978-3-031-75434-0\ 28. URL
https://doi.org/10.1007/978-3-031-75434-0_28.

Quentin Mazouni, Helge Spieker, Arnaud Gotlieb, and Mathieu Acher. Policy testing with mdpfuzz
(replicability study). In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, pp. 1567–1578. ACM, 2024. doi: 10.1145/3650212.
3680382. URL https://doi.org/10.1145/3650212.3680382.

Nicholas Rober, Karan Mahesh, Tyler M. Paine, Max L. Greene, Steven Lee, Sildomar T. Monteiro,
Michael R. Benjamin, and Jonathan P. How. Online data-driven safety certification for systems
subject to unknown disturbances. In IEEE International Conference on Robotics and Automation,
ICRA 2024, pp. 9939–9945, 2024. doi: 10.1109/ICRA57147.2024.10610163. URL https:
//doi.org/10.1109/ICRA57147.2024.10610163.

Federico Rossi, Cinzia Bernardeschi, Marco Cococcioni, and Maurizio Palmieri. Towards formal
verification of neural networks in cyber-physical systems. In Proc. of the 16th International
Symposium on NASA Formal Methods, NFM 2024, volume 14627 of Lecture Notes in Computer
Science, pp. 207–222, 2024. doi: 10.1007/978-3-031-60698-4\ 12. URL https://doi.
org/10.1007/978-3-031-60698-4_12.

Christian Schilling, Anna Lukina, Emir Demirovic, and Kim Guldstrand Larsen.
Safety verification of decision-tree policies in continuous time. In Proc. of the An-
nual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artif. Intell. Rev., 55(2):945–990, 2022. doi: 10.1007/
S10462-021-09997-9. URL https://doi.org/10.1007/s10462-021-09997-9.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019. doi: 10.
1145/3290354. URL https://doi.org/10.1145/3290354.

Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe Heim,
Daniel Höller, Xandra Schuler, Valentin Wüstholz, Maria Christakis, and Jörg Hoffmann. De-
bugging a policy: Automatic action-policy testing in AI planning. In Proceedings of the
Thirty-Second International Conference on Automated Planning and Scheduling, ICAPS 2022,
pp. 353–361. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/19820.

12

https://doi.org/10.1145/3054912
https://doi.org/10.3233/FAIA240614
https://doi.org/10.1007/978-3-031-75434-0_28
https://doi.org/10.1145/3650212.3680382
https://doi.org/10.1109/ICRA57147.2024.10610163
https://doi.org/10.1109/ICRA57147.2024.10610163
https://doi.org/10.1007/978-3-031-60698-4_12
https://doi.org/10.1007/978-3-031-60698-4_12
http://papers.nips.cc/paper_files/paper/2023/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s10462-021-09997-9
https://doi.org/10.1145/3290354
https://ojs.aaai.org/index.php/ICAPS/article/view/19820
https://ojs.aaai.org/index.php/ICAPS/article/view/19820

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam, Paulina Stevia Nouwou Mindom, Yann
Pequignot, Foutse Khomh, Giulio Antoniol, Ettore Merlo, and François Laviolette. How to certify
machine learning based safety-critical systems? A systematic literature review. Autom. Softw.
Eng., 29(2):38, 2022. doi: 10.1007/S10515-022-00337-X. URL https://doi.org/10.
1007/s10515-022-00337-x.

Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In Proc. of the 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=HyGIdiRqtm.

Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, and Lexing Xie. Asnets: Deep learning for
generalised planning. J. Artif. Intell. Res., 68:1–68, 2020. doi: 10.1613/JAIR.1.11633. URL
https://doi.org/10.1613/jair.1.11633.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: the neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems. In Proc. of the 32nd
International Conference on Computer Aided Verification, CAV 2020, volume 12224 of Lecture
Notes in Computer Science, pp. 3–17, 2020. doi: 10.1007/978-3-030-53288-8\ 1. URL https:
//doi.org/10.1007/978-3-030-53288-8_1.

Marcel Vinzent, Marcel Steinmetz, and Jörg Hoffmann. Neural network action policy verification
via predicate abstraction. In Proc. of the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, pp. 371–379, 2022. URL https://ojs.aaai.org/
index.php/ICAPS/article/view/19822.

Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke,
Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang,
Ekaterina Komendantskaya, Guy Katz, and Clark W. Barrett. Marabou 2.0: A versatile for-
mal analyzer of neural networks. In Proc. of the 36th International Conference on Computer
Aided Verification, CAV, volume 14682 of Lecture Notes in Computer Science, pp. 249–264.
Springer, 2024. doi: 10.1007/978-3-031-65630-9\ 13. URL https://doi.org/10.1007/
978-3-031-65630-9_13.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively paral-
lel incomplete verifiers. In Proc. of the 9th International Conference on Learning Representa-
tions, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
nVZtXBI6LNn.

Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. Deep reinforcement learning
for automated stock trading: an ensemble strategy. In ICAIF ’20: The First ACM International
Conference on AI in Finance, pp. 31:1–31:8. ACM, 2020. doi: 10.1145/3383455.3422540. URL
https://doi.org/10.1145/3383455.3422540.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, pp. 4944–4953, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html.

A IC3 ALGORITHM

A.1 CONNECTION TO IC3 FROM LITERATURE

Our presentation was very loosely based on that by Eén et al. (2011). Besides differences owed to the
different general settings, our algorithm differs from the one in the literature in three general points.
First, the original presentation of the IC3 algorithm proceeds in the reverse direction, attempting
to build the path s0, a0, . . . , sn from ϕS to ϕR backwards, i.e., starting with sn |= ϕR and for

13

https://doi.org/10.1007/s10515-022-00337-x
https://doi.org/10.1007/s10515-022-00337-x
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1613/jair.1.11633
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://ojs.aaai.org/index.php/ICAPS/article/view/19822
https://ojs.aaai.org/index.php/ICAPS/article/view/19822
https://doi.org/10.1007/978-3-031-65630-9_13
https://doi.org/10.1007/978-3-031-65630-9_13
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1145/3383455.3422540
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

i = n, . . . , 1, looking for the state si−1 that has a transition going to si. In the original setting,
the directions can be exchanged easily, only requiring minor adaptations in the SAT encodings. In
POLIC3, this is more difficult. In particular, the explicit search in selectSuccessorState is
no longer possible in this manner.

In the original IC3 algorithm, the pairs ⟨s, n⟩ at line 12 of Alg. 1 are called obligations.
An optimization missing in our presentation is obligation minimization. Instead of search-
ing over individual states, the original IC3 algorithm considers obligations ⟨p, n⟩ where p is
a partial variable assignment, thus implicitly considering many states at once. Accordingly,
selectSuccessorState(p, n − 1) returns a partial variable assignment p′ that (1) entails
Fn−1, i.e., such that s′ |= p′ implies s′ |= Fn−1, and (2) all states s with s |= p have a transition
⟨s, a, s′⟩ ∈ T so that s′ |= p′. Importantly, to consider in the next search step such p′ that represent
as many states as possible, selectSuccessorState contains an additional minimization step
similar to reason generalization, which attempts to iteratively remove variable assignments from p′

while maintaining (1) and (2). Like above, considering partial variable assignments as obligations in
POLIC3 would make the implementation of selectSuccessorState significantly more com-
plicated.

Lastly, the original IC3 algorithm comes with the option to reschedule an obligation ⟨s, n⟩, insert-
ing ⟨s, n + 1⟩ into the queue, when s was shown to have no length-n path to ϕR (line 15). Our
implementation supports this, but it turned out detrimental in our experiments.

A.2 CORRECTNESS OF GENERIC IC3 (THM. 1)

Let Θ = ⟨S,A, T ⟩ be the transition system and P = ⟨ϕS , ϕR⟩ be the property to be verified. The
following frame invariants are preserved at all time during the execution of the algorithm

(FI) For all i ∈ {1, . . . , N − 1}: Fi+1 ⊆ Fi.
(FII) For all i ∈ {1, . . . , N}, and all states s ∈ S: if s |= Fi, then s ̸|= ϕR.

(FIII) For all i ∈ {0, . . . , N − 1}, and all states s ∈ S: if s |= Fi, then s ̸|= ϕS .
(FIV) For all i ∈ {1, . . . , N − 1}, all states s′ ∈ S, and all transitions ⟨s, a, s′⟩ ∈ T into s′: if

s′ |= Fi, then s |= Fi+1.

Proof of invariants.

• (FI) is satisfied as per the frame refinement step in line 17 of Alg. 1.
• (FII) is guaranteed by condition (i) of Assert. 4.
• (FIII) is guaranteed since a new frame is opened only when there is no start state sstart |= ϕS

that satisfies FN (Assert. 1), i.e., upon opening FN+1, the start states have been removed
from all previous frames. Since frames are only strengthened, it is not possible that a start
state gets reinserted into some frame.

• (FIV) is guaranteed by condition (ii) of Assert. 4.

□

From the invariants, the intended property of frames follows immediately:
Lemma 1. Let n ∈ {1, . . . , N}, and s0 ∈ S be such that s0 ̸|= Fn. It holds for all paths
s0, a0, s1, a1, . . . , sm in Θ such that sm |= ϕR that m > n.

Proof. Proof by induction on n. The induction beginning, n = 0, holds trivially given that F0 = ϕR,
i.e., if s0 ̸|= ϕR then obviously there is no 0-length path from s0 to ϕR. For the induction step, let
s0 ∈ S be some state with a path s0, a0, . . . , sm to a state sm |= ϕR with length m ≤ n+ 1. From
(FII), it follows that m ≥ 1. Consider the successor state s1 of s0. Obviously, s1 has a path with
length n to ϕR. As per the induction hypothesis, s1 |= Fn. Therefore, with (FIV), s0 |= Fn+1, as
desired.

We are now ready to show the correctness of Alg. 1. The proof is split in three parts: correctness of
the two return values, and termination.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof that Alg. 1 correctly returns true. Let s0, a0, . . . , sN be the path found by Alg. 1 upon
returning true. The path can be easily reconstructed by tracking for each state in the queue the
transition that selectSuccessorState used to generate that state. In order to show that this
path is indeed a witness for the satisfaction of the property, we need to show that (i) s0 |= ϕS , (ii)
sN |= ϕR, and (iii) for all i ∈ {1, . . . , N}, ⟨si−1, ai−1, si⟩ ∈ T .

(i) is guaranteed by Assert. 1.
(ii) By Assert. 2, it holds that sN |= F0 when ⟨sN , 0⟩ was inserted into the queue for the first

time. Since F0 is not refined, sN |= F0 still holds when ⟨sN , 0⟩ is popped from the queue,
and at that moment the algorithm terminates.

(iii) is guaranteed by Assert. 2.

□

Proof that Alg. 1 correctly returns false. It holds that FN = FN+1. Suppose for contradiction that
there was a path s0, a0, s1, a1, . . . , sm from some start state s0 |= ϕS to some state sm such that
sm |= ϕR. Since s0 ̸|= FN (Assert. 1), it follows from Lemma 1 that m > N . Let m′ := m −N .
In other words, sm′ has a path of length N to ϕR. Applying Lemma 1 again, it must hold that
sm′ |= FN . Via (FIV), it inductively follows that s0 |= FN+1, and hence also s0 |= FN . This is a
contradiction to Assert. 1.

□

Proof that Alg. 1 terminates. The inner loop (line 11) must terminate eventually, since in each
step either the remaining path length counter n is decremented, or a state is removed from some
frame. Given that the algorithm terminates when n = 0 and since there are only finitely many
states, both things cannot repeat forever. If the property P is satisfied by Θ, IC3 must eventually
find a corresponding path given the correctness of the frame construction (Lemma 1) and since each
start state will have to be considered eventually (Assert. 1). Assume that P is not satisfied. We need
to show that FN = FN+1 holds eventually. To this end, assume that Fn = Fn+1 holds for some
n ∈ {1, . . . , N} after the call to propagateClauses. By Assert. 5, propagateClauses
could have propagated every ¬r ∈ Fn into Fn+1. But then, propagateClauses must have
also propagated ¬r into Fn+2, and in fact into all Fm with m ≥ n. In particular, Fi ⊆ FN and
Fi ⊆ FN+1. It follows from (FI) that Fi = FN and Fi = FN+1, i.e., IC3 will terminate. Finally,
note that such an index i must exist eventually, given that there are only finitely many possible
reasons. We conclude that IC3 has to terminate eventually.

□

A.3 IC3 FOR ENVIRONMENT MODELS: ADDITIONAL DETAILS

We provide a detailed description of the implementation of the four sub-procedures of Alg. 1 to
verify whether an environment model E = ⟨Vars,A, C⟩ satisfies the property P = ⟨ϕS , ϕR⟩.

Solving the frame transition problem The implementation of selectSuccessorState,
generalizeReason, and propagateClauses commonly requires a method efficiently de-
ciding the frame transition problem (Def. 1). This can be done via SMT. Specifically, the SMT
contains integer variables vv for v ∈ Vars representing the state s, integer variables v′v representing
the state s′, and Boolean variables cc for c ∈ C indicating the choice of the command responsible
for the transition. The conditions s |= r and s′ |= Fn of (3) are mapped one-to-one into constraints
of the SMT over the variables v and v′ respectively. The condition that ⟨s, a, s′⟩ ∈ TE , for some a,
is encoded as the disjunction of cc ∧ guard(c)∧ effect(c) over all commands c ∈ C, where guard(c)
translates the guard grdc into a constraint over the variables v (representing the condition s |= grdc),
and effect(c) binds the variables v′ to the result of the application of c on the values of v (repre-
senting the condition s′ = sJcK) by conjoining the constraints v′v = χv[v] for all v ∈ Vars, where
χv = effc(v) is the expression assigned to v by the command’s effect. We refer to the resulting SMT
problem as FrameTransition[r, n].

Start state selection The implementation of selectStartState via SMT is straightforward.
To find a state sstart ∈ SE such that sstart |= ϕS ∧ FN without enumerating the set of all states

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SE , we generate a constraint system with the integer variables Vars of the environment model, and
we translate the conditions ϕS and FN into constraints. The requested state can be read off of any
solution of this system. If there is no solution, then sstart does not exist. All in all, the implementation
meets the specification as per Assert. 1.

Successor state selection With FrameTransition at hand, the implementation of
selectSuccessorState(s, n − 1) is trivial. We solve FrameTransition[s, n − 1] and
reconstruct s′ from the solution. Assert. 2 is guaranteed by the correctness of the SMT encoding.

Pushing clauses Similarly, to decide in propagateClauseswhether a clause ¬r ∈ Fm can be
pushed to the next higher frame Fm+1, we solve FrameTransition[r,m]. The clause can be pushed
if the SMT is unsatisfiable. Assert. 4 again follows from the correctness of the SMT encoding. The
implementation also guarantees Assert. 5 given that FrameTransition[r,m] represents the condition
under which ¬r can be moved into Fm+1 exactly, i.e., it pushes a clause forward if and only if this
is possible while preserving the frame properties.

Reason generalization Finally, to obtain small reasons in generalizeReason(s, n− 1), we
follow a greedy state minimization procedure as in earlier works (Bradley, 2011; Eén et al., 2011).
We initialize the reason to r := s. Note that this r satisfies (i) and (ii) of Assert. 4 initially. (i) holds
by the definition of the frames and since n > 0; (ii) is satisfied for each call made by Alg. 1 (line
15). We then iteratively remove individual variable assignments from r while maintaining (i) and
(ii). Namely, for each v ∈ Vars, we consider r′ := r \ {v 7→ r(v)}. Checking whether r′ satisfies
(i) is an easy exercise, formulated as an SMT. For condition (ii), we solve FrameTransition[r′, n],
which has no solution exactly if (ii) is still satisfied. If we find that r′ satisfies both conditions, we
set r := r′ and continue with the next variable. Otherwise, we do not change r and proceed directly
to the next variable. Given that (i) and (ii) remain satisfied by r at all times by the design of the
algorithm, this method obviously satisfies Assert. 4.

A.4 IC3 FOR POLICY VERIFICATION: ADDITIONAL DETAILS

A.4.1 PROOF OF THM. 2

Let r be a partial variable assignment and n ∈ {0, . . . , N}. Assume that (4) is satisfied, and let
s, a, s′ be the corresponding witness, i.e., such that (i) s |= r, (ii) s′ |= Fn, (iii) ⟨s, a, s⟩ ∈ TE , and
(iv) πθ(s) = a. We show that (5) is satisfied. To this end, note that the states s and s′ satisfy (5.1)
for action a: s |= r holds by (i), s′ |= Fn by (ii), and ⟨s, a, s′⟩ ∈ TE by (iii). (5.2) is satisfied since
s |= r by (i) and πθ(s) = a by (iv). This concludes the proof.

□

A.4.2 PROOF OF THM. 3

Let r be a partial variable assignment, and let A ⊆ A be an under-approximation of the applicable
actions of the states represented by r, i.e., such that A ⊆ A(s) holds for all s ∈ SE where s |= r.
Let s ∈ SE be any state that satisfies s |= r. Assume that (6) is satisfied, i.e., that

fθ(s)[a] < max
a′∈A,a′ ̸=a

fθ(s)[a
′].

Let â := πθ(s). By the definition of πθ, it holds that â ∈ A(s) and that

fθ(s)[â] = max
a′∈A(s)

fθ(s)[a
′].

Since A ⊆ A(s), in particular,

fθ(s)[â] ≥ max
a′∈A

fθ(s)[a
′] ≥ max

a′∈A,a′ ̸=a
fθ(s)[a

′].

Therefore,
fθ(s)[a] < fθ(s)[â].

Based on the definition of πθ, we conclude that πθ(s) ̸= a.

□

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B EXPERIMENTS

B.1 BENCHMARK DESCRIPTIONS

We provide a brief description of the used benchmarks. We took the models, properties, and policies
from (Vinzent et al., 2022; Jain et al., 2024), and trained new policies using ASNET (Toyer et al.,
2020) in two problem domains. We describe the ASNET training below. The original benchmark
set contains feed-forward neural network with relu units (FFNN) and decision-tree ensemble (DTE)
policies. The FFNN policies were trained using Q-learning. The FFNN policies generally had 2
hidden layers, whose size was varied in the different benchmark domains (as described below). The
DTE policies were trained via imitation learning from those teacher FFNN policies considering both
gradient-boosted trees as well as random forests. The size of the ensembles was generally controlled
using depth limits in {4, 6, 8, 10, 15} and number of trees in {5, 10, 20, 30}.

beluga A factory logistics problem, where cargo needs to be unloaded from n arriving airplanes
and stored in some intermediate rack storage facilities until being requested by the production line.
The start condition considers all possible orderings in which cargo can arrive. The reach condition
asks whether all racks are occupied. The benchmarks vary n ∈ {4, 5, 6}. The FFNN policies have 2
hidden layers with m ∈ {64, 256} neurons each.

blocks A variant of the classic blocksworld planning problem. There are n differently colored
blocks which must be stacked on top of each other in a certain way. This benchmark variant comes
with the additional constraint that only a limited number of blocks are allowed to be placed on
the table at the same time, which is represented by the reach condition. The start state condition
represents all configuration of the blocks where the constraint is satisfied. The number of blocks
was ranged in n ∈ {4, 6, 8, 10}. The FFNN policies have 2 hidden layers with m ∈ {16, 32, 64}
neurons each.

npuzzle Models the classic sliding tiles puzzle on a 3 × 3 grid. There are 8 numbered tiles and
an empty tile. The tiles need to be arranged in a certain manner. The empty tile can be swapped
with tiles horizontally or vertically adjacent to it. The start condition imposes a partial order over
the tiles. The reach condition characterizes some unsafe tile positions to be avoided. The FFNN
policies have 2 hidden layers with m ∈ {16, 32, 64} neurons each.

transport Models a transportation problem, where packages must be moved from left to right
crossing a bridge. The truck has inertia, and can be accelerated/decelerated by one speed unit at a
time. The start condition represents all states where packages are distributed arbitrary at the left side
of the bridge. The reach condition asks whether the truck ever crosses the bridge with too much
load. The FFNN policies have 2 hidden layers with m ∈ {16, 32, 64} neurons each.

B.2 TRAINING ASNET POLICIES

blocks npuzzle

Training problem sizes {4, 5, . . . , 10} blocks,
(25 instances in total)

3× 3 grids
(30 instances in total)

Module layers 2, 3 2, 3, 4
Module dimensions 4, 8 4, 8, 16, 32
Activation relu relu
Weight decay 2e-4 2e-4
Dropout rate 0.1 0.1
Regularization L1 L1
Batch size 64 64
Max epochs 300 300
Train steps 700 700
Policy rollout limit 1000 steps 1000 steps

Table 2: ASNET training hyperparameters

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We trained additional policies in blocks and npuzzle using ASNET (Toyer et al., 2020). To train
a policy, ASNET requires a planning problem domain and a collection of problem instances with
increasing difficulty in PDDL. To this end, we manually created PDDL encodings of blocks and
npuzzle, and implemented random instance generators in python. For both domains, we let ASNET
train multiple policies with different sizes. The hyperparameters are shown in Tab. 2. For each
size configuration, we selected the best performing policies. The resulting generalized policies were
instantiated according to the size of the models considered for verification. For npuzzle we obtained
97 additional policies in this manner. For blocks, we obtained 29 additional policies for each of the
four model sizes, so 116 in total.

B.3 ADDITIONAL RESULTS

Benchmark # solved avg. N avg. runtime (s) fraction reason generalization

beluga FFNN (3) 0 – – –
blocks FFNN (24) 14 12.1 213.78 42.6%
npuzzle FFNN (6) 6 16.3 4224.55 49.0%
transport FFNN (5) 3 1 1.6 48.5%
beluga DTE (6) 4 5.2 0.4 45.9%
blocks DTE (18) 15 29.7 3779.72 76.2%
transport DTE (6) 6 11.5 55.04 70.1%
blocks ASNET (116) 96 7.2 2090.63 63.7%
npuzzle ASNET (97) 93 1 106.61 53.5%

Table 3: Per benchmark domain aggregated statistics about the POLIC3 runs. Total number of
instances in braces. “# solved”: number of instances solved. “avg. N” average path-length limit
N upon termination of POLIC3. “avg. runtime” runtime in seconds averaged over the solved
instances. “fraction reason generalization” runtime fraction (in percent) of reason generalization
from total runtime, averaged over the solved instances.

102 103 104 105

neurons

10 1

100

101

102

103

104

ru
nt

im
e

(s
ec

on
ds

)

Figure 2: POLIC3 runtime (seconds) as a function of policy size for the benchmarks with neural
network policies. FFNN policies in blue, ASNET in brown. Policy size is measured in number of
neurons. The lines show the sliding average.

Tab. 3 and Fig. 2 show additional performance statistics for the POLIC3 runs. Runtime strongly
correlates with how quickly a property satisfying path could be found. In transport (FFNN) and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

npuzzle (ASNET) the paths were generally very short, on average a single step from some start
state was enough. Runtime is comparatively small in those two domains. Comparing the FFNN and
DTE policies for blocks, the data indicates that proving unsolvability of a property tends to be in
general harder than showing solvability. For DTE, a satisfying path was only found in one of the 15
solved instances (in the other instances the property is unsatisfiable), compared to 5 out of 14 for the
FFNN policies. In general, a big fraction of the runtime is spent on reason minimization. Similar
observations were made in the original hardware verification context (cf. Eén et al., 2011). Taking a
look at the runtime for neural network policies (Fig. 2), we see that the runtime generally increases
steeply with the network sizes (note that the axes use log-scale). The plot also shows the importance
of a structure of the policies. Despite being orders of magnitude larger, the ASNET policies can still
be verified much more efficiently than the FFNN policies.

19

	Introduction
	Background
	Markov decision processes
	Policy verification
	Neural-Network and Tree-Ensemble Certification

	Method
	Generic IC3 algorithm
	IC3 for environment model verification
	IC3 for policy verification
	Policy frame transition problem
	Approximating the policy frame transition problem
	Implementation of IC3 sub-procedures

	Experimental evaluation
	Related work
	Conclusion
	IC3 algorithm
	Connection to IC3 from literature
	Correctness of generic IC3 (thm:pdr-correctness)
	IC3 for environment models: additional details
	IC3 for policy verification: additional details
	Proof of thm:approxpolicyframetransition
	Proof of thm:approxpolicy

	Experiments
	Benchmark descriptions
	Training ASNet policies
	Additional results

