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ABSTRACT

The use of machine learning in sequential decision-making tasks has grown sub-
stantially, intensifying concerns regarding the safety of learned policies and mo-
tivating research on policy verification. We present a new policy verification
method based on the well-known IC3 algorithm. Unlike existing approaches, ours
decouples reasoning about policy decisions from reasoning about the effects of
these decisions on the environment in which the policy is executed. This sepa-
ration allows us to leverage the latest advances in machine learning certification
tools to handle the former subproblem, whilst relying on specialized solvers for
the latter. Experiments confirm that our approach scales better and supports a
wider variety of policy architectures than current state-of-the-art methods.

1 INTRODUCTION

Sequential decision-making is a central problem in artificial intelligence, concerned with choosing
a course of actions that accomplishes a given objective. In the past decade, data-driven learning
approaches such as reinforcement learning (RL) have achieved remarkable success in this field,
surpassing human performance in a multitude of complex tasks in areas like game playing (e.g.,
Silver et al., 2016), finance (e.g.,|Yang et al., 2020), and robotics (e.g., Singh et al., [2022)).

Despite this success, achieving reliable, predictable, and safe behavior remains a major challenge
and a barrier to real-world deployment (e.g.,/Garcia & Fernandez, [2015;|Chan et al.,|2020;|Giannaros
et al., 2023). The learned action policies—often represented as deep neural networks—are complex,
non-linear functions that operate as black boxes. Although they may exhibit strong performance
according to training statistics, their behaviour may not align perfectly with the desired objective.
Moreover, their response to novel or unexpected situations is a priori unclear, and there is generally
no guarantee that they will adhere to critical safety constraints.

A growing line of research tackling these issues focuses on verifying that a learned policy meets
desired behavior specifications under all circumstances (Bacci & Parker;, 2022} Tambon et al., 2022
Vinzent et al., 2022; |Abate et al., [2022; |Schilling et al., 2023} [Gross et al., 2023} Jain et al., 2024;
Rober et al.| 2024). To reason about the consequences of successive action decisions in a rigorous,
exhaustive, and efficient manner, these verification methods leverage traditional model-checking
techniques operating on a symbolic model of the environment that succinctly represents the (expo-
nentially larger) state space. To integrate a learned policy into such techniques, existing works use
specialized solvers capable of simultaneously reasoning over individual policy decisions and over
their effects on the environment in a tightly coupled manner (Vinzent et al., 2022; Jain et al., [2024)).
This restricts their applicability to policy function architectures (e.g. feed forward neural networks
with certain activation functions) that the specialized solvers support. Moreover, despite significant
progress (e.g., 'Wu et al., [2024)), the scalability of these solvers remains a major issue.

In this paper, we consider the verification of safety properties of the form “can executing my policy
from an environment state satisfying formula ¢g ever reach an environment state satisfying formula
¢r?’. Building on the well-known hardware verification algorithm IC3 (Bradley, 2011), we in-
troduce a new policy verification method which decouples the reasoning about the policy from the
reasoning about the environment model, resulting in greater scalability and generality. This is made
possible thanks to the following key contributions:

* We carefully identify and separate four core methods of the IC3 algorithm, yielding a
generic verification algorithm that can be instantiated to diverse contexts. We analyze prop-
erties of the four methods that preserve the correctness of the overall algorithm.
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* We instantiate this generic IC3 version to policy verification. A key step towards this goal is
efficiently handling the so called frame transition problem, which asks whether, given two
constraints  and F identifying environment source and target states, the policy can cause a
transition from 7 to F under the environment model. We develop sound approximations of
this problem and show how to efficiently solve these approximations with the help of state-
of-the-art neural network and tree-ensemble certification tools (e.g., Zhang et al., 2018;
Tjeng et al.l 2019; Devos et al., 2021 Xu et al., 2021)).

We empirically evaluate our new method on both existing and new benchmarks over a collection
of feed-forward neural network and decision-tree ensemble policies. The results demonstrate that
it is more efficient and often solves more problems than the current state of the art. Moreover,
experimenting with policies produced by recent generalized planning approaches, namely ASNets
(Toyer et al.,|2020), we show that our method is capable of handling policies with complex function
architectures that were previously out of reach.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

We consider sequential decision-making problems in the form of Markov decision processes
(MDPs). An MDP is a tuple M = (S, A, P, g, R, ), where S is a set of states, A is a set of
actions, P : S x A +— Dist(S) is the transition-probability function, iy € Dist(S) is the initial
state distribution, R : S x A — R is the reward function, and v € (0, 1] is the discount factor.
For a state s € S, A(s) C A denotes the actions applicable in s, where a € A(s) if P(s'|s,a) >0
for some state s’. We assume for simplicity that A(s) # (. A policy is a function 7 : S — A
mapping each state s € S to an applicable action 7(s) € A(s). The value of 7 in the state s is
the expected discounted cumulative reward when executing 7 from s. An optimal solution of M
is a policy maximizing the expected value for the initial states. Even if M is not known explic-
itly, approximately optimal policies can be computed automatically via reinforcement learning (RL)
(Arulkumaran et al., 2017) or imitation learning (IL) (Hussein et al., [2017)). In the following, we
consider policies represented by a parameterized function f : S — RI| (e.g., neural networks).
fo induces the policy my(s) := argmaz,c 4(5) fo(s)[a] that maps each state s to the action ranked
highest by fy, while masking inapplicable actions.

2.2 POLICY VERIFICATION

The learning algorithms typically provide only statistical estimates of some performance metric for
the delivered policy my. In contrast, policy verification rigorously analyzes 7y based on a declarative
specification of the environment, in order to obtain strict guarantees that the behaviour of 7y fulfills
desired properties that may or may not align with the reward objective.

We consider environment models in a guarded-command language. An environment model is a
tuple & = (Vars, L,C), where Vars is a set of integer variables v € Vars with bounded domains
identified by lower and upper bounds L,,,U, € Z, L is a set of labels, and C is a set of (guarded)
commands. We call any Boolean combination of linear constraints over Vars with coefficients in
Z a linear condition. A guarded command ¢ € C has the form [, : grd, > eff., where [, € L
is the label of ¢, the guard grd, is a linear condition, and the effect eff, maps each variable to a
linear expression over Vars with coefficients in Z. A state of £ assigns each variable in Vars to a
value in that variable’s domain. Sg denotes the set of all states. A command c is applicable in the
state s if s |= grd,. Applying c in s results in the state s[c] defined such that for all v € Vars,
s[e](v) == xuls], where x, = eff.(v) is the linear expression assigned by ¢ to v, and x,[s] is
the result of the evaluation of x, in s. A label [ is applicable in the state s, if a command ¢ with
label [, = [ is applicable in s. The applicable labels are denoted by £(s) C L. The semantics of
the environment model £ is captured via the transition system Oz = (Sg, L, T¢) with transitions
Te = {(s,1c,s][c]) | s € Sg,c € C,s |= grd,}. A pathin O¢ is a sequence so, lg, 51,11, -,5n
so that (s;,l;, s;+1) € Tg holds for all ¢ € {0,...,n — 1}. A safety property, or simply property,
is a pair P = (¢g,¢r) consisting of a linear start condition ¢s and a linear reach condition
¢r. P is satisfied in a transition system O, if © contains a path from a state satisfying ¢g to a
state satisfying ¢ . An environment model & satisfies P, if P is satisfied in the transition system
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Og, i.e., if there is a path sg, ag, 51,01, .. .,5, such that (i) sp = ¢g, and (i) s, = ér, and
(>iii) Vi € {O, Lo, — 1} : <Si, a;, Si+1> € Ts.

A policy for € is a function 7 : Sg — L such that w(s) € L(s) for all states s € Sg. Letmg : S — A
be a policy trained based on the MDP M. We assume for simplicity that 7y is a policy for the model
E. In particular, S = S¢ and A = L, i.e., the policy’s input and output match the states and labels
of the environment model. We remark, however, that this does not impose any restriction as long
as it is possible to represent the necessary interface functions, translating between M and &, in the
function space of my. The behavior of 7g in £ is formally defined as the transition sub-system ©%° =
(Se, A, TZ?) with the transitions 7. C Tg, where (s,a,s’) € TZ if mg(s) = a. my satisfies the
property P if P is satisfied in the transition sub-system ©2°, i.e., if there is path s¢, ag, 51, a1, ..., s,
such that (i) so = ¢g, and (ii) s, = ¢g, and (iii’) Vi € {0,...,n — 1} : (54,04, 8i41) € To°.
Note the subtle but important difference between the conditions (iii) and (iii’). In the latter, one is
interested in the specific transition choices made by the given policy only. That difference apart,
verifying whether 7y satisfies a property P inherits the worst-case PSPACE-complete complexity
from the model verification problem (Demri & Schnoebelen, |1998)).

2.3 NEURAL-NETWORK AND TREE-ENSEMBLE CERTIFICATION

Certifying the decisions of learned neural networks and tree ensembles has become a standard prob-
lem in the machine learning literature. In the following, we will leverage such certification methods
in order to verify efficiently properties of learned policies. We consider two approaches specifically.
To handle neural network policies, we consider LiRPA (Zhang et al.,|2018};|Singh et al.,[2019). Let
fo : R™ — R be a neural network mapping an n-dimensional input to a single real number. More-
over, let ® denote an interval constraint L < x < U where L,U € R"; z denoting the input to fp.
LiRPA is a state-of-the-art method certifying that

Ve e R", z = ®: fy(x) > 0. (D

For tree ensembles, we rely on Veritas (Devos et al., 2021). Let gy : R™ +— R™ be a tree ensemble
mapping an n-dimensional input to scores of m different classes, and ¢ be an interval constraint
as before. Let C' denote the index of a target class. Then, amongst other variations, Veritas is an
efficient tool for certifying whether

Ve e R" x = ®: go(x)[C] < ax, go(2)[C], (2)

i.e., that no input identified by @ is classified as C.

3 METHOD

We extend the reach of the IC3 algorithm to policy verification. In Sec.[3.1] we introduce a generic
version of the IC3 algorithm, adapted from the literature (Bradleyl 2011; Eén et al., [2011). This
generic version leaves open the implementation of core functions, and depending on their imple-
mentation, the algorithm can be adapted to different settings. In Sec. [3.2] we will instantiate the
functions for verifying environment models. This lays down the basis for our development of IC3
for policy verification in Sec. For space reasons, we describe only central parts for understand-
ing the algorithm. Further details are provided in Appendix [A]

3.1 GENERIC IC3 ALGORITHM

Let ©® = (S, A, T) be a transition system, and P = (¢g, ¢r) be a property. We next present our IC3
variant for verifying whether O satisfies P. O is accessed only implicitly via the sub-procedures, so
is treated by the general algorithm like a black box and does not need to be provided directly.

Alg.|l| shows the pseudocode. We assume for simplicity that no state satisfies both ¢g and ¢, in
which case P is trivially satisfiable. IC3 incrementally builds path-length dependent reachability
information in the form of linear conditions, called frames, Fq, F1, ..., Fn. All frames but F are
conjunctions of clauses of the form —r, where  C s is a partial variable assignment derived from
a state s. We describe how r is computed below. With some abuse of notion, we treat frames as
sets of such clauses. The frames are constructed in such a way that the n-th frame F,, identifies a
necessary condition for a state to have a path of length n or less to some state satisfying ¢r. Fo
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Input : Implicitly defined transition system © = (S, A, T), property P = (¢s, ¢r)
Output: true if P is satisfied in © and false otherwise

Fo (z)R; Fi1 @; N+ 1; // initialize frames and path-length limit
while forever do
Sstart $— selectStartState() ; // get state s € S s.t. Sstare F ¢s and Ssiare = FN
if selection not possible then
]'-N+1 — @; // open new frame
propagateClauses() ; // try pushing clauses from F,, into F,41, for all m
if 7 = Fn+1 then return false ; // ¢r is not reachable
else N < N + 1; continue ; // increase path length limit and reselect Sstart
end
// find path of length N from Sgiare to some sy = Fo in ©, or remove Sgeare from Fn
Q + empty queue; insert (Ssar, N) into Q;
while Q is not empty do
(s,m) <+ pop element with minimal n from Q;
if n = O then return true; // found a path from Sseare = ¢s to sn = ¢r ;
s’ + selectSuccessorState (s,m—1); // get transition(s,a,s’)s.t. s'=Fn_1
if selection not possible then
// compute small reason r C s for the absence of such a transition
r < generalizeReason (s,n—1);
foreachm =1,...,ndo Fp, + Frn U{-r} ;
else
insert (s,n) intoQ; // allow revisiting s if one later backtracks from s’
insert (s'7n — 1> into @ ; // continue with s’
end
end
end

Algorithm 1: Generic IC3 algorithm checking whether P is satisfied in ©. © is accessed by
sub-procedures only. The sub-procedures are deliberately left open, see text.

is set to ¢, while the other frames are generated during the execution of IC3. The purpose of the
main loop (line is finding a path sg = Sy, ao, 51, a1, . .., Sy in O from a start state Sy = g
to a state satisfying the desired reach condition sy = ¢g.

Given the mentioned property of the frames, every such path must necessarily traverse the frame
segments in reverse direction, i.e., it must hold for all n € {0,..., N} that s,, = Fy_,. The
frames can hence be used to guide the search for the path. The selectStartState procedure
initiates path construction by selecting the start state with sy, = Fp directly (line .

Assertion 1. selectStartState () returns s € S s.t. s | ¢s N Fn, or throws an error.

The inner loop (line then incrementally extends the current path prefix sg, ag, ..., Sy, for n =
0,...,N —1, by finding a transition from s,, to some s, that is one step closer to ¢r:

Assertion 2. selectSuccessorState (s,n — 1) returns ' € S such that s' |= F,,—1 and
there is a transition (s, a, s') € T, for some a € A, or throws an error.

The construction process might however fail at two points. First, there might be no state Sy
satisfying sgare = ¢s A Fn (line E]) If this is the case, then, as per the frame definition, the start
states cannot reach ¢ within the length limit of N. Ignoring the additional termination check for
the moment, IC3 opens a new frame F 1, initialized so that it is satisfied by all states, and tries
strengthening the frames by moving clauses from lower to higher frames:

Assertion 3. propagateClauses () moves a clause —-r € F,, into F,,4+1 only if no state
satisfying r has a transition into F,,, ie., is at least m + 1 steps away from ¢r. Formally, s = r
must imply that s' V= Fp,, forall (s,a,s"y € T.

The main loop restarts with the increased length limit N + 1.

Secondly, since the frame F,, may over-approximate the n-steps bounded reachability of ¢, it may
happen that the incumbent state s = F,, (from line does actually not have any path to ¢ with
length of at most n. In particular, the desired transition (s, a, s’) to s’ |= F,,_1 might not exist (line
[[3). This situation causes a frame refinement. To this end, generalizeReason distills a small
reason r C s for when at least n + 1 steps are necessary to reach ¢p.
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Assertion 4. generalizeReason (s,n — 1) returns a partial variable assignment r C s that
(i) entails ~pp, i.e., for all states t, if t |=r, then t & ¢, and (ii) is only satisfied by states without
transition into Fp,_1, i.e., ift =, thent' = F,,_1 holds for all (t,a,t") € T.

(i) ensures that the states satisfying r are at least one step away from ¢ . With the absence of transi-
tions into JF,,_1 as per (ii), the states satisfying r can hence not reach ¢ in n steps. This information
is incorporated into the algorithm by adding — to the corresponding frames. In particular, s [~ F,
is true after the refinement. Note that for the effectiveness of the overall algorithm, it is absolutely
essential that the reasons generalize, i.e., ruling out many states at once in a single refinement step.

After the refinement, the search resumes at the previous state looking for a successor s’ that satisfies
the refined frame F,,. The backtracking may then further continue. The main loop repeats until the
desired path is found, showing the satisfaction of P. In order to not repeat this process indefinitely
if P is unsatisfiable, a convergence check is conducted in line Once Fy = Fn41, IC3 has
computed a condition that is invariant under transitions and separates the start states ¢ g from ¢r. In
other words, IC3 has found an unsatisfiability proof. To ensure that 7y = Fxn 4 is guaranteed to
hold eventually, we must make sure that redundant knowledge can be added to the frames without
affecting the syntactic equality check:

Assertion 5. [f generalizeReason (s,n — 1) returns r and —r € F,, for some m < n — 1,
propagateClauses would have moved —r into F,,.

Theorem 1. Provided that the sub-procedures guarantee the stated properties, Alg. || terminates
and returns true if and only if the property P is satisfied in the transition system ©.

3.2 IC3 FOR ENVIRONMENT MODEL VERIFICATION

Let & = (Vars, A, C) be an environment model. To verify whether £ satisfies the property P using
IC3, we need to provide implementations of the four sub-procedures of Alg.[T|for the transition sys-
tem O¢. Importantly, in order for the algorithm to be efficient, it is crucial that the implementations
operate on the description of & itself rather than on ©¢ directly. In the original setting (Bradley,
2011; [Eén et al., 2011), where the model was described in propositional logic, the backbone to this
end were SAT solvers (Biere et al.,|2021). Here, we instead consider constraint systems over integer
variables with linear constraints, which can be solved via SMT (Barrett et al., [2021)).

selectStartState can be straightforwadly implemented by representing the requirements of
Assert. [I)as a constraint system, and getting a solution to that system from an SMT solver.

The three remaining sub-procedures reason over the model’s transitions T¢. Their implementation
commonly requires a method for deciding decision problems of the following general form

Definition 1. Let r be a (partial) variable assignment, and letn € {0, ..., N}. The frame transition
problem for r and n is
Js€8c:JacA:3' €S sEr AN SEF, AN (s,a,8)€eTe 3)

In words, this decision problem asks whether it is possible to transition into the frame F,, if r is
satisfied. Importantly, it can be formulated as the SMT problem FrameTransition[r, n], without
having to enumerate Sg and 7T¢ explicitly. The encoding follows that in (Eén et al.| 2011).

selectSuccessorState and propagateClauses can be implemented using
FrameTransition in a straightforward manner. To implement generalizeReason (s,n — 1),
we follow a greedy state minimization procedure as in earlier works (Bradleyl 2011} [Eén et al.,
2011). We initialize the reason to 7 := s, which is guaranteed to satisfy (i) and (ii) of Assert. [4]
Afterwards, we iterate over all variables v € Vars, checking whether 7 \ {v — r(v)} still satisfies
(1) and (ii) using FrameTransition. If yes, we update r accordingly. If no, we skip directly to the
next variable. The resulting  obviously guarantees Assert. [

3.3 IC3 FOR POLICY VERIFICATION

Let g : S¢ — A be a neural-network or tree-ensemble policy. To analyze 7y, we have to instantiate
the four sub-procedures of Alg.|I|for the transition sub-system ©¢’. Since selectStartState
is completely independent of the policy, its implementation from Sec. [3.2] can be used as is. To
implement the remaining sub-procedures, we first adapt the decision problem from Def.[T|to policies,
and develop a method for solving it efficiently.
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3.3.1 POLICY FRAME TRANSITION PROBLEM

Recall the decision problem from Def.[I} To handle policies, the problem changes slightly:
Definition 2. Let r and n be as before. The policy frame transition problem for r and n is
ds€Se:Jdace A3 e€Se: sEr A SEF. A (s,a,8)eTe N mp(s)=a (4)

Compared to (3), (@) includes the requirement that the policy chooses the action of the desired tran-
sition. This subtle difference unfortunately complicates solving this decision problem tremendously.

In principle, it is possible to extend the previous SMT-based approach to solve (@), provided that
the policy function 7y allows compiling the condition 7y(s) = a into SMT constraints. For feed-
forward neural networks with relu activation units and decision trees, this is possible (e.g., [Tjeng
et al., 2019; |Ceccon et al.l 2022). Such a direct encoding however has two major disadvantages.
First, the encoding is possible only for limited families of functions. Secondly, the encoding has
to mimic the function structure of my, which can significantly increase the size of the SMT prob-
lem even up to the point where solving it becomes completely unpractical already for small neural
networks and decision trees (cf. e.g.,|Xu et al.| 2021; |Vinzent et al., [2022} Jain et al., |2024)). While
in recent years, some research was spent on SMT solvers that include dedicated neural network
reasoning methods, scalability remains a major bottleneck (e.g., 'Wu et al.,2024)).

3.3.2 APPROXIMATING THE POLICY FRAME TRANSITION PROBLEM

To avoid the mentioned deficiencies, we abstain from solving the decision problem exactly, instead
decomposing (d) into separate transition and action selection parts. More specifically, after moving
the action quantification to the front, we split the remaining inner condition as follows:

Jae A: (B5.1)3s,s €Se: sEr A sEF. A (s,a,8) € Te and

(52)3s€8c: skE=r A m(s)=a (5

Note that due to the independent state quantifications in (5.1) and (5.2), this formulation is not
equivalent to (d). However, it is easy to show that it constitutes a necessary condition:

Theorem 2. If there is no action satisfying (), then also @) is not satisfiable.

The motivation behind separating conditions (5.1) and (5.2) is to enable using separate solvers ded-
icated for the different parts; in particular, without compiling the policy function 7y into SMT. Let
a € A. (5.1) can be checked via the SMT FrameTransition[r, n, a], similar to Sec.

In order to check condition (5.2) efficiently, we want to leverage the certification tools from Sec.[2.3]
Let fp : S¢ — R4 be the neural network or tree ensemble underlying 79. By the definition of
Tg, mo(s) = a is true if fo(s)la] > max, e a(s):a’2a fo(5)[a’]. Unfortunately, the restriction to
the applicable actions still induces a dependency on the environment model. So, (5.2) cannot be
tackled by the certification tools directly. We further relax the condition by moving the applicable
actions computation out of the equation. Specifically, let A C A be an under-approximation of the
applicable actions, i.e., such that A C A(s) holds for all the states s € Sg with s = r.

Theorem 3. Consider the condition

Vs € Se,s=r: fo(s)lal < a'elgi}’(;ea fo(s)[a'] (6)

If () is satisfied, then my(s) # a holds for all states s € Sg where s |=r, i.e., (5.2) is not satisfiable.

In words, () requires for all states satisfying r that the score of a is worse than that of an action in
the under-approximation A. The computation of the under-approximation A can be delegated to an
SMT solver. Given A, () can be compiled into the certification problems from Sec. as described
below. In summary, this leads to the following algorithm, called APFT (r,n), approximating the
policy frame transition problem (@). APFT iterates over all actions a € A. It checks whether a
satisfies (5.1) through SMT. If so, APF'T obtains an applicable actions under-approximation A, and
checks whether a satisfies (6)) via the detour to the certification problem. If (6 is satisfiable, then
(5.2) and therewith (@) is not. APF'T continues with the next action. Otherwise, APF T returns true.

Corollary 1. APFT (7,n) returns false only if (4) is not satisfiable.

Tree ensembles To solve () for the tree ensemble fp using VERITAS (Devos et al 2021), we
need to get rid of the restriction in the maximization of (6)). To this end, we use a simple masking
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FFNN DTE ASNET
beluga blocks npuzzle transport beluga blocks transport blocks npuzzle
3) (24) (6) (%) (6) (18) 6)  (116) o7
BRFS 0 17 4 3 0 16 2 33 71
PPA 0 14 6 4 2 13 4 - -
PoLIC3-nog 0 5 5 3 0 0 2 63 95
PoOLIC3 0 14 6 3 4 15 6 96 93

Table 1: Coverage table (number of solved instances). Per benchmark domain best values are high-
lighted in bold. Results for the different policy types FENN (feed-forward neural networks), DTE
(decision-tree ensembles), and ASNET are separated. Total instance count shown in braces.

approach, constructing a tree ensemble gy that guarantees that (6)) is satisfied iff gy satisfies the
certification problem (). gy is constructed by adding to fy the penalty term — Py, for all actions
different from a and A. The desired relation holds for Py, such that Py.x > fo(s)[a’] for all s and
a’, which can be computed based on the leaf values in the decision trees.

Neural networks For neural networks, we compile the problem into a neural network gy that satis-
fies the certification problem (T)) iff (6] is not satisfied. gy is constructed by appending two additional
layers to fp. The first auxiliary layer has |A| outputs, returning z,/ := relu(fp[a’] — fo[a]) for all
a’ € A. The final layer returns ), 4 2» — € for asmall € > 0. If gg(s) < Othen ), 4 zor < €.
Since z,+ > 0, it follows for all @’ € A that fo(s)[a] + € > fo(s)[a’]. So, if € is sufficiently small,
(6) must be violated. Hence, gy satisfies (I)) iff (6] is violated.

3.3.3 IMPLEMENTATION OF IC3 SUB-PROCEDURES

We finally have all tools ready to implement the three remaining sub-procedures of IC3. In-
stead of relying on the approximation of the policy frame transition problem, we implement
selectSuccessorState (s,n — 1) by searching for the desired state s’ directly. Note that
the relevant transitions can be enumerated efficiently through a single iteration over the commands
C. This simple procedure obviously satisfies Assert. |2} and avoids the SMT related problems.

Since generalizeReason and propagateClauses require solving @) for conditions r that
are satisfied by potentially many states, this simple enumeration approach is unfortunately not fea-
sible. We adopt the general procedures from Sec. [3.2] substituting the exact frame transition test
by APFT. The use of the approximation in APF'T does not affect Assert. 3] and ] The resulting
propagateClauses function satisfies Assert. (3| since it moves a clause —r € JF,, only into
Fm+1 if APFT (r,m) returns false. It follows from Cor.[I] that there is no policy transition from r
into F,,, as required. Similarly, for generalizeReason, recall that the state minimization pro-
cess removes a variable assignment only if the frame transition test is false. Since by Cor. |1} APFT
returns false only if (@) is not satisfiable, condition (ii) of Assert. E]is preserved. Condition (i) is not
affected by the use of APFT. Finally, Assert.[3]is satisfied since both functions rely on APFT.

4 EXPERIMENTAL EVALUATION

Our implementation, called POLIC3, is in C++ and supports the analysis of neural-network and
tree-ensemble policies. Environment models are provided in the JANT guarded-command language
(Budde et al.| [2017). We re-implemented LIRPA (Zhang et al., 2018) for neural networks certifi-
cation. To certify tree ensembles, we interface with the open-source tool VERITAS (Devos et al.,
2021). We use the Z3 SMT solver (de Moura & Bjgrner, |2008). The code is publicly available

Our experiments aim at answering the following main questions:
(Q1) How does POLIC3 compete against state-of-the-art approaches?

(Q2) Can PoLIC3 cope with more complex policy architectures, such as those underlying state-
of-the-art generalized planning policies?

"Link omitted to preserve anonymity; but code is available as supplemental material
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Figure 1: Per-instance runtime (in seconds) comparison of POLIC3 (y-axes) to PPA and BRFS (z-
axes). “n/s“ marks instances not solved in the resource limits.

Benchmarks We consider all benchmarks with integer-variable environments from prior work
(Vinzent et al., 2022} Jain et al.l [2024). This encompasses four different problem domains (beluga,
blocks, npuzzle, transport) with a total of 72 benchmark instances, where 38 instances contain a
feed-forward neural-network (FFNN) policy and 34 contain a decision-tree ensemble (DTE) policy.
We further extended this collection by learning new policies in blocks and npuzzle using ASNET
(Toyer et al.|, 2020)), one of the state of the art approaches in generalized planning. ASNET constructs
graph neural networks, leveraging a clever weight sharing scheme to instantiate policies for differ-
ent planning problem instances. ASNET requires planning problem descriptions in PDDL (Fox &
Long|, |2003), not JANI. For training, we manually created the necessary PDDL encodings. The
training instances are randomly generated. In order to verify the learned ASNET policies wASNET,
we implemented translation functions F', mapping a JANI state into a PDDL state, and GG, mapping
a PDDL action into a JANI action, as feed-forward neural networks using relu activation units, and
consider the concatenation G o 745NET o [ for verification. We created additional 116 benchmark
instances in blocks and 97 instances in npuzzle in this manner.

Baselines and configurations We compare POLIC3 to policy predicate abstraction (PPA), the
current state-of-the-art algorithm for policy verification (Vinzent et all) [2022; Jain et al., [2024).
Moreover, as an additional baseline, we include an exhaustive search method (BRFS), which runs
multiple breadth-first searches in O to find a property satisfying path. It enumerates the set of start
states and ©¢ incrementally, and if the desired path is found, might terminate before either of them
has been fully constructed. Finally, we also experiment with a POLIC3 variant, called POLIC3-nog,
which does not use reason generalization, instead just using the entire state for the frame refinements.

Setup All experiments were run on Intel Xeon E5-2695 servers. Like in previous setups, each run
was limited to a single CPU thread, 12 hours runtime, and 4 GB memory.

Results Tab. [T] compares the number of instances each method could solve. We do not have re-
sults for PPA on ASNET policies, because the implementation by |Vinzent et al.| (2022)) does not
support this type of policy, and adding that support is absolutely non-trivial. Comparing POLIC3 to
the state-of-the-art policy verifier PPA, POLIC3 achieves the same or better coverage in all but one
benchmark domains and across both remaining policy types. For FFNN policies, coverage is identi-
cal except for transport, where PPA is able to handle one more instance. For DTE policies, POLIC3
improves coverage in all three benchmark domains. In contrast to the DTE policies, for the FFNN
policies, we observed that POLIC3’s reason generalization method frequently fails to find small,
and thus generalizing, reasons. We attribute this to a lack of consistent structure in the decisions
made by the FFNN policies, owed to the way these policies were trained by |[Vinzent et al.| (2022)
(Q-learning). The importance of reason generalization becomes evident when disabling in POLIC3
the generalization method entirely. The coverage of POLIC3-nog drops tremendously with a single
exception. That POLIC3 can also excell on neural network policies can be observed for the ASNET
policies. It achieves significantly higher coverage than our second baseline BRFS, indicating the
ability of POLIC3 to handle even current state-of-the-art policies. This is true despite the fact that
the ASNET policies are significantly larger than the FFNN ones (average number of neurons: blocks
157 (FFNN) vs. 8245 (ASNET); npuzzle 153 vs. 33990). On the other benchmarks, BRFS actually
turned out competetive overall. It even achieved the highest coverage in blocks, though lagging be-
hind in the other benchmark domains. Comparing the runtimes of POLIC3 to the two competitors
PPA and BRFS (Fig.[I), the picture is even more striking. In all points below the diagonal, POLIC3
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required less time to solve the instance. POLIC3 is able to improve over the competitors’ runtime,
often by several orders of magnitude.

5 RELATED WORK

Safe reinforcement learning Learning decision policies satisfying some safety constraints has re-
ceived significant attention in safe reinforcement learning (Garcia & Fernandez, 2015; |Gu et al.
2024). There are two decisive differences to our work. First, safe RL considers quantitative proper-
ties, requiring that the discounted expected value of the policy for secondary cost functions remain
within some limits. Secondly, safe RL optimizes for the satisfaction of the safety constraints, but at
no time guarantees that the constraints are indeed satisfied.

Policy verification in continous environments Policy verification has been considered especially
in the context of dynamic system control (Tran et al., [2020; [Tambon et al., |2022; [Schilling et al.,
2023} |Rossi et al) 2024)). In contrast to our work, they consider continuous environment models.
This avoids the complications arising from discrete choices, but requires fundamentally different
techniques to, e.g., deal with sets of infinitely many environment states (e.g.,|[Fan et al.| 2020).

Policy verification in discrete environments Policy verification for discrete action spaces has also
been subject of many works. |Bastani et al.| (2018) present a method to obtain policies with verified
performance guarantees. To this end, they synthesize a single decision tree from a deep neural
network expert policy, and cast the entire policy verification problem as a single SMT. |Carr et al.
(2021) follow a similar idea, using standard model checkers to verify a symbolic approximation
of a a given neural network policy. Both approaches provide no guarantees for the input policy.
(Gross et al., [2022} 2023) verify neural network policies by implementing an interface between an
off-the-shelf model checker and policy function evaluation. Policy verification however requires
enumeration of the policy induced transition system, which is intractable in all but the smallest
cases. Lastly, in contrast to our method, adding the support of different policy architectures in PPA
(Vinzent et al., [2022; Jain et al., [2024) requires major engineering efforts.

Other policy analysis methods Besides verification, there has also been significant work on al-
ternate analysis methods. |Gros et al.| (2023)); Lampacrescia et al.| (2024) consider statistical model
checking methods for analyzing neural network policies. |Steinmetz et al.| (2022)) applied techniques
from software testing to spot undesired policy behavior within a symbolic environment model.
Eniser et al.| (2022); [Mazouni et al.| (2024) adopted this idea, but instead tested the policy’s be-
havior using an environment simulator in place of a model. All these works cannot make formal
guarantees about their analysis results.

6 CONCLUSION

We introduced POLIC3, a new policy verification algorithm, which differs from previous algorithms
in its clear separation of the reasoning about the policy and the reasoning about the environment
model. The former can be handled efficiently via off-the-shelf neural network and decision-tree
ensemble certification tools, and the latter through standard encodings into SMT. Our experiments
demonstrated that POLIC3 is more efficient and often solves more problems than state-of-the-art
methods, and that it is even capable of handling policies with complex function architectures, exam-
plified by ASNET policies, that were previously out of reach.

That said, we have not unleashed the full power of IC3 yet. In hardware verification, a range of
optimizations have been introduced that significantly boost performance, including parallelization,
obligation minimization, obligation rescheduling, and reverse IC3. Our future work includes ex-
ploring those optimizations for policy verification. During our experiments, we observed that the
variable order during reason minimization has a huge influence on the performance of the overall
algorithm. Another highly promising direction is improving the generalization method by clever
selections of the variable order. Finally, a clear limitation of policy verification so far is the need for
a symbolic environment model. Through decoupling policy from environment reasoning, POLIC3
also paves the way for supporting environment models learned from data, such as those produced by
model-based reinforcement learning. Exploring this potential can advance the reach of this field.



Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Abate, Alec Edwards, and Mirco Giacobbe. Neural abstractions. In Proc.
of the Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
a922b7121007768£78f770c404415375-Abstract-Conference.html.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep re-
inforcement learning: A brief survey. IEEE Signal Process. Mag., 34(6):26-38, 2017. doi:
10.1109/MSP.2017.2743240. URL https://doi.org/10.1109/MSP.2017.2743240,

Edoardo Bacci and David Parker. Verified probabilistic policies for deep reinforcement learning. In
Proc. of the 14th International Symposium on NASA Formal Methods, NFM 2022, volume 13260
of Lecture Notes in Computer Science, pp. 193212, 2022. doi: 10.1007/978-3-031-06773-0\ _10.
URL https://doi.org/10.1007/978-3-031-06773-0_10.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications, pp. 1267-1329. I0S Press, 2021. doi: 10.3233/FAIA201017. URL
https://doi.org/10.3233/FAIA201017.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via pol-
icy extraction. In Advances in Neural Information Processing Systems 31, NeurlPS 2018, pp.
2499-2509, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6d8545daad2d5cedl25ad4bf747b3688-Abstract.htmll

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (eds.). Handbook of Satisfiability -
Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications. 10S Press,
2021. ISBN 978-1-64368-160-3. doi: 10.3233/FAIA336. URL https://doi.org/10.
3233/FAIA336l

Aaron R. Bradley. Sat-based model checking without unrolling. In Proc. of the 12th International
Conference on Verification, Model Checking, and Abstract Interpretation, VM CAI 2011, volume
6538 of Lecture Notes in Computer Science, pp. 70-87, 2011. doi: 10.1007/978-3-642-18275-4\
_7. URL https://doi.org/10.1007/978-3-642-18275-4_7.

Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges, and
Andrea Turrini. JANI: quantitative model and tool interaction. In Proc. of the 23rd Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS
2017, volume 10206 of Lecture Notes in Computer Science, pp. 151-168, 2017. doi: 10.1007/
978—3—662—54580—5\,9. URL https://doi.org/10.1007/978-3-662-54580-5_09.

Steven Carr, Nils Jansen, and Ufuk Topcu. Task-aware verifiable rnn-based policies for partially
observable markov decision processes. J. Artif. Intell. Res., 72:819-847, 2021. doi: 10.1613/
JAIR.1.12963. URL https://doi.org/10.1613/jair.1.12963.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D. Laird,
and Ruth Misener. OMLT: optimization & machine learning toolkit. J. Mach. Learn. Res., 23:
349:1-349:8, 2022. URL https://jmlr.org/papers/v23/22-0277.htmll

Stephanie C. Y. Chan, Samuel Fishman, Anoop Korattikara, John F. Canny, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. In 8th International Conference on
Learning Representations, ICLR 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SJ1pYJBKVH.

Leonardo Mendonca de Moura and Nikolaj S. Bjgrner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof (eds.), Proc. of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2008, volume 4963 of Lecture
Notes in Computer Science, pp. 337-340. Springer, 2008. doi: 10.1007/978-3-540-78800-3\ 24.
URL https://doi.org/10.1007/978-3-540-78800-3_24|

10


http://papers.nips.cc/paper_files/paper/2022/hash/a922b7121007768f78f770c404415375-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a922b7121007768f78f770c404415375-Abstract-Conference.html
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1007/978-3-031-06773-0_10
https://doi.org/10.3233/FAIA201017
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1613/jair.1.12963
https://jmlr.org/papers/v23/22-0277.html
https://openreview.net/forum?id=SJlpYJBKvH
https://openreview.net/forum?id=SJlpYJBKvH
https://doi.org/10.1007/978-3-540-78800-3_24

Under review as a conference paper at ICLR 2026

Stéphane Demri and Philippe Schnoebelen. The complexity of propositional linear temporal logics
in simple cases (extended abstract). In Proc. of the 15th Annual Symposium on Theoretical As-
pects of Computer Science, STACS 98, volume 1373 of Lecture Notes in Computer Science, pp.
61-72. Springer, 1998. doi: 10.1007/BFB0028549. URL https://doi.org/10.1007/
BEP0028549.

Laurens Devos, Wannes Meert, and Jesse Davis. Versatile verification of tree ensembles. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 2654-2664. PMLR, 2021. URL
http://proceedings.mlr.press/v139/devos2la.htmll

Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient implementation of property directed
reachability. In Proc. of the International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2011, pp. 125-134,2011. URL http://dl.acm.org/citation.cfm?
1d=2157675.

Hasan Ferit Eniser, Timo P. Gros, Valentin Wiistholz, Jorg Hoffmann, and Maria Christakis.
Metamorphic relations via relaxations: an approach to obtain oracles for action-policy test-
ing. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2022, pp. 52-63. ACM, 2022. doi: 10.1145/3533767.3534392. URL
https://doi.org/10.1145/3533767.3534392.

Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. Reachnn*: A tool for reachability
analysis of neural-network controlled systems. In Proc. of the 18th International Symposium on
Automated Technology for Verification and Analysis, ATVA 2020, volume 12302 of Lecture Notes
in Computer Science, pp. 537-542. Springer, 2020. doi: 10.1007/978-3-030-59152-6\ _30. URL
https://doi.org/10.1007/978-3-030-59152-6_30.

Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning
domains. J. Artif. Intell. Res., 20:61-124, 2003. doi: 10.1613/JAIR.1129. URL https://
doi.org/10.1613/jair.1129l

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res., 16:1437-1480, 2015. doi: 10.5555/2789272.2886795. URL |https:
//dl.acm.org/doi/10.5555/2789272.2886795.

Anastasios Giannaros, Aristeidis Karras, Leonidas Theodorakopoulos, Christos N. Karras, Pana-
giotis Kranias, Nikolaos Schizas, Gerasimos Kalogeratos, and Dimitrios Tsolis. Autonomous
vehicles: Sophisticated attacks, safety issues, challenges, open topics, blockchain, and fu-
ture directions. J. Cybersecur. Priv., 3(3):493-543, 2023. doi: 10.3390/JCP3030025. URL
https://doi.org/10.3390/5cp3030025.

Timo P. Gros, Holger Hermanns, Jorg Hoffmann, Michaela Klauck, and Marcel Steinmetz. An-
alyzing neural network behavior through deep statistical model checking. Int. J. Softw. Tools
Technol. Transf., 25(3):407-426, 2023. doi: 10.1007/S10009-022-00685-9. URL https:
//doi.org/10.1007/s10009-022-00685-9.

Dennis Gross, Nils Jansen, Sebastian Junges, and Guillermo A. Pérez. COOL-MC: A compre-
hensive tool for reinforcement learning and model checking. In Proc. of the 8th International
Symposium on Dependable Software Engineering, Theories, Tools, and Applications, SETTA
2022, volume 13649 of Lecture Notes in Computer Science, pp. 41-49, 2022. doi: 10.1007/
978-3-031-21213-0\,3. URLhttps://doi.org/10.1007/978-3-031-21213-0_3.

Dennis Gross, Christoph Schmidl, Nils Jansen, and Guillermo A. Pérez. Model checking for
adversarial multi-agent reinforcement learning with reactive defense methods. In Proceedings
of the Thirty-Third International Conference on Automated Planning and Scheduling, ICAPS
2023, pp. 162—-170. AAAI Press, 2023. doi: 10.1609/ICAPS.V3311.27191. URL https:
//doi.org/10.1609/icaps.v3311.27191.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories, and applications. [EEE Trans. Pat-
tern Anal. Mach. Intell., 46(12):11216-11235, 2024. doi: 10.1109/TPAMI.2024.3457538. URL
https://doi.org/10.1109/TPAMI.2024.3457538.

11


https://doi.org/10.1007/BFb0028549
https://doi.org/10.1007/BFb0028549
http://proceedings.mlr.press/v139/devos21a.html
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/3533767.3534392
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://dl.acm.org/doi/10.5555/2789272.2886795
https://dl.acm.org/doi/10.5555/2789272.2886795
https://doi.org/10.3390/jcp3030025
https://doi.org/10.1007/s10009-022-00685-9
https://doi.org/10.1007/s10009-022-00685-9
https://doi.org/10.1007/978-3-031-21213-0_3
https://doi.org/10.1609/icaps.v33i1.27191
https://doi.org/10.1609/icaps.v33i1.27191
https://doi.org/10.1109/TPAMI.2024.3457538

Under review as a conference paper at ICLR 2026

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2):21:1-21:35, 2017. doi: 10.1145/3054912.
URL https://doi.org/10.1145/3054912l

Chaahat Jain, Lorenzo Cascioli, Laurens Devos, Marcel Vinzent, Marcel Steinmetz, Jesse Davis, and
Jorg Hoffmann. Safety verification of tree-ensemble policies via predicate abstraction. In Proc. of
the 27th European Conference on Artificial Intelligence, ECAI 2024, volume 392 of Frontiers in
Artificial Intelligence and Applications, pp. 1189-1197, 2024. doi: 10.3233/FAIA240614. URL
https://doi.org/10.3233/FAIA240614.

Marco Lampacrescia, Michaela Klauck, and Matteo Palmas. Towards verifying robotic systems
using statistical model checking in STORM. In Proc. of the Second International Conference
on Bridging the Gap Between Al and Reality, AISoLA 2024, volume 15217 of Lecture Notes in
Computer Science, pp. 446-467. Springer, 2024. doi: 10.1007/978-3-031-75434-0\_28. URL
https://doi.org/10.1007/978-3-031-75434-0_238\

Quentin Mazouni, Helge Spieker, Arnaud Gotlieb, and Mathieu Acher. Policy testing with mdpfuzz
(replicability study). In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, pp. 1567-1578. ACM, 2024. doi: 10.1145/3650212.
3680382. URL https://doi.org/10.1145/3650212.3680382

Nicholas Rober, Karan Mahesh, Tyler M. Paine, Max L. Greene, Steven Lee, Sildomar T. Monteiro,
Michael R. Benjamin, and Jonathan P. How. Online data-driven safety certification for systems
subject to unknown disturbances. In IEEE International Conference on Robotics and Automation,
ICRA 2024, pp. 9939-9945, 2024. doi: 10.1109/ICRA57147.2024.10610163. URL https:
//doi.org/10.1109/ICRA57147.2024.10610163.

Federico Rossi, Cinzia Bernardeschi, Marco Cococcioni, and Maurizio Palmieri. Towards formal
verification of neural networks in cyber-physical systems. In Proc. of the 16th International
Symposium on NASA Formal Methods, NFM 2024, volume 14627 of Lecture Notes in Computer
Science, pp. 207-222, 2024. doi: 10.1007/978-3-031-60698-4\_12. URL https://doi.
org/10.1007/978-3-031-60698-4_12.

Christian  Schilling, Anna Lukina, Emir Demirovic, and Kim Guldstrand Larsen.

Safety verification of decision-tree policies in continuous time. In Proc. of the An-
nual Conference on Neural Information Processing Systems 2023, NeurlPS 2023,
2023. URL |http://papers.nips.cc/paper_files/paper/2023/hash/

2f89a23a19dlol7e/fblod4f7a049ce2-Abstract-Conference.html.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nat., 529(7587):484—-489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/naturelc961ll

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artif. Intell. Rev., 55(2):945-990, 2022. doi: 10.1007/
S10462-021-09997-9. URL https://doi.org/10.1007/s10462-021-09997-09.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin T. Vechev. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang., 3(POPL):41:1-41:30, 2019. doi: 10.
1145/3290354. URL https://doi.org/10.1145/3290354!

Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe Heim,
Daniel Holler, Xandra Schuler, Valentin Wiistholz, Maria Christakis, and Jorg Hoffmann. De-
bugging a policy: Automatic action-policy testing in Al planning. In Proceedings of the
Thirty-Second International Conference on Automated Planning and Scheduling, ICAPS 2022,
pp. 353-361. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/19820.

12


https://doi.org/10.1145/3054912
https://doi.org/10.3233/FAIA240614
https://doi.org/10.1007/978-3-031-75434-0_28
https://doi.org/10.1145/3650212.3680382
https://doi.org/10.1109/ICRA57147.2024.10610163
https://doi.org/10.1109/ICRA57147.2024.10610163
https://doi.org/10.1007/978-3-031-60698-4_12
https://doi.org/10.1007/978-3-031-60698-4_12
http://papers.nips.cc/paper_files/paper/2023/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s10462-021-09997-9
https://doi.org/10.1145/3290354
https://ojs.aaai.org/index.php/ICAPS/article/view/19820
https://ojs.aaai.org/index.php/ICAPS/article/view/19820

Under review as a conference paper at ICLR 2026

Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam, Paulina Stevia Nouwou Mindom, Yann
Pequignot, Foutse Khomh, Giulio Antoniol, Ettore Merlo, and Frangois Laviolette. How to certify
machine learning based safety-critical systems? A systematic literature review. Autom. Softw.
Eng., 29(2):38, 2022. doi: 10.1007/S10515-022-00337-X. URL https://doi.org/10.
1007/s10515-022-00337—-x.

Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In Proc. of the 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=HyGIdiRgtm.

Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, and Lexing Xie. Asnets: Deep learning for
generalised planning. J. Artif. Intell. Res., 68:1-68, 2020. doi: 10.1613/JAIR.1.11633. URL
https://doi.org/10.1613/jair.1.11633!l

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: the neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems. In Proc. of the 32nd
International Conference on Computer Aided Verification, CAV 2020, volume 12224 of Lecture
Notes in Computer Science, pp. 3-17, 2020. doi: 10.1007/978-3-030-53288-8\_1. URL https:
//doi.org/10.1007/978-3-030-53288-8_1.

Marcel Vinzent, Marcel Steinmetz, and Jorg Hoffmann. Neural network action policy verification
via predicate abstraction. In Proc. of the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, pp. 371-379, 2022. URL https://o0js.aaai.org/
index.php/ICAPS/article/view/19822.

Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke,
Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang,
Ekaterina Komendantskaya, Guy Katz, and Clark W. Barrett. Marabou 2.0: A versatile for-
mal analyzer of neural networks. In Proc. of the 36th International Conference on Computer
Aided Verification, CAV, volume 14682 of Lecture Notes in Computer Science, pp. 249-264.
Springer, 2024. doi: 10.1007/978-3-031-65630-9\_13. URL https://doi.org/10.1007/
978-3-031-65630—-9_13l

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively paral-
lel incomplete verifiers. In Proc. of the 9th International Conference on Learning Representa-
tions, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
nVZtXBI6LNn.

Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. Deep reinforcement learning
for automated stock trading: an ensemble strategy. In ICAIF ’20: The First ACM International
Conference on Al in Finance, pp. 31:1-31:8. ACM, 2020. doi: 10.1145/3383455.3422540. URL
https://doi.org/10.1145/3383455.3422540.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurlIPS 2018, pp. 49444953, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/d04863f100d5903eb688al11f95b0ae60-Abstract.html.

A 1IC3 ALGORITHM

A.1 CONNECTION TO IC3 FROM LITERATURE

Our presentation was very loosely based on that by Eén et al.|(2011). Besides differences owed to the
different general settings, our algorithm differs from the one in the literature in three general points.
First, the original presentation of the IC3 algorithm proceeds in the reverse direction, attempting
to build the path sg, ag,. .., s, from ¢g to ¢r backwards, i.e., starting with s,, |= ¢ and for

13


https://doi.org/10.1007/s10515-022-00337-x
https://doi.org/10.1007/s10515-022-00337-x
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1613/jair.1.11633
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://ojs.aaai.org/index.php/ICAPS/article/view/19822
https://ojs.aaai.org/index.php/ICAPS/article/view/19822
https://doi.org/10.1007/978-3-031-65630-9_13
https://doi.org/10.1007/978-3-031-65630-9_13
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1145/3383455.3422540
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

Under review as a conference paper at ICLR 2026

i = n,...,1, looking for the state s;_; that has a transition going to s;. In the original setting,
the directions can be exchanged easily, only requiring minor adaptations in the SAT encodings. In
POLIC3, this is more difficult. In particular, the explicit search in selectSuccessorState is
no longer possible in this manner.

In the original IC3 algorithm, the pairs (s,n) at line [I2] of Alg. [1] are called obligations.
An optimization missing in our presentation is obligation minimization. Instead of search-
ing over individual states, the original IC3 algorithm considers obligations (p,n) where p is
a partial variable assignment, thus implicitly considering many states at once. Accordingly,
selectSuccessorState (p,n — 1) returns a partial variable assignment p’ that (1) entails
Fn—1, i.e., such that s’ |= p’ implies s’ = F,,_1, and (2) all states s with s = p have a transition
(s,a,s’y € T sothat s’ = p’. Importantly, to consider in the next search step such p’ that represent
as many states as possible, selectSuccessorState contains an additional minimization step
similar to reason generalization, which attempts to iteratively remove variable assignments from p’
while maintaining (1) and (2). Like above, considering partial variable assignments as obligations in
POLIC3 would make the implementation of selectSuccessorState significantly more com-
plicated.

Lastly, the original IC3 algorithm comes with the option to reschedule an obligation (s, n), insert-
ing (s,n + 1) into the queue, when s was shown to have no length-n path to ¢ (line [15). Our
implementation supports this, but it turned out detrimental in our experiments.

A.2  CORRECTNESS OF GENERIC IC3 (THM.[I))

Let © = (S, A, T) be the transition system and P = (¢g, ¢r) be the property to be verified. The
following frame invariants are preserved at all time during the execution of the algorithm

(FI) Foralli€ {1,...,N —1}: Fiy, C F..
(FII) Forall: € {1,..., N}, and all states s € S: if s |= F;, then s |~ ¢g.
(FIII) Foralli € {0,...,N — 1}, and all states s € S: if s = F;, then s [~ ¢5.
(FIV) Foralli € {1,...,N — 1}, all states s’ € S, and all transitions (s, a,s’) € T into s': if
s’ | Fi, then s | Fiqq.

Proof of invariants.

* (FI) is satisfied as per the frame refinement step in line[T7]of Alg.[I]
* (FII) is guaranteed by condition (i) of Assert. ]

* (FIII) is guaranteed since a new frame is opened only when there is no start state Sy = ¢s
that satisfies F (Assert.[I)), i.e., upon opening Fy 1, the start states have been removed
from all previous frames. Since frames are only strengthened, it is not possible that a start
state gets reinserted into some frame.

* (FIV) is guaranteed by condition (ii) of Assert.

]

From the invariants, the intended property of frames follows immediately:

Lemma 1. Let n € {1,...,N}, and sg € S be such that sy = Fn. It holds for all paths
80500, 81,01, - - - 5 S In O such that s, = ¢g that m > n.

Proof. Proof by induction on n. The induction beginning, n = 0, holds trivially given that 7y = ¢g,
i.e., if sp & ¢r then obviously there is no 0-length path from sy to ¢ . For the induction step, let
S0 € S be some state with a path sg, ag, - . . , S, to a state s, = ¢r with length m < n + 1. From
(FID), it follows that m > 1. Consider the successor state s; of sg. Obviously, s; has a path with
length n to ¢r. As per the induction hypothesis, s; |= F,,. Therefore, with (FIV), sg = Fy41, as
desired. O

We are now ready to show the correctness of Alg.[I] The proof is split in three parts: correctness of
the two return values, and termination.
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Proof that Alg. [I] correctly returns true. Let s, ao,...,sy be the path found by Alg. [I] upon
returning true. The path can be easily reconstructed by tracking for each state in the queue the
transition that selectSuccessorState used to generate that state. In order to show that this
path is indeed a witness for the satisfaction of the property, we need to show that (i) so = ¢g, (ii)
SN ': ¢Rr, and (iii) for all 7 € {1, ey N}, <Si_1,ai_1, Si> eT.

(i) is guaranteed by Assert. [I]

(ii) By Assert.|2] it holds that sy = Fo when (sn,0) was inserted into the queue for the first
time. Since Fy is not refined, sy = Fo still holds when (s, 0) is popped from the queue,
and at that moment the algorithm terminates.

(iii) is guaranteed by Assert.[2]

O
Proof that Alg. || correctly returns false. 1t holds that Fy = Fn41. Suppose for contradiction that
there was a path sg, ag, s1,0a1, ..., S, from some start state sq ¢g to some state s,,, such that

Sm = ¢r. Since sg [~ Fn (Assert. , it follows from Lemma [l|that m > N. Let m’ := m — N.
In other words, s,,» has a path of length N to ¢r. Applying Lemma |l| again, it must hold that
Sme = Fn. Via (FIV), it inductively follows that sg = Fn1, and hence also so |= Fu. This is a
contradiction to Assert. [l

O

Proof that Alg. [I] terminates. The inner loop (line [IT)) must terminate eventually, since in each
step either the remaining path length counter n is decremented, or a state is removed from some
frame. Given that the algorithm terminates when n = 0 and since there are only finitely many
states, both things cannot repeat forever. If the property P is satisfied by ©, IC3 must eventually
find a corresponding path given the correctness of the frame construction (Lemmal[T)) and since each
start state will have to be considered eventually (Assert.[I). Assume that P is not satisfied. We need
to show that Fy = Fn41 holds eventually. To this end, assume that F,, = JF,,11 holds for some
n € {1,..., N} after the call to propagateClauses. By Assert. [5| propagateClauses
could have propagated every —-r € F,, into F,,4;. But then, propagateClauses must have
also propagated —r into F,, 2, and in fact into all F,,, with m > n. In particular, 7; C Fy and
Fi € Fn+1. It follows from (FI) that F; = Fn and F; = Fy41, i.e., I[C3 will terminate. Finally,
note that such an index 7 must exist eventually, given that there are only finitely many possible
reasons. We conclude that IC3 has to terminate eventually.

O

A.3 1IC3 FOR ENVIRONMENT MODELS: ADDITIONAL DETAILS

We provide a detailed description of the implementation of the four sub-procedures of Alg. [I] to
verify whether an environment model £ = (Vars, A, C) satisfies the property P = (¢gs, dr).

Solving the frame transition problem The implementation of selectSuccessorState,
generalizeReason, and propagateClauses commonly requires a method efficiently de-
ciding the frame transition problem (Def. [I). This can be done via SMT. Specifically, the SMT
contains integer variables v, for v € Vars representing the state s, integer variables v/, representing
the state s’, and Boolean variables c. for ¢ € C indicating the choice of the command responsible
for the transition. The conditions s |= r and s’ = F,, of (3)) are mapped one-to-one into constraints
of the SMT over the variables v and v’ respectively. The condition that (s, a, s’) € Tg, for some a,
is encoded as the disjunction of c. A guard(c) A effect(c) over all commands ¢ € C, where guard(c)
translates the guard grd,, into a constraint over the variables v (representing the condition s |= grd..),
and effect(c) binds the variables v/ to the result of the application of ¢ on the values of v (repre-
senting the condition s’ = s[c])) by conjoining the constraints v/, = x,[v] for all v € Vars, where
Xv = eff..(v) is the expression assigned to v by the command’s effect. We refer to the resulting SMT
problem as FrameTransition|[r, n].

Start state selection The implementation of selectStartState via SMT is straightforward.
To find a state Sy € Sg such that sy, = ¢s A Fy without enumerating the set of all states
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Sg, we generate a constraint system with the integer variables Vars of the environment model, and
we translate the conditions ¢g and F into constraints. The requested state can be read off of any
solution of this system. If there is no solution, then sy does not exist. All in all, the implementation
meets the specification as per Assert.[I]

Successor state selection With FrameTransition at hand, the implementation of
selectSuccessorState (s,n — 1) is trivia. We solve FrameTransition[s,n — 1] and
reconstruct s’ from the solution. Assert. is guaranteed by the correctness of the SMT encoding.

Pushing clauses Similarly, to decide in propagateClauses whether a clause —r € F,,, can be
pushed to the next higher frame F,, 1, we solve FrameTransition[r, m]. The clause can be pushed
if the SMT is unsatisfiable. Assert.[d]again follows from the correctness of the SMT encoding. The
implementation also guarantees Assert. [5|given that FrameTransition[r, m] represents the condition
under which —r can be moved into F,,, 1, exactly, i.e., it pushes a clause forward if and only if this
is possible while preserving the frame properties.

Reason generalization Finally, to obtain small reasons in generalizeReason (s,n — 1), we
follow a greedy state minimization procedure as in earlier works (Bradleyl 2011} [Eén et al.,[2011).
We initialize the reason to r := s. Note that this r satisfies (i) and (ii) of Assert. d]initially. (i) holds
by the definition of the frames and since n > 0; (ii) is satisfied for each call made by Alg. |I| (line
[I3). We then iteratively remove individual variable assignments from r while maintaining (i) and
(ii). Namely, for each v € Vars, we consider 7/ := r \ {v — r(v)}. Checking whether 1’ satisfies
(i) is an easy exercise, formulated as an SMT. For condition (ii), we solve FrameTransition[r’, n],
which has no solution exactly if (ii) is still satisfied. If we find that ’ satisfies both conditions, we
set 7 := 7’ and continue with the next variable. Otherwise, we do not change 7 and proceed directly
to the next variable. Given that (i) and (ii) remain satisfied by r at all times by the design of the
algorithm, this method obviously satisfies Assert. ]

A.4 1IC3 FOR POLICY VERIFICATION: ADDITIONAL DETAILS
A.4.1 PROOF OF THM.[2]

Let r be a partial variable assignment and n € {0,..., N}. Assume that (@) is satisfied, and let
s, a, s’ be the corresponding witness, i.e., such that (i) s = r, (ii) ' | Fy, (iil) (s,a, s) € T¢, and
(iv) mp(s) = a. We show that (3)) is satisfied. To this end, note that the states s and s’ satisfy (5.1)
for action a: s |= r holds by (i), s’ = F,, by (ii), and (s, a, s’) € T¢ by (iii). (5.2) is satisfied since
s = r by (i) and 7y (s) = a by (iv). This concludes the proof.

O

A.4.2 PROOF OF THM.[3]

Let 7 be a partial variable assignment, and let A C .4 be an under-approximation of the applicable
actions of the states represented by r, i.e., such that A C A(s) holds for all s € Sg where s |= r.
Let s € S¢ be any state that satisfies s |= r. Assume that @ is satisfied, i.e., that

follal < max fols)la)

Let a := my(s). By the definition of 7, it holds that & € A(s) and that

fo(s)lal

Jmex fo(s)[a'].

Since A C A(s), in particular,

fol)la) 2 max fo()la) = max fo(s)la')

Therefore,
fo(s)[a] < fo(s)[al.

Based on the definition of 7y, we conclude that 7 (s) # a.
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B EXPERIMENTS

B.1 BENCHMARK DESCRIPTIONS

We provide a brief description of the used benchmarks. We took the models, properties, and policies
from (Vinzent et al., [2022} Jain et al., |2024)), and trained new policies using ASNET (Toyer et al.,
2020) in two problem domains. We describe the ASNET training below. The original benchmark
set contains feed-forward neural network with relu units (FFNN) and decision-tree ensemble (DTE)
policies. The FFNN policies were trained using Q-learning. The FFNN policies generally had 2
hidden layers, whose size was varied in the different benchmark domains (as described below). The
DTE policies were trained via imitation learning from those teacher FFNN policies considering both
gradient-boosted trees as well as random forests. The size of the ensembles was generally controlled
using depth limits in {4, 6,8, 10, 15} and number of trees in {5, 10, 20, 30}.

beluga A factory logistics problem, where cargo needs to be unloaded from n arriving airplanes
and stored in some intermediate rack storage facilities until being requested by the production line.
The start condition considers all possible orderings in which cargo can arrive. The reach condition
asks whether all racks are occupied. The benchmarks vary n € {4, 5,6}. The FENN policies have 2
hidden layers with m € {64, 256} neurons each.

blocks A variant of the classic blocksworld planning problem. There are n differently colored
blocks which must be stacked on top of each other in a certain way. This benchmark variant comes
with the additional constraint that only a limited number of blocks are allowed to be placed on
the table at the same time, which is represented by the reach condition. The start state condition
represents all configuration of the blocks where the constraint is satisfied. The number of blocks
was ranged in n € {4,6,8,10}. The FFNN policies have 2 hidden layers with m € {16, 32,64}
neurons each.

npuzzle Models the classic sliding tiles puzzle on a 3 x 3 grid. There are 8 numbered tiles and
an empty tile. The tiles need to be arranged in a certain manner. The empty tile can be swapped
with tiles horizontally or vertically adjacent to it. The start condition imposes a partial order over
the tiles. The reach condition characterizes some unsafe tile positions to be avoided. The FFNN
policies have 2 hidden layers with m € {16, 32,64} neurons each.

transport Models a transportation problem, where packages must be moved from left to right
crossing a bridge. The truck has inertia, and can be accelerated/decelerated by one speed unit at a
time. The start condition represents all states where packages are distributed arbitrary at the left side
of the bridge. The reach condition asks whether the truck ever crosses the bridge with too much
load. The FENN policies have 2 hidden layers with m € {16, 32,64} neurons each.

B.2 TRAINING ASNET POLICIES

blocks npuzzle

Training problem sizes {4,5,...,10} blocks, 3 x 3 grids
(25 instances in total) (30 instances in total)

Module layers 2,3 2,3,4
Module dimensions 4,8 4,8, 16, 32
Activation relu relu
Weight decay 2e-4 2e-4
Dropout rate 0.1 0.1
Regularization L1 L1
Batch size 64 64
Max epochs 300 300
Train steps 700 700
Policy rollout limit 1000 steps 1000 steps

Table 2: ASNET training hyperparameters
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We trained additional policies in blocks and npuzzle using ASNET (Toyer et al.| [2020). To train
a policy, ASNET requires a planning problem domain and a collection of problem instances with
increasing difficulty in PDDL. To this end, we manually created PDDL encodings of blocks and
npuzzle, and implemented random instance generators in python. For both domains, we let ASNET
train multiple policies with different sizes. The hyperparameters are shown in Tab. 2] For each
size configuration, we selected the best performing policies. The resulting generalized policies were
instantiated according to the size of the models considered for verification. For npuzzle we obtained
97 additional policies in this manner. For blocks, we obtained 29 additional policies for each of the
four model sizes, so 116 in total.

B.3 ADDITIONAL RESULTS

Benchmark #solved avg. N avg. runtime (s) fraction reason generalization
beluga FENN (3) 0 - - -
blocks FFNN (24) 14 12.1 213.78 42.6%
npuzzle FFENN (6) 6 16.3 4224.55 49.0%
transport FFNN (5) 3 1 1.6 48.5%
beluga DTE (6) 4 5.2 04 45.9%
blocks DTE (18) 15 29.7 3779.72 76.2%
transport DTE (6) 6 11.5 55.04 70.1%
blocks ASNET (116) 96 7.2 2090.63 63.7%
npuzzle ASNET (97) 93 1 106.61 53.5%

Table 3: Per benchmark domain aggregated statistics about the POLIC3 runs. Total number of
instances in braces. “# solved”: number of instances solved. “avg. N average path-length limit
N upon termination of POLIC3. “avg. runtime” runtime in seconds averaged over the solved
instances. “fraction reason generalization” runtime fraction (in percent) of reason generalization
from total runtime, averaged over the solved instances.
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Figure 2: POLIC3 runtime (seconds) as a function of policy size for the benchmarks with neural
network policies. FFNN policies in blue, ASNET in brown. Policy size is measured in number of
neurons. The lines show the sliding average.

Tab. 3] and Fig. 2] show additional performance statistics for the POLIC3 runs. Runtime strongly
correlates with how quickly a property satisfying path could be found. In transport (FFNN) and
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npuzzle (ASNET) the paths were generally very short, on average a single step from some start
state was enough. Runtime is comparatively small in those two domains. Comparing the FFNN and
DTE policies for blocks, the data indicates that proving unsolvability of a property tends to be in
general harder than showing solvability. For DTE, a satisfying path was only found in one of the 15
solved instances (in the other instances the property is unsatisfiable), compared to 5 out of 14 for the
FFNN policies. In general, a big fraction of the runtime is spent on reason minimization. Similar
observations were made in the original hardware verification context (cf. [Eén et al.|[2011). Taking a
look at the runtime for neural network policies (Fig. [2), we see that the runtime generally increases
steeply with the network sizes (note that the axes use log-scale). The plot also shows the importance
of a structure of the policies. Despite being orders of magnitude larger, the ASNET policies can still
be verified much more efficiently than the FFNN policies.
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