
Defining Neural Network Architecture through Polytope Structures of Datasets

Sangmin Lee 1 Abbas Mammadov 1 2 Jong Chul Ye 1 3

Abstract

Current theoretical and empirical research in neu-
ral networks suggests that complex datasets re-
quire large network architectures for thorough
classification, yet the precise nature of this re-
lationship remains unclear. This paper tackles
this issue by defining upper and lower bounds
for neural network widths, which are informed
by the polytope structure of the dataset in ques-
tion. We also delve into the application of these
principles to simplicial complexes and specific
manifold shapes, explaining how the requirement
for network width varies in accordance with the
geometric complexity of the dataset. Moreover,
we develop an algorithm to investigate a converse
situation where the polytope structure of a dataset
can be inferred from its corresponding trained
neural networks. Through our algorithm, it is es-
tablished that popular datasets such as MNIST,
Fashion-MNIST, and CIFAR10 can be efficiently
encapsulated using no more than two polytopes
with a small number of faces.

1. Introduction
To comprehend the remarkable performance of deep neu-
ral networks (DNNs), extensive research has delved into
their architectures and the universal approximation property
(UAP). The UAP of two-layer neural networks on com-
pact sets was initially proven by Cybenko (1989), sparking
widespread exploration of the UAP in diverse settings for
DNNs. Studies have focused on determining the minimal
depths and widths of deep ReLU networks required for UAP
(Hornik, 1991; Park et al., 2020). These foundational results
contribute to unraveling the intricate relationship between
approximation power and neural network architectures.

1Department of Mathematical Science, KAIST, Daejeon, Korea
2School of Computing, KAIST, Daejeon, Korea 3Kim Jaechul
Graduate School of AI, KAIST, Daejeon, Korea. Correspondence
to: Jong Chul Ye <jong.ye@kaist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

However, a converse problem to address the influence of the
characteristics of training datasets necessary to attain the
UAP in neural networks has received relatively less attention.
For example, when analyzing the swiss roll dataset shown
in Figure 1(a), an important practical question emerges:
What are the effective depth and width required for the
complete classification of this dataset? Despite the practical
relevance of this inquiry in the context of training neural
networks, existing theoretical results only offer basic lower
bounds (minimum depth of 2 (Hornik, 1991) and a width
of max{dx + 1, dy} (Park et al., 2020)), which are often
impractical for real applications. While a range of empirical
evidence indicates that increasing the depth or width of
networks could lead to successful outcomes, there remains
an absence of theoretical assurances to foresee these results.

In this paper, we therefore tackle the challenge of identifying
the optimal neural network architecture for classifying a
given dataset. This task is approached through the lens of
the polytope structure of deep ReLU networks, a subject
that has garnered considerable attention in recent studies
(Black et al., 2022; Grigsby & Lindsey, 2022; Berzins, 2023;
Huchette et al., 2023). In fact, our primary theoretical goal
is to address the “multiple manifold problem,” introduced by
Buchanan et al. (2020): For given two disjoint topological
spaces X+ and X−, what is the optimal architecture for the
neural network N such that N (x) > 0 for all x ∈ X+ and
N (x) < 0 otherwise?

By utilizing the geometric properties of DNNs, here we
provide a comprehensive answer to this question. Our ap-
proach involves determining both upper and lower bounds
for the depth and widths of networks required for dataset
classification, based on the polytope covering of the datasets.
Specifically, we explicitly construct a neural network with
practical applicability. For example, our discovery in Theo-
rem 3.4 reveals that the swiss roll dataset in Figure 1(a) can
be efficiently classified using a three-layer ReLU network
with 24 neurons, as depicted in Figure 1(c).

Another important contribution of this paper is the investiga-
tion into the converse situation, demonstrating that trained
neural networks inherently capture the geometric proper-
ties of the dataset and enable the extraction of the dataset’s
polytope structure. As for demonstrating practical use, we
uncover and discuss simple geometric traits of real-world

1

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c)

Figure 1. What type of neural network architecture is capable of effectively classifying the swiss roll dataset depicted in (a)? By
establishing a collection of covering polytopes to enclose one class, as illustrated in (b), our result demonstrates that a three-layer ReLU
network with the architecture 2

σ→ 20
σ→ 4 → 1 can successfully achieve this classification task, as exemplified in (c).

datasets such as MNIST, Fashion-MNIST, and CIFAR10,
achieved through the training of neural networks.

Importantly, our contributions can be summarized as fol-
lows:

• Explicit construction of networks. We introduce the
novel concept of a polytope-basis cover (Definition
3.2), which serves to describe the geometric structure
of the dataset in detail. Building on this, we propose
the design of a three-layer ReLU network, specifically
tailored to efficiently classify the dataset in question,
using its polytope-basis cover as a guiding framework
(Theorem 3.4).

• Bounds on network widths. We define both upper
and lower bounds for the width of a neural network
necessary to classify a given convex polytope region,
taking into account the number of its faces (Proposi-
tion 3.1). Furthermore, we derive upper bounds on
network widths when the dataset X is structured as a
simplicial complex or can be covered by a difference
of prismatic polytopes (Theorem 3.5 and 3.6). These
bounds are correlated with the number of facets or the
Betti numbers of X , demonstrating an interplay be-
tween the dataset’s inherent geometry and the required
network architecture.

• Investigating dataset geometry. Building on our find-
ings, we demonstrate that it is possible to investigate
the geometric features of the dataset by training a neu-
ral network (Theorem 3.7). Specifically, we develop al-
gorithms that are able to identify a polytope basis-cover
for given datasets (Algorithm 1). Our results show that
each class within the MNIST, Fashion-MNIST, and CI-
FAR10 datasets can be effectively distinguished using
no more than two convex polytopes, each consisting of
fewer than 30 faces (Table 1).

2. Preliminaries
Notation. In this paper, we focus primarily on the binary
classification problem, aiming to separate two disjoint topo-
logical spaces denoted as X+ and X−, or two classes of
finite points denoted as D+ and D−. The training dataset
is represented as D = D+ ∪ D− = {(xi, yi)}ni=1, where
xi ∈ Rd and yi ∈ {0, 1}. Throughout the paper, we de-
note scalars by lowercase letters and vectors by boldface
lowercase letters. For a positive integer m, [m] represents
the set {1, 2, · · · ,m}. The ReLU activation function is
denoted by σ(x) := ReLU(x) = max{0, x}, and it is ap-
plied to a vector coordinate-wisely. The sigmoid activation
function is denoted as SIG(x) = 1

1+e−x . The max pool-
ing operation is represented as MAX : Rd → R, which
returns the maximum component of the input vector. The
ε neighborhood of a topological space X ⊂ Rd is defined
by Bε(X) := {x ∈ Rd : miny∈X ∥x− y∥2 < ε}. The
indicator function is denoted by

1{c} :=

{
1, if c is true,
0, otherwise.

Additionally, we define a convex polytope as an intersection
of hyperspaces, as defined below:

Definition 2.1. A nonempty set C ⊂ Rd is called a convex
polytope with m faces if there exist wk ∈ Rd and bk ∈ R
for k ∈ [m] such that C =

m⋂
k=1

{x ∈ Rd |w⊤
k x+ bk ≤ 0}.

Network architectures. In this paper, the terminology
architecture refers to the structure of a neural network,
which means the depth and the width of hidden layers,
and is often denoted by A. A D-layer neural network
N : Rd → R with hidden layer widths d1, d2, · · · , dD−1

and activation functions ACT1,ACT2, · · · ,ACTD is repre-
sented by d

ACT1→ d1
ACT2→ d2

ACT3→ · · · ACTD−1→ dD−1
ACTD→ 1.

When the activation function is the identity, we add nothing
on the arrow. For example, d σ→ m→ 1 denotes a two-layer

2

Defining Neural Network Architecture through Polytope Structures of Datasets

ReLU network with m neurons, presented by

N (x) = v0 +

m∑
k=1

vkσ(w
⊤
k x+ bk). (1)

Definition 2.2. Let X := X+∪X− ⊂ Rd be a union of two
disjoint topological spaces. A neural network architecture
A is called a feasible architecture on X if there exists a
neural network with the architecture A such that

N (x) > 0 if x ∈ X+,

N (x) < 0 if x ∈ X−.

In other words, feasible architecture on X refers to a net-
work architecture capable of fully discriminating between
the two specified manifolds, X+ and X−. This paper aims
to explore the connection between feasible architectures and
the geometrical properties of the dataset.

3. Main Contributions
In this section, we present our main findings in two forms.
Firstly, we establish the upper and lower limits of network
width required for classifying a specific dataset. Secondly,
we illustrate how trained neural networks inherently capture
the geometric characteristics of the dataset they handle.

3.1. Data Geometry-Dependent Bounds on Widths

Let C ⊂ Rd be a convex polytope with m faces. Our
objective is to establish bounds on the widths of a ReLU
neural network necessary for it to be feasible architecture on
C. Applying piecewise linearity of ReLU networks and
the volume formula of convex polytopes, the following
proposition provides the answer.

Proposition 3.1. Let C ⊂ Rd be a convex polytope en-
closed by m hyperplanes, and consider X = X+ ∪ X−
where X+ := C,X− := Bε(X+)

c. Then, d σ→ m → 1
is a feasible architecture on X with minimal depth. Con-
versely, if d σ→ d1

σ→ d2
σ→ · · · σ→ dk → 1 is a feasible

architecture on X , then

d1·
k∏

j=2

(2dj+1) ≥


⌈
m
2

⌉
+ (d− 2), if m ≥ 2d+ 1,

2d− 1, if m = 2d− 1, 2d,

d+ 1, if m < 2d− 1.

This lower bound is optimal when k = 1 and d = 2 (i.e.,
two-layer network on R2).

Proof sketch. We briefly introduce the main idea here. Let
A1, · · · , Am be faces of C, and x be a point in C. Since
C is convex, it can be decomposed to m pyramids whose
common apex is x (see Figure 2(a)). Then, the volume (in

Lebesgue sense) of C is equal to the sum of the volume of
m pyramids. Mathematically, it is represented by

Vold(C) =
1

d

m∑
k=1

Vold−1(Ak)σ(w
⊤
k x+ bk)

where wi is a unit vector of the hyperplane Ai, and Vold
denotes the d-dimensional volume. From this equation, we
define a two-layer ReLU network

N (x) := 1+M(Vold(C)−1

d

m∑
k=1

Vold−1(Ak)σ(w
⊤
k x+bk))

for some constant M . Then N (x) = 1 for all x ∈ C, and
we can prove that d σ→ m → 1 is a feasible architecture
on the polytope, by adjusting the value of M . The detailed
proof can be found in Appendix E.1.

In the proof of Proposition 3.1, σ(N) is a two-layer ReLU
network that approximates the indicator function on a con-
vex polytope.1 Building upon this proposition, we are in-
terested in extending our findings to arbitrary topological
spaces, specifically those that can be distinguished by a
collection of polytopes. To facilitate this extension, we
introduce an additional terminology.
Definition 3.2. Let X := X+ ∪ X− ⊂ Rd be a union
of two disjoint topological spaces. A finite collection of
polytopes C := {P1, · · · , PnP

, Q1, · · · , QnQ
} is called a

polytope-basis cover of X if it satisfies
nP∑
k=1

1{x∈Pk} >

nQ∑
k=1

1{x∈Qk} for all x ∈ X+,

nP∑
k=1

1{x∈Pk} ≤
nQ∑
k=1

1{x∈Qk} for all x ∈ X−.

Roughly speaking, a polytope-basis cover ofX is a polytope
covering of X+ and X− that admits overlapping, where the
difference number of overlapped covers is restricted to be
positive or negative with respect to the label. Below, we
provide an example of a polytope-basis cover for the swiss
roll dataset described in Figure 1(a).
Example 3.3. Let X+ and X− be the orange and blue
classes in Figure 1(a), respectively. Figure 2(b) demon-
strates a polytope-basis cover of X consists of four con-
vex polytopes: P1, P2, Q1, Q2. It is easily checked that∑2

k=1 1{x∈Pk} −
∑2

k=1 1{x∈Qk} = 1 > 0 for ∀x ∈ X+,
while

∑2
k=1 1{x∈Pk} −

∑2
k=1 1{x∈Qk} = 0 for ∀x ∈ X−.

The usefulness of polytope-basis covers appears in the fol-
lowing theorem: we can derive an upper bound of feasible
architecture onX from its polytope-basis cover, by applying
the constructive proof used in Proposition 3.1.

1We also mention that the approximation of indicator functions
directly induces UAP of neural networks (Theorem F.3).

3

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c)

Figure 2. The fundamental ideas in our work. (a) A convex polytope enclosed by m hyperplanes can be decomposed by m small
pyramids. (b) For the topological space X+, the collection of polytopes C = {P1, P2, Q1, Q2} forms a polytope-basis cover of X . (c)
The constructive proof in Theorem 3.4 further exhibits the role of neurons in hidden layers: the width of first layer means the number of
total faces in C, and the neurons in the second layer corresponds to the polytopes in C.

Theorem 3.4. For a given topological space X = X+ ∪
X− ⊂ Rd, let C = {P1, · · · , PnP

, Q1, · · · , QnQ
} be a

polytope-basis cover of X . Let m denote the total number
of faces of the convex polytopes in C. Then,

d
σ→ m

σ→ (nP + nQ)→ 1

is a feasible architecture on X .

The proof can be found in Appendix E.2. One of the im-
portant contributions of Theorem 3.4 is that its construction
exhibits the exact role of each neuron in the hidden lay-
ers. It demonstrates that for a given polytope-baiss cover,
a three-layer ReLU network with widths #(hyperplanes)
and #(polytopes) in the first and second hidden layer, re-
spectively, is a feasible architecture. For instance, we recall
the polytope-basis cover represented in Figure 2(b). Each
neuron in the first hidden layer represents a hyperplane in
the input space, where each neuron in the second hidden
layer represents a convex polytope (Pi or Qj) in C that is
formed by connected neurons in the first layer as depicted
in Figure 2(c).

Building upon Theorem 3.4, we can further explore the
relationship between the topological properties of a dataset
and the maximum width achievable by feasible network
architectures. Specifically, we concentrate on simplicial
complexes and Betti numbers, which are fundamental tools
for investigating the topological structure of point cloud
datasets in topological data analysis (TDA).

A simplicial j-complex is a specific type of simplicial com-
plex where the highest-dimensional simplex has dimension
j. Within a given simplicial complex K, a facet is a simplex
with the highest dimension that is not a face (subset) of
any larger simplex (Magai & Ayzenberg, 2022). With these
definitions established, we proceed by proposing a feasible
network architecture and deriving upper bounds on its width
when one class X+ forms a simplicial complex.

Theorem 3.5. Let X = X+ ∪ X− be a union of two
disjoint topological spaces, where X+ ⊂ Rd is a simpli-
cial J-complex consists of k facets. Let kj be the number
of j-dimensional facets of X+ for j = 1, · · · , J . Then,
d

σ→ d1
σ→ k → 1 is a feasible architecture on X , where d1

is bounded by

d1 ≤ min

{
k(d+ 1)− (d− 1)

⌊⌊ d−1
2 ⌋∑

j=0

kj
2

⌋
,

(d+ 1)

⌊∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj

⌋}
. (2)

The proof can be found in Appendix E.3. Theorem 3.5
reveals that the width d1 is bounded by in terms of the num-
ber of facets k of the provided simplicial complex. From a
geometric perspective, it is generally intuitive that a smaller
number of facets suggests a simpler structure of the sim-
plicial complex. This notion is mathematically expressed
in (2), which suggests that the first value in (2) results in
d1 ≲ k

2 (d+ 3), which magnifies as k increases. Similarly,
when the maximal dimension J is smaller than d

2 and k
is fixed, the summation in the second term in (2) reduces
to d1 ≲ (d + 1)

(
k J+2
d−J + 2

)
, which rapidly diminishes

as J decreases. This analysis demonstrates that a smaller
dimension J demands smaller widths, which aligns with
the intuition that the lower-dimensional manifold could be
approximated with the smaller number of neurons.

Now, we demonstrate how the result in Theorem 3.4 can be
further leveraged to ascertain a neural network architecture
with width bounds defined in terms of the Betti numbers.
The Betti number is a key metric used in TDA to denote
the number of k-dimensional ‘holes’ in a data distribution,
which are frequently employed to study the topological
characteristics of topological spaces (Naitzat et al., 2020).

4

Defining Neural Network Architecture through Polytope Structures of Datasets

Recall that Theorem 3.4 offers an upper bound on widths
when X can be depicted as a difference between two groups
of convex sets. Expanding on this, assuming the polytope-
basis cover consists of prismatic polytopes2, we can derive
a bound for network architecture in relation to its Betti
numbers. The result is concretely explained in the following
theorem.

Theorem 3.6. Let X = X+ ∪X− be a union of two disjoint
topological spaces, where X− can be separated from X+

by disjoint bounded prismatic polytopes having at most m
faces. Let βk be the k-th Betti number of the polytope-basis
cover. Then, the following three-layer architecture

d
σ→

(
m+ 2(β0 − 1) +

d∑
k=1

(m− 2(d− k − 1))βk

)

σ→

(
d∑

k=0

βk

)
→ 1 (3)

is a feasible architecture on X . Conversely, for any such
X , suppose d

σ→ d1
σ→ d2

σ→ · · · σ→ dD→1 is a feasible
architecture on X . Then, the network widths must satisfy

D∑
i=1

D∏
j=i

dj ≥ 2

d∑
k=0

βk − 2. (4)

The proof is provided in Appendix E.4. One of the impor-
tant implications of Theorem 3.6 is the upper and lower
bounds on network widths in terms of the Betti numbers
of X , which reveals the interplay between the topological
characteristics of the dataset and network architectures. In
Appendix, we also show in Proposition F.2 that topological
property alone cannot determine the feasible architecture,
highlighting the significance of prismatic polytopes assump-
tion in Theorem 3.6. In other words, the result in Proposition
F.2 implies that the geometrical assumptions in this theorem
are indispensable to connecting topological features with
bounds on the network widths.

Interestingly, the sum of Betti numbers
∑d

k=0 βk which
appears in the third layer in (3), is often called the topo-
logical complexity of X . This quantity is recognized as a
measure of the complexity of a given topological space in
some previous works (Bianchini & Scarselli, 2014; Naitzat
et al., 2020), and can be bounded by Morse theory (Milnor
et al., 1963) or Gromov’s Betti number Theorem (Gromov,
1981).

Furthermore, the lower bound on widths (4) shows that the
sum of product of widths should be greater than the sum of
Betti numbers. This finding also confirms the increased sig-
nificance of widths in deeper layers as compared to earlier

2For the formal definition of prismatic polytopes, see Appendix
E.4

ones, highlighting the advantageous impact of depth in net-
work architecture. It also verifies that the contribution of the
width in deeper layers holds greater significance compared
to previous layers, i.e., the positive effect of depth.

3.2. Polytope-Basis Cover Search Algorithm

So far, we have demonstrated how feasible architecture
can be determined from the geometric characteristics of a
topological space X , in terms of its polytope-basis cover.
In this section, we delve into the converse scenario: given
a trained neural network on the dataset D = {(xi, yi)},
can we obtain a polytope-basis cover of D? We tackle this
question by leveraging the convexity of two-layer ReLU
networks, which has been studied in a few previous works
(Amos et al., 2017; Sivaprasad et al., 2021; Balestriero et al.,
2022) (see Appendix A for related works). Our focus also
extends to the precise computation of the number of faces.
Theorem 3.7. Let Tj and N be two-layer and three-layer
ReLU networks defined by

Tj(x) := λ+

mj∑
k=1

vjkσ(w
⊤
jkx+ bjk), ∀vjk < 0, (5)

N (x) := −1

2
λ+

J∑
j=1

ajσ(Tj(x)), ∀aj ∈ {±1} (6)

for a positive constant λ. For a given dataset D =
{(xi, yi)}, suppose N satisfies

σ(Tj(xi)) = 0 or λ, ∀xi ∈ D, ∀j ∈ [J]. (7)

Then, the collection of polytopes {Cj}j∈[J], defined by
Cj := {x ∈ Rd | Tj(x) = λ}, becomes a polytope-basis
cover of D whose accuracy is same with N .

The proof of this theorem can be found in Appendix E.5.
The constant λ in (5) and (7) is a positive scalar value deter-
mined from the ratio of labels in the dataset. In experiments,
we practically adopted λ = 5. See Appendix C.3 for further
details.

This theorem establishes that if a trained three-layer network
N defined in (6) satisfies the condition outlined in (7), then
we can derive a polytope-basis cover of the training dataset
D from N . Below, we outline two strategies we employed
to satisfy both (5) and (6) conditions.

Firstly, to meet (5), we utilize the implicit bias of gradient
descent established by Du et al. (2018, Theorem 2.1), stated
in Proposition F.5. Specifically, we initialize the network
weights to satisfy

vjk < −
√
∥wjk∥2 + b2jk ∀j ∈ [J], k ∈ [m]. (8)

Then, the implicit bias preserves the inequality (8), thus
ensures vjk < 0 for all j ∈ [J] and k ∈ [m] on the gradient
flow. This satisfies the first condition.

5

Defining Neural Network Architecture through Polytope Structures of Datasets

Figure 3. Visualization of Algorithm 1. For a given two-layer network T defined by (5), it strategically removes and scales specific
neurons of T to encapsulate the characteristics of a single convex polytope. In essence, the algorithm compresses the network to reveal
the minimal representation of a polytope structure.

(a) (b) (c)

Figure 4. A polytope-basis cover derived from a trained three-layer ReLU network defined in (6), obtained from Algorithm 1. The
decision boundary and activation boundaries4 of the trained network are depicted in (a). Each polytope corresponding to aj = +1 and
aj = −1 is illustrated in (b) and (c), respectively. The result constitutes a polytope-basis cover of the swiss roll dataset.

Secondly, to achieve (7), we introduce a novel approach
named the “compressing algorithm.” This algorithm aims
to ‘compress’ a given two-layer network Tj defined in (5)
to identify a minimal convex polytope representation. The
process is precisely outlined in Algorithm 1.

More precisely, the algorithm operates in two main steps:
1) identifying and removing a neuron that do not signifi-
cantly influence the decision boundary, and 2) amplifying
the weights to delineate the faces of the decision boundary
polytope. We illustrate the functionality of the algorithm
in Figure 3. In Figure 3(a), the red arrow highlights a neu-
ron identified as non-essential for the decision boundary.
This neuron is subsequently removed as shown in (b). Sub-
sequently, by scaling the weights (vk,wk, bk) by a factor
λscale > 1, the decision boundary shrinks into a convex
polytope with a number of faces equal to the width of T
(depicted in Figure 3(c)).

Note that a single execution of Algorithm 1 may not immedi-
ately yield the network satisfying (7). However, we prove in
Proposition C.2 that by iterating this algorithm a sufficient
number of times, the output of the algorithm always satisfies
both (5) and (7), making it suitable for the application of
Theorem 3.7. Therefore, we apply the algorithm once every

thousand iterations during the gradient descent optimization
process, and the end of whole training. It is precisely de-
scribed in Algorithm 2 in Appendix C.1. We additionally
mention that Algorithm 1 is compatible with non-pretrained
networks, although this flexibility may come at the cost of
increased training time.

Consequently, we present a polytope-basis cover of the
swiss roll dataset derived from a trained three-layer net-
work in Figure 4. The polytopes comprising the resulting
cover are visualized in Figure 4 (b) and (c). This outcome
demonstrates the polytope-basis cover inherent in the trained
network can be identified through Algorithm 1. It is worth
noting that the decision boundary and activation boundary4

displayed in Figure 4(a) is combination of several polytopes.

Lastly, we mention that we further propose two alternative
methods for obtaining a polytope-basis cover in Appendix
C. Specifically, one approach involves deriving such a cover
from any trained two-layer network (Algorithm 3), while
the other method entails training several neural networks
in order (Algorithm 4). Further details and comparisons of
these additional algorithms are provided in Appendix C.

4 For the formal definition of decision boundary (DB) and
activation boundaries (ABs), see Definition C.1 in Appendix C.

6

Defining Neural Network Architecture through Polytope Structures of Datasets

Algorithm 1 Compressing algorithm
Input: a pretrained two-layer network T defined in (5),
training dataset D = {(xi, yi)}ni=1, λscale > 1
m← the width of T
K ← ∅
for k, l ∈ [m] do

if w⊤
l xi + bl > 0 implies w⊤

k xi + bk > 0 for all
i ∈ [n] then
K ← K ∪ {k}

end if
end for
if K ̸= ∅ then

k ← argmink∈K |vk| · ∥wk∥
remove the k-th neuron (vk,wk, bk) from T
m← m− 1

end if
for k ∈ [m] do

if w⊤
k xi + bk > 0 and 0 < T (xi) < 1 for some

i ∈ [n] then
(vk,wk, bk)← λscale × (vk,wk, bk)

end if
end for
Output: T

4. Experimental Results
In Section 3, we studied the relationship between the dataset
geometry and neural network architectures. In this section,
we provide two empirical results: 1) gradient descent indeed
converges to the networks we unveil, and 2) we can investi-
gate the geometric features of high-dimensional real-world
datasets through our proposed algorithm.

4.1. Convergence on Polytope-Basis Covers

We begin by demonstrating that gradient descent indeed
converges to the networks we proposed in the preceding sec-
tion, without additional regularization terms. We consider
two illustrative topological spaces, X1 and X2, as depicted
in Figure 5. X1 represents a simplicial 2-complex in R2,
comprising two triangles, while X2 is a hexagon with a pen-
tagonal hole, possessing a straightforward polytope-basis
cover. The objective is to classify points within these spaces
in R2 against others. We evaluate the performance for two
loss functions, which are the mean squared error (MSE) loss
and the binary cross entropy (BCE) loss functions. For the
BCE loss, we applied SIG on the last layer.

For the first dataset X1, Theorem 3.5 suggests that 2 σ→
6

σ→ 2 → 1 is a feasible architecture on X1. To facilitate
a clearer examination of weight vectors in each layer, we
plot the activation boundaries4 in blue (the 1st hidden layer)
and red (the 2nd hidden layer) colors, where the gray color
denotes the decision boundary of the converged network.

Figure 5. Experimental verification of convergence of gradient de-
scent. Two columns exhibit the shape of two topological spaces,
which are ‘two triangles’ and ‘a hexagon with a pentagon hole.’
The second and third row show the converged networks by gradient
descent under the BCE loss and the MSE loss, respectively. The
first layer (blue) and second layer (red) represent the hyperplane
and polytopes, respectively, described in Section 3.

The weight vectors in the first layer accurately enclose the
two triangles, reflecting the geometrical shape of X1. Simi-
larly, for the second dataset X2, Theorem 3.4 suggests that
2

σ→ 11
σ→ 2 → 1 is a feasible architecture . Specifically,

the eleven neurons in the first layer correspond to the eleven
hyperplanes delineating the boundaries of the outer hexagon
and the inner pentagon, while two neurons in the second
hidden layer align with the two polygons. These outcomes
precisely correspond to our network constructions depicted
in Figure 2(b, c).

We conclude this section by providing theoretical insights
into the convergence behavior of gradient descent. In Ap-
pendix D, utilizing our explicit construction of neural net-
works, we construct an explicit path that loss strictly de-
creases to zero (the global minima), when the network is
initialized close to the target polytope (see Theorem D.3).
The specific conditions governing the initialization region
are described in terms of the distribution of the dataset along
the convex polytope. Although this result does not mean
that gradient descent must converge to the global minimum
but only guarantees the existence of such a path, it is strong
evidence for the convergence to the global minima. For a
thorough understanding and precise statements, we refer
readers to Appendix D.

7

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b)

Figure 6. Illustration of a polytope-basis cover of the real datasets. (a) The class {0} of MNIST can be separated by a single convex
polytope with four faces, while the complement class {0}c can be separated with three faces. (b) The class {0} of Fashion-MNIST can be
separated by the difference of two polytopes, one of which contains similar images. Other classes also have simple polytope-basis covers
as described in Table 1.

4.2. Polytope-Basis Cover for Real Datasets

Here, we delve into the polytope-basis cover analysis of
three real-world datasets: MNIST, Fashion-MNIST, and CI-
FAR10. We focus on binary classification tasks, specifically
distinguishing one class from all other classes to obtain
a polytope-basis cover of the class. For every class, we
also consider its complement, denoted as {class}c. We em-
ployed Algorithm 2 to get the minimal polytope achieving
99.99% accuracy on the union of the training and test sets.

Our empirical results are presented in Table 1. Each column
in the table corresponds to a class in the dataset, where each
row presents the type of the class. The values in the table
denotes the number of polytopes and their faces (we use
notation a+b to denote two polytopes with a and b faces,
respectively). For instance, the value in the first row and
the first column shows that the {0} class images in MNIST
dataset can be distinguished from other classes by a single
convex polytope with four faces. On the other hand, the
second row in the first column shows that the complement
of the class, namely {0}c := {1, 2, 3, 4, 5, 6, 7, 8, 9}, can be
separated from {0} by a convex polytope with three faces,
as illustrated in Figure 6(a).

For Fashion-MNIST and CIFAR10 datasets, certain classes
that cannot be covered by a convex polytope with less than
30 faces are covered by two polytopes. Figure 6(b) visually
illustrates the classification of the class {0} in Fashion-
MNIST, accomplished through the difference of two poly-
topes. In the case of CIFAR10 dataset, the number of
faces in the polytopes tends to be higher compared to other
datasets, consistent with the expectation that CIFAR10 ex-
hibits a more intricate geometric structure than MNIST or
Fashion-MNIST.

Furthermore, we identify the geometric complexity of each
class from Table 1. In Fashion-MNIST, the complement of
the class in {0, 2, 3, 4, 6} prominently require more faces
than other classes, and they all pertain to top clothes and

Class
Datasets 0 1 2 3 4 5 6 7 8 9

MNIST {class} 4 4 7 8 5 7 4 8 8 7

{class}c 3 3 4 5 4 5 4 4 9 9

Fashion-
MNIST

{class} 9+3 4 9+5 9+3 9+6 8 9+7 9+1 6 10

{class}c 16 3 22 11 20 4 28 6 4 5

CIFAR10 {class} 29+3 19 23+3 24+4 19 16+3 21 21 18 21

{class}c 29 7 27+3 26 26+4 17 13 10 20+4 8

Table 1. Polytope-basis covers of each class in MNIST, Fashion-
MNIST, and CIFAR10 datasets. Here, a+b denotes two polytopes
with a and b faces. For certain classes that cannot be covered by a
single convex polytope with less than 30 faces, a second polytope
is additionally computed. Overall, each class of real-world datasets
can be covered by at most two polytopes, indicating the geometric
simplicity of real datasets.

share visual similarities (Figure 6(b)). Furthermore, it fails
to find a single convex polytope cover of {0} (with less
than 30 faces) since the obtained polytope always contains
many images in {2, 3, 4, 6} classes as illustrated in Fig-
ure 6(b). In contrast, the class {1} and its complement {1}c
are separated by the fewest faces, suggesting they are less
entangled with other classes. This observation is consistent
with the distinctive, unique shape of the “Trouser” class in
Fashion-MNIST dataset. This result highlights how neu-
ral networks can be utilized as a tool for quantifying the
geometric complexity of datasets. We provide additional
interesting empirical examples in Appendix B.

We further investigate the uniqueness of the obtained poly-
tope covers in MNIST dataset. When Algorithm 1 is applied
to networks initialized with small norm, the obtained cov-
ers exhibit noticeable similarity. For MNIST class {0}, we
compute two distinct covering polytopes C0 and C̃0 with
four faces. In Figure 7(a), the weight vectors wi of these
covers are visualized, and the angles between the vectors of
these two polytopes are displayed. It is easily verified that
there is a clear one-to-one correspondence between vectors
in the two polytopes, both visually and numerically.

8

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b)

Figure 7. Visualization of two polytope covers for MNIST classes {0} and {8}. (a) The four faces of two distinct polytope covers for
class {0} in the MNIST dataset are depicted. (b) The eight faces of two distinct polytope covers for class {8} in the MNIST dataset are
depicted. The distribution of angles between the vectors in two polytope covers are plotted on the right panel.

For MNIST class {8}, which has a polytope cover with eight
faces, a similar result is provided in Figure 7(b). Although
the correspondence is slightly weaker than that of class {0}
due to the increased number of faces, most vectors still
exhibit a strong one-to-one correspondence. From this, it
can be seen that Algorithm 1 experimentally provides a
unique polytope cover, offering further epexegetic support
for the geometric simplicity of MNIST dataset.

Now, we provide feasible architectures for multi-class clas-
sifier for real datasets. By combining the results in Table
1 with Theorem 3.4, we can ascertain the feasible archi-
tectures of these datasets, based on their geometric char-
acteristics. Note that this is the first result on the minimal
network architectures that can completely classify the given
datasets, utilizing the geometric features of the datasets. It
is provided in the remark below.
Remark 4.1. Adopting the covering polytopes with minimal
number in Table 1 for each class, we deduce that

MNIST : 784
σ→ 47

σ→ 10→ 10

Fashion-MNIST : 784
σ→ 90

σ→ 14→ 10

CIFAR10 : 3072
σ→ 178

σ→ 12→ 10

are feasible architectures for these datasets. Furthermore,
the second and third weight matrices in these networks are
highly sparse, as demonstrated in the proof of Theorem 3.4
and illustrated in Figure 2(c).

It is worth noting that our findings stem from Algorithm 1,
which selectively removes and adjusts neurons within the
network. Given the sparse connectivity observed in these
networks, we anticipate an inherent connection between
our results and the Lottery Ticket Hypothesis (Frankle &
Carbin, 2018; Malach et al., 2020). In other words, the
sparse pruned neural networks suggested in Remark 4.1 can
be understood as an example of the ‘winning ticket’ in LTH
that is explicitly constructed.

Additionally, our results offer another perspective on under-
standing LTH. For instance, the assumptions in Theorem

3.7 shed light on the significance of masked and unmasked
weights, and why maintaining the sign of weight values is
important (Zhou et al., 2019). Specifically, the unmasked
weights can be associated with the connection of faces to
polytopes, and preserving the signs is crucial for maintain-
ing the convex structure of these polytopes, as specified in
(5) and (7). We hope our study contributes to future research
efforts aimed at elucidating the principles underlying LTH.

5. Conclusion
In this paper, we investigated the geometric characteristics
of datasets and neural network architecture. Specifically,
we established both upper and lower bounds on the neces-
sary widths of network architectures for classifying given
data manifolds, relying on its polytope-basis cover. Further-
more, we extended these insights to simplicial complexes
or spaces consisting of prismatic polytopes, shedding light
on how the width bound varies in response to the com-
plexity of the dataset. Conversely, we also demonstrated
that the polytope structure of datasets can be inspected by
training neural networks. We proposed such an algorithm,
and our experimental results unveiled that each class within
MNIST, Fashion-MNIST, and CIFAR10 datasets can be dis-
tinguished by at most two polytopes, implying geometric
simplicity of real-world datasets. We further analyzed that
the number of faces in the polytope serves as an indicator
of the geometric complexity of each class. Our empirical
investigations unveil that neural network indeed converges
to a polytope-basis cover of dataset, and conversely, it is
possible to inspect geometrical features of the dataset from
trained neural networks.

Limitations and future work. The optimality of the
polytope-basis cover obtained by Algorithm 1 has not been
clarified, which remains an interesting avenue for future
research. Furthermore, while we only considered fully-
connected networks in this work, it is desired to investigate
the geometry in other network architectures like convolu-
tional neural networks (CNNs).

9

Defining Neural Network Architecture through Polytope Structures of Datasets

Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT, Ministry of
Science and ICT) (No. 2022-0-00984, Development of
Artificial Intelligence Technology for Personalized Plug-
and-Play Explanation and Verification of Explanation), by
National Research Foundation of Korea(NRF) (**RS-2023-
00262527**), by Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2019-0-00075,
Artificial Intelligence Graduate School Program(KAIST)),
and by the National Research Foundation of Korea under
Grant RS-2024-00336454

Impact Statement
This paper presents work on describing the polytope struc-
ture in deep ReLU networks. This framework provides in-
sights into the geometric roles of neurons and layers, poten-
tially leading to a deeper understanding of high-dimensional
dataset geometry and polytope structure of deep ReLU net-
works. The proposed approach may contribute to investigat-
ing data representation, the geometry of feature spaces, and
understanding LTH. Lastly, there are no potential societal
consequences of this work.

References
Alfarra, M., Bibi, A., Hammoud, H., Gaafar, M., and

Ghanem, B. On the decision boundaries of neural net-
works: A tropical geometry perspective. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45
(4):5027–5037, 2022.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-
works. In International Conference on Machine Learning,
pp. 146–155. PMLR, 2017.

Astorino, A. and Gaudioso, M. Polyhedral separability
through successive lp. Journal of Optimization theory
and applications, 112(2):265–293, 2002.

Balestriero, R., Wang, Z., and Baraniuk, R. G. Deephull:
Fast convex hull approximation in high dimensions. In
ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
3888–3892. IEEE, 2022.

Barannikov, S., Trofimov, I., Sotnikov, G., Trimbach, E.,
Korotin, A., Filippov, A., and Burnaev, E. Manifold
topology divergence: a framework for comparing data
manifolds. Advances in Neural Information Processing
Systems, 34:7294–7305, 2021.

Barannikov, S., Trofimov, I., Balabin, N., and Burnaev,
E. Representation topology divergence: A method for
comparing neural network representations. Proceedings
of Machine Learning Research, 162:1607–1626, 2022.

Beise, H.-P., Da Cruz, S. D., and Schröder, U. On decision
regions of narrow deep neural networks. Neural Networks,
140:121–129, 2021.

Beltran-Royo, C., Llopis-Ibor, L., Pantrigo, J. J., and
Ramı́rez, I. Dc neural networks avoid overfitting in one-
dimensional nonlinear regression. Knowledge-Based Sys-
tems, 283:111154, 2024.

Berzins, A. Polyhedral complex extraction from relu net-
works using edge subdivision. In International Confer-
ence on Machine Learning, pp. 2234–2244. PMLR, 2023.

Bianchini, M. and Scarselli, F. On the complexity of neural
network classifiers: A comparison between shallow and
deep architectures. IEEE transactions on neural networks
and learning systems, 25(8):1553–1565, 2014.

Birdal, T., Lou, A., Guibas, L. J., and Simsekli, U. Intrin-
sic dimension, persistent homology and generalization in
neural networks. Advances in Neural Information Pro-
cessing Systems, 34:6776–6789, 2021.

Black, S., Sharkey, L., Grinsztajn, L., Winsor, E., Braun,
D., Merizian, J., Parker, K., Guevara, C. R., Millidge, B.,
Alfour, G., et al. Interpreting neural networks through the
polytope lens. arXiv preprint arXiv:2211.12312, 2022.

Buchanan, S., Gilboa, D., and Wright, J. Deep networks
and the multiple manifold problem. In International
Conference on Learning Representations, 2020.

Bünning, F., Schalbetter, A., Aboudonia, A., de Badyn,
M. H., Heer, P., and Lygeros, J. Input convex neural
networks for building mpc. In Learning for Dynamics
and Control, pp. 251–262. PMLR, 2021.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song,
D. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th USENIX Se-
curity Symposium (USENIX Security 19), pp. 267–284,
2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlsson, S. Geometry of deep convolutional networks.
arXiv preprint arXiv:1905.08922, 2019.

10

Defining Neural Network Architecture through Polytope Structures of Datasets

Chen, M., Jiang, H., Liao, W., and Zhao, T. Nonparametric
regression on low-dimensional manifolds using deep relu
networks: Function approximation and statistical recov-
ery. Information and Inference: A Journal of the IMA, 11
(4):1203–1253, 2022.

Chen, Y., Shi, Y., and Zhang, B. Input convex neural net-
works for optimal voltage regulation. arXiv preprint
arXiv:2002.08684, 2020.

Cohen, U., Chung, S., Lee, D. D., and Sompolinsky, H.
Separability and geometry of object manifolds in deep
neural networks. Nature communications, 11(1):746,
2020.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Dirksen, S., Genzel, M., Jacques, L., and Stollenwerk, A.
The separation capacity of random neural networks. The
Journal of Machine Learning Research, 23(1):13924–
13970, 2022.

Du, S. S., Hu, W., and Lee, J. D. Algorithmic regulariza-
tion in learning deep homogeneous models: Layers are
automatically balanced. Advances in neural information
processing systems, 31, 2018.

Fan, F.-L., Huang, W., Zhong, X., Ruan, L., Zeng, T.,
Xiong, H., and Wang, F. Deep relu networks have surpris-
ingly simple polytopes. arXiv preprint arXiv:2305.09145,
2023.

Fan, J., Taghvaei, A., and Chen, Y. Scalable computations of
wasserstein barycenter via input convex neural networks.
In International Conference on Machine Learning, pp.
1571–1581. PMLR, 2021.

Fawzi, A., Moosavi-Dezfooli, S.-M., Frossard, P., and
Soatto, S. Empirical study of the topology and geometry
of deep networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
3762–3770, 2018.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2018.

Goldt, S., Mézard, M., Krzakala, F., and Zdeborová, L.
Modeling the influence of data structure on learning in
neural networks: The hidden manifold model. Physical
Review X, 10(4):041044, 2020.

Gorban, A. N. and Tyukin, I. Y. Blessing of dimensionality:
mathematical foundations of the statistical physics of
data. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 376
(2118):20170237, 2018.

Grigsby, J. E. and Lindsey, K. On transversality of bent
hyperplane arrangements and the topological expressive-
ness of relu neural networks. SIAM Journal on Applied
Algebra and Geometry, 6(2):216–242, 2022.

Gromov, M. Curvature, diameter and betti numbers. Com-
mentarii Mathematici Helvetici, 56:179–195, 1981.

Haase, C. A., Hertrich, C., and Loho, G. Lower bounds
on the depth of integral relu neural networks via lattice
polytopes. In The Eleventh International Conference on
Learning Representations, 2022.

Haim, N., Vardi, G., Yehudai, G., Shamir, O., and Irani, M.
Reconstructing training data from trained neural networks.
Advances in Neural Information Processing Systems, 35:
22911–22924, 2022.

Hajij, M. and Istvan, K. A topological framework for deep
learning. arXiv preprint arXiv:2008.13697, 2020.

Hajij, M. and Istvan, K. Topological deep learning: Classifi-
cation neural networks. arXiv preprint arXiv:2102.08354,
2021.

Hanin, B. and Rolnick, D. Deep relu networks have sur-
prisingly few activation patterns. Advances in neural
information processing systems, 32, 2019.

Hannouch, K. M. and Chalup, S. Topology estimation
of simulated 4d image data by combining downscal-
ing and convolutional neural networks. arXiv preprint
arXiv:2306.14442, 2023.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Huchette, J., Muñoz, G., Serra, T., and Tsay, C. When
deep learning meets polyhedral theory: A survey. arXiv
preprint arXiv:2305.00241, 2023.

Kantchelian, A., Tschantz, M. C., Huang, L., Bartlett, P. L.,
Joseph, A. D., and Tygar, J. D. Large-margin convex
polytope machine. Advances in Neural Information Pro-
cessing Systems, 27, 2014.

Kim, K., Kim, J., Zaheer, M., Kim, J., Chazal, F., and
Wasserman, L. Pllay: Efficient topological layer based on
persistent landscapes. Advances in Neural Information
Processing Systems, 33:15965–15977, 2020.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measur-
ing the intrinsic dimension of objective landscapes. In
International Conference on Learning Representations,
2018.

Liu, Y., Cole, C. M., Peterson, C., and Kirby, M. Relu
neural networks, polyhedral decompositions, and persis-
tent homology. In Topological, Algebraic and Geometric
Learning Workshops 2023, pp. 455–468. PMLR, 2023.

11

Defining Neural Network Architecture through Polytope Structures of Datasets

Magai, G. and Ayzenberg, A. Topology and geome-
try of data manifold in deep learning. arXiv preprint
arXiv:2204.08624, 2022.

Makkuva, A., Taghvaei, A., Oh, S., and Lee, J. Optimal
transport mapping via input convex neural networks. In
International Conference on Machine Learning, pp. 6672–
6681. PMLR, 2020.

Malach, E., Yehudai, G., Shalev-Schwartz, S., and Shamir,
O. Proving the lottery ticket hypothesis: Pruning is all you
need. In International Conference on Machine Learning,
pp. 6682–6691. PMLR, 2020.

Manwani, N. and Sastry, P. Learning polyhedral classifiers
using logistic function. In Proceedings of 2nd Asian Con-
ference on Machine Learning, pp. 17–30. JMLR Work-
shop and Conference Proceedings, 2010.

Masden, M. Algorithmic determination of the combinatorial
structure of the linear regions of relu neural networks.
arXiv preprint arXiv:2207.07696, 2022.

Milnor, J. W., Spivak, M., Wells, R., and Wells, R. Morse
theory. Princeton university press, 1963.

Naitzat, G., Zhitnikov, A., and Lim, L.-H. Topology of
deep neural networks. The Journal of Machine Learning
Research, 21(1):7503–7542, 2020.

Park, S., Yun, C., Lee, J., and Shin, J. Minimum width for
universal approximation. In International Conference on
Learning Representations, 2020.

Paul, R. and Chalup, S. Estimating betti numbers using
deep learning. In 2019 International Joint Conference on
Neural Networks (IJCNN), pp. 1–7. IEEE, 2019.

Pestov, V. Is the k-nn classifier in high dimensions affected
by the curse of dimensionality? Computers & Mathemat-
ics with Applications, 65(10):1427–1437, 2013.

Piwek, P., Klukowski, A., and Hu, T. Exact count of bound-
ary pieces of relu classifiers: Towards the proper complex-
ity measure for classification. In Uncertainty in Artificial
Intelligence, pp. 1673–1683. PMLR, 2023.

Rolnick, D. and Kording, K. Reverse-engineering deep
relu networks. In International Conference on Machine
Learning, pp. 8178–8187. PMLR, 2020.

Rudin, W. et al. Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York, 1976.

Sankaranarayanan, P. and Rengaswamy, R. Cdinn–convex
difference neural networks. Neurocomputing, 495:153–
168, 2022.

Sivaprasad, S., Singh, A., Manwani, N., and Gandhi, V.
The curious case of convex neural networks. In Machine
Learning and Knowledge Discovery in Databases. Re-
search Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part
I 21, pp. 738–754. Springer, 2021.

Telgarsky, M. Representation benefits of deep feedforward
networks. arXiv preprint arXiv:1509.08101, 2015.

Tiwari, S. and Konidaris, G. Effects of data geometry in
early deep learning. Advances in Neural Information
Processing Systems, 35:30099–30113, 2022.

Vallin, J., Larsson, K., and Larson, M. G. The geometric
structure of fully-connected relu-layers. arXiv preprint
arXiv:2310.03482, 2023.

Vincent, J. A. and Schwager, M. Reachable polyhedral
marching (rpm): An exact analysis tool for deep-learned
control systems. arXiv preprint arXiv:2210.08339, 2022.

Wang, T., Buchanan, S., Gilboa, D., and Wright, J. Deep
networks provably classify data on curves. Advances in
neural information processing systems, 34:28940–28953,
2021.

Xu, S., Vaughan, J., Chen, J., Zhang, A., and Sudjianto, A.
Traversing the local polytopes of relu neural networks. In
The AAAI-22 Workshop on Adversarial Machine Learning
and Beyond, 2021.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. Deconstructing
lottery tickets: Zeros, signs, and the supermask. Advances
in neural information processing systems, 32, 2019.

12

Defining Neural Network Architecture through Polytope Structures of Datasets

Appendix

Appendix A. Related Works

Appendix B. Geometric Simplicity of Real-World Datasets

Appendix C. Algorithms for Finding Polytope-Basis Covers
C.1 A Polytope-Basis Cover Derived from a Trained Three-Layer ReLU Network
C.2 A Polytope-Basis Cover Derived from a Trained Two-layer ReLU Network
C.3 An Efficient Algorithm to Find a Simple Polytope-Basis Cover
C.4 Comparison of the Proposed Algorithms.

Appendix D. Convergence on the Proposed Networks

Appendix E. Proofs
E.1 Proof of Proposition 3.1
E.2 Proof of Theorem 3.4
E.3 Proof of Theorem 3.5
E.4 Proof of Theorem 3.6
E.5 Proof of Theorem 3.7
E.6 Proof of Proposition C.2
E.7 Proof of Theorem D.3

Appendix F. Additional Propositions and Lemmas

A. Related Works
Geometric approaches to ReLU networks. Various geometric methodologies have been employed to explore the
approximation capabilities of deep ReLU networks. Hanin & Rolnick (2019), for instance, introduced the concept of bent
hyperplanes in the input space, assessing its theoretical and empirical complexities. The methodology known as the ’bent
hyperplane arrangement’ has been applied across various research domains. Notably, it has been utilized in the analysis of
decision regions (Beise et al., 2021; Grigsby & Lindsey, 2022; Black et al., 2022) or characterizing linear regions within
ReLU networks (Rolnick & Kording, 2020), which is also intricately connected to our proofs in Theorem 3.1 and 3.6.

On the other hand, there has been a burgeoning interest in investigating polytope structures induced by deep ReLU networks
(Fawzi et al., 2018; Xu et al., 2021; Alfarra et al., 2022; Vincent & Schwager, 2022; Black et al., 2022; Haase et al., 2022;
Liu et al., 2023; Fan et al., 2023; Huchette et al., 2023; Vallin et al., 2023; Piwek et al., 2023). Masden (2022) introduced
algorithms capable of extracting the polytope structure inherent in networks and deriving topological properties of the
decision boundary. Carlsson (2019) and Vallin et al. (2023) considered the pre-image of ReLU networks, characterizing the
geometric shapes of the decision boundary to gain an understanding of the polytope partitions of deep ReLU networks.

Nonetheless, there has been a scarcity of exploration into the explicit construction of neural networks for the purpose of
classifying a given dataset, as illustrated in Figure 1. In this study, we address the practical challenge of distinguishing
between the two data manifolds, and we introduce practical algorithms for constructing covering polytopes based on the
properties of ReLU networks. This approach can be considered a complementary method for investigating the approximation
capabilities of neural networks in terms of polytopes - a geometric aspect that has not been extensively explored.

Exploring input convexity in neural networks. Recent years have witnessed a surge in research dedicated to unraveling
the convexity of ReLU networks concerning their input. Crucially, it has been established that the ReLU activation function
demonstrates convexity concerning its input when composited weights are all positive (Proposition 1 in (Amos et al., 2017),
cf. Lemma F.4). This discovery led to the inception of Input Convex Neural Networks (ICNNs) by Amos et al. (2017),

13

Defining Neural Network Architecture through Polytope Structures of Datasets

a characteristic that has been effectively leveraged in various applications (Makkuva et al., 2020; Chen et al., 2020; Fan
et al., 2021; Bünning et al., 2021; Balestriero et al., 2022). Notably, Balestriero et al. (2022) applied this idea and proposed
DeepHull, the algorithm to approximate the convex hull by convex deep networks. On the other hand, Sivaprasad et al.
(2021) asserted that these convex neural networks exhibit self-regularization effects, demonstrating superior generalization
performance in specific tasks. Additionally, research has delved into representing neural networks as the difference of convex
(DC) functions (Sankaranarayanan & Rengaswamy, 2022; Piwek et al., 2023; Beltran-Royo et al., 2024). Sankaranarayanan
& Rengaswamy (2022) employed Linear Programming to optimize polyhedral DC functions, capitalizing on the piecewise
linearity induced by the ReLU activation function. (Beltran-Royo et al., 2024) showed that DC NNs have an implicit bias
avoiding overfitting in 1-D nonlinear regularization. (Sankaranarayanan & Rengaswamy, 2022) proposed a new network
architecture called Convex Difference Neural Network (CDiNN), and suggested using convex concave procedure for
optimization. These findings of previous studies suggest that investigating neural networks through the lens of differences in
convex functions holds significant potential for future research.

In this study, we decompose a trained ReLU network into the difference of several convex functions and leverage this
decomposition to induce a polytope-basis cover for a given dataset. Specifically, we employ the ICNN architectures to derive
a convex polytope cover, revealing how trained neural networks capture the geometric characteristics of the training dataset.
While Balestriero et al. (2022) explored a similar approach by minimizing the volume of the polytope as a regularizer, our
main focus is on minimizing the number of neurons to reduce a polytope with a small number of faces. Consequently,
our empirical results can be considered as an application of ICNNs to extract geometric features of datasets in terms of
polytopes.

Moreover, it is noteworthy that previous studies imposed restrictions on the weights, either by enforcing Wk ≥ 0 (Amos
et al., 2017; Sivaprasad et al., 2021) or by substituting them with squared values W 2

k ≥ 0 (Sankaranarayanan & Rengaswamy,
2022), to maintain network convexity. In contrast, we achieve this solely by adjusting the initialization conditions, leveraging
the implicit bias of gradient descent (Du et al., 2018).

Complexity of datasets and neural network architectures. Several studies have delved into the intricate relationship
between the geometric features of datasets and neural network training, often referred to as the multiple manifold problem
(Goldt et al., 2020; Buchanan et al., 2020; Wang et al., 2021; Chen et al., 2022; Tiwari & Konidaris, 2022). This problem
typically involves the binary classification of two low-dimensional manifolds by neural networks. For instance, Buchanan
et al. (2020) and Wang et al. (2021) focused on the task of distinguishing between two curves (i.e., one-dimensional
manifolds), investigating the convergence speed and generalization concerning the geometric features of the dataset.
Similarly, in the context of low-dimensional data manifolds, Tiwari & Konidaris (2022) examined the effects of data
geometry on the complexity of trained neural networks, measuring the distance to the manifold. In a related vein, Dirksen
et al. (2022) considered the separation problem with randomly initialized ReLU networks, explicitly linking required widths
to weight initialization.

Furthermore, there are other numerous empirical studies that have supported the implicit relationship between network
architecture and the geometric complexity or topological structure of the data manifold (Fawzi et al., 2018; Kim et al., 2020;
Cohen et al., 2020; Birdal et al., 2021; Barannikov et al., 2022; 2021; Naitzat et al., 2020; Hajij & Istvan, 2020; 2021; Magai
& Ayzenberg, 2022). Additionally, Li et al. (2018) empirically investigated the loss landscape to measure the intrinsic
dimension of datasets, which is deeply related to the minimal neural network architecture. These theoretical and empirical
findings suggest a high correlation between neural network architecture and the training dataset: a more complicated dataset
requires a more complex architecture.

However, a notable gap still exists in the literature when it comes to explicitly constructing a neural network in practice. For
example, as introduced in Section 1, it remains unknown which architecture of neural networks can or cannot completely
classify a given dataset with explicit construction of neural networks.

Estimating dataset characteristics from a trained network. Once a neural network is trained, it is well-established that
the trained network encapsulates information or characteristics of the training dataset (Carlini et al., 2019; 2021; Haim et al.,
2022). This phenomenon, implies that neural networks can be employed to extract information about the dataset through
the training process. From a topological perspective, Paul & Chalup (2019) introduced a method for estimating the Betti
numbers of 2D or 3D datasets using convolutional neural networks, later extended to 4D datasets by (Hannouch & Chalup,
2023). In the geometric realm, Kantchelian et al. (2014) proposed the large-margin convex polytope machine with a training
algorithm to find a convex polytope that encloses one class with a large margin. Their empirical results demonstrated that

14

Defining Neural Network Architecture through Polytope Structures of Datasets

the digit ’2’ class of MNIST has a simple convex polytope cover that generalizes well.

However, there are still opportunities for more precise investigations into the dataset geometry in terms of polytopes, which
are induced from ReLU networks. In this paper, we propose an algorithm that derives a polytope-basis cover of a given
dataset by learning neural networks, building upon our theoretical analysis. Moreover, it reveals the number of faces of the
polytopes, which can describe the geometric complexity of datasets.

Our contributions. In this paper, we harmonize diverse perspectives on neural networks, offering insights into the intrinsic
relationship between the geometric complexity of datasets and network architectures. Our focus centers on the polytope
structure induced by ReLU networks (Theorems 3.4, 3.5, 3.6). The principal contribution of our work lies in delineating
lower and upper bounds on widths within deep ReLU networks for the classification of a given dataset, drawing from the
polytope structure inherent in the data. Our theoretical results not only elucidate how the geometric complexity of a dataset
influences the required widths of neural networks but also illuminate the nuanced role of neurons in deep layers.

Furthermore, we present algorithms aimed at deriving a polytope-basis cover for given datasets, thereby highlighting the
inherent link between trained neural networks and the polytope structure of the training datasets. While prior research
(Kantchelian et al., 2014; Sivaprasad et al., 2021) merely showcased the polyhedral separability of certain classes in MNIST
or CIFAR10, we determine the exact number of faces required for covering polytopes of each class. Essentially, our work
introduces a novel methodology for exploring the intricate relationship between dataset geometry and neural networks.

B. Geometric Simplicity of Real-World Datasets
In this section, we present empirical results illustrating how the number of faces of covering polytopes reflects the geometric
characteristics of a class. Specifically, we examine a classification task under varying levels of noisy labels. We focus on the
class {1} in each dataset and manipulate the noise levels (denoted as r) across values of 0, 0.01, 0.1, 0.25, 0.5, and 0.90
while maintaining the total number of data points in the class. The noisy class with noise level r is denoted by {1}noiser .

Here we give an example: When r = 0.00, the {1}noiser=0.00 class is identical to the {1} class in Fashion-MNIST, comprising
6000 T-shirt images. As r increases, such as r = 0.01, the noised class {1}noiser=0.01 still consists of 6000 images, but only
99% of them are T-shirt images, with the remaining 1% randomly selected from other classes. Consequently, when r = 0.9,
{1}noiser=0.9 contains 600 T-shirt images and 5400 randomly selected images from other classes, i.e., totally randomly selected
images in the Fashion-MNIST dataset. The task is finding a single covering polytope that contains {1}noiser=0.9 against the
other data.

We utilize Algorithm 1 to identify a single polytope with minimal width, achieving an accuracy greater than 99.9% on the
noised dataset 5. To mitigate the randomness inherent in image selection, we compute the average value over five repetitions.
The results are presented in Table 2.

Dataset \ noise level r 0.00 0.01 0.10 0.25 0.50 0.90

MNIST class {1} 3 5.2 29.2 46.6 64.0 52.4

Fashion-MNIST class {1} 3 4.6 39.0 57.4 77.0 65.6

CIFAR10 class {1} 12 12.8 16.2 19.6 28.4 35.6

Table 2. The average number of faces required for a convex polytope to cover the noisy class {1}noise
r , with varying levels of random

labels (r). As the proportion of random labels in the class rises, there is a noticeable corresponding increase in the requisite number of
faces.

The results illustrate a positive correlation between the prevalence of noisy labels and the increasing complexity of covering
polytopes: as the level of noise rises, the requisite number of faces also increases accordingly. Specifically, Table 2
demonstrates that images within the same class can be effectively distinguished by a convex polytope with a smaller number
of faces, highlighting the inherent geometric complexity of real-world datasets.

5Note that Tables 1 and 2 employ different accuracy criteria. With a stricter criterion of 99.99% in Table 1, the identified polytopes are
likely more precise but potentially require the larger number of faces. Conversely, the looser criterion of 99.9% used in Table 2 may lead
to slightly loose polytope, but easier to identify.

15

Defining Neural Network Architecture through Polytope Structures of Datasets

Moreover, our result can demonstrate some previous works that classified these datasets using convex polytopes. Notably,
for MNIST and CIFAR10 datasets, Kantchelian et al. (2014) and Sivaprasad et al. (2021) observed that convex polytope
classifiers exhibit self-regularization effects and robustness to label noise. Our results presented in Table 2 validate this
observation based on the geometric features of the datasets: each class in the datasets inherently possesses simple geometry,
enabling convex classifiers to generalize effectively.

A particularly intriguing finding emerges when comparing the results with 50% corrupted labels (r = 0.5) to
those with fully-mixed labels (r = 0.9). Notably, for MNIST and Fashion-MNIST datasets, Table 2 suggests
that the 50% corrupted dataset is even more challenging to segregate than the fully-mixed counterpart. In other
words, a convex polytope with fewer faces must encompass the original images from the uncorrupted class {1} -
the ’digit 1 images’ in MNIST or the ’Trouser images’ in Fashion-MNIST-, necessitating a larger number of faces
for the polytope to effectively segregate them. This observation emphasizes the geometric simplicity of MNIST
and Fashion-MNIST datasets, contrasting with the behavior observed in CIFAR10, which does not exhibit this trend.

Figure 8. Although two manifolds are
polyhedrally separable, both manifolds
may not exhibit convexity.

Remark B.1. To prevent potential misunderstandings regarding the results in Table
2, we offer two insights. Firstly, in the case of the fully-mixed class (r = 0.9), it
is not surprising that an arbitrary set of points in high-dimensional space can be
separated by a single convex polytope. This phenomenon is rooted in the curse of
dimensionality, where in higher dimensions, points are inherently easier to separate
(Pestov, 2013; Gorban & Tyukin, 2018). Indeed, Table 2 illustrates that random
images in CIFAR10 are separated with fewer faces compared to other datasets.
Secondly, it’s worth noting that although two manifolds may be polyhedrally
separable, this does not necessarily imply that each manifold is convex, as depicted
in Figure 8.

C. Algorithms for Finding Polytope-basis Covers
This section delves into the inner workings of our algorithms. Each algorithm is presented with a breakdown of its steps, the
rationale behind its design, and its theoretical underpinnings. Additionally, two novel algorithms dedicated to polytope-basis
cover reduction are introduced. For clarity, the section is organized into four sections.

In Section C.1, we delve into the motivation behind Algorithm 1 and provide a comprehensive explanation of its implemen-
tation. We introduce Algorithm 3 in Section C.2, which extracts a polytope-basis cover from any trained two-layer ReLU
network. Section C.3 introduces Algorithm 4, an efficient algorithm for generating a minimal polytope-basis cover for a
given dataset. Finally, Section C.4 presents a comparative analysis of all proposed algorithms.

C.1. A Polytope-Basis Cover Derived From a Three-Layer ReLU Network

In Section 3.2, we introduced the compressing algorithm (Algorithm 1) that deforms a two-layer network to represent a
single convex polytope. Before we provide detail descriptions, we introduce some terminologies.

Definition C.1. Let N (x) := v0 +
∑m

k=1 vkσ(w
⊤
k x + bk) be a two-layer ReLU network. For each k ∈ [m], we refer

a pair (vk,wk, bk) as a neuron of N . We say a neuron σ(w⊤
k x + bk) activates (or deactivates) x if w⊤

k x + bk > 0 (or
w⊤

k x+bk < 0, respectively). The activation boundary (AB) of a neuron (vk,wk, bk) is defined by {x ∈ Rd |w⊤
k x+bk = 0}.

Similarly, the decision boundary (DB) of N is defined by the set {x ∈ Rd | N (x) = 0}.

Roughly speaking, the activation boundaries of T are non-differentiable points of T . For example, the leftmost column in
Figure 4 or 9 shows the decision boundary and activation boundaries of trained networks.

Now, we provide in-depth explanations of the algorithms introduced in the main text. Let T be a two-layer ReLU network
defined in (5), thus vk < 0 for all k ∈ [m]. Let S be the region defined by S := {x | T (x) = λ}. If it is nonempty, then it is
a convex polytope with m faces by Definition 2.1. However, its decision boundary R := {x | T (x) > 0} ⊃ S may contain
more data points than S. For the given dataset D, to achieve (7), the objective of the compressing algorithm is to achieve

R ∩ D = S ∩ D. (9)

Note that (9) directly implies (7). Below, we demonstrate a detailed examination of the compressing algorithm step-by-step,

16

Defining Neural Network Architecture through Polytope Structures of Datasets

which was briefly introduced in Section 3. The algorithm comprises two parts: 1. eliminating a redundant neuron, and 2.
scaling some neurons.

• PART 1. Eliminating a redundant neuron. The first part involves the removal of remaining redundant neurons that
may activate some data points but do not contribute significantly to the network output. Specifically, in Figure 3(a),
the neuron indicated by the red arrow does not contribute to the change of the decision boundary since the training
data points activated by this neuron already exhibit negative outputs, i.e., T (x) < 0 already. In essence, eliminating
such neurons does not significantly alter the decision boundary of T . However, although the removal of this neuron
maintains the decision boundary of T , it does affect the output value of T , consequently influencing other subnetworks
in the three-layer network N . To address this, the algorithm removes only one neuron at once, which has the smallest
value of |vk| · ∥wk∥.

• PART 2. Scaling neurons. The second part is deforming the given network to satisfy (9) by magnifying neurons.
From the definition of T (x) = λ+

∑
k vkσ(w

⊤
k x+ bk), recall that all vk < 0. If we take vk → −∞ for all k, then

the region R = {x ∈ Rd | 0 < T (x)} shrinks to the region S = {x ∈ Rd | T (x) = λ} (cf. Figure 15(b)). This is the
trick we used to figure out the minimal polytope representation of the decision region.
In this step, we just increase the magnitude of a neuron (vk,wk, bk) for k ∈ [m] if it has an activated data xi such that
Tj(x) ̸= λ. The multiplication constant is referred to λscale to (vk,wk, bk) in the algorithm. Furthermore, note also
that the updated neuron still satisfies (8), thus gradient desecent algorithm can be parallelized with keeping vk < 0. It
is noteworthy that in Figure 3(b), the decision boundary demonstrably shrinks to the polytope shown in (c).

However, removing a neuron (PART 1) and adjusting the scaling of some neurons (PART 2) will inevitably alter the
network’s output, which could potentially decrease its classification accuracy. Therefore, as highlighted in Section 3, it is
advisable to apply the compressing algorithm in conjunction with an optimization process, as outlined in Algorithm 2.

Algorithm 2 Extracting a polytope-basis cover from a three-layer ReLU network
Require: a pretrained three-layer network N (x) defined in (6), the training dataset D = {(xi, yi)}ni=1, Epochs
for epoch = 1, · · · , Epochs do

for iteration = 1, 2, · · · , 1000 do
one-step gradient descent for N under the BCE loss (14)

end for
for j = 1, · · · , J do
Tj ← COMP(Tj) ▷ the compressing algorithm (Algorithm 1)

end for
end for
if there exists i ∈ [n] and j ∈ [J] such that 0 < Tj(xi) < 1 then

repeat
Tj ← COMP(Tj) ▷ the compressing algorithm (Algorithm 1)

until σ(Tj(xi)) is either 0 or 1 for all i ∈ [n] and j ∈ [J]
end if
Output: N

Figure 4 illustrates the results obtained by applying Algorithm 2. A three-layer network N defined in (6) with J = 16
polytopes, each consisting of 20 neurons (architecture 2

σ→ 320
σ→ 16 → 1), was pre-trained on the swiss roll dataset.

Subsequently, Algorithm 1 was applied to compress each Tj with fine tuning, resulting in a compressed three-layer network
with architecture 2

σ→ 72
σ→ 16 → 1. If the obtained network still completely classify the dataset, then we can derive

the polytope basis cover by Theorem 3.4. More precisely, the polytopes defined by Cj := {x ∈ Rd | Tj(x) = λ}, the
collection of polytoeps C = {Cj}j∈[J] becomes a polytope-basis cover of the dataset, comprising these 16 polytopes of N .
The obtained polytopes are illustrated in Figure 4(b, c).

Furthermore, it is noteworthy to mention the time efficiency of both Algorithm 1 and 2. Despite the presence of multiple for
loops, these algorithms are implemented efficiently using parallel computing in PyTorch. Empirically, they demonstrate
quick performance with practical neural network widths. On a theoretical level, Proposition C.2 ensures that Algorithm 2
terminates within a finite timeframe and provides a polytope-basis cover that maintaining the accuracy of the converged
neural network N .

17

Defining Neural Network Architecture through Polytope Structures of Datasets

Figure 9. A polytope-basis cover derived by Algorithm 3 from a trained two-layer ReLU network with architecture 2
σ→ 50 → 1. The

decision boundary and all activation boundaries of the converged network are depicted in the leftmost column. The algorithm provides a
polytope-basis cover consists of 68 polytopes, and some of them are illustrated in other columns.

C.2. A Polytope-Basis Covers Derived From a Two-Layer ReLU Network

In this section, we propose another algorithm that extracts a polytope-basis cover from a trained two-layer ReLU networkN
defined in (1). First, we decompose N as the sum of convex and concave functions by aligning it according to the sign of
the weight values.

N (x) = v0 +

m∑
k=1

vkσ(w
⊤
k xk + bk)

=

(
1

2
v0 +

∑
vk>0

vkσ(w
⊤
k xk + bk)

)
+

(
1

2
v0 +

∑
vk<0

vkσ(w
⊤
k xk + bk)

)
=: N+(x) +N−(x).

Note that both N+ and N− are convex and concave functions, respectively, by Lemma F.4. Now, we consider the network
output of each data. For any xi ∈ D, we have

N (xi) > 0 ⇔ N+(xi) > −N−(xi),

N (xi) < 0 ⇔ N+(xi) < −N−(xi).

Then, we quantize these functions to derive a polytope-basis cover. With the similar idea of Lebesgue integration, we
can approximate the convex function N+(x) by a simple function. Here, the simple function means a linear combination
of indicator functions, basically considered in mathematical field like Lebesgue theory (Rudin et al., 1976). Define
M := maxx∈DN+(x). Then, for a given ε > 0, we can approximate N+(x) by

N+(x) ≈M −
∞∑
l=0

lε · 1{M−(l+1)ε<N+(x)<M−lε}(x)

= M − ε
∑

C∈CQ

1{x∈C}

where CQ is the collection of polytopes defined by Cl := {x | N+(x) < M − lε} for l = 0, 1, · · · . This decomposition can
be understood as quantization of N+(x) by slices with height ε. Moreover, the above approximation would be accurate as
ε → 0. Similarly, N−(x) can be approximated in the similar manner. The main idea to obtain a polytope-basis cover C
from N is selecting sufficiently many ε’s to quantize N+ and N−.

Empricially, we construct a polytope-basis cover from the values of N . If C is not a polytope-basis cover yet, we select
an incorrectly classified data point x̂ with the smallest confidence value, i.e., x̂ := argminxi∈D |N (xi)|. Then, we
choose an intermediate value c between N+(x̂) and N−(x̂) and add two polytopes C+ := {x | N+(x) < c} and
C− := {x | N−(x) > −c} to the polytope-basis cover C. Then, the value∣∣∣∣∣∣

∑
C∈CP

1{x∈C}(x̂)−
∑

C∈CQ

1{x∈C}(x̂)

∣∣∣∣∣∣
18

Defining Neural Network Architecture through Polytope Structures of Datasets

is decreased by one since x̂ is contained in either C+ or C−. Therefore, by repeating this process sufficiently many times,
C will correctly classify x̂. Based on this idea, we provide Algorithm 3 that extracts a polytope-basis cover from a given
trained two-layer ReLU network N .

Algorithm 3 Extracting a polytope-basis cover from a trained two-layer ReLU network
Require: a pretrained two-layer ReLU network N defined in (1), training dataset D = {(xi, yi)}ni=1

Declare the empty collections CP and CQ.
repeat

Define oi :=
∑

C∈CP

1{xi∈C} −
∑

C∈CQ

1{xi∈C} − 1
2 for all i ∈ [n].

if C is not a polytope-basis cover of D then
x̂← argmin

sgn(oi)̸=sgn(N (xi))

| N+(xi) +N−(xi) | ▷ x̂ is not correctly covered by C, and has the smallest confidence.

c← 1
2 (N+(x̂)−N−(x̂))

Add the polytope C := {x | N−(x) > −c} in CP .
Add the polytope C := {x | N+(x) < c} in CQ.
C ← CP ∪ CQ ▷ Now, x̂ is correctly covered by C.

end if
until C becomes a polytope-basis cover of D
Output: C ▷ The polytope-basis cover of D derived from N .

The result of Algorithm 3 on a two-layer ReLU network with architecture 2
σ→ 50→ 1, which is trained on the swiss roll

dataset, is illustrated in Figure 9. Specifically, the algorithm generates a polytope-basis cover of the dataset consists of 68
polytopes (CP and CQ consists of 34 polytopes, respectively). 14 polytopes in C is illustrated in 2nd column to 8th column
in Figure 9. Proposition C.2 guarantees that Algorithm 3 must terminate in finite time, and produces a polytope-basis cover
of D which has the same accuracy with the given N . Therefore, training a two-layer ReLU network to 100% accuracy on
the dataset D, Algorithm 3 allows to derive a polytope-basis cover of the given dataset.

There are some pros and cons in Algorithm 3. The advantages of the algorithm are 1. it can be applied to arbitrary two-layer
ReLU networks, and 2. it does not modify the trained network. Therefore, it unveils the inherent polytope-basis cover and
convex polytope structures in trained two-layer ReLU networks. However, two drawbacks of this algorithm are: 1. generally
it induces many polytopes in practice, and 2. the number of faces of each polytope is unknown. For a detailed comparison
with other algorithms, see Section C.4.

C.3. An Efficient Algorithm to Find a Simple Polytope-Basis Cover

In the preceding subsections, we introduced two algorithms in Sections C.1 and C.2 that extract a polytope-basis cover from
trained two-layer or three-layer ReLU networks. However, the results obtained from both algorithms, as illustrated in Figure
4 and 9, still exhibit too many polytopes on the training dataset. As demonstrated for the swiss roll dataset in Figure 1, we
have previously shown the existence of a polytope-basis cover comprising only four polytopes (refer to Figure 1 and 2).

In this section, to address the aforementioned issue, we present an efficient algorithm designed to find a polytope-basis cover
with a reduced number of polytopes. This algorithm is outlined in Algorithm 4. The key distinction of this algorithm from
the previous ones is that it does not derive a polytope cover from a trained network. Instead, it sequentially identifies a
convex polytope by training several two-layer ReLU networks defined in (5). Consequently, this algorithm only requires
access to the training dataset.

Before we demonstrate the algorithm, we provide modified network and loss functions. Specifically, we consider the
following two types of two-layer ReLU networks. Here, λbias > 0 is a hyperparameter that enhances the convergences as
introduced in (5).

T+(x) := λbias +
m∑

k=1

vkσ(w
⊤
k x+ bk), ∀vk < 0 (10)

T−(x) := −λbias +

m∑
k=1

vkσ(w
⊤
k x+ bk), ∀vk > 0 (11)

19

Defining Neural Network Architecture through Polytope Structures of Datasets

If λbias is large, then T+ has a large output value at initialization, and gradient descent optimization is heavily affected by
data with 0 labels. A similar situation happens for T−, and it helps to find a single polytope that contains whole class data.
Practically, it is enough to use λbias = 5 to find such polytopes.

The modified loss function is defined by

LBCE,λ(Θ) := − 1

|D0|
∑
yi=0

λ0 · ℓ (SIG ◦ T (xi), yi)−
1

|D1|
∑
yi=1

λ1 · ℓ (SIG ◦ T (xi), yi) (12)

where λ = (λ0, λ1) is the hyperparameter proposed to reinforce to cover a whole data class with specific label. For instance,
by using a large value of λ1, T can be trained to cover whole data points that have label yi = 1. After successfully
configuring the first polytope C1, we train the second network T2 to distinguish data points of another data class, yi = 0, in
the obtained polytope C1. Repeating this process alternatively, Algorithm 4 generally provides a polytope-basis cover with a
small number of polytopes.

Now, we provide a detailed illustration of the algorithm’s functionality with the example displayed in Figure 10. Here
we use λbias = 5, and λ = (1, 10). First, the algorithm trains T1 on the entire dataset D using the loss function in (12).
After fine-tuning through Algorithm 2, we obtain the first polytope C1 displayed in Figure 10(b). Note that all orange data
points (D1) are contained in C1. Next, the second network T2 is trained on (D0 ∩ C1) ∪ D1 using (12) with λ = (1, 10).
T2 is aimed to cover all blue data points (D0) within C1. After training and fine-tuning, we obtain the second polytope C2

displayed in Figure 10(c). Similarly, we can find the third polytope C3 by training another network T3 on D0 ∪ (D1 ∩ C2),
displayed in Figure 10(d) and so on. In the example in Figure 10, a total of four polytopes are obtained, and visualized
through (b) to (e). Lastly, by Theorem 3.4, we can construct a three-layer ReLU network with architecture 2 σ→ 17

σ→ 4→ 1
that can completely classify this swiss roll dataset, based on the obtained polytope-basis cover. The decision boundary of the
constructed three-layer ReLU network is illustrated in Figure 10(f).

The key advantage of this algorithm lies in its ability to generate a small number of convex polytopes, in contrast to other
algorithms we proposed. As demonstrated in Figure 10, it suggests 2 σ→ 17

σ→ 4 → 1 as a feasible architecture on the
given swiss roll dataset, which appears to be close to optimal. However, due to the iterative nature of training multiple
two-layer networks until achieving a complete polytope-basis cover, it typically requires a longer computation time. A
detailed comparison with other algorithms is provided in the subsequent section.

C.4. Comparison of the Proposed Algorithms

Finally, we compare the proposed algorithms (Algorithm 1, 2, 3, and 4). First, we provide theoretical results for the proposed
algorithms, where their proofs involve demonstrating how a polytope-basis cover can be explicitly constructed from the
results of the algorithms. The detailed proof is available in Appendix E.6.

Proposition C.2. The following statements hold.

1. Let T be a network produced by repeating Algorithm 1 sufficiently many times. Then, it satisfies both (5) and (7).

2. Algorithm 2 must terminate in finite time, and it produces a polytope-basis cover of the training dataset D that has the
same accuracy with the compressed network N .

3. Algorithm 3 must terminate in finite time, and it produces a polytope-basis cover of the training dataset D that has the
same accuracy with the given network N .

4. If Algorithm 4 terminates in finite time, then it produces a polytope-basis cover of the training dataset D.

The comparison of proposed algorithms is summarized in Table C.4. Below, we discuss the differences of algorithms for
each item in Table C.4.

• Input network. Algorithm 2 operates on a pretrained three-layer network outlined in (6). Algorithm 3 necessitates a
fully-trained two-layer ReLU network specified by (1). However, Algorithm 4 does not necessitate any pre-existing
networks as inputs but generates polytope covers through the training of several two-layer ReLU networks as per (5).

20

Defining Neural Network Architecture through Polytope Structures of Datasets

Algorithm 4 An efficient algorithm for finding a polytope-basis cover
Require: training dataset D = D0 ∪ D1 = {(xi, yi)}ni=1, hyperparameter λ = (λ0, λ1), accth, λbias, width
CP ← ∅, CQ ← ∅.
m← width
repeat

repeat
Initialize T+ defined in (10).
Train T+ on the dataset D ∩ CcP by gradient descent, under the modified BCE loss (12).
Fine tune the trained T+ by Algorithm 2.
if T+(x) ̸= λbias for some x ∈ D1 ∩ CcP then
m← m+ 1

end if
until T+(x) = λbias for all x ∈ D1 ∩ CcP
A← {x ∈ Rd | T+(x) = λbias} ▷ This is a polytope covering D1 ∩ CcP
Add A in CP
m← width
repeat

Initialize T− defined in (11).
Train T− on D ∩ CcQ by gradient descent, under the modified BCE loss (12).
Fine tune the trained T− by Algorithm 2.
if T−(x) ̸= −λbias for some x ∈ D0 ∩ CcQ then

m← m+ 1
end if

until T−(x) = −λbias for all x ∈ D0 ∩ CcQ
A← {x ∈ Rd | T−(x) = −λbias} ▷ This is a polytope covering D0 ∩ CcQ
Add A in CQ
C ← CP ∪ CQ

until C becomes a polytope-basis cover of D with accuracy greater than accth
Output: C

21

Defining Neural Network Architecture through Polytope Structures of Datasets

Figure 10. The result of Algorithm 4. For the given dataset (a), the algorithm determines the first polytope C1 which contains the whole
orange class, as shown in (b). In the next step, it obtains the second polytope C2 which contains the whole blue class inside C1. Other
polytopes are similarly derived and illustrated in (c) to (e). Totally, the algorithm produces a polytope-basis cover consisting of four
polytopes. Theorem 3.4 shows that 2 σ→ 17

σ→ 4 → 1 is a feasible architecture on this dataset, and the decision boundary of the induced
network is drawn in (f).

• The number of polytopes and faces. As detailed in Appendix C.2, Algorithm 3 generally yields multiple polytopes to
correctly cover all data points in the dataset. Additionally, it does not calculate the precise number of faces for each
polytope. In contrast, Algorithm 2 generates a polytope-basis cover by compressing the given three-layer network.
Therefore, if the three-layer network N defined in (6) is the sum of J two-layer networks (Tj), the algorithm is
guaranteed to produce a polytope-basis cover consisting of no more than J polytopes. The compressing algorithm and
Lemma F.4 provide the exact number of faces for each polytope. Thirdly, Algorithm 4 does not impose any specific
lower or upper bounds on the number of polytopes. Similar to Algorithm 2, it also furnishes the exact number of faces
for each polytope.

For instance, we recall the example on the swiss roll dataset: Figures 4, 9, and 10 illustrate that the algorithms yield 16,
68, and four polytopes, respectively. Also note that the last algorithms suggest a feasible architecture of the dataset by
2

σ→ 17
σ→ 4→ 1, which looks sufficiently minimal.

• Theoretical guarantee. Proposition C.2 guarantees that Algorithm 2 and 3 must terminate in finite time. However,
there is no theoretically guarantee for Algorithm 4. Even though, in all our experiments on synthetic and real-world
datasets, it always terminates in finite time and produces a complete polytope-basis cover for the given dataset.

• Time consumption. Since Algorithm 3 does not require fine-tuning process, it consumes the shortest time among these
algorithms. Algorithm 2 requires only fine-tuning process, so it takes a normal amount of time. However, Algorithm 4
tends to spend relatively longer time due to its iterative process of training two-layer networks with fine-tuning until
it achieves a complete polytope-basis cover. However, it is essential to note that even for real-world datasets like
CIFAR10, the practical execution time is still quite reasonable, typically taking only a few minutes.

• Accuracy of the obtained cover. The polytope-basis cover generated by Algorithm 3 preserves the accuracy of the
given network (Proposition C.2). In the case of Algorithm 2, the fine-tuning process introduces the possibility of a
different accuracy level compared to the original network. Consequently, the final accuracy cannot be determined
beforehand. Regarding Algorithm 4, its accuracy is guaranteed to be greater than the given accth if it terminates within
a finite time.

22

Defining Neural Network Architecture through Polytope Structures of Datasets

Algorithm 2 Algorithm 3 Algorithm 4

Input network a (pretrained) three-layer (6) any trained two-layer (5) -

of obtained polytopes at most J generally large generally small

of obtained faces known unknown known

Theoretical guarantee for termination yes yes no

Time consumption normal short long

Accuracy of the polytope cover unknown same with the given network > accth (if it terminates)

Table 3. Comparison of proposed algorithms. All these algorithms generate a polytope-basis cover of the given training dataset, but each
of them has its own pros and cons.

Figure 11. Synthetic datasets - XOR, two circles, and two moons.

Below, we provide additional experimental results of the proposed algorithms on several synthetic datasets, showcasing
visual differences among these algorithms. We consider three synthetic datasets: XOR, two circles, and two moons datasets,
depicted in Figure 11. The results of algorithms are shown in Figure 12, 13, and 14.

It is easily checked that our proposed algorithms indeed generate polytope-basis covers of the given datasets. In each
subfigure, the leftmost column represents the decision boundary and activation boundaries of the obtained networks, and the
other columns represent each polytope in the obtained polytope-basis cover. The obtained polytope-basis covers exhibit the
geometric characteristics of datasets, and provide feasible architectures of neural networks.
Remark C.3. Figure 14 demonstrates that ’XOR’ and ‘two circles’ datasets have single polytope covers, and ‘two moons’
dataset can be covered by two polytopes. From the obtained polytope-basis covers, the feasible architectures of these
datasets are given by

XOR : 2
σ→ 2→ 1

Two circles : 2
σ→ 4→ 1

Two moons : 2
σ→ 4

σ→ 2→ 1.

23

Defining Neural Network Architecture through Polytope Structures of Datasets

Figure 12. Visualization of Algorithm 2 on the synthetic datasets. These polytope-basis covers are derived from trained three-layer ReLU
networks (6) with the architecture 2

σ→ 80
σ→ 8 → 1 (i.e., a combination of eight two-layer networks Tj with m = 10 neurons)

24

Defining Neural Network Architecture through Polytope Structures of Datasets

Figure 13. Visualization of Algorithm 3 on the synthetic datasets. These polytope-basis covers are derived from trained two-layer ReLU
networks with the architecture 2

σ→ 20 → 1.

Figure 14. Visualization of Algorithm 4 on the synthetic datasets. Empirically, this algorithm provides the smallest number of polytopes
and their faces. The obtained polytope-basis covers can be applied to conclude the feasible architecture of neural networks (Remark C.3).

25

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b)

Figure 15. Assumptions for the dataset and the network initialization. (a) Dataset D and a convex polytope C satisfy the Assumption D.2.
(b) One example of network initialization satisfying Assumption D.2. The red line displays the decision boundary of N .

D. Convergence on the Proposed Networks
In this section, we investigate whether gradient descent can converge to the networks we proposed in the main text (cf.
Theorem 3.4). Specifically, we focus on two-layer ReLU networks, which are the basic building blocks of the constructions.
Let N be a two-layer ReLU neural network defined in (1), where Θ := {v0} ∪ {vk,wk, bk}k∈[m] denotes the set of
parameters of N . For the given dataset D = {(xi, yi)}ni=1, we consider a binary classification problem under the following
two loss functions: the mean squared error (MSE) loss and binary cross entropy (BCE) loss. They are defined by

LMSE(Θ) :=
1

2n

n∑
i=1

(
σ ◦ N (xi)− yi

)2
, (13)

LBCE(Θ) := − 1

n

n∑
i=1

ℓ
(
SIG ◦ N (xi), yi

)
(14)

where ℓ(N , y) := N y + (1−N)(1− y). Note that we introduce additional activation function σ and SIG to define both
loss functions. Specifically, we adopt additional ReLU activation on the output layer to ensure the existence of the zero-loss
solution in (13).

We now employ the notion of ‘polyhedrally separable’ dataset from the learning theory (Astorino & Gaudioso, 2002;
Manwani & Sastry, 2010), which is a special case of polytope-basis cover; when a given dataset can be separated by only
one convex polytope as depicted in Figure 15 (a).

Definition D.1. We say that the dataset D = {(xi, yi)}i∈[n] is polyhedrally separable by C if there exists a convex polytope
C such that xi ∈ C if and only if yi = 1 for all i ∈ [n].

We further introduce two notations. First, for a convex polytope C composed of m faces, we denote its k-th face by
∂Ck. Similarly, ∂2Ck denotes the boundary of ∂Ck, which refers to the ‘edge’ part of C. Second, for a set A ⊂ Rd,
#(A) := |{xi ∈ D | xi ∈ A}| denotes the number of data points xi ∈ D in A. We further need the following assumptions
on the dataset D and network initialization.

Assumption D.2 (Dataset and initialization assumptions). Suppose the dataset D is polyhedrally separable by a convex
polytope C, which consists of m faces and strictly contains the origin point. Let δ > 0 be the minimum distance between xi

and ∂C, and lk be the distance between ∂Ck and the origin point. Then, there exist constants ρ,R > 0 such that for any
k ∈ [m] and δ < r < R,

#
(
B2r(∂2Ck)

)
≤ ρ #

(
Br−δ(∂Ck)

)
. (15)

Furthermore, the parameters {(wk, bk, vk)}k∈[m] of a two-layer ReLU network N defined in (1) are initialized such that
wk are normal to ∂Ck with outward direction, and satisfying

lk −R < lk +
v0

vk ∥wk∥
< − bk

∥wk∥
< lk. (16)

The dataset assumption (15) suggests that the data points in the set Br(∂C) for small r are predominantly located in close
proximity to the faces of the polytope C, rather than its corners (Figure 15(a)). The network initialization assumption

26

Defining Neural Network Architecture through Polytope Structures of Datasets

implies that every neuron (wk, bk) of N is initialized near ∂Ck as described in Figure 15(b). With these assumptions, we
can prove the existence of a discrete path that strictly decrease the loss value to zero.

Theorem D.3. Suppose the dataset D and the two-layer network N in (1) satisfy Assumption D.2. Then,

1. for the MSE loss defined in (13), suppose v0 is initialized such that

ρ

1− ρ

4mρR2

δ2
< v0 < 1. (17)

Then, with step size η < min
{

2
δ ,

2
mR , 4ρm

(1−ρ)R

}
, there exists a discrete path that the loss value (13) strictly decreases

to zero.

2. For the BCE loss defined in (14), suppose v0 is initialized such that

0 < v0 < log

(
(1− ρ)δ

4ρR
− 1

)
. (18)

Then, with step size η < min
{
1, 4ρR

(1−ρ)δ2

}
, there exists a discrete path that the loss value (14) strictly decreases to

zero.

The proof of this theorem can be found in Appendix E.7. Theorem D.3 asserts that the loss landscape has no local minima
within this initialization region. If local minima did exist in this region, it would contradict the presence of a loss-decreasing
path from the local minima to the global minima. Consequently, this theorem provides strong evidence for the convergence
of gradient descent to the global minima.

However, it is important to note that there may still be saddle points where gradient descent could potentially get stuck.
In such cases, we believe that stochastic (noisy) gradient descent may help in escaping these saddle points and eventually
converging to the global minimum, which has zero error on the training dataset D. Therefore, the initialization conditions
described in Assumption D.2, (17), and (18) can be understood as necessary conditions for ensuring that the gradient method
converges to the global minimum.

Lastly, we mention that Theorem D.3 can be easily extended to the three-layer network (7) proposed in Theorem 3.4. For
such a three-layer network N , Theorem D.3 can be applied to each two-layer subnetwork Tj to generate the loss-decreasing
path. By combining all these paths, a unified loss-decreasing path forN is formed. This extension underscores the robustness
and generality of the convergence properties demonstrated, ensuring that even more complex network architectures retain
the desirable characteristics of gradient descent convergence.

E. Proofs
E.1. Proof of Proposition 3.1.

The proof of Proposition 3.1 is divided into two parts. Firstly, we prove the upper bound by constructing the desired neural
network. Secondly, we show the lower bound of widths.

E.1.1. THE UPPER BOUND IN PROPOSITION 3.1.

For the given convex polytope X , let h1, · · · , hm be its m hyperplanes enclosing C. Let wk be the unit normal vector of
the k-th hyperplane hk oriented inside C, as illustrated in Figure 2(a). Then the equation of the k-th hyperplane hk is given
by hk : {x | w⊤

k x+ bk = 0} for some bk ∈ R. Let Ak be the intersection of the hyperplane hk and C, which is a face of
the polytope C. Let x be any point strictly contained in C. Since wk is a unit normal vector, w⊤

k x+ bk refers the distance
between the hyperplane hk and the point x. Therefore, the d-dimensional Lebesgue measure of C is computed by

µd(C) =
1

d

m∑
k=1

(w⊤
k x+ bk) · µd−1(Ak) (19)

where µd−1 and µd refer the (d− 1) and d-dimensional Lebesgue measures, respectively. Note that (19) comes from the
volume formula of a convex polytope, which states that the volume is the sum of volume of m pyramids. Then LHS of

27

Defining Neural Network Architecture through Polytope Structures of Datasets

(19) is constant, which does not depend on the choice of x ∈ Rd. Now, we define a two-layer ReLU network T with the
architecture d

σ→ m→ 1 by

T (x) := 1 +M

(
µd(C)−

m∑
k=1

1

d
µd−1(Ak) · σ(w⊤

k x+ bk)

)
(20)

where M > 0 is a constant would be determined later. Note that we have T (x) = 1 for x ∈ C from the construction.
However, considering the negative sign, it is worth noting that the equation (19) also holds for x ̸∈ C. In particular, for
x ̸∈ C, (20) deduces

T (x) = 1 +M

(
µd(C)−

m∑
k=1

1

d
µd−1(Ak) · σ(w⊤

k x+ bk)

)

= 1 +M

µd(C)−
m∑

k=1

1

d
µd−1(Ak) · (w⊤

k x+ bk) +
∑

{k : w⊤
k x+bk<0}

1

d
µd−1(Ak) · (w⊤

k x+ bk)


= 1 +M

∑
{k : w⊤

k x+bk<0}

1

d
µd−1(Ak) · (w⊤

k x+ bk)

< 1.

Therefore, we conclude that

T (x) = 1 if x ∈ C,

T (x) < 1 otherwise.

Lastly, we determine the constant M in T to satisfy the remained property. For the given ε > 0, consider the closure of
complement of the ε

2 -neighborhood of C; D :=
(
Bε/2(C)

)c
. Then the previsous result shows that

1

M
(T (x)− 1) = µd(C)−

m∑
k=1

1

d
µd−1(Ak) · σ(w⊤

k x+ bk) (21)

is bounded above by 0. Furthermore, (21) is continuous piecewise linear, and has the maximum 0 if and only if x ∈ C.
Since D is closed and (21) is strictly bounded above by 0 on D, (21) has the finite maximum M ′ < 0 on D.

1

M
(T (x)− 1) ≤M ′ < 0 for x ∈ D.

Now, choose M to satisfy M > − 1
M ′ . Then if x ̸∈ Bε(C), we have x ∈ D, thus

T (x) = 1 +M

(
µd(C)−

m∑
k=1

1

d
µd−1(Ak) · σ(w⊤

k x+ bk)

)
≤ 1 +M ·M ′

< 0.

Therefore, we have constructed a two-layer ReLU network T with the structure d
σ→ m→ 1 such that

T (x) = 1 if x ∈ C,

T (x) < 1 if x ∈ Cc,

T (x) < 0 if x ̸∈ Bε(C).

This completes the proof on the upper bound. Lastly, the minimality of depth comes from the fact that a linear function
cannot be a feasible architecture on C. □

28

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c)

Figure 16. Proof of Proposition 3.1. (a) Given a hexagon which is approximated by three hyperplanes given with blue lines and one
polytope in the second layer given with red hexagon. (b) Given a heptagon which is approximated by four hyperplanes given with blue
lines and one polytope in the second layer given with red heptagon. (c) Hexagon has been extended to the 3-dimensional polytope by
incrementing the number of faces by 2 with some potential first layer neurons (blue hyperplanes).

E.1.2. THE LOWER BOUND IN PROPOSITION 3.1.

Before proving the lower bound, we introduce a definition of refraction points. LetN (x) := σ(v0 +
∑d1

i=1 viσ(w
⊤
i x+ bi))

be a two-layer network with architecture d
σ→ d1

σ→ 1. Then the set of refraction points is defined by

{x ∈ Rd | N (x) = 0 and w⊤
i x+ bi = 0 for some i ∈ [l].}

In other words, it is the point where the boundary of a linear partition is ‘refracted’.

Lower bound for d = 2 using only refraction points for k = 1. Assume that we are given a convex m-gon to approximate.
Considering the fact that we can approximate the neural network arbitrarily close, we can see that the approximated second
layer, i.e. neural network should have at least m refraction points in order to get the shape of a polygon. However, if we
look from the perspective of first layer neurons, each line has at most 2 intersection with m-gon and it implies that each first
layer neuron (or line) can contribute at most 2 meaningful refraction points for the next layer. If we combine above two
results, we can obtain that there should be at least

⌈
m
2

⌉
number of neurons in the first layer, in other words d1 ≥

⌈
m
2

⌉
. For

example, Figure 16(a) and (b) demonstrates the refraction points along with potential first layer hyperplanes (blue lines) and
converged polytope at the second layer (red polygon) for hexagon and heptagon, respectively.

Proof of the optimality when d = 2 for k = 1. First of all, we should note that on R2, any two convex m-gon’s given on
the general position (i.e., assume sides are non-parallel mutually) can be approximated by the same neural network (same
d1 value) considering the fact that we can find an approximator for each given error value ϵ. It implies that we can take
optimal possible number of neurons in the first layer, which we will denote by f(m) for any given convex m-gon. Let’s
prove that f(m) = ⌈m2 ⌉ for m ≥ 5 along with f(3) = f(4) = 3. The cases m = 3, 4 should be handled separately, because
we trivially need at least d+ 1 = 3 hyperplanes for any shape (Lemma F.1), so we start the base case from m ≥ 5 for d = 2.

According to the Lemma F.1, it is appearent that for any m, the inequality f(m) ≥ 3 should hold trivially. But if we consider
the Figure 16(a), we can observe that one can approximate any hexagon with 3 hyperplanes. Apparently, for any pentagon,
quadrilateral, and triangle, we can find a corresponding hexagon to include it as a subfigure and rest of the additional vertices
of this hexagon can be shrinked to be almost non-exist. It implies that, same number of hyperplanes approximating hexagon
can also approximate the polygons with m ≤ 5. This final result yields that f(m) ≤ 3 for m ≤ 6. If we combine these two
findings we can get a nice optimality at the fundamental cases, in other words f(m) = 3 for m ∈ {3, 4, 5, 6}.

Now, assume the contrary that f(m) ≤ ⌈m2 ⌉ − 1, then it is apparent that there is at least one neuron which contributes to the
refraction point of at least 2 vertices (i.e. exactly 2 vertices considering previous discussion). Now, if we remove the chosen
neuron and the associated 2 vertices and their edges, then the resulting (m − 2)-gon will be approximated by f(m) − 1
number of neurons, which implies that f(m)− 1 ≥ f(m− 2). Proceeding with the same argument, we can arrive at the
conclusion that f(5) or f(6) ≤ 2; however, we have already proven that f(5) and f(6) are indeed 3. So, the contradiction
at the base case yields the result that f(m) ≥ ⌈m2 ⌉.

For the base cases m = 5, 6, we have already demonstrated that f(5) = f(6) = 3. Now, take any m-gon which has been
approximated well with f(m) = ⌈m2 ⌉ neurons. Let’s add two new vertices to form a new convex polygon with (m+ 2)
vertices, where the newly added vertices are not adjacent. Then if we add one new neuron which is the line passing through
those two points, we can observe that if given f(m) number of neurons approximate m-gon, then f(m)+1 can approximate

29

Defining Neural Network Architecture through Polytope Structures of Datasets

(m+2)-gon by triggering 2 new refraction points. This inductive argument f(m+2) ≤ f(m)+1 yields the result that if we
start from f(5) = f(6) = 3, we can reach a conclusion that f(m) ≤ ⌈m2 ⌉. However, we have already shown f(m) ≥ ⌈m2 ⌉
in the proof above. Therefore, the result follows immediately that the optimal number of neurons in the first hidden layer to
approximate any convex polygon with m vertices is ⌈m2 ⌉ for m ≥ 5 and f(3) = f(4) = 3. □

Lower bound for arbitrary dimension d for k = 1. Now we will apply simple induction on the dimensionality to prove
the general case for lower bound on the number of first hidden layer neurons. Essentially, we will construct a d-dimensional
object for d ≥ 2 such that, one needs at least d1 ≥ ⌈m2 ⌉+ (d− 2) number of neurons (hyperplanes) to approximate the
convex polytope with l faces. We will proceed with an inductive argument,we have already provided a proof for the base
case of d = 2 that d1 ≥ ⌈m2 ⌉.

Inductive step. Suppose that we have a d-dimensional convex polytope M with v number of vertices and m number of faces
such that the following inequality should hold: d1 ≥ ⌈m2 ⌉ + (d − 2). Let’s consider the object on (d + 1)-dimensional
space by adding new entry at the end of each coordinate, i.e. any point (p1, p2, ..., pd) on the object will be replaced by the
point (p1, p2, ..., pd, 0). Then consider the new shape M ′ formed by considering the extension of convex polytope M on
(d+ 1)-dimensional space with all the points from {p = (p1, p2, ..., pd, x) | ∀x = [0, 1] and (p1, p2, ..., pd) ∈ M}. Then
M ′ will lie on (d+ 1)-dimensional space and it will have 2v vertices and (m+ 2) number of faces, of which m will be
determined by the extensions of faces of polytope M along with two faces from M and its duplicate M ′. We can also
observe the inductive incrementing idea through the Figure 16(c), in which polytope M at d = 2 with 6 faces has been
extended to the 3-dimensional polytope with 6 + 2 = 8 faces.

If we take a closer look at this construction, we can observe that if we take the intersection of each hyperplane from
d1 neurons designed for the approximation of M ′ and polytope M , then those intersections will be hyperplane for d-
dimensional polytope M . It implies that in order to approximate m faces of new polytope, the intersections themselves
should approximate the m faces of M . Furthermore, other than those m faces formed by faces of previous polytope M , we
should also consider the other 2 faces, namely M and its duplicate M ′. Those two hyperplanes will require additional 2
neurons to trigger new refraction points for their approximation. Therefore, there should be at least d1 ≥ ⌈m2 ⌉+ (d− 2)+ 2
number of neurons, in which right-hand-side can be equivalently written as ⌈m2 ⌉+ d = ⌈m+2

2 ⌉+ (d+ 1− 2). So, we were
able to prove that to have a neural network of the form d

σ→ d1
σ→ 1 to approximate the convex polytopes with m faces

arbitrarily close, then universally the value of d1 should at least ⌈m2 ⌉+ (d− 2).

The result can be also stated that for all m ≥ 2d+ 1 one can find a d-dimensional convex polytope with l faces such that the
minimum required number neurons in the first hidden layer is at least ⌈m2 ⌉ + (d − 2). For m = 2d − 1 and l = 2d, the
lower bound becomes d1 ≥ 2d− 1 as we have already described that f(3) = f(4) = 3. The lower bound on m comes from
the fact that the construction has an inductive fashion to create a new object from previous one by adding 2 new faces in
each step. For the rest of the values of number of faces m, i.e. m < 2d− 1, one can consider the trivial bound of d+ 1.
More strongly, in case of 2-dimensional space, the statement has been proven for all convex polygons that optimal value is
indeed d1 = ⌈m2 ⌉.

Generalization to arbitrary dimension d and depth k. In the context of manifold representations shaped as convex
polytopes with varying depths, we employ an inductive approach to establish lower bounds. Leveraging prior findings
on two-layer neural networks, we derive insights applicable to arbitrary dimensions d. For any given hyperplane in this
setting, a maximum of two distinct refraction points can be identified, a premise that underpins our assumption that each
second-layer neuron constitutes a polytope comprised of faces, with no more than twice the number of hyperplanes as the
first layer. This result has also been used in the proof of Theorem 3.6 and we can observe the trend from the Figure 18(c).

We transform the general case by considering the facets of second or higher-layer neurons as first-layer neurons (hyperplanes),
which represent potential refraction points. This transformation allows us to reduce the problem to a two-layer network by
decreasing the depth while augmenting the number of hyperplanes in the first layer. More precisely, for a given feasible
architecture of the form d

σ→ d1
σ→ d2

σ→ · · · σ→ dk → 1, each of d2 number of second layer neurons can contribute at most
2d1 hyperplanes along with the d1 hyperplanes in the first layer, which implies total of d1+2d1d2 = d1(2d2+1) hyperplanes.
In other words, we can transform the above network to another network d

σ→ d1(2d2 + 1)
σ→ d3

σ→ · · · σ→ dk → 1 by
reducing the depth by 1. By applying the similar process as above, we assert that initial architecture can be effectively
transformed into a more robust architecture, d σ→ d1(2d2 + 1)(2d3 + 1) . . . (2dk + 1)

σ→ 1.

Consequently, we can generalize lower bounds for convex polytope representations of varying depths, drawing on the

30

Defining Neural Network Architecture through Polytope Structures of Datasets

insights gained from our two-layer formulation. The ultimate result yields a powerful lower bound as

d1 ·
k∏

j=2

(2dj + 1) ≥


⌈
m
2

⌉
+ (d− 2), if m ≥ 2d+ 1,

2d− 1, if m = 2d− 1, 2d,

d+ 1, if m < 2d− 1.

Moreover, the above result is particularly optimal for the case of convex polygons in two dimensions, where d = 2 and
k = 1, as previously discussed. □

Remark E.1. Rigorously, the lower bound on the network width proposed in Proposition 3.1 can also be understood as
the maximum number of faces that a given network can approximate with its polytope. Conversely, to achieve the UAP
and approximate any polytope with m faces, the width of the first hidden layer must be greater than or equal to m. This is
precisely explained in Proposition F.6, which proves that the upper bound proposed in Proposition 3.1 is tight and sufficient
to satisfy the UAP.

E.2. Proof of Theorem 3.4

By Proposition 3.1, for each set A ∈ C = {P1, · · · , PnP
, Q1, · · · , QnQ

}, we can construct a two-layer ReLU network TA
with the architecture d

σ→ mA
σ→ 1 such that TA(x) = 1 for x ∈ A and TA(x) = 0 for x ̸∈ Bε(A), where mA denotes the

number of faces of A. Let ai := TPi
for i ∈ [nP] and bj := TQj

for j ∈ [nQ]. Define the output layer by

N (x) =

nP∑
i=1

ai −
nQ∑
j=1

bj −
1

2
.

Then, we obtain the desired network N which has the architecture d
σ→ m

σ→ (nP + nQ)→ 1. □

E.3. Proof of Theorem 3.5

Let X1, X2, · · · , Xk be the k facets of X . For each facet Xi, we can construct a two-layer ReLU network Ti such that
Ti(x) = 1 for x ∈ Xi and Ti(x) < 0 for x ̸∈ Bε(Xi) by Lemma F.1. Then Theorem 3.4 gives a neural network N with
the architecture d

σ→ d1
σ→ k → with d1 = k(d+ 1), therefore, it is a feasible architecture on X . The remaining goal is to

reduce the width of the first layer d1.

From the construction, we recall that d1 ≤ k(d+ 1) comes from the fact where each simplex Xi is covered by a d-simplex
which has (d+ 1) hyperplanes. Now consider two j-simplices in Rd. If 2j + 2 ≤ d+ 1, then we can connect all points
of the two j-simplices in Rd, and it becomes a (2j + 2)-simplex ∆2j+2. Now construct a d-simplex ∆d+1 by choosing
(d+1)−(2j+2) points in Bε(∆2j+2), whose base is this (2j+2)-simplex. Then, by adding two distinguishing hyperplanes
at last, we totally consume (d+ 3) hyperplanes to separate two j-simplices.

Now we apply this argument to each pair of two simplices. The above argument shows that two j-simplices separately
covered by 2(d+ 1) hyperplanes can be re-covered by (d+ 3) hyperplanes if j ≤

⌊
d−1
2

⌋
, which reduces (d− 1) number of

hyperplanes. In other words, we can save (d− 1) hyperplanes for each pair of two j-simplices whenever j ≤
⌊
d−1
2

⌋
. This

provides one improved upper bound of d1:

d1 ≤ k(d+ 1)− (d− 1)

1
2

⌊ d−1
2 ⌋∑

j=0

kj

 . (22)

Now, we consider another pairing. For 0 ≤ j ≤ J , X has kj j-simplex facets. Since each j-simplex has (j + 1) points, in

particular, a d-simplex consists of (d+ 1)-points. Therefore, all points in
⌊
d+1
j+1

⌋
many j-simplices can be contained in one

d-simplex. In this case, these j-simplices can be covered by adding
⌊
d+1
j+1

⌋
hyperplanes more. Thus if we have kj many

j-simplices, then the required number of hyperplanes to separately encapsulate the j-simplices is less than or equal to

#(the number of d-simplices) ·#(the required number of hyperplanes in each d-simplex)

31

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c)

Figure 17. The Proof of upper bounds in Theorem 3.6. (a) Some examples of prismatic polytopes. (b) X is a topological space
satisfying the assumption in Theorem 3.6. (b) The removed prismatic polytopes from X are displayed. Theorem 3.6 demonstrates that
3

σ→ 34
σ→ 7 → 1 is a feasible architecture on X .

=

 kj⌊
d+1
j+1

⌋
+ 1

 · (d+ 1 +

⌊
d+ 1

j + 1

⌋)

≤
(
kj

j + 1

d− j
+ 1

)
·
(
d+ 1 +

d+ 1

j + 1

)
< (d+ 1)

(
j + 2

j + 1

)(
kj

j + 1

d− j
+ 1

)
= (d+ 1)

(
kj

j + 2

d− j
+

j + 2

j + 1

)
(23)

where the inequality is reduced from the property of the floor function: a− 1 < ⌊a⌋ ≤ a < ⌊a⌋+ 1 for any a ∈ R. Then
another upper bound of d1 is obtained by applying (23) for all j ≤ J . However, further note that (23) is greater than the
known upper bound k(d+ 1) if J > d

2 ; the sharing of covering simplex is impossible in this case. Therefore, the upper
bound of d1 is given by

d1 ≤ (d+ 1)
∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+ (d+ 1)

∑
j> d

2

kj

= (d+ 1)

∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj

 (24)

To sum up, from (22) and (24), we get the desired result

d1 ≤ min

k(d+ 1)− (d− 1)

1
2

⌊ d−1
2 ⌋∑

j=0

kj

 , (d+ 1)

∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj


 .

□

E.4. Proof of Theorem 3.6.

The proof consists of two parts: we prove the upper bound first, and second, we show the lower bound.

E.4.1. THE UPPER BOUND IN THEOREM 3.6.

We establish a terminology about the shape of prismatic polytopes. A prism in R3 consists of a ‘base’ and ‘height’
dimensions, and we generalize it to high dimensional prisms. We define a k-dimensional prismatic polytope in Rd as a
topological space homeomorphic to K × Rd−k, where × denotes the Cartesian product an K ⊂ Rk is a compact set which
is the ‘base’ of the prism. A bounded k-dimensional prismatic polytope is a intersection of a k-dimensional prismatic
polytope and a bounded convex polytope.

32

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c) (d)

Figure 18. Proof of lower bounds in Theorem 3.6. (a) Consider a topological space X whose holes intersect with a straight line ℓ. (b)
d1 neurons in the first hidden layer of N (blue color) have at most d1 intersection points with ℓ. (c) A neuron in the second layer (red
color) has at most (d1 + 1) intersection points with ℓ. (d) Similarly, a neuron in the third layer (green color) has at most d2(d1 + 1) + 1
intersection points with ℓ.

Roughly speaking, an 1-dimensional prismatic polytope is a thick ‘hyperplane’ in Rd, (d − 1)-dimensional prismatic
polytope is a long ’rod,’ and a d-dimensional prismatic polytope is just a convex polytope, as shown in Figure 17(a). Then,
for k = 1, 2, · · · , d, removing a k-dimensional prism from X generates a k-dimensional hole, which increases the (k−1)-th
Betti number βk−1. In Figure 17(b), we provide an example of such cover X in R3. X is described by subtracting six
prismatic polytopes from a large bunoid in R3. In this case, the subtracted prismatic polytopes can be understood as a
bounded prismatic polytopes with six faces.

Now, we prove the theorem. Recall that the polytope-basis cover X can be described as a subtraction of
∑d−1

k=0 βk convex
polytopes from a sufficiently large convex polytope with m faces. Applying Theorem 3.4, we get

d
σ→ d1

σ→

(
d−1∑
k=0

βk

)
→ 1

is an upper bound of a feasible architecture , where

d1 ≤ m+m ·

(
d−1∑
k=0

βk − 1

)

= m

(
d−1∑
k=0

βk

)
.

This upper bound of d1 can be further reduced. For 1 ≤ k < d, βk means the number of k-dimensional holes in X ,
which was made by punching out a k-dimensional prismatic polytope. Since k-dimensional prisms have 2k faces that
penetrate X , we can reduce 2(d− k − 1) number of hyperplanes that cover the hole. When k = 0, it is easy to check that
2(β0 − 1) hyperplanes are required to separate β0 connected components. For instance, Figure 17(c) shows this process for
a topological space given in Figure 17(b). Then, the required total number of hyperplanes is bounded by

d1 ≤ m+ 2(β0 − 1) +

d−1∑
k=1

(m− 2(d− k − 1))βk

which completes the proof. □

E.4.2. THE LOWER BOUND IN THEOREM 3.6.

Suppose the given architecture d
σ→ d1

σ→ d2
σ→ · · · σ→ dk → 1 is a universally feasible architecture on any topological

space X satisfying the assumptions stated in Theorem 3.6. Then, it is enough to consider the ‘worst’ case of dataset to prove
a lower bound. We will use the same idea in the proof of Proposition F.2. Specifically, for the given Betti numbers βk, we
consider a topological space X such that every ‘hole’ intersects with a straight line, say ℓ. Since each hole intersects with ℓ

at least two points, we conclude that N has at least 2
∑d

k=0 βk piecewise linear regions on ℓ (Figure 18(a)).

Now we introduce one terminology: from the piecewise linearity of deep ReLU networks, we define a linear partition
region to be a maximum connected component where the network is affine on. Note also that the boundary of each linear
partition region is non-differentiable points of N in Rd, which are vanished points of some hidden layers.

33

Defining Neural Network Architecture through Polytope Structures of Datasets

We establish the proof by computing the upper bounds of number of linear partition regions on the straight line ℓ made
by N . For d1 neurons in the first hidden layer, the set of vanishing points are d1 hyperplanes in Rd, thus it can intersect
with ℓ at most d1 times (Figure 18(b)). Then, consider the vanishing points of the second hidden layer. These points
form a bent hyperplane in Rd, which is refracted on the intersection with a vanishing hyperplane of the first layer (Figure
18(c)). Therefore, a vanishing hyperplane of the second hidden layer can intersect with ℓ at most (d1 + 1) times for each
neuron. This concludes that the number of vanishing hyperplanes of the second hidden layers can intersect with ℓ at most
d2(d1 + 1) times. By the same argument, after the third layer, the number of maximum partitions on ℓ is bounded by
d3(d2(d1 + 1) + 1) + 1 (Figure 18(d)), and so on. Then, for the given architecture d

σ→ d1
σ→ d2

σ→ · · · σ→ dk → 1, the
number of linear partition regions on ℓ is bounded by

1+dk + dkdk−1 + dkdk−1dk−2 + · · ·+ dk · · · d1

= 1 +

k∑
i=1

k∏
j=i

dj .

Therefore, to be a feasible architecture on X , we get

1 +

k∑
i=1

k∏
j=i

dj ≥ 2

d∑
k=0

βk − 1,

which completes the proof. □

E.5. Proof of Theorem 3.7

Recall that Tj satisfies that σ(Tj(xi)) = 0 or λ for all xi ∈ D, j ∈ [J]. From (5) and Lemma F.4, we know that
Cj := {x | Tj(x) = λ} is a convex polytope for each j ∈ [J]. Then, we get

N (x) = −1

2
λ+

J∑
j=1

ajσ(Tj(x))

= −1

2
λ+

J∑
j=1

aj1{x∈Cj}(x).

Now, we define CP := {Cj ∈ C | aj = +1} and CQ := {Cj ∈ C | aj = −1}. Then, we get

N (xi) > 0 ⇐⇒
∑

C∈CP

1{xi∈C} >
∑

C∈CQ

1{xi∈C}

for all i ∈ [n]. Therefore, Definition 3.2 establishes that C is a polytope-basis cover of D, ensuring its accuracy matches that
of N . □

E.6. Proof of Proposition C.2

Here, we present proofs for each statement.

1. Firstly, we establish the validity of (5), ensuring vjk < 0. This condition holds at initialization as the network adheres
to (8). Throughout the algorithm, consisting of neuron removal and neuron scaling, neither action compromises (5).
Proposition F.5 assures the persistence of (8) under gradient flow. Consequently, (5) remains satisfied throughout.

Secondly, we scrutinize the condition (7). Suppose there exists xi ∈ D such that 0 < T (xi) < λ. From Definition 5,
it implies that

−λ < T (xi)− λ =
∑
k∈[m]

vkσ(w
⊤
k xi + bk) < 0

34

Defining Neural Network Architecture through Polytope Structures of Datasets

Recall that all vk are negative, by the preceded proof, and ReLU is positive homogeneous. Therefore, by scaling
neurons (vk,wk, bk) by (λscalevk, λscalewk, λscalebk) such that w⊤

k xi + bk > 0, the network output changes from

T (xi)− λ → λ2
scale(T (xi)− λ).

Therefore, by repeating this scaling sufficiently many times, given λscale > 1, (T (xi)− λ) decreases under −1. This
process applies to all such xi in the dataset, eventually leading to σ(T (xi)) = 0 or λ for all xi ∈ D.

2. In Algorithm 2, first for loop must terminate after Epochs repetition. Then, the following repeat loop makes all Tj to
satisfy σ(Tj(xi)) is either 0 or 1, for all xi ∈ D. However, by the previous proof, we know Algorithm 1 provides a
network satisfying both (5) and (7) in finite time. Therefore, this algorithm is guaranteed to terminate in finite time.
Lastly, since each Tj has binary output 0 or 1, convex polytopes defined by Cj := {Tj > 0} forms a polytope-basis
cover, which has the same accuracy with the produced network N .

3. To prove finite-time termination of Algorithm 3, it is enough to show that the repeat loop in the algorithm must
terminate in finite time. Specifically, we prove the following two statements: 1. the incorrectly covered data x̂ is
correctly covered after one process in the repeat loop by adding two polytopes, and 2. these added polytopes do not
hurt other correctly covered data.

First, let C be a (constructing) polytope-basis cover and let x̂ be an incorrectly covered data by C. Then, it means the
sign of N+(x̂) − N−(x̂) and the sign of ôi :=

∑
c∈CP

1{x̂∈C} −
∑

c∈CQ
1{x̂∈C} +

1
2 . Let c be the value between

N−(x̂) and N+(x̂), and define two convex polytopes

C+ := {x | N+(x) < c}
C− := {x | N−(x) > −c}.

Then, by the definition, x̂ is only contained in either C+ or C−, determined by the sign of N (x̂). Therefore, adding
these two polytopes to the polytope-basis cover C, by C− ∈ CP and C+ ∈ CQ, x̂ is now correctly classified by the
cover C.

Second, we claim that adding above two polytopes do not disrupt other correctly covered data. Recall the approximation
of convex functions discussed in Appendix C.2. Let f : Rd → R be a convex function, and let P := {p0, p1, · · · , pJ+1}
be a finite partition of real number by

−∞ = p0 ≤ p1 ≤ p2 ≤ · · · ≤ pJ ≤ pJ+1 = +∞

Then, f can be approximated by

f(x) ≈ p1 +

J∑
j=1

(pj+1 − pj)1{f(x)<pj}.

This approximation can be understood as quantization of the function f by values in P . Then, elementary analysis
(Rudin et al., 1976) shows that refinement of the partition P only increases the accuracy of the above approximation.
I.e., as polytopes added in the constructing polytope-basis cover C, the number of incorrectly covered data by C strictly
decreases. Since there is finite data points in the training dataset D, Algorithm 3 must terminate in finite time. More
precisely, the repeat loop in the algorithm must be halted in n = |D| times.

4. Let C = {C1, C2, C3, · · · , CJ} be the output of Algorithm 4. Then, from its construction described in the algorithm, it
implies that

C1 contains all points in D0.
C2 contains all points in D1 ∩ C1.
C3 contains all points in D0 ∩ C2.

...
CJ−1 contains all points in D 1+(−1)J−1

2

∩ CJ−2.

CJ contains all points in D 1+(−1)J

2

∩ CJ , and does not contain the another class.

35

Defining Neural Network Architecture through Polytope Structures of Datasets

Now, define

N (x) := −1

2
+

J∑
j=1

(−1)jσ(T (x)). (25)

Then, N is a three-layer ReLU network of the form (6). Furthermore, Tj(xi) is either 0 or 1 for all i ∈ [n] and j ∈ [J],
satisfying the condition (7). Therefore, Theorem 3.7 verifies that C := {Cj}j∈[J] becomes a polytope-basis cover of
the dataset.

□

E.7. Proof of Theorem D.3.

E.7.1. PROOF FOR THE MSE LOSS (13).

The proof is divided into several steps. First, for k ∈ [m], we define the following sets:

Ak := {x ∈ Rd | w⊤
k x+ bk > 0} (26)

Bk := {x ∈ Rd | w⊤
k x+ bk > 0 and w⊤

j x+ bj > 0 for j ̸= k} (27)

I.e., Ak is the region where k-th neuron is alive, and Bk is the region where only k-th neuron is alive (see Figure 19(b,c)).
Similarly, we define

A0 := {x ∈ Rd | w⊤
k x+ bk < 0}

which is the region where all neurons are dead, except the last bias term v0. Now, we define the following values for every
k ∈ [m]:

lk := the distance between O and ∂Ck,

sk := − bk
∥wk∥

, (28)

tk := − v0
vk ∥wk∥

, (29)

t := max
k∈[m]

{tk, δ}.

Then, the network initialization condition (16) gives

0 < tk < R,

0 < sk < lk < sk + tk.

In other words, sk is the distance between the origin point O and the hyperplane {w⊤
k x + bk = 0}. tk is the length of

‘height’ of the region Bk as depicted in Figure 19(c). To be familiar for these notations, we demonstrate the output N in
Figure 19(d) with respect to ∥wk∥.

It is clear that N (x) = v0 if x ∈ A0, and it linearly decreases to zero for x ∈ Bk. When xi ∈ Bk satisfies x⊤
i

wk

∥wk∥ =

sk + tk, N (xi) = 0. Now we are ready to prove the theorem.

For the previously defined sets Ak and Bk, the MSE loss (13) is computed by

LMSE =
1

2n

n∑
i=1

(N (xi)− yi)
2

=
1

2n

∑
xi∈A0

(N (xi)− yi)
2 +

1

2n

∑
xi∈∪kBk

(N (xi)− yi)
2 +

1

2n

∑
xi∈∪k(Ak\Bk)

(N (xi)− yi)
2

=: L1 + L2 + L3. (30)

Note that we omitted Θ notation, the set of all learnable parameters. We will observe the change of these loss values with
respect to one update of parameters. We add prime (′) for the updated parameter. For the given step size η, we explicitly
provide the update of parameters by

v0 → v′0 := v0 +∆v0,

36

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c) (d)

Figure 19. Proof of Theorem D.3. (a) The given dataset D is polyhedrally separable by a black dashed rectangle C. (b) Initialization of a
two-layer ReLU network N . (c) For k ∈ [m], sets Ak and Bk defined in (26) and (27) are illustrated. (d) A sideview of the function
N with respect to ∥wk∥. sk and tk are defined in (28) and (29). Note that the intersection point Pk is invariant after the update of
parameters.

sk → s′k := sk +∆sk,

tk → t′k := tk +∆tk

for all k ∈ [m], where

∆v0 :=

{
0 if #(∪k∈[l]Ak) > 0,

− 1
2 (v0 − 1)tη, otherwise,

(31)

∆sk :=

{
ηt2k

v0+ηtk
· lk−sk
lk+tk−sk

if #(Ak) > 0,

0 otherwise,
(32)

∆tk :=

{
∆sk − ηt2k

v0+ηtk
if #(Ak) > 0,

tk∆v0−ηt2k
v0+ηtk

otherwise.
(33)

Specifically, v0 is updated if and only if ∪k∈[l]Ak contains a data point, where sk and tk are updated exclusively. The given
update terms are proposed to have some invariant quantity. In Figure 19(d), we set Pk to be the output value of N at lk, and
update equations in (31)∼(33) are determined to keep this value Pk. Furthermore, it satisfies that the change of the slope is
exactly −η, i.e.,

∆

(
−v0
tk

)
:= − v0 +∆v0

tk +∆tk −∆sk
+

v0
tk

= −η.

Note also that v0 < 1 and sk < lk are increasing, where tk > 0 is decreasing.

In the subsequent steps, we examine the change of each loss value. The main idea of the proof is computing lower bounds
on the reduction of the loss value resulting from one-step update given by (31)∼(33). It is divided into four steps.

STEP 1. First, we consider when #(∪k∈[l]Ak) = 0. In this case, since L2 = L3 = 0 from the definition (30), it is enough
to investigate the change of L1. Recall that

L1 :=
1

2n
#(A0)(v0 − 1)2.

By one-step update of parameters, it becomes L1 → L′
1 := L1 +∆L1. Then,

∆L1 = L′
1 − L1

=
1

2n

∑
xi∈A0

(v0 +∆v0 − 1)2 − 1

2n

∑
xi∈A0

(v0 − 1)2

=
1

2n
· (2v0 − 2 + ∆v0)∆v0 ·#(A0)

37

Defining Neural Network Architecture through Polytope Structures of Datasets

= −#(A0)

n
(1− v0)∆v0 +

#(A0)

2n
(∆v0)

2

= −#(A0)

2n
(1− v0)

2(tη − 1

4
t2η2)

< −#(A0)

2n
(1− v0)

2 · 1
2
tη.

Note that we use η < 2
t < 2

δ on the last inequality. Then, we get

L′
1 = L1 +∆L1

=

(
1 +

∆L1

L1

)
L1

<

(
1−

1
2n#(A0)(1− v0)

2 · 12 tη
1
2n#(A0)(1− v0)2

)
L1

=

(
1− 1

2
tη

)
L1

≤
(
1− 1

2
δη

)
L1 (34)

which states that L1 strictly decreases after the update.

STEP 2. Now, we consider when #(∪k∈[l]Ak) > 0. We investigate the second term in (30), defined by

L2 :=
1

2n

∑
k∈[l]

∑
xi∈Bk

(N (xi)− yi)
2.

Recall that the update of parameters given in (31)∼(33) are chosen to keep Pk value and increasing the absolute value of the
slope −v0

tk
by η. Therefore, for any xi ∈ Bk, itN (xi) increases (or decreases) if and only if xi ∈ Bk ∩C (or xi ∈ Bk\C).

Therefore, |N (xi)− yi| always strictly decreases after the update, which implies that

∆L2 := L′
2 − L2 < 0. (35)

STEP 3. We observe the last term in (30) when #(∪k∈[m]Ak) > 0, which is the most technical part in this proof. Recall
that

L3 :=
1

2n

∑
xi∈∪k(Ak\Bk)

(N (xi)− yi)
2.

The goal of this step is showing that the absolute change of L3 is less than it of L2, i.e., |∆L3| < ∆L2. The idea is based on
the sparsity of the data distribution in Br(∂2C); near the neighborhood of ‘edge’ parts of the polytope C.

Note that for each k ∈ [m], obviously we have (Ak\Bk) ⊂ Bt(∂2Ck) from the linearity of N (see Figure 19(c) and (d)). It
is also worth noting that if tk ≤ δ, then L3 = 0 because there is no xi in ∪k∈[m](Ak\Bk), and we have nothing to do. Thus
we mostly consider tk > δ cases.

Let N ′ be the network after the one-step update from N . The difference of output is ∆N (x) := N ′(x)−N (x). Recall
that parameters v0, sk, tk follow the updated rule (31) ∼ (33) such that network have a constant output on ∂Ck ∩Bk (Figure
19(c) and (d)). This implies that both networks N and N ′ have fixed outputs for ∂Ck ∩ Bk, and then the affine space
connecting those fixed points also has the fixed output which comes from the piecewise linearity of N .

STEP 3-1 First, we compute an upper bound of |∆L3|. SinceN (x) is piecewise linear, we consider the input space partition
in Ak\Bk where N is linear on. Observing the ‘corner’ parts of the polytope C (see Figure 19(c) and (d)), each partition is
intersection of some neurons of N . Choose one partition P ⊂ Ak\Bk, and let JP ⊂ [m] be the index set of P that wj is
activated on P if and only if j ∈ JP , or namely, P =

⋂
j∈JP

Aj . Then obviously, the partition P is contained in a ball with
radius maxj∈JP

tj ≤ t < R. On the contrary, any partition P is contained in tk-radius ball from ∂k for some k. Using this,
we can disjointly separate the partitions to Qk such that

38

Defining Neural Network Architecture through Polytope Structures of Datasets

1. Qk ⊂ (Ak\Bk)

2. Every P ∈ ∪k∈[m](Ak\Bk) is exactly contained in one of Qk.

3. Every P ∈ Qk can be bounded by a ball with radius tk.

Note that Qk is a collection of partitions, which can be empty. Using this, we decompose L3 by the following way. This is
just rearranging the terms in L3.

L3 =
1

2

∑
xi∈∪k∈[m](Ak\Bk)

(N (xi)− yi)
2

=
1

2

∑
k∈[m]

∑
xi∈Qk

(N (xi)− yi)
2

=:
1

2

∑
k∈[m]

L3,k.

Now, we bound the change of network output ∆N (xi) for xi ∈ P ∈ Qk.

|∆N (xi)| = |N (xi)−N ′(xi)|

≤

∣∣∣∣∣∣
∑
j∈JP

∆

(
−v0
tj

)
tk

∣∣∣∣∣∣
=
∑
j∈JP

ηR

≤ lRη.

Above inequalities come from the fact that, the change of linear value is bounded by product of the change of slope and the
maximum diameter of the set. Finally, for a k ∈ [m], we compute an upper bound of the loss variation of L3,k.

|∆L3,k| =

∣∣∣∣∣∣ 12n
∑

xi∈(Ak\Bk)

(N (xi) + ∆N (xi)− yi)
2 − 1

2n

∑
xi∈(Ak\Bk)

(N (xi)− yi)
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑

xi∈(Ak\Bk)

(
N (xi)− yi +

1

2
∆N (xi)

)
·∆N (xi)

∣∣∣∣∣∣
≤ 1

n

∑
xi∈(Ak\Bk)

(
|N (xi)− yi| · |∆N (xi)|+

1

2
|∆N (xi)|2

)

≤ 1

n

∑
xi∈(Ak\Bk)

(
1 · |∆N (xi)|+

1

2
|∆N (xi)|2

)
≤ 1

n
#
(
Btk(∂2Ck)

)
· (mRη +

1

2
m2R2η2)

≤ 2

n
#
(
Btk(∂2Ck)

)
·mRη

≤ 2mRη

n
· ρ #(Btk(∂Ck)). (36)

Note that we used η < 2
mR to bound the quadratic term η2.

STEP 3-2. Now, we compute a similar bound for ∆L2. It can be decomposed to the sum on each Bk.

L2 =
1

2n

∑
k∈[m]

∑
xi∈Bk

(N (xi)− yi)
2

39

Defining Neural Network Architecture through Polytope Structures of Datasets

=:
∑
k∈[m]

L2,k.

We use the fact that each data point xi is far from ∂C at least δ. From the definition, we get ∆N (xi) > δη. Note that if
tk < 2δ, then L3,k strictly decreases and we have nothing to do. Otherwise, when tk > 2δ, we have R > 2δ and there is
data far from δ distance from ∂Bk. For such data point xi, we get

N (xi)− 0 = v0 −
v0
tk

(tk − δ)

= v0
δ

tk

>
v0δ

R

and

1−N (xi) = 1−
(
v0 −

v0
tk

(tk − δ)

)
= 1− v0

tk
δ

> 1− 1

2
v0

>
1

2
v0

>
v0δ

R
.

Therefore, we have shown that

min
sk+δ≤ ∥xi∥ ≤sk+tk−δ

|N (xi)− yi| ≥
v0δ

R
.

Now we induce the lower bound of ∆L2,k.

∆L2,k =
1

2n

∑
xi∈Bk

(
(N (xi) + ∆N (xi)− yi)

2 − (N (xi)− yi)
2
)

=
1

n

∑
xi∈Bk

(
N (xi)− yi +

1

2
∆N (xi)

)
·∆N (xi)

=
1

n

∑
xi∈Bk

(
−|(N (xi)− yi)| · |∆N (xi)|+

1

2
|∆N (xi)|2

)
≤ 1

n

∑
xi∈Bk

(
− min

δ≤ ∥xi∥−sk ≤tk−δ
|N (xi)− yi| · ηδ +

1

2
R2η2

)
≤ − 1

n
#
(
B tk

2 −δ
(∂Ck)− Btk(∂2Ck)

)
·
(
v0δ

R
· δη − 1

2
R2η2

)
≤ − 1

n
(1− ρ)#(Btk(∂Ck)) ·

(
v0δ

2η

R
− 1

2
R2η2

)
<

1

n

(1− ρ)v0δ
2η

2R
#(Btk(∂Ck)). (37)

Note that Assumption D.2 on dataset D is used to induce this inequality. Now, we compare (37) and (36) with initialization
condition (17) for v0. Then, we finally get

|∆L3,k| ≤
2lRηρ

n
#(Btk(∂Ck))

40

Defining Neural Network Architecture through Polytope Structures of Datasets

<
(1− ρ)v0δ

2

2nR
η ·#(Btk(∂Ck))

< −∆L2,k

for every k ∈ [m]. By summing up, we conclude |∆L3| < −∆L2 or,

∆L2 +∆L3 < 0. (38)

STEP 4. Finally, we combine all results in the previous steps. When #(∪k∈[m]Ak) > 0, only L2 and L3 are changed, then
one step update gives

L′ = L+∆L

= L1 + L2 + L3 +∆L1 +∆L2 +∆L3

< L1 + L2 + L3

from (35) and (38). Furthermore, since sk < lk increases and tk > 0 decreases, the updated parameters satisfy the
assumption (16) again. Using mathematical induction, we can repeat above steps until #(∪k∈[m]Ak) = 0. After achieving
#(∪k∈[m]Ak) = 0, we get L2 = L3 = 0 from their definition (30). Then, the remained loss L1 exponentially decreases to
zero because

L′ = L1 +∆L1

≤
(
1− 1

2
δη

)
L1

≤
(
1− 1

2
δη

)
L

from (34). This completes the proof. □

E.7.2. PROOF FOR THE BCE LOSS (14).

The proof idea is similar with the previous proof. We use the same definitions for Ak, Bk, sk, tk, lk, and other notations.
The BCE loss (14) is rearranged by

LBCE = − 1

n

n∑
i=1

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi)))

= − 1

n

∑
xi∈A0

log SIG ◦ N (xi)

− 1

n

∑
k∈[m]

∑
xi∈Bk

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi))) (39)

− 1

n

∑
k∈[m]

∑
xi∈(Ak\Bk)

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi)))

=: L1 + L2 + L3.

Before we start, we compute the derivative and its bound of some functions. For ζ ∈ R, define

f(ζ) := log SIG(ζ),

g(ζ) := log(1− SIG(ζ)).

Then their derivatives are given by

d

dζ
f(ζ) := 1− SIG(ζ),

41

Defining Neural Network Architecture through Polytope Structures of Datasets

d

dζ
g(ζ) := −SIG(ζ).

From the mean value theorem (MVT), we get

f(ζ +∆ζ) = f(ζ) + f ′(ζ)∆ζ +
1

2
f ′′(ζ̃)(∆ζ)2

≥ f(ζ) + (1− SIG(ζ))∆ζ − 1

2
(∆ζ)2

and

f(ζ +∆ζ)− f(ζ) = (1− SIG(ζ̃))∆ζ

≤ ∆ζ.

Now we defin the update of parameters. For k ∈ [l], the update of v0 is given by

∆v0 :=

{
0 if #(∪k∈[l]Ak) > 0,

(1− SIG(v0))η. otherwise
(40)

For ∆sk and ∆tk, we adopt the same update defined in (32) and (33). Namely, the update of parameters preserves the value
of N on lk and the change of slope is set to −η. We repeat the analogous arguments in the previous proof.

STEP 1. Firstly, we consider the first loss term L1 in (39) when #(∪k∈[m]Ak) = 0. It is changed by

∆L1 = L′
1 − L1

= − 1

n

∑
xi∈A0

log SIG(v0 +∆v0) +
1

n

∑
xi∈A0

log SIG(v0)

= −#(A0)

n
(f(v0 +∆v0)− f(v0))

≤ −#(A0)

n

(
(1− SIG(v0))∆v0 −

1

2
(∆v0)

2

)
= −#(A0)

n

(
(1− SIG(v0))2η −

1

2
(1− SIG(v0))2η2

)
< −#(A0)

n

1

2
(1− SIG(v0))

2η.

Therefore, L1 strictly decreases. Note that we used η < 1 to bound the η2 term.

STEP 2. Secondly, we consider when #(∪k∈[m]Ak) > 0. As discussed in the previous subsection,N (xi) strictly increases
(or decreases) if and only if yi = 1 (or 0, respectively) because the slope −v0

tk
changes −η. This shows that ∆L2 < 0.

STEP 3. Thirdly, we observe ∆L2 and |∆L3| when #(∪k∈[m]Ak) > 0. We compute a bound of ∆L3 first. For any
k ∈ [m],

|∆L3| =
1

n

∣∣∣∣ ∑
xi∈(Ak\Bk)

yi(f(N (xi) + ∆N (xi))− f(N (xi)))

+ (1− yi)(g(N (xi) + ∆N (xi))− g(N (xi)))

∣∣∣∣
≤ 1

n

∑
xi∈(Ak\Bk)

∣∣∣(f(N (xi) + ∆N (xi))− f(N (xi)))
∣∣∣+ ∣∣∣(g(N (xi) + ∆N (xi))− g(N (xi)))

∣∣∣
<

1

n

∑
xi∈(Ak\Bk)

2|∆N (xi)|

<
2

n
#(Btk(∂2Ck)) · max

xi∈(Ak\Bk)
|∆N (xi)|

42

Defining Neural Network Architecture through Polytope Structures of Datasets

<
2Rη

n
#(Btk(∂2Ck)).

We obtain a similar bound for ∆L2,k. Let V0 := log
(

(1−ρ)δ
4ρR − 1

)
be the upper bound of initialization of v0. Note also that

SIG(V0) = 1− 4ρR
(1−ρ)δ and η < 1−SIG(v0)

δ . Then,

∆L2,k = − 1

n

∑
xi∈Bk

(
yi(f(N (xi) + ∆N (xi))− f(N (xi)))

+ (1− yi)(g(N (xi) + ∆N (xi))− g(N (xi)))

)
= − 1

n

∑
xi∈Bk,yi=1

(
(f(N (xi) + ∆N (xi))− f(N (xi)))

− 1

n

∑
xi∈Bk,yi=0

(g(N (xi) + ∆N (xi))− g(N (xi)))

)

< − 1

n

∑
xi∈Bk,yi=1

(
(1− SIG ◦ N (xi))∆N (xi)−

1

2
(∆N (xi))

2

)

− 1

n

∑
xi∈Bk,yi=0

(
−SIG ◦ N (xi) ·∆N (xi)−

1

2
(∆N (xi))

2

)

< − 1

n

∑
sk−lk+δ<hi<−δ

(
(1− SIG ◦ N (xi))∆N (xi)−

1

2
(∆N (xi))

2

)

− 1

n

∑
δ<hi<sk+tk−δ

(
−SIG ◦ N (xi) ·∆N (xi)−

1

2
(∆N (xi))

2

)

< − 1

n

∑
sk−lk+δ<hi<−δ

(
(1− SIG(V0))δη −

1

2
δ2η2

)

− 1

n

∑
δ<hi<sk+tk−δ

(
SIG(0) · δη − 1

2
δ2η2

)

< − 1

n
#
(
B tk

2 −δ
(∂Ck)− Btk(∂2Ck)

)
·
(
(1− SIG(V0))δη −

1

2
δ2η2

)
< − 1

n
(1− ρ)# (Btk(∂Ck)) ·

1

2
(1− SIG(V0))δη.

Therefore,

|∆L3,k| <
2Rη

n
ρ #(Btk(∂Ck))

<
1

n
(1− ρ)# (Btk(∂Ck)) ·

1

2
(1− SIG(V0))δη

< −L2,k

and we get ∆L2 +∆L3 < 0.

STEP 4. Finally, we combine results in the previous steps. When #(∪k∈[m]Ak) > 0, v0 is bounded by V0 and we get
∆L2 +∆L3 < 0 from STEP 3. After update, since sk < lk increases and tk > 0 decreases, the updated parameters satisfy
Assumption D.2 again. It is repeated with strictly decreasing loss until reaching #(∪k∈[m]Ak) = 0. After that, v0 begins to
strictly increase, which strictly decreases all L1, L2, and L3. Further, the update equation (40) provides v0 goes to infinity.
Therefore, N (xi)→∞ if and only if it label yi = 1, concludes LBCE converges to zero.

This completes the whole proof of Theorem D.3. □

43

Defining Neural Network Architecture through Polytope Structures of Datasets

F. Additional Propositions and Lemmas
Lemma F.1. Let 0 ≤ m ≤ d be integers, and ∆m be an m-simplex in Rd. For a given ε > 0, there exists a two-layer ReLU
network T : Rd → R with the architecture d

σ→ (d+ 1)→ 1 such that

T (x) = 1 if x ∈ ∆m,

T (x) ≤ 1 if x ∈ Bε(∆
m),

T (x) < 0 if x ̸∈ Bε(∆
m).

Furthermore, the minimal width of such two-layer ReLU networks with the architecture d
σ→ d1 → 1 is exactly d1 = d+ 1.

Proof. We prove the existence part first. For the given m-simplex ∆m, pick (d − m) distinct points in Bε(∆m). By
connecting all these points with the points of ∆m, we obtain a d-simplex contained in Bε(∆m), which is a convex polytope.
By Proposition 3.1, there exists a neural network T : Rd → R with the architecture d

σ→ d1 → 1 that satisfies the desired
properties.

Now, we prove the minimality part. For every ε > 0, suppose there exists a two-layer ReLU network T (x) :=∑d1

i=1 viσ(w
⊤
i x + bi) + v0 with d1 ≤ d such that T (x) = 1 for x ∈ ∆m and T (x) < 0 for x ̸∈ Bε(∆m). First,

we claim that the set of weight vectors {w1, · · · ,wd1} spans Rd. If the set cannot span Rd, then there exists a nonzero
vector u ∈ Rd − span < w1, · · · ,wd1 >. Then, from T (x) = 1 for x ∈ ∆m, we get

T (x+ tu) =

d1∑
i=1

viσ(w
⊤
i (x+ tu) + bi) + v0

=

d1∑
i=1

viσ(w
⊤
i x+ bi) + v0

= T (x)
= 1

for any t ∈ R. This contradicts to the condition T (x) < 0 for x ̸∈ Bε(∆m). Therefore, the set of weight vectors must span
Rd.

From the above claim, we further deduce that d1 ≥ d. Since we start with the assumption d1 ≤ d, thus d1 = d. Then, we
conclude that the set of weight vectors {w1, · · · ,wd1

} is a basis of Rd. Now, we focus on the sign of v0. Suppose v0 ≥ 0.
Define

A :=

d1⋂
i=1

{x | w⊤
i x+ bi < 0},

which is an unbounded set since the set {wi} is linearly independent. Then for x ∈ A, we get T (x) = v0 ≥ 0. This
contradicts to the assumption T (x) < 0 for all x ̸∈ Bε(∆m). Therefore, v0 < 0.

Lastly, we consider the sign of vi. Since T (x) = 1 > 0 for x ∈ ∆m and v0 < 0, there exists some positive vi > 0, say,
v1 > 0. Similar to the above argument, we define

B :=
{
x | v1w⊤

1 x+ b1 + v0 > 0
} d1⋂

i=2

{
x | w⊤

i x+ bi < 0
}
,

which is also nonempty and unbounded. Then, for x ∈ B, we have

T (x) =
d1∑
i=1

viσ(w
⊤
i x+ bi) + v0

= v1w
⊤
1 x+ b1 + v0

> 0.

44

Defining Neural Network Architecture through Polytope Structures of Datasets

Since B is unbounded, this implies that T (x) > 0 over the unbounded subset in Rd, which contradicts to the condition
T (x) < 0 for all x ̸∈ Bε(∆m). This completes the whole proof, which shows that the minimum width of two-layer ReLU
network is exactly d+ 1.

Proposition F.2. LetX ⊂ Rd be a topological space andA be a neural network architecture that is a feasible architecture on
X . Then, there exists a topological space X ′ which is homeomorphic to X , but A is not a feasible architecture on X ′.

Proof. We use the similar technique introduced in (Telgarsky, 2015). Before we start, recall that a network N with the
architectureA is a piecewise linear function on Rd. Thus Rd can be partitioned into finitely many regions, whereN is linear
on each region. Let M be the maximum number of such regions, that networks with the architecture A can partition. I.e.,
any network with the architecture A has linear regions at most M partitions in Rd.

Now, we consider a contractible topological space Y which has zig-zag shape as described in Figure 20(b), where the
number of sawtooths is greater than M + 2. We define another topological space X ′ := X#Y , where # denotes the
connected sum. Note that we can glue Y to X preserving the number of sawtooths in Y , because X is bounded. Then X ′ is
homeomorphic to X since Y is contractible.

Finally, we prove the proposition using contradiction. Suppose there exists a deep ReLU network N ′ with the same
architecture A, which can approximate 1{X ′} under the given error bound ε > 0. Then, by the Y part in X ′, there exists a
straight line ℓ that intersects X ′ more than M + 3 times. Therefore, to approximate 1{X ′} sufficiently close, N ′ must have
at least M + 1 linear regions on ℓ. However, N ′ can have at most M linear regions in Rd from the definition of M . This
contradiction completes the proof.

Theorem F.3. Let dx, dy ∈ N and p ≥ 1. Then, the set of three-layer ReLU networks is dense in Lp(Rdx , [0, 1]dy).
Furthermore, let f : Rdx → [0, 1]dy be a compactly supported function whose Lipschitz constant is L. Then, for any ε > 0,
there exists a three-layer ReLU network N with the architecture

dx
σ→ (2ndxdy)

σ→ (ndy) → dy

such that ∥N − f∥Lp(Rdx) < ε. Here, n = ε−dx
(
1 + (

√
dxL)

p
)dx/p

= O(ε−dx).

Proof. Fist we recall a result in real analysis: the set of compactly supported continuous functions is dense in Lp(Rdx) for
p ≥ 1 (Rudin et al., 1976, Theorem 3.14). Therefore, it is enough to prove the second statement; which claims that any
compactly supported Lipschitz function can be universally approximated by three-layer ReLU networks.

We consider dy = 1 case first. Let f ∈ Rdx → [0, 1] be Lipschitz, and let L be its Lipschitz constant. Without loss of
generality, suppose the support of f is contained in [0, 1]dx . Let δ > 0 be the small number which will be determined. Now
we partition [0, 1]dx by regular dx-dimensional cubes with length δ. Now, consider estimating the definite integral using a
Riemann sum over these cubes. The total number of cubes are n := (1δ)

dx , and we number these cubes by C1, C2, · · · , Cn.
For each cube Ci, by Proposition 3.1, we can define a two-layer ReLU network Ti with the architecture dx

σ→ 2dx → 1

such that Ti(x) = 1 in Ci and Ti(x) = 0 for x ̸∈ Br(Ci) with r := 1
2dx

δp+1

1+δp . Then for any xi ∈ Ci, we get∫
Br(Ci)

|f − f(xi)Ti|p dµ =

∫
Ci

|f − f(xi)Ti|p dµ+

∫
Br(Ci)\Ci

|f − f(xi)Ti|p dµ

≤
∫
Ci

(
√
dxLδ)

p dµ+

∫
Br(Ci)\Ci

1p dµ

≤ (
√
dxLδ)

p · δdx +
[
(δ + 2r)dx − δdx

]
= (
√
dxL)

p · δdx+p +

[(
1 +

2r

δ

)dx

− 1

]
δdx

<
[
(
√
dxL)

p + 1
]
δdx+p.

Note that we use two inequalities, |f(x)− f(xi)| ≤ L
√
dxδ for x ∈ Ci and (1 + a)k < 1

1−ak for 0 < a < 1
k . Then, the

above equation implies the Lp distance between f and f(xi)Ti in Ci is bounded by the above value. Now we define a

45

Defining Neural Network Architecture through Polytope Structures of Datasets

(a) (b) (c)

Figure 20. Proof of Proposition F.2. (a) X is a given topological space, and A is a feasible architecture on X . (b) Y is a zig-zag shaped
long band, which is a contractible space. There exists a straight line ℓ such that Y and ℓ has sufficiently many intersection points, so
that A cannot approximate Y . (c) X ′ is the connected sum of X and Y , which is homeomorphic with X . However, A is not a feasible
architecture on X ′.

three-layer neural network N by

N (x) :=

n∑
i=1

f(xi)Ti(x),

which is a Riemann sum over the n cubes partitions. Then N has the architecture dx
σ→ (2ndx)

σ→ n→ 1 and satisfies∫
Rdx

|f −N|pdµ =

∫
Br([0,1]dx)

|f −N|p dµ

<

n∑
i=1

∫
Br(Ci)

|f − f(xi)Ti|p dµ

≤
[
(
√
dxL)

p + 1
]
nδdx+p.

=
[
(
√
dxL)

p + 1
]
δp.

Therefore, take δ < ε(1 + (
√
dxL)

p)−
1
p for given ε, we conclude that ∥f −N∥Lp([0,1]dx) < ε. From this choice of δ, we

get

n = δ−dx > ε−dx

(
1 + (

√
dxL)

p
)dx/p

= O(ε−dx).

If dy > 1, we can obtain the desired network by concatenating dy networks, thus the architecture is

dx
σ→ (2ndxdy)

σ→ (ndy)→ dy.

Lemma F.4. Let T be a two-layer ReLU network defined in (5). Then, the classification region R := {x ∈ Rd | T (x) > 0}
is a convex polytope. Specifically, if the subset S := {x ∈ Rd | T (x) = λ} is nonempty, then it is a convex polytope with m
faces.

Proof. First, we prove that T is a concave function. Note that σ is convex thus vkσ(w⊤
k x+ bk) is a concave function with

respect to input x, and the sum of concave functions is again concave (we use all vk < 0 here). Therefore, T is a concave
function, and the region R := {x | T (x) > 0} is convex. The piecewise linearity of T implies that R forms a convex
polytope.

Now we consider the subset S := {x | T (x) = λ}. Since all vk < 0, x ∈ S if and only if w⊤
k x+ bk ≤ 0 for all k ∈ [m].

Then, S is a convex polytope with m faces by Definition 2.1.

46

Defining Neural Network Architecture through Polytope Structures of Datasets

Proposition F.5 (Theorem 2.1 in (Du et al., 2018), two-layer version). Let N (x) := v0 +
∑l

k=1 vkσ(w
⊤
k x + bk) be a

two-layer ReLU network, and L = 1
n

∑n
i=1 ℓ(N (xi), yi) be the loss function. Then, on the gradient flow, for all k ∈ [l], the

quantity

v2k − ∥wk∥2 − b2k (41)

is invariant.

Proof. The proof is written in (Du et al., 2018), and we provide here for completeness. The gradient of each component is
computed by

∂L

∂vk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· σ(w⊤

k xi + bk),

∂L

∂wk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· vk1{w⊤

k xi+bk>0}xi,

∂L

∂bk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· vk1{w⊤

k xi+bk>0}.

Then, it is easy to check that

vk
∂L

∂vk
= w⊤

k (
∂L

∂wk
) + bk ·

∂L

∂vk
.

Now, we differentiate (41). It gives

d

dt
(v2k − ∥wk∥2 − b2k) = 2vk

dvk
dt
− 2w⊤

k (
dwk

dt
)− 2bk

dbk
dt

= 2

(
−vk

∂L

∂vk
+w⊤

k (
∂L

∂wk
) + bk

∂L

∂bk

)
= 0

for all t. Therefore, (41) is constant.

Proposition F.6. Consider the neural network architecture d
σ→ d1

σ→ d2
σ→ · · · σ→ dD → 1 and a convex polytope C with

m faces. Then,

1. if d1 ≥ m and d2 ≥ 1, then it is a feasible architecture on C.

2. if maxj dj ≤ m− 1, then it may not be a feasible architecture on some polytope C.

3. if d1 ≤ m− 2, then it may not be a feasible architecture on some polytope C.

Proof. The proof is accomplished by two strategies: for a feasible architecture, we explicitly construct such neural networks.
For the negative statements, we prove them by providing some counterexamples.

1. Proposition 3.1 shows that d σ→ m→ 1 is a feasible architecture . Therefore, for d1 ≥ m, then taking the identity for
all other layers, it becomes a feasible architecture .

2. When d1 ≤ m−1, there is a m-faces convex polytope C that cannot be approximated by the given network architecture.
The simplest example is a half-space (m = 1).

Below, we provide another non-trivial example: Let C be a d-simplex in Rd, thus m = d+ 1. Suppose maxj dj ≤
m− 1 = d. Then, by Lemma F.7, we conclude that the classified regions are always unbounded. Therefore, it cannot
approximate a bounded polytope C.

47

Defining Neural Network Architecture through Polytope Structures of Datasets

3. From the above proof, recall the d-simplex C (thus m = d+ 1). If d1 ≤ m− 2 = d− 1, we provide a counterexample
proving that it cannot be approximated by a ReLU network with the architecture d

σ→ (m − 2)
σ→ · · · σ→ dD → 1.

Let w1, · · · ,wm−2 be the weight vectors of the first layer. Since the dimension of span < wk > is equal or less
than m− 2 = d− 1, there exists a nonzero vector ŵ ∈ span < {wk}k∈[m] >

⊥. In other words, ŵ⊤wk = 0 for all
k ∈ [m − 2]. Then, it implies N (x + tŵ) = N (x) for all t ∈ R. Therefore, N cannot approximate the bounded
polytope C.

Lemma F.7. Let N be a deep ReLU network where all hidden dimension is equal or smaller than the input dimension d.
Suppose µ({N (x) > 0}) > 0. Then, µ({N (x) > 0}) is either 0 or∞. In other words, the classification region is either
measure-zero or unbounded.

Proof. Beise et al. (2021, Theorem 2) showed that if all hidden layers have width equal or smaller than the input dimension,
then the connected components of every decision region are unbounded. Therefore, µ({N (x) > 0}) is either 0 or ∞,
depends on whether {N (x) > 0} is empty or not.

48

