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Abstract

Safety fine-tuning algorithms are commonly used to fine-tune language models to
reduce harmful outputs, but the exact internal mechanisms of how those models
achieve this remain unclear. In studying direct preference optimisation (DPO) for
toxicity reduction, current explanations claim that DPO works by dampening the
most toxic MLP neurons to learn an offset to avert toxic regions in the residual
stream. However, by ablating the most toxic neurons and applying activation
patching, we find this explanation incomplete. By projecting neuron activation
changes onto a toxicity probe, we find that only 31.8% of toxicity reduction comes
from dampened toxic neurons. Instead, DPO reduces toxicity by accumulating
effects across multiple neuron groups, both reducing writing in the toxic direction
and promoting anti-toxicity in the residual stream. Moreover, DPO gives noisy
adjustments to neuron activations, with many neurons actually increasing toxicity.
This indicates that DPO is a balancing process between opposing neuron effects to
achieve toxicity reduction. 2

1 Introduction

The generality of an LLM’s capabilities means the model also learns to encode undesirable behaviours,
such as producing toxic, biased, or hallucinated outputs [6, 5, 19]. To address these issues, researchers
have developed safety fine-tuning algorithms, such as proximal policy optimization (PPO) [15] and
direct preference optimization (DPO) [14], to reduce undesirable outputs.

Recent studies showed that these safety fine-tuning algorithms cause minimal changes to the parame-
ters of pre-trained models, and the undesirable behaviours are hidden rather than fully eliminated
[11, 8, 9]. However, the exact mechanisms through which small parameter changes lead to the
suppression of undesirable behaviours remain unclear. One explanation proposed when studying
the DPO algorithm for toxicity reduction, claimed that DPO reduces toxicity by dampening the
activations of the most toxic MLP neurons, creating an offset to avert toxic regions in the residual
stream [11]. Our study tests this claim by tracking the writing of the toxic feature direction detected by
a probe across MLP layers and neurons in GPT-2 medium. Specifically, we project neuron activation
changes onto the toxicity probe direction to quantify per-neuron toxicity adjustments, providing a
precise mechanistic understanding of DPO’s mechanisms. Our findings are:

• DPO does more than dampening toxic neurons. By ablating the most toxic neurons and
activation patching on the pre-trained model, we find that toxicity levels remain higher

∗Correspondence: Yushi Yang, <yushi.yang@oii.ox.ac.uk>
2The code is available at: https://github.com/Yushi-Y/dpo-toxic-neurons.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
Workshop on Foundation Model Interventions (MINT).

https://github.com/Yushi-Y/dpo-toxic-neurons


Table 1: Toxicity, Perplexity (PPL) and F1 scores after ablating and patching most toxic neurons.
Ablating the most toxic neurons or patching their activations to post-DPO levels results in some
toxicity reduction, but this effect remains limited compared to DPO’s impact.

Model Intervention Toxicity PPL F1
GPT2 None 0.453 21.70 0.193
GPT2 Ablate top 100 toxic neurons 0.403 21.99 0.192
GPT2 Ablate top 200 toxic neurons 0.405 22.41 0.192
GPT2 Ablate top 1000 toxic neurons 0.436 27.34 0.184
GPT2 Ablate top 100 positively activated toxic neurons 0.384 21.78 0.193
GPT2 Ablate top 200 positively activated toxic neurons 0.366 21.83 0.193
GPT2 Ablate top 1000 positively activated toxic neurons 0.320 30.04 0.191
GPT2 Ablate top 2000 positively activated toxic neurons 0.319 29.07 0.189
GPT2 Patch all dampened toxic neurons to post-DPO levels 0.335 21.69 0.190
DPO None 0.208 23.34 0.195
DPO Scale the key vectors on top 7 toxic neurons (x2) 0.487 21.72 0.192
DPO Scale the key vectors on top 7 toxic neurons (x5) 0.555 23.36 0.188
DPO Scale the key vectors on top 7 toxic neurons (x10) 0.458 37.33 0.183

than when DPO is applied, indicating that dampened toxic neurons alone [11] do not fully
account for DPO’s effect.

• A significant part of DPO’s effect comes from actively writing anti-toxicity into the residual
stream. By projecting onto the toxicity probe, our analysis shows that dampened toxic
neurons only account for 31.8% of the total toxicity reduction. DPO not only writes less in
the toxic direction but also promotes anti-toxicity by activating more on anti-toxic neurons,
or pushing inactive toxic neurons’ activations further below zero.

• Many neurons modified by DPO actually increase toxicity. DPO introduces noisy activation
adjustments across neurons, with roughly half writing less in the toxic direction and the
other half writing more, creating a trade-off. This suggests that DPO balances opposing
neuron effects to achieve overall toxicity reduction.

2 Background: Mechanisms of fine-tuning algorithms

Several studies have theorised how fine-tuning algorithms alter the capabilities of pre-trained models.
Jain et al. [8] fine-tuned a language model on synthetic tasks and showed that the model develops
“wrappers” in its later layers — small, localised adjustments to its pre-training abilities to optimise
for each task. In a similar setting, Jain et al. [9] found that safety fine-tuning methods work by
minimally transforming MLP weights to project unsafe inputs into its weights’ null space. Wei et al.
[18] demonstrated the brittleness of safety fine-tuning methods, showing that pruning just 3% of
targeted model parameters can unlock the model from aligned behaviours.

In our reference study, Lee et al. [11] examined how the DPO algorithm works internally to reduce
toxicity. Referring to the first and second weight vectors for an MLP neuron as the key vector and
value vector, respectively [7] (see Appendix A for full notations), Lee et al. [11] proposed that DPO
primarily reduces toxicity by suppressing the most toxic MLP neurons, whose value vectors align the
most with a toxicity linear probe, thus shifting the model activation out of toxic regions associated
with these value vectors. Our study tests this claim and finds it incomplete, as discussed further.

3 Experimental setup

To test Lee et al. [11]’s claims, we replicate their experimental setup, including the same language
models, toxicity-eliciting prompts, probe extraction, and evaluation metrics. Specifically, we focus
on GPT-2 medium with 355M parameters, 24 layers, a residual stream dimension of 1024, and an
MLP hidden layer dimension of 4096 [11]. We also use the DPO-ed version of GPT2-medium [11]
fine-tuned on 24,576 pairs of toxicity data generated by PPLM pipeline [3] on Wikitext-2 prompts.
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(a) MLP layer outputs projected to toxicity probe. (b) Cumulative toxicity reduction ranked by neurons.

Figure 1: Toxicity projection to the toxic probe across MLP layers and neurons. (a) Output
projections of MLP layers before DPO (red), after ablating top 200 toxic neurons (yellow), and after
DPO (green). (b) The cumulative sum of toxicity reduction contributed by neurons, with neurons
ranked from highest to lowest toxicity reduction.

To elicit toxic outputs, we use the “challenge” subset of REALTOXICITYPROMPTS [6], which
contains 1,199 highly toxic prompts. We use the same linear toxic probe vector vtoxic in [11] to
capture the aggregated toxicity feature direction in GPT2-medium. The toxicity probe was trained on
a binary classification task using the Jigsaw toxic comment classification dataset (561,808 comments)
[2] on the last layer of the residual stream in GPT2-medium [11]. We identify the most toxic neurons
as those whose value vectors have the highest cosine similarity to vtoxic, which also clearly projects
into toxic tokens in the vocabulary space [11]. To evaluate both toxicity and language quality in
generated text, we measure toxicity scores via the Perspective API [7], perplexity on Wikitext-2
dataset [13], and F1 scores by matching the tokens in 2,000 Wikipedia sentences [4].

4 Tracking toxic feature reduction across neurons

4.1 Ablating toxic neurons

To test Lee et al. [11]’s claim that DPO dampens most toxic neurons to avert associated toxic regions,
we ablate the activations of up to 2,000 toxic neurons to eliminate these regions entirely and assess
if this replicates DPO’s effect. As not all toxic neurons are exactly zero after DPO, we also apply
activation patching to all toxic neurons with reduced positive activations in the pre-trained model,
aligning their activations with post-DPO levels. Notably, many toxic neurons have small negative
activations averaged across prompts due to the GELU activation function (see Appendix B). Therefore,
we alternately exclude these neurons during ablation to avoid increasing toxicity (as seen in rows 2-4
in Table 1), focusing only on toxic neurons with positive activations.

Table 1 shows that, while ablating the most toxic neurons reduces toxicity to some degree, it falls
short of the reduction achieved by DPO. Additionally, ablating over 1,000 toxic neurons significantly
increases perplexity and degrades overall language quality. Similarly, activation patching does not
achieve the same level of toxicity reduction as DPO.

Lee et al. [11] supported their claim by amplifying the top 7 toxic neurons’ activations in the DPO-ed
model, scaling their key vectors by a factor of 10, and reversed the toxicity (Table 1). However,
we argue this intervention does not causally prove that dampening these neurons is DPO’s primary
mechanism. Amplifying these neurons by 10x drastically increases their impact beyond pre-DPO
levels, likely to raise toxicity by boosting the norm of the toxic direction in the residual stream,
similar to adding a steering vector [16]. This contrast echos the observation that inducing behaviour
through unrealistic interventions on a model’s component does not prove that this component alone is
responsible for the behaviour [10], as seen in activation patching.
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4.2 Computing neuron toxicity via projections

We follow [11] and assume that the toxic probe captures the aggregated toxicity feature direction in
GPT2-medium. To track toxic reduction across neurons, we first compute the toxicity in MLP layers
by projecting each layer’s output onto the normalised probe direction. These projections are averaged
across 1,199 prompts and 20 generated tokens. Figure 1a shows the projections before and after DPO,
revealing a consistent drop in toxicity across layers.

We further decompose the reduction in MLP layer output projections (the gap between red and
green lines in Figure 1a) into the sum of contributions from individual neurons in each layer. This
decomposition is feasible because changes in layer activations equal the sum of the activation changes
of individual neurons in that layer (see Equation 3 in Appendix A). Specifically, for neuron i, its
contribution to toxicity reduction is computed as:

toxic_reductioni = (mpre
i vprei −mdpo

i vdpoi ) · vtoxic
|vtoxic|

, (1)

where mpre
i and mdpo

i are the scalar activation coefficients of neuron i’s value vector before and after
DPO, and vprei and vdpoi denote the corresponding value vectors. This equation captures the change
in a neuron’s toxicity projection following DPO.

Our approach, which identifies the toxic feature component embedded in each neuron via projection,
assumes that each neuron contributes proportionally along its activated direction. This approach is
inspired by prior work showing that the toxic probe direction promotes toxic tokens when projected
into the vocabulary space [11], with neurons acting as basis dimensions to increase the likelihood of
these tokens [11, 7]. Additionally, this approach assumes that the toxicity probe direction remains
unchanged after DPO following Lee et al. [11]. This assumption is supported by findings that sparse
autoencoders (SAEs) trained on the base model can effectively reconstruct chat versions of models
[12], suggesting that feature directions transfer well to safety fine-tuned models.

Figure 1b presents the cumulative sum of toxicity reduction contributed by all neurons in the model,
ranked from most positive to negative projections. Interestingly, although over half of the neurons
reduce the writing in the toxic direction after DPO, the remaining neurons actually increase it, forming
an inverted U-shape curve. The peak total toxicity reduction is 48.0, which then declines to a net
value 7.2 due to neurons adding toxicity. This highlights that DPO’s minimal weight adjustments
[11] accumulate to create noisy changes in neuron activations: some neurons reduce toxicity, while
others increase it, reflecting a trade-off as DPO adjusts weights to generate non-toxic outputs [14].
Despite that reduced toxicity writing in some neurons may come at the expense of increased writing
in others, the overall effect remains a net reduction in toxicity.

4.3 Identifying neuron groups for toxicity reduction

We identify four neuron groups that contributed the total toxicity reduction (48.0), and calculated
each group’s effect by summing their neuron contributions: toxic neurons activated less positively
(TP−), anti-toxic neurons activated less negatively (AN−), toxic neurons activated more negatively
(TN+) and anti-toxic neurons activated more positively (AP+). Here, a neuron is considered toxic
or anti-toxic based on the cosine similarity between its value vector and the toxic probe direction.
Note that group TP− is the group Lee et al. [11] identified. Group TP− and AN− represent reduced
writing in the toxic direction, while group TN+ and AP+ indicate proactive anti-toxic writing.

Figure 2a shows that TP− and AN− contribute the most to toxicity reduction, accounting for 31.8%
and 37.3% of the total reduction, respectively. This means a sum of 69.1% of the reduction is due to
erasing existing toxicity, while the remaining 30.9% comes from promoting anti-toxicity. Figure 2c
shows the balanced contributions from four groups in the top 500 neuron contributors. Figure 2b
shows that among the top neuron contributors, while TP− initially dominates the distribution, the
impact of AN− grows with neuron ranks, with later neurons adding up more effects for toxicity
reduction (see Appendix C for details). Figure 3 shows that per-layer toxicity reduction across neuron
groups peaks in the later layers, mainly driven by TP− and AN−. This shows that DPO’s most
significant effects occur in later layers, consistent with [9]. These results show that toxicity reduction
in DPO is a collective effort, with no single group driving the process alone. Instead, DPO’s parameter
changes accumulate to make small activation adjustments across neuron groups, both erasing toxicity
and promoting anti-toxicity, resulting in a substantial overall effect.
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(a) (b) Toxicity reduction by neuron groups. (c) Shifts in toxicity level by neuron groups.

Figure 2: Contributions of four neuron groups to toxicity reduction. (a) Proportions of toxicity
reduction by each neuron group; (b) Stacked distribution of each group’s contribution among the
top 10000 neurons ranked by contribution. TP− initially dominates, with AN− gradually catching
as neuron rank progresses; (c) Shifts in toxicity projection for the top 500 neurons ranked by
contribution. Each arrow represents a neuron’s projection change from pre-DPO to post-DPO levels,
with all neurons shift with reduced toxicity.

Figure 3: Per-layer toxicity reduction by neuron groups. DPO’s parameter changes lead to the
most significant toxicity reduction in the later layers, driven by TP− and AN−.

5 Activation patching

To validate the effects of neuron groups on actual toxicity scores and link toxic feature reduction
to changes in these scores, we apply activation patching to each group on the pre-trained model,
adjusting their activations to post-DPO levels, and measure toxicity scores using the Perspective API.

Specifically, we apply averaged activation patching by assigning each neuron its mean post-DPO
activation value (averaged across all prompts and 20 generated tokens) at the final token position for
each prompt, guiding the generation of each next token. We acknowledge that using prompt-specific
activation values for patching, rather than averaged values, can offer a better approximation of DPO’s
effects, but we do not pursue this due to computational constraints.

Table 2 shows that patching the three top-contributing neuron groups individually (TP−, AN−,
TN+) reduces toxicity. While no single group replicates DPO’s full effect, patching the top two
groups (TP−, AN−) achieves toxicity levels close to DPO, and patching the top three or all four
groups yields reductions surpassing DPO, supporting the collaborative role of neuron groups in
toxicity reduction. We also observe that general language capabilities are only minorly affected by

5



Table 2: Toxicity, Perplexity (PPL) and F1 scores after patching on each neuron group. Patching
each top three contributing neuron groups individually reduces toxicity, while patching the top three
or all four groups together achieves a toxicity reduction surpassing DPO.

Model Intervention Toxicity PPL F1
GPT2 None 0.453 21.70 0.193
GPT2 Patch TP− neurons to post-DPO activations 0.335 21.69 0.190
GPT2 Patch TN+ neurons to post-DPO activations 0.413 21.71 0.190
GPT2 Patch AN− neurons to post-DPO activations 0.410 21.80 0.193
GPT2 Patch AP+ neurons to post-DPO activations 0.455 21.72 0.193
GPT2 Patch TP− and AN− to post-DPO activations 0.239 21.78 0.189
GPT2 Patch TP−, AN−, TN+ to post-DPO activations 0.193 21.76 0.174
GPT2 Patch all four groups to post-DPO activations 0.114 21.76 0.171
DPO None 0.208 23.34 0.195

patching, as indicated by stable perplexity scores, suggesting that DPO subtly adjusts activations
(unlike ablation or scaling in Table 1) to effectively preserve overall model performance.

6 Discussion

Our findings show that DPO’s parameter changes do not just accumulate to dampen toxic neurons,
but to reduce writing in the toxic feature direction by introducing subtle activation deviations from
the feature across four neuron groups. In particular, changes in negative activations induced by GeLU
are a significant source of these activation deviations (TN+ and AN−). These minor deviations in
activation across neuron groups, especially in later layers, accumulate to reduce the overall writing
of the toxic feature, resulting in decreased toxic generation. This understanding of DPO could
motivate targeted interventions to replicate its effects. For example, could directly stripping out the
toxic feature direction from the MLP weight matrix reduce toxic outputs? Future work could also
explore the trade-offs in toxicity across neurons, disentangling how neurons counterbalance each
other through weight adjustments and identifying the specific directions of these interactions.

For limitations, we recognise that focusing on a single linear probe direction to capture aggregated
toxicity information following [11], may overlook nuanced aspects of toxicity. Different types of
toxicity may manifest in various directions, representing distinct toxic behaviours (e.g., gender bias,
curse words) or distributed as a toxic subspace spanning multiple neurons [17]. Future work could
extend this study by exploring alternative methods to capture multiple toxic feature directions, such
as using singular value decomposition (SVD) vectors derived from contrastive data pairs [17], and
examining their patterns across neurons. Additionally, when computing neuron toxicity, we used
projection to identify the portion of the toxic feature embedded in each neuron, assuming each
neuron contributes proportionally to its activated direction. However, toxic features may actually be
distributed across neurons in a more complex linear composition with varying weights. Alternative
methods for decomposing features across neurons, such as sparse autoencoders (SAEs) [1], could be
explored to track more fine-grained toxic feature changes across neurons.

7 Conclusion

This paper decodes DPO’s mechanism by tracking how writing in a toxic feature direction, extracted
by a linear probe, is reduced across MLP neurons. We challenge the prior explanation that DPO
reduces toxicity primarily by dampening the most toxic activations [11]. By ablating or patching
the most toxic neurons, we observe higher toxicity than with DPO, suggesting that this explanation
is incomplete. Projecting neuron activations onto the toxic probe reveals that only 31.8% of the
reduction comes from dampened toxic neurons. Instead, DPO achieves toxicity reduction through
cumulative effects across four neuron groups with minor activation changes, both erasing toxicity and
promoting anti-toxicity in the residual stream, resulting in reduced toxic feature writing. These group
effects are validated through activation patching. Additionally, DPO introduces noisy adjustments
to neuron activations, with some neurons increasing toxicity, suggesting that DPO functions as a
balancing process across opposing neuron effects to achieve overall toxicity reduction.
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A Mechanisms of MLP layers in Transformer

In this section, we provide details on MLP layers in transformer.

Each MLP layer l in a transformer processes the input xl through two linear transformations with a
point-wise activation function σ in between:

MLPℓ(xℓ) = σ
(
W ℓ

Kxℓ
)
W ℓ

V , (2)

where W ℓ
K ,W ℓ

V ∈ Rdmlp×d, dmlp and d are the dimensions of MLP layers and the residual stream,
respectively. Expanding the equation gives:

MLPℓ(xℓ) =

dmlp∑
i=1

σ(xℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i . (3)

Following Geva et al. [7] and Lee et al. [11], we refer to kℓ
i (the i-th row of W ℓ

K ) as the key vector, and
vℓ
i (the i-th column of W ℓ

V ) as the value vector [7]. This equation shows that the MLP layer writes to
the residual stream dmlp times, once for each value vector vℓ

i scaled by an activation coefficient mℓ
i .

Geva et al. [7] showed that each sub-update mℓ
iv

ℓ
i promotes the likelihood of certain tokens to be

generated. Our experiments used GPT2-medium, which consists of 24 layers, with d = 1024 and
dmlp = 4096.

B Most toxic neurons have negative activations

In this section, we explain why directly ablating the most toxic neurons leads to diminished toxicity
reduction as more neurons are ablated, as seen in rows 2-4 in Table 1.

Figure 4 shows the average activations of the top 100 toxic neurons across all prompts and 20
generated tokens, both before and after DPO. Aside from the first few, most neurons are inactive and
display small negative activations due to the GELU function. This suggests that simply zeroing their
activations may inadvertently increase toxicity.

Figure 4: Activations of the top 100 toxic neurons before and after DPO. Most neurons have
negative activations averaged across prompts, both before and after DPO.
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C Toxicity reduction by neuron groups

In this section, we demonstrate how neuron groups contribute to toxicity reduction as neuron rank
progresses.

Figure 5 compares the contribution of the most toxic neurons, focusing on the top 200 versus those
ranked between 3000 and 3200. Initially, as shown in Figure 5a shows that initially TP− constitutes
the majority of the top 200 toxic neurons and dominates their contribution. However, further down
the neuron ranks, as seen in Figure 5b, contributions from the other three neuron groups, particularly
AN−, accumulate more effects and become more significant.

(a) Shifts in activations on top 200 toxic neurons. (b) Shifts in activations on top 3000-3200 toxic neurons.

Figure 5: Shifts in activations of top toxic neurons by neuron groups. (a) In the top 200
toxic neurons, the primary contributing group is TP−; (b) For toxic neurons ranked 3000-3200,
contributions are more evenly distributed across all four groups.

10


	Introduction
	Background: Mechanisms of fine-tuning algorithms
	Experimental setup
	Tracking toxic feature reduction across neurons
	Ablating toxic neurons
	Computing neuron toxicity via projections
	Identifying neuron groups for toxicity reduction

	Activation patching
	Discussion
	Conclusion
	Mechanisms of MLP layers in Transformer
	Most toxic neurons have negative activations
	Toxicity reduction by neuron groups

