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Abstract

We initiate a systematic investigation of distribution testing in the framework of
algorithmic replicability. Specifically, given independent samples from a collection
of probability distributions, the goal is to characterize the sample complexity
of replicably testing natural properties of the underlying distributions. On the
algorithmic front, we develop new replicable algorithms for testing closeness and
independence of discrete distributions. On the lower bound front, we develop
a new methodology for proving sample complexity lower bounds for replicable
testing that may be of broader interest. As an application of our technique, we
establish near-optimal sample complexity lower bounds for replicable uniformity
testing—answering an open question from prior work—and closeness testing.

1 Introduction

Algorithmic replicability has emerged as a fundamental notion in modern statistics and machine
learning to ensure consistency of algorithm outputs in the presence of randomness in input datasets.
The formal notion of replicability, proposed in [ ], is as follows.
Definition 1.1 (Replicability [ 1. A randomized algorithm A : X™ +— Y is
p-replicable if for all distributions p on X, Pr, 1 (A(T;r) = A(T";1)) > 1 — p, where T, T are
i.i.d. samples taken from p, and r denotes the internal randomness of the algorithm A.

Since its introduction, replicability has been considered in the context of a wide range of machine

learning tasks, including multi-arm bandits [ ], clustering [ 1,

reinforcement learning [ 1, [ ], halfspace learning

[ ], and high-dimension statistics [ ]. A related line of work explored the

connection between replicability and other algorithmic stability notions such as differential privacy
[ 1, [ ], total variation indistinguishability [ 1,

global stability [ ], and one-way perfect generalization [ 1,

[2023].

In this work, we initiate a systematic study of replicability in distribution testing, a central area
in property testing and statistics that aims to ascertain whether an unknown distribution satisfies a
certain property or is “far” from satisfying that property. Specifically, we focus on replicable testing
of discrete distributions in total variation distance, which encompasses canonical problems such as
uniformity/identity testing, closeness testing, and independence testing. Formally, we have:
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Definition 1.2 ((¢, p)-replicable testing of property P). Let P be a property consisting of k-
tuples of distributions, and e¢,p € (0,1/4). Given sample access to a collection of distribu-
tions pV, -, p®), we say a randomized algorithm A solves (e, p)-replicable P-testing if A
is p-replicable and can distinguish between the following cases with probability at least 1 — p:
completeness case (p(l)7 e ,p(k)) € P or soundness case k™" Zle dyy (p(i), q(i)) > e forall
tuples (@), --- ,q'®)) € P. In particular, (a) uniformity testing over the domain [n] corresponds to
the case that k = 1, and ‘P consists of only the uniform distribution over [n]; (b) closeness testing
over the domain [n| corresponds to the case that k = 2, and P consists of all pairs of distributions
(p, p) over [n]; (c) independence testing over domain [n1] X [ns] corresponds to the case that k = 1,
and P consists of all product distributions over that domain.

After the pioneering works formulating this field [ 1, [ ] from
a TCS perspective, a line of work has given efficient testers (without the replicability requirement)
achieving information theoretically optimal sample complexities for the aforementioned problems;

see [ 1, [ ] for uniformity/identity testing, [ 1,
[ 1, [ 1, [ ] for closeness testing, and [ 1,
[ 1, [ ] for independence testing. More broadly,
substantial progress has been made on testing a wide range of natural properties; see, e.g.,
[ , 1, [2011], [(2011], [2015],
[ 1, [ 1, [ , ,a] for a sample of works, and
[ 1, [ , ] for surveys on the topic.

Despite the maturity of the field of distribution testing, the relevant literature contains only a single
prior work addressing replicability: a recent paper by [ ] designs replicable testers
for the task of uniformity testing (and identity testing via a standard reduction technique), and
demonstrates that the sample complexity is nearly tight within a restricted class of algorithms.
Specifically, their techniques are insufficient to establish lower bounds against general uniformity
testers, or to design sample-optimal replicable testers for other distribution testing problems.

An instructive parallel arises in the context of differentially private (DP) distribution testing, where
similar challenges in designing testers with extra stability constraints have been addressed;see
[2017], [2018], [2018], [2019]. Although
generic reductions from DP to replicable algorithms exist, see, e.g., [ ], they incur
polynomial overheads in sample complexity. This motivates our goal: to develop a principled and
fine-grained understanding of the sample complexity cost of replicability in distribution testing.

1.1 Our results

Our first main contribution is a new lower bound framework for replicable distribution testing that
yields unconditional lower bounds against all testers, without additional assumptions. As a first
application of our framework, we show that the replicable uniformity tester proposed in
[ ] is indeed nearly optimal, thus settling the main open problem left by their work.

Theorem 1.3 (Sample Complexity of Replicable Uniformity Testing). The sample complexity of
(¢, p)-replicable uniformity testing over [n] is ©(y/ne 2p~1 +e72p72).

We believe that the framework is broadly applicable to establishing lower bounds for other replicable
distribution testing problems. In particular, as an additional application, we derive the following tight
lower bound for replicable closeness testing.

Theorem 1.4 (Lower Bound of Replicable Closeness Testing). The sample complexity of (e, p)-
-2 -2

replicable closeness testing over [n] is at least Q(n2/3€’4/3p*2/3 + /e 2p Tt +e72p72).

On the algorithmic front, we provide new replicable testers for closeness and independence testing.
For closeneness testing, we show:

Theorem 1.5 (Replicable Closeness Tester). The sample complexity of (g, p)-replicable closeness
testing over [n] is at most O(n?/3e=4/3p=2/3 1\ /ne=2p~1 +e72p2).

Note that Theorem 1.5, together with Theorem 1.4, give a tight characterization of the sample
complexity of replicable closeness testing up to polylogarithmic factors. For independence testing,
we show that:



Theorem 1.6 (Replicable Independence Tester). The sample complexity of (e, p)-replicable indepen-

d . > . O nf/3n;/3 Vning 1 1
ence testing over [ny] X [nz] for ny > ng is at most s T Tz )

Perhaps surprisingly, our upper bounds point to an intriguing conceptual connection between repli-
cability and distribution testing in the high success probability regime. In particular, the functional
forms of the sample complexities of (non-replicable) uniformity, closeness, and independence testing
up to error probability 4 have been characterized in [ , ] to be precisely
the sample complexity upper bounds of the corresponding replicable testing problems after replacing
p~ ! with \/log(1/8) . Moreover, all known replicable distribution testers (including ours) leverage
the statistics developed in the context of high probability distribution testers. We leave it as an
interesting open problem whether there exists generic reduction from high-probability testers to
replicable ones or vice versa. Lastly, with this connection in mind, it is a plausible conjecture that our
sample complexity upper bound for replicable independence testing is nearly optimal. We leave this
as an open question.

1.2 Technical Overview

We start with a description of our lower bound framework, which is the main technical contribution
of this work, followed by our upper bounds.

Replicable Testing Lower Bounds In what follows, we will sketch the overall framework for
showing lower bounds against replicable uniformity and closeness testing, and point to the specific
lemmas used in deriving the uniformity testing lower bound for concreteness. Let A be a randomized
tester for the testing problem that uses significantly fewer samples than the target lower bound. Our
end goal is to show that if .4 satisfies the correctness requirements of the corresponding testing
problem, then A cannot be replicable. Towards this goal, we begin with the same reasoning steps as
the ones in [ ]. In particular, we construct a meta-distribution M¢, parametrized by
¢ € [0, €], over potential hard instances of the testing problem such that (i) M and M. correspond
to instances that should be respectively accepted and rejected by the tester, and (ii) it should be hard
to distinguish a random instance from M¢ versus a random instance from Me .

After that, using the same argument as [ ], we can deduce that if we sam-
ple £ ~ U([0,¢]), then the average acceptance probability of the tester under Mg, i.e.,
Ep~e [Prs~p [Aaccepts S]], will be close to 1/2 with probability at least £2(p) over the random-
ness of £. See Lemma 3.5 for the formal statement. If M were to contain just a single distribution
instance p¢, then the statement would directly imply that A is not replicable under p¢, and this
would conclude the lower bound argument. Of course, M is in reality a meta-distribution over
(exponentially) many different instances by design (see Definition 3.2). To overcome this issue,

[ ] takes advantage of the fact that the instances from the meta-distribution are identical
up to permutation of the domain elements. As such, if one makes the additional assumption that the
output of the tester is invariant up to domain relabeling (in other words, the tester is symmetric), then
it is not hard to show that the acceptance probability of the tester under each individual distribution
must be the same as the overall averaged acceptance probability under M, and the proof is complete.

Our proof circumvents this difficulty with a fundamentally different approach that allows us to avoid
making any assumptions on the tester. As one of our main technical contributions, we show that even
when the tester is not symmetric, the acceptance probability under a random choice of p ~ M, must
nonetheless concentrate around its expectation, as long as the tester is still moderately replicable
under p, i.e., replicable with probability 1 — 1/polylog(n). See Lemma 3.6 for the formal statement.
Towards this goal, consider the joint distribution of two random sample sets S, S’ generated as
follows: pick a random distribution p ~ M and then sample S, S’ independently from p®™. The
distribution of S’ conditioned on S then naturally defines a random walk RW on the space of

all possible sample sets. For convenience, denote by RW’EC (p) the distribution over sample sets S
obtained by first sampling 7' ~ p and then performing & steps of the random walk. Lying in the heart

"While our replicable closeness tester runs in linear time in sample size, our replicable independence tester
requires polynomial runtime. This is due to an extra “averaging” operation applied to make the statistic more
stable (see Section 1.2). We leave it for future work to explore whether its runtime can be further improved.

2For example, the sample complexity of high probability closeness testing has been shown to be

C) (n2/3574/3 log'/3(1/6) 4+ /ne=2/1log(1/68) + 2 log(l/é)) by [ ]



of our proof is the following two structural claims: (1) for most p ~ Mg, the acceptance probability

of the tester under RWEOIleg(”) (p) is roughly the same as that of under p. (2) the random walk

RW  has mixing time at most polylog(n). Combining the two claims gives that the acceptance
probability under most p ~ M must be roughly the same, as the acceptance probability under the
stationary distribution of the random walk (which by construction is exactly equal to the expected
acceptance probability under M).

It then remains for us to establish these two claims. The proof of (1) mainly follows from the
definition of the random walk, and the assumption that the tester is moderately replicable. See
Lemma 3.9 and its proof for details. The canonical way for showing (2) is to bound from below the
eigenvalue gaps of the transition matrix of the random walk. To analyze this, we note that after a
careful use of Poissonization (see Definition D.1 for the definition of Poisson sampling), we can
make RW¢ a product of n independent random walks. Formally, since the number of samples is
Poissonized, the sample frequency of each bucket is independent, even conditioned on the choice of
distribution p ~ M_¢. It then suffices for us to bound the mixing time of much simpler random walks
on the sample frequencies of each individual domain element. Fortunately, the eigenvalue gap of this
random walk can be analyzed conveniently using elementary properties of the Poisson distributions.
See Lemma 3.8 and its proof for details. The formal proofs of Theorem 1.3 and the relevant lemmas
are deferred to Appendix E.

Lastly, the same framework also applies to the proof of Theorem 1.5. The main change needed is to
replace the meta-distribution M to be the standard hard instance for closeness testing. See, e.g.,

[ 1, [ ], [ ] for the construction of the hard
instance. The formal proof can be found in Appendix F.

Replicable Testing Upper Bounds We begin with the observation that many testers from the
literature share the following nice form: compute a test statistic Z and compare it to a threshold
R. Usually, the analysis (without replicability requirements) involves showing that E [Z] = 0 in
the completeness case, E [Z] > R in the soundness case, and Var[Z] is at most a small constant
multiple of R2. For testers of this form, we can employ the same strategy as the one used in

[ ] to transform them into replicable testers: we can compute the same test statistic Z, and
then compare it to a randomly chosen threshold r between 0 and R/2. In particular, if we further
have that Var[Z] < R?p? (at the cost of taking more samples), the variance bound on Z implies that
Z computed with different sample sets drawn from the same underlying distribution are likely to
be close to each other. Consequently, the values of Z in two runs are unlikely to be separated by a
randomly chosen r, ensuring replicability.

For closeness testing, the high probability tester from [ ] satisfies exactly
the conditions needed, and in turn yields our replicable tester after combining it with the random
thresholding strategy. The formal proof of Theorem 1.5 is given in Appendix C.

Designing good testers for replicable independence testing turns out to be significantly more involved,
as even the known high probability independence testers do not satisfy the required variance bounds
within our sample complexity budget. In its essence, the bottleneck lies in an extra randomized
“flattening” procedure employed by the tester, which significantly increases the overall variance of the
final statistic computed. Specifically, the procedure utilizes a random subset of the input samples
to “split” domain elements with large mass into sub-elements. This step aims to ensure that there
will be no extremely heavy elements after the procedure (otherwise, the tester may fail to satisfy
even the basic correctness requirements). To show correctness of their tester,

[ ] demonstrated that (1) the flattening procedure preserves the product/non-product structure of
the original distribution, and (2) the variance of the final test statistic conditioned on the flattening
samples (and some other technical conditions) is small. Notably, a bound on the total variance of the
test statistic Z is not needed in their context, as the above two properties suffice for them to show
upper/lower bounds on Z in the completeness/soundness cases. Yet, when replicability is of concern,
we do need to show that Z concentrates around a small interval. As a result, the lack of a good bound
on the total variance (as compared to just conditional variance) of the final test statistic turns out to
be a major technical obstacle in converting the high probability tester into a replicable one. In fact,
the randomness in using different samples for flattening purposes can easily cause the total variance
of Z to be much larger than the conditional variance.



To overcome this difficulty, we leverage the following idea from [ ] (in the
context of differentially private testing): to make a test statistic computed with internal randomness
more stable, we can replace it with the averaged version of it. In particular, we apply this idea to
the statistic Z computed by the high probability independence statistic, and obtain a new averaged
statistic Z,—essentially, the expected value of Z averaged over all possible partitions of the input
samples into flattening samples and testing samples (see Definition 2.6 for the formal definition).
As our main technical lemma, we show that the total variance of this averaged test statistic Z, can
be bounded from above by N—the expected value of the number of non-singleton samples, i.e., the
testing samples which still collide with another testing sample after the flattening procedure (see
Lemma 2.9). At a high level, our argument uses an Efron-Stein style inequality that bounds the
variance by the sum of the expected square differences of the test statistic Z, caused by removal of
each individual sample. Suppose that there are in total m samples and the probability of selecting
a sample for flattening is p. We then proceed by a case analysis. If the sample removed is used for
computing the final test statistic, we show that the (non-averaged) test statistic Z will only be different
if the sample also happens to be a singleton sample after flattening, which happens with probability
roughly O(N/m). If the sample is selected for flattening, we show that removing it can change the
test statistic Z by at most N divided by the number of flattening samples, which is roughly O(pm).

Consequently, the contribution to the variance of Z, in this case is at most (p N/(mp))> < N2 /m?,
which is also O(N/m).

It remains for us to control the non-singleton sample count V. Fortunately, [ ]
already established sharp bounds on the expected value of N, when p is known to be a product
distribution. This then motivates us to run a pre-test to check whether E[N] is within a constant
factor of the desired bound, before computing the averaged independence statistic Z,. In particular,
we consider the statistic IV, defined similarly to Z, as the expected non-singleton sample count N
averaged over the random choice of the flattening sample set, and use an almost identical argument to
show that Var[N,] can also be bounded by O(E [N]) (see Lemma 2.11). Equipped with the variance
bound, it is not hard to show that comparing N, with an appropriately chosen random threshold
yields a tester that replicably determines whether the magnitude of E[N] is within a constant factor of
the bound it should satisfy when p is a product distribution. If we pass this test, we can then proceed
to apply the main test, which compares Z, to a randomized threshold. This concludes our proof
sketch. The relevant lemma statements can be found in Section 2. The proofs of Theorem 1.6 and the
relevant lemmas are deferred to Appendix B.

Preliminaries Let [n] = {1,...,n}. We use n to denote domain size and m to denote sample
complexity. We use bold letters (e.g. p, q) to denote distributions or measures and p(4) to denote the
mass of ¢ under p. Let Poi() denote a Poisson distribution with parameter A and PoiS(m, p) denote
m’ ~ Poi(m) i.i.d. samples from p. Let Bernoulli(a) denote a Bernoulli distribution with parameter
a. Let U(S) denote the uniform distribution over set S, where .S can be either a discrete set of points
or an interval. For any distribution p, let p®™ denote m i.i.d. samples from p. We use “algorithm"
and “tester" interchangeably. For a multiset S of samples, we denote the set of all elements appearing
in S by supp(S).

2 Replicable Independence Testing Algorithm

In this section, we give our replicable independence tester. At a high level, we compute the same
statistic used by the high probability independence tester from [ ], but average
over the internal randomness of the tester to enhance replicability.

Our starting point is the (randomized) flattening technique developed in

[ 1, [ ] that helps decrease the ¢5 norm of input distributions while
maintaining the properties to be tested in total variation distance. The original description is as
follows. First, one draws a set of samples X, and randomly partitions X into a flattening sample set,
and a testing sample set. Next, one uses the flattening samples to determine the number of sub-bins
for each original domain element, and then randomly assigns original testing samples to the sub-bins.
For our analysis, it is more convenient to consider an equivalent random process, where we randomly
sort all samples, partition them into flattening and testing samples, and make two testing samples be
in the same sub-bin if and only if they are originally from the same bin and there are no flattening
samples from the same bin between them. The formal description is as follows.



Definition 2.1. Let X = {X1, -+, X,,} be a multiset of samples over [n], and F € {0,1}"™ be a bi-
nary vector. Then the randomized flattening procedure X/ := {X Zf Yo:p,=0 < Flatten({ X} 3 F)
is as follows. (1) Assign a random order o to the samples. (2) For each sample X,, count the number
of samples X, before it according to o such that Xy = Xy and Fyr = 1. Denote the number as
fe- (3) For each { such that Fy = 0, set X{ < (X, fo)- Moreover, given a parameter o € (0, 1),
we denote by Flatten(X ; ) the randomized sample set obtained from X' < Flatten(X; F), where
F ~ Bernoulli(ca)®™.

In independence testing, we need to perform the flattening operation on the marginals of multi-
dimensional distribution independently. For clarity, we formalize this operation below.

Definition 2.2. Ler o, 8 € (0,1), and P = {P; = (X,,Y,)}}", be a multiset of samples over
[n1] x [n2]. Then the multi-dimensional flattening operation PT := {ng} < Flatten({P;}}" ; o, B)
is as follows. (1) Choose F* ~ Bernoulli(c)®™ and FY ~ Bernoulli(3)®™. (2) {XZ}Z:FEE:(] —
Flatten({X,}j2 1 F®), {Y/ }o.py—o < Flatten({Y;}j2\; FY). (3) Map Py to P} « (X[, Y{) if
F} = F} = 0. When flattening two bags of samples A and B together, we denote by Al UBT
Flatten(A U B; «, 3), where AT(BY, resp.) contains all elements mapped from A(B, resp.).

Another key idea behind the tester from [ ] is to use the samples from p to
simulate samples from another product distribution q that equals to the product of the marginals of
p. In particular, a sample from q can be simulated by taking two samples from p, and combining
the first coordinate of the first sample to the second coordinate of the second sample. Hence, we can
readily assume that we have sample access to both p and q.

Definition 2.3 (Product of Marginals). Given a distribution p over [n1] X [nz], we say q is the
product of marginals of p if the marginals of q agree with that of p and q is a product distribution.

Given the samples from the original distribution, and the ones from the product of the marginals, the
final step of the tester from [ ] is to compute the closeness test statistic, which
we reiterate below.

Definition 2.4 (Closeness Statistic). Given two bags of samples Sy, S, over some finite discrete
domain, the closeness statistic Z¢c(Sy, Sq) is defined as follows. (1) For each sample in S, U.S,, mark
it independently with probability 1/2. (2) For i € supp (S, U Sy), let T}, T be the number of times
the element i appears marked in Sy, Sq, and TP, T{" be the corresponding counts of the unmarked
samples. (3) Compute Zc:(Sy, Sq) < |TF° — T2 + TP — T | — |TP° — TP | — |T/° — T").

A useful fact of this test statistic is that any singleton sample does not contribute to its value.

Fact 1. Consider two sets of samples S,,, Sy over some finite discrete domain. Assume that P is a
singleton sample among S, U S,. It holds that E[Zc(Sp, Sq)] = E[Zc(Sp\{P}, S¢\{P})], where
the randomness is over the internal randomness of the test statistic Z.

We are now ready to state the tester from [ ], which forms the building block
of our replicable independence tester.

Algorithm 1 INDEPENDENCESTATS
Input: asample set .S, from the unknown distribution p over [n1] X [ng], where n; > no, and
another sample set S, from q, the product of marginals of p.
Parameters: domain sizes n; > ng , tolerance € € (0,1/4) , replicability p € (0,1/4).
Output: A test statistic related to whether these samples came from an independent distribution.
Setm = 0O (nf/gné/gp_w?’a_"‘/?’ + /ningp~teT? + ,0_25_2).
Set o« = min(n,/(100m), 1/100), 5 = ny/(100m).
Compute the flattened samples SJ U SJ « Flatten (S, U Sg; , 3).
Abort and return 0 if [S,| — [SJ| > 100y or |Sy| — [ST| > 10n,.
Sample ¢, (" ~ Poi(m). Abort and return 0 if £ > |SJ| or ' > |S7].
Keep only the first £ samples of Sg and only the first ¢/ samples of SC{ .
Compute and return the closeness test statistic Z¢ (Sg, S g ).
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A basic property we need is that the final test statistic computed has a wide expectation gap.

Lemma 2.5 (Expectation Gap of Independence Statistics; Section 3.2 and Claim 4.14 of

[ 1. Let p be some unknown distribution over [n1] X [n2), q be the product of marginals
of p, and m be defined as in Line I of INDEPENDENCESTATS. Let S, S, be samples from p,q
respectively with size |Sp| = |Sq| = 100m, and Z < INDEPENDENCESTATS(Sy, Sq). Define
G := min (em,m?e%/(n1n2), m3/%e%/\/uinz) If p is a product distribution, then E[Z] < Cy, G;
If p is e-far from any product distribution in TV distance, then E[Z] > C,G for some constants
Cr, < Cp,.

To make the final test statistic computed by INDEPENDENCESTATS more replicable, we consider a
new test statistic Z, computed by averaging over the internal randomness of INDEPENDENCESTATS.

Definition 2.6 (Averaged Independence Statistic). Let Sy, S, be samples over [nq] X [ns]. We define
Z4(Sp, Sq) to be the expected value of INDEPENDENCESTATS (S, Sq) averaged over the internal
randomness of INDEPENDENCESTATS.

An important quantity in analyzing the concentration of the above new statistic is the concept of
non-singleton sample counts.

Definition 2.7 (Non-singleton Sample Count). Let S be a set of samples over some finite discrete
domain. We define the non-singleton sample count N (S) as the total number of samples within S
that collide with another sample.

Specifically, we focus on the non-singleton sample count of the flattened sample sets Sg , Sg con-
structed by INDEPENDENCESTATS.

Definition 2.8 (Non-singleton Sample Count of Flattened Samples). Let Sy, S, be two arbitrary sets
of samples over [n1] X [ns]. Consider the two random (truncated) flattened sample sets SZJ: , S,{ con-

structed by INDEPENDENCESTATS (S, Sy) on Line 7°°. We define No(Sp, Sq) :==E[N(S] U S]],
where the expectation is over the internal randomness of INDEPENDENCESTATS.

Our main insight is that we can bound the variance of the new statistic Z, (S,, S,) by the expected
value of No(Sp, Sq). This key technical lemma is as follows. The proof is deferred to Appendix B.

Lemma 2.9 (Bound Variance of Averaged Independence Statistic in Expected Non-Singleton Sample
Count). Let p be a distribution over [ny] x [n2), and q be the product of marginals of p. Let
Sp, Sq be samples from p, q respectively. Consider the averaged independence statistics Zo(Sp, Sq),
and the averaged non-singleton sample count N, (Sy, Sy). Then it holds that Var[Z,(Sy, Sq)] <

O(log®(n1n2))E[Na(Sp, S,)], where the randomness is over the samples S, S,.

It then remains for us to control N, (S,, Sq). Fortunately, the expected value of the non-singleton
count has already been shown to be small by [ ] when the underlying
distribution p is known to be a product distribution.

Lemma 2.10 (Expected Non-singleton Sample Count under Product Distribution, Lemma 4.9 of

[ D. Let m € Zy,a, 8 € (0,1) be defined as in Line 1 and Line 2 from
INDEPENDENCESTATS respectively. Let S be samples from a product distribution q over [ny] x [nas]
with | S| = 100m. Consider the random variable N (SY), where ST < Flatten(S; «, 3). Then there
exists a universal constant Cy such that E[N (S7)] < Cy max (m?/(nins),m/ns), where the
randomness is over the internal randomness of Flatten(-) as well as the samples.

This motivates a two-stage testing strategy: we can first test that the expected value of N, (S, U S;)
is sufficiently small, and then compute the averaged statistic Z,(.Sp, Sy). To ensure replicability of
the first testing stage, we also need to control the variance of the averaged non-singleton sample
count N, (S, U S,). Fortunately, the variance can be bounded in the same way as the variance of the
averaged independence statistic Z, (S, U S,). See Appendix B for the detailed argument.

Lemma 2.11 (Bound Variance of Averaged Non-Singleton Sample Count). Let p be a distribution
over [n1] X [nz], and q be the product of marginals of p. Let Sy, S, be samples from p, q respec-
tively. Consider the random variable N,(Sy, Sy) defined as in Definition 2.8. Then it holds that

Var[N,(Sp, Sy)] < O(log®(n1m2))E[N,(Sy, S,)], where the randomness is over Sy, S,.

3We think of the two sets as being empty if the algorithm aborts before reaching Line 7



Using Lemma 2.11, we show that we can replicably test whether E[N,(S,, S,)] is on the order of
max (m?/(nyn2), m/ min(ny, ny)) by simply drawing random sample sets S, S, (approximately)
computing No(Sp, Sy), and then comparing it with an appropriately chosen random threshold.

We are now ready to present our full independence tester. The full analysis and proof of Theorem 1.6
can be found in Appendix B.

Algorithm 2 REPINDEPENDENCESTATS
Input: sample access to an unknown distribution p over [n1] X [ns]
Parameter: ¢ € (0,1/4) tolerance, p € (0, 1/4) replicability.
Output: Whether p is a product distribution.
1: Let m be defined as in Line 1 of INDEPENDENCESTATS.
2: Sp < 100m samples from p, and S, < 100m samples from q, the product of marginals of p.
3: Estimate  N,(S,,S,) (see Definition 2.8) wup to error o(l) by running
INDEPENDENCESTATS(S,, S;) with fresh randomness for sufficiently many times.
Draw r ~ U([2Cn, 100Cy]), where Cy is the constant from Lemma 2.10.
Reject if (estimated) N, (Sp, Sq) > rmax (m?/(nins), m/ny).
Sp < 100m samples from p, and .S, <— 100m samples from q, the product of marginals of p.
Estimate Z,,(.Sp, Sq) (see Definition 2.6) up to error o(1) by running INDEPENDENCESTATS(.S)
with fresh randomness for sufficiently many times.
Draw r ~ U([Cy,, C1,)), where Cy, , Cy, are constants from Lemma 2.5.
9: Reject if (estimated) Z,(Sp, Sq) > r min (em, m?e?/(niny), m*?e?/\/ainz). Otherwise,
accept.

A A

(]

3 Lower Bounds for Replicable Uniformity Testing

In this section, we show the sample complexity lower bound Q2 (e 72p=2 + \/ne~2p~1) for (e, p)-

replicable uniformity testing over [n]. The Q(e~2p~2) part follows from the lower bound in Lemma
7.2 of [ ] for the naive case when n = 2, i.e. distinguishing a fair from
biased coin so we focus on establishing the lower bound Q(y/ne~2p~1). As such, we assume that
0 (\/55*2;)*1) = £72p~2, which implies the implicit bound \/ne=2p~1 =6 (n€’2), throughout
this section. To begin with, we apply a common technique called Poissonization. Specifically, it
reduces the task into showing lower bounds against Poissonized testers allowing a more flexible
sampling process from non-negative measures in place of the standard testers that are restricted to
take a fixed number of samples from distributions. Formally, the Poissonized tester is defined as
follows.

Definition 3.1 (Poissonized Tester and Poisson Sampling). Given a non-negative measure p over [n]
and an integer m, the Poisson sampling model samples a number m’ ~ Poi (m||p||1), and draws m’
samples from p/||p||1. Let T € R™ be the random vector where T; counts the number of element i
seen among the samples. We write PoiS(m, p) to denote the distribution of the random vector T. We
say A is a Poissonized tester with sample complexity m if it takes as input T ~ PoiS(m, p).

Based on this, we can relax the hard instances for uniformity testing to be in general non-negative
measures over [n]. The definition below describes the meta-distribution M, over non-negative

measures over [n] that forms the family of hard instances for uniformity testing.

Definition 3.2 (Uniformity Hard Instance). For ¢ € [0, €], we define M to be the distribution over
non-negative measures pg¢ defined as follows: p¢(i) = % with probability % and % otherwise.
The hard instance Hy for replicable uniformity testing is given by first § ~ U([0, €]), then pe ~ Me.

Using a standard minimax-style argument from [ ], it suffices to give a lower
bound for deterministic algorithms (fixed random seed 7) on a random instance from H;;. More
specifically, the task can be reduced to showing that any deterministic algorithm that satisfies distri-
butional correctness w.r.t. My and M, cannot at the same time satisfy distributional replicability
with respect to Hy.

Definition 3.3 (Distributional Correctness/Replicability). Let Mg, M., H be meta-distributions
over non-negative measures over [n]. Let A be a Poissonized tester with sample complexity m. (1)



We say A is -correct w.rt. Mo and M. if Pry. 5 s mapois(m,p) MA(T) = Accept] > 1 — 6 and
Pty oo, Tropois(m,p) [A(T) = Accept] < 6. (2) We say A is p-replicable with respect to H if it
holds that Pry, s 1.1 ~pois(m.p) [A(T) # A(T")] < p.

We defer an elaboration on the reduction from showing lower bounds against deterministic Poissonized
testers to those against randomized standard testers to Appendix D. Equipped with this reduction, the
proof of Theorem 1.3 can then be reduced to the following main result of this section:

Proposition 3.4. Let M be the meta-distribution parametrized by & € [0, €] defined as in Defini-
tion 3.2, A be a deterministic Poissonized tester with sample complexity m = 6 (\/55*2 pfl). If Ais
0.1-correct with respect to Mg and M, then A cannot be p log 2 n-replicable with respect to Hy.

From now on, we focus on the proof of Proposition 3.4. Since .4 is assumed to be a deterministic tester,
we note that Prp 7/ pois(m,p) [A(T) # A(T")] > 0.1 holds as long as the acceptance probability
of A(T) lies in the interval [1/3,2/3]. For convenience, we define the function Acc,,(p,.A) =
Propois(m,p) [A(T) = Accept] . It then suffices for us to show

Pr [Acc,(p,A) € (log™*n,1 —log™ > n)] > p. €))
p~Hu

Recall that H; is defined to first select £ randomly from [0, €], and then sample from the distribution
family M. Hence, towards showing Equation (1), we will first show the intermediate result that
the average acceptance probability Ep a1, [Acc, (p,.A)] is close to 1/2 with probability at least p
over the random choice of £. At a high-level, we observe that the expected acceptance probability
function must evaluate to exactly 1/2 for some £ € (0, ) due to continuity, and then draws tools
from information theory to show that the function is in general 0.1(¢p) ~!-Lipschitz with respect to
the parameter £. The argument is similar to the one employed in [ ], and so we defer
it to Appendix E.1. The formal statement is given below.

Lemma 3.5. Let A be a deterministic Poissonized tester that is 0.1-correct w.r.t. Mgy and M. and
m = 6(y/ne2p™1), then Preyy(jo,e]) [Epmte [Accm (p, A)] € (1/3,2/3)] > p.

To conclude the proof of Equation (1), we then relate the acceptance probability Acc,,(p) for a
random p ~ M, to its expected value. To achieve the goal, the authors from [ ]
exploit the assumption that the underlying tester .4 is symmetric. Our main technical contribution here
is that we managed to remove this assumption. In particular, we show that even if the underlying tester
is not symmetric, the acceptance probability Acc,, (p) will nonetheless satisfy strong concentration
properties as long as the tester is still moderately replicable w.r.t. Hys.

Lemma 3.6 (Concentration of Acceptance Probabilities). Let & € (0,¢) and A be a deterministic
tester that is log_2 n-replicable with respect to Hy. Assume that m = 6(ne=2). Then it holds
PrpNMg (|Accm(p, .A) — EP/NMg [Accm(p’, A)H > i) § %

The formal proof is deferred to Appendix E.2. At a high level, we construct a random walk on the
sample space whose stationary distribution is the same as I" ~ p, where p ~ M.

Definition 3.7 (Sample Random Walk). Let M be a meta-distribution over non-negative measures
over [n), and m € Z.. The sample random walk RW ,,, a4 is defined on the graph whose vertex
set is N™ (where each vertex corresponds to a sample count vector T') and transitions (T, Ty) are
defined by the conditional distribution of T given T} induced by the joint distribution given by the
Sollowing process: (1) Choose p ~ M. (2) Ty, Ty are sampled independently from PoiS(m, p).
Moreover, for a sample count vector T', we denote by RW]fm (T the random variable representing
the outcome after k steps of the random walk RW y, a4 from T. For a non-negative measure p over

[n], we denote by wan,/\/t (p) the distribution OfRW]fn’M (T'), where T ~ PoiS(m, p).

For simplicity, we write RW ,, ¢ := RW,;, r, where M is the meta-distribution given in Defini-
tion 3.2. The random walk turns out to mix very rapidly.

Lemma 3.8. Let & € (0,¢) and m = 6(ne~2). Then RW,,, ¢ has mixing time 7(5) = O(log(n/4)).

The proof is deferred to Appendix E.2. To see that the random walk is fast mixing, we observe that
RW,,, ¢ is a product of n independent random walks induced by the following process on the sample
counts t1, to € N for each domain element: 1) choose A ~ U({ Ay := (1 +&)/n,A\_ == (1-&)/n})



and 2) t1,ts are sampled independently from PoiS(m, \). We show that the total variation distance
between PoiS(m, A1) and PoiS(m, A_) is not too large, so that most initial states ¢; are about as
equally likely to be generated by PoiS(m, A} ) as to be generated by PoiS(m, A_). Consequently,
the distribution of A\ conditioned on ¢; will be close to the uniform distribution over A, A_, further
implying that the conditional distribution of the next state ¢o will be close to the stationary distribution.

The fast mixing time of the random walk then allows us to approximate the
stationary distribution by Rmeg(p) for some k = polylog(n). As a re-
sult, ~we can  write |]ET~Pois(m,p) [A(T)] = Eprmpe [Empois(m,p) [A(T)]” ~
E7pois(m,p) [A(T)] —]ET,NRW;Y&(I,) [.A(T’)]’. Since A is replicable with respect to Hy,

we can use the triangle inequality and some simple algebraic manipulation to further bound the above
by the sum of the terms

Pr [A(T) # A(T')] @

T~RW. i(p),T'~RW_ .(p)

where ¢ € [k]. While it is challenging to establish a uniform bound on the terms for an arbitrary non-
negative measure p, it turns out that this is not so hard for an “average” p ~ M. Atahigh level, if we
consider the expected value of the disagreement probability in Equation (2) over p ~ Mg, the term
simplifies to Prror. 7 rw,, (1) [A(T) # A(T")] = Prpoam, 7.1 ~pois(m,p) [AT) # A(T")]
where the equality follows from the definition of the stationary distribution 7¢ of the random walk.
Therefore, the expected value of the disagreement probability cannot be too large as long as the tester
A is still moderately replicable with respect to H;. The formal statement is given below, and the
proof is deferred to Appendix E.3.

Lemma 3.9 (Indistinguishability of Random Walk Step). Let A be a deterministic uniformity tester
and p ~ M. Define & := Pry s 1,1 ~pois(m,p) MA(T) # A(T")]. With probability at least 1/2,

it holds that Zle PrTNRWi;é(p) T'~RW ¢ (T) [A(T) # A(T")] < 2kk , where the randomness
is over choice of p ~ Mg.

The proof of Lemma 3.6 then largely follows from Lemmas 3.8 and 3.9. After that, the proof of
Proposition 3.4 follows from Lemmas 3.5 and 3.6. See Appendix E.4 for the formal arguments.
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NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction concisely demonstrate our contributions and
scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our new lower bound framework for replicable distribution testing does not
require additional assumptions on testers. Our replicable closeness tester with near-optimal
sample complexity runs in linear time in sample size, yet our replicable independence tester
runs in polynomial time in sample size, and we wonder whether one can obtain a more
efficient linear time algorithm. We discuss this in our paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions were clearly provided in the statements and each statement
has a corresponding proof in either the main body or appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
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Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While the paper focuses on foundational research, replicable distribution
testing is aimed towards building an algorithmic framework for replicability in scientific
analysis, helping build an efficient procedure to verify experimental procedures are followed
correctly and building public trust in science. The authors are not aware of any potential
negative impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

A Additional Preliminaries

A.1 Probability and Information Theory

In this subsection, we present some basic lemmas about probability and information theory.

Lemma A.1 (Poisson Concentration (see e.g. [ 1. Let X ~ Poi(\). Then for any
x >0,

z2
max(Pr(X > A + ), Pr(X <X — 1)) < e 2059,
Claim A.2 (Asymptotic Upper Bound of Mutual Information). Let X be an unbiased uniform random

bit, and M be a discrete random variable s.t. Pr[M = o|X = 0] = (1) Pr[M = a|X = 1], for all
a within the support of M, then the mutual information between the two random variables satisfies

. _ (Pr[M=a|X=0]—Pr[M=a|X=1])?
that I(X : M) =0(1) 3_, Pr[[M:Z\X:g]JrPr[[M:a\X:E] :

Proof. Denote o :== Pr[M = a,X =1],8 := Pr[ =a,X = 0] for 51mphclty Since Pr[X =
1]=Pr[X =0]=1/2 = [ =0(«) then ([34-0;) = (( Q)Q) ( ) By definition,
PriX=¢M=a
I(X:M)=> > Pr[X=iM=a]log <Pr[)[( — TPl :L])
a 1=0,1
=22 (e (55s) v (5750))
rearranging

:@(1)2{}(51%(1: >+alog< ))
(s

Denote A := %5 and B := =2 then by Taylor expansion of log ) and log ( ) we have
that
I(X:M)=0(1)> (8 i(—l)"ﬁ +a i&
a n=1 n n=1 n
1 1
=0(1 —(aB™ — pA™ —(BA™ + aB™
o( >2aj ;nm 8 Hn;n(ﬁ +aB")
n odd n even
)2
(1)) 2) (aB™+BA") < O(1)aB* = Zo( )
a n=2
as desired. O

A.2 Random Walks

Let RW denote a random walk with transition matrix P where P(x,y) denotes the probability of
transitioning to state y from state z. P?(z, y) hence denotes the probability of landing in a state y
after ¢ steps if one starts from state x. We give some elementary properties of random walks important
to our analysis.

Definition A.3. A random walk RW s irreducible if for all x,y, there exists t > 0 such that
P(z,y) > 0.

Definition A.4. For a given state x, let T (z) := {t > 0 s.t. P*(z,x) > 0}. The period of x is the
greatest common divisor of T (x). A random walk is aperiodic if the period of any of its states is 1.
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A random walk that is both irreducible and aperiodic is called ergodic.

We say a distribution 7 over the states of a random walk is stationary if it stays invariant after one
step of the random walk. A useful fact is that any ergodic random walk has a unique stationary
distribution.

Fact 2. Any irreducible and aperiodic random walk has a unique stationary distribution.

While any irreducible and aperiodic random walk is guaranteed to converge to its stationary distribu-
tion, we are interested in a quantitative bound on the convergence rate. In what follows, we define the
concept of the mixing time of a random walk and give the relevant preliminaries (see e.g.

[ 1, [ ] for a detailed survey).

Definition A.5. The mixing time 7(8) of an ergodic random walk RW with stationary distribution
is defined by

. t
7(8) = max min ts.t (V' >t) % |Pij - 7Tj| <9
j

We require the following facts regarding mixing time. First, the mixing time of a product random
walk can be bounded via the mixing times of the individual coordinates (up to polynomial factors in
the dimension).

Lemma A.6. Let RW be a random walk over the product space X™, where the i-th coordinate
Sollows an independent random walk RW ; over X. Assume that RW ; has mixing time 7;(0). Then
the mixing time of RW satisfies that 7(§) < max; 7;(§/n).

Proof. Let P denote the transition matrix for each coordinate i and 7(*) denote the stationary
distribution. Then,

TrO _TT-0| <S~||p@ _ o
11 [I=] =X
=1 /=1 =1 !

This concludes the proof of Lemma A.6. [

1

For any ergodic random walk RW with transition matrix P and stationary distribution 7, we let A
denote the eigenvalues of P. The following lemma relates the mixing time to the absolute spectral
gap A, of the transition matrix (or alternative the relaxation time of the random walk).

Definition A.7. Let & be the set of eigenvalues of the transition matrix P. The absolute spectral gap of
a Markov chain with transition matrix P is v, = 1 — X\, where \, = max |\ s.. A\#£ land X € &.

1

Definition A.8. The relaxation time of a Markov chain is t.q) = oo

Another property important to the mixing time of the random walk is the detailed balance criteria. If
a random walk satisfies this criteria, then we say it is reversible.

Definition A.9 (Detailed Balance Criteria). A random walk is reversible if and only if for all states
z,y, m(x)P(x,y) = 7(y) Py, ).

We are now ready to state the mixing time of a Markov chain in terms of its relaxation time (or the
inverse of the absolute spectral gap).

Theorem A.10 (Theorem 12.5 of [ 1. For an ergodic and reversible Markov chain,
its mixing time satisfies that
7(6) > (tre — 1) log(1/24).

B Replicable Independence Testing Algorithm

In this section, we provide omitted proofs and analysis for our replicable independence tester, and
then conclude the proof of Theorem 1.6.

We begin with a useful property of the flattening procedure (see Definition 2.1) — it ensures that
there will be no “heavy” bins after the operation with high probability .

21



Lemma B.1. Let S be a set of samples over [n] with |S| = poly (n), and S¥ = Flatten(S; o).
Denote by T the sample count vector of the flattened samples. For any constant C, it holds that
Tif <O (ofl log n) forall i € supp (Sf) with probability at least 1 — n~=C, where the randomness
is over the internal randomness of Flatten(-).

Proof. After sorting the samples in S, we note that the position of the first flattening sample follows
exactly a geometric distribution with mean 1/a. Denote by Y its position. We have that Pr[Y” >
t] = (1 —a) ! =exp((t—1)log(l —a)) < exp(—a(t —1)). In particular, this implies that
Pr[Y > aa~'log(n)] < n~% for any number a > 0. This shows that with probability at least n =% it
holds that the number of samples falling in the first bin is at most ac~* log(1/n). If we choose a
to be a sufficiently large constant, we then have that Y < O (a‘l log(n)) with probability at least
1 — 1/poly(n). Since Y is also the number of samples within the first sub-bin, Lemma B.1 then
follows applying this argument to all subsequent samples and the union bound. O

Recall that a key technical step is to bound the variance of the averaged independence statistic
Z4 (Sp, Sy) by the expected value of the non-singleton sample count N, (.Sp, Sy).

Proof of Lemma 2.9. We will bound the variance of Z,(S,, S;) by the expected sum over samples
of the squared difference in the final test statistic by removing each sample.

In particular, suppose that S, .S, contains the samples {Pg}?zl. For convenience, we denote by
Sp.—e, Sy, the corresponding set after removing the sample P,.* We then have the following
inequality that bounds from above the variance.
k
Var[Z,(Sp, 5¢)] < O(1) E Z (Za (Sp,—e, Sq,—¢) = Za (Sp Sq))2 ) 3
=1
where the randomness is over the samples. Fix some sample sets S, S;. Consider the random

variables Z = INDEPENDENCESTATS (S),, ;) and Z_;, = INDEPENDENCESTATS (S}, _¢, Sq,—¢).
We claim that it suffices for us to show that

k
(E[Z] ~ E[Z-])" < O (log® (n1n2)) Na(S. 5y) . @
=1
where the expectation is over the internal randomness of INDEPENDENCESTATS. After that, taking

expectation over the randomness of the samples on both sides of Equation (4) and combining it with
Equation (3) then concludes the proof.

It then remains for us to show Equation (4). Recall that the tester first partitions the samples into
flattening samples and testing samples randomly. We denote by SIJ; , S({ the flattened testing samples

constructed in Line 3 from the original sample set .S, Sy, and S !

o> S ({ _, the ones constructed from
the leave-one-out sample sets S, _¢, g, —¢.

Denote by F', F/ € {0,1} the indicator variables of whether P is selected for row or column
flattening purpose respectively (see Definition 2.2) while constructing 5’1{7 S({ . We then break into
cases based on the values of F", F/.

In the first case, we have that F' = F;/ = 0. This suggests that the (-th sample is not selected as
a flattening sample. Hence, there exists a flattened version of Py, which we denote by P/ , within

SI{ U S({. In this case, s/

o095 g _p are obtained by deleting exactly Plf from SIJ: , S ,{ . There are then

again two sub-cases. Either Pef is a singleton sample among Sg’f U Sif ;- In that case, we must have
Zc(S),ST) = ZC(S’ZﬁZ,Si%) by Fact 1. Otherwise, we have |Z(S],S]) — Z(§Z{7k,§§’k) <

O(1) as the closeness test statistic is Lipchitz in its inputs. As a result, it follows that

k
> (B2 1{F} = F} = 0}] - E[Z_))* <E[N(S} U S])]. ©)
=1

*If P, ¢ Sp, then S, _¢ = S, and the same for S, .
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Next, consider the case that ;' = 1 and F/ = 0, which happens with probability at most p, :=
min (nq/(100m), 1/100). This suggests that the P is selected as a row flattening sample. Denote
by K the number of samples lying in the same row as P. Consider the following coupling between

(SIJ;, Sg) (conditioned on F¥ =1 and F;/ = 0) and (S;;_e, S({,—z): (1)Pick a random sub-row « (in
the flattened domain) weighted by the total sample count of sub-row a within SZ{? sUS ({)7 ¢ divided
by Ky, (2) subdivide the sub-row into two sub-rows a1, as, and (3) randomly assign the samples from
a to a1, as. Denote by T; the total number of samples among S;:)f Y S({)f , within the sub-row 1,
and NN, the corresponding non-singleton sample count. Note that if a flattened sample is a singleton
sample among S z{f s US gﬁ ¢» then it remains a singleton sample after the subdivision, and hence has

no impact on the final closeness statistic. Therefore, such subdivision can change the final closeness
statistic by at most NV;. On the other hand, the probability of the sub-row 7 being selected and the
sample ¢ being selected for flattening purpose is at most p,, 7;/K,. Hence, the averaged statistic
changes by at most

2
<E[“{Fé”=LFé’zO}]—E[z_e]fso(l)( > E[Wp

2:sub-rows of the row of Pp

Summing over all ¢ such that P, and P} lie in the same row then gives that

) (E[ZH{FZ”=17ng=0}]—E[Z—eD2SO(I)]E2[ S NwT| /K

£": Py lies in the same row as P/

i:sub-rows of the row of Py

By Lemma B.1, we have that T; is at most log(n;)p,; ! with probability at least 1 — 1/poly (n1).
Besides, Y N; is always at most K. It then follows that

2:sub-rows of the row of Pp

> (E[Z 1{Ff =1,F} = 0}] - E[Z_(])°

£ Py lies in the same row as P,/

< O(log® n) E?

> Ni] /Ki

i:sub-rows of the row of Py

> N] :

2:sub-rows of the row of Pp

< O(log’n) E

Note that the non-single sample count can only increase conditioned on that P is not selected for
flattening, which happens with at least constant probability. As a result, the expected number of

non-singleton samples among SZJ: U Sif ¢ 1s always at most a constant factor of the expected
number of non-singleton samples among SIJ: us, ,{ . Summing over all ¢ then gives that

k
> (B[Z 1{F} =1,F} =0} —E[Z_())* < O(log® m) E [N(S{, S])] . (6)
=1
This then concludes the analysis of the second case.

In the third case, we assume that F}¥ = 0, F/ = 1. Using an argument that is almost identical to the
second case, one can show that

k
(E[Z 1{F} = 0,F} = 1}] - E[Z_¢])* < O(log’ n2) E [N(S]. S])] . )
/=

—_

as this corresponds to the case when the k-th sample is chosen for column flattening.

Finally, for F}} = F,f = 1, we can use an argument that is almost identical to the second case to show
that

k
Z (E[Z 1{Ff =1,F} =1}] - E[Z 1{F} = 0, FY = 1}])* < O(log? 1) E [N (S}, S]] .
(=1
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It then follows from the triangle inequality that

> (BIZ 1{F} =0, F} = 1}] - E[Z_,))?

=1
k
< 0) (X (612 1FF = 1,57 = 1))~ BIZ 187 = 0.5 = 1))
(=1
k
+) (B[Z 1{F} =0,F} =1}] — E[Zg])Q) < O(log®n1)E [N(S], 8] . ®)
=1

Combining the case analysis (Equations (5) to (8)) then yields that

k
> (E[Z] - E[Z4])* < O(log® my )E [N(S] U Sf)] = O(log® n1) Na(S,, Sy)-
=1
This concludes the proof of Equation (4) as well as Lemma 2.9. O

Recall that we adhere to a two-stage testing strategy, where we first test the size of the expected
non-singleton sample count before computing the averaged independence statistics. In what follows,
we provide the proof which bounds the variance of the averaged non-singleton sample count by its
expected value.

Proof of Lemma 2.11. Denote by N (Sg S ,{ ) the number of non-singleton samples among SIJ; us g .
Recall that the averaged non-singleton sample count N, (Sy, S) is simply E [N (S}, ST)], where
the randomness is over the flattened sample set SIJ; S g . Similar to the closeness statistic Z¢ (SIJ,c , S g ),
N (SIJ:7 S ({ ) has the two following properties: (1) N (SIJ; , S g ) is invariant if one removes any singleton
sample from Szf or ng and changes by 1 if one removes a non-singleton sample. We note that these
are the only two properties used in Lemma 2.9 to show that the variance of the averaged statistic
Z4(Sp, S,) can be bounded from above by O(log?(n1712))E [N, (S,, S,)]. Hence, we can use the

same argument to show that Var [N, (S, S;)] < O(log?(n112))E [N, (S, S,)], and this concludes
the proof of Lemma 2.11. O

We are now ready to show the full analysis of our replicable independence tester, and the proof of
Theorem 1.6.

Proof of Theorem 1.6. Recall that the algorithm has two steps. In the first step, it verifies that the size
of the expected value of the non-singleton sample count is not large by comparing N, (.Sp, ) with a
random threshold. In the second step, it computes the averaged independence statistics Z,(S,, Sy)
with fresh samples, and compare it with another appropriately chosen random threshold.

We first analyze the correctness and replicability of the first step. Let m be defined as in Line 1 of
INDEPENDENCESTATS, and .S, S, be sample sets with size 100m. By Lemma 2.10, the expected
number of non-singleton sample count E [N, (S, Sq)] is at most Cy max (m?/(n1n2), m/ns) for

some constant C'y if the underlying distribution p is indeed a product distribution. By Lemma 2.11,
we have that Var [N, (Sp, Sq)] < E [Ny (Sp, Sq)]. We first show the validity of the following bound:

log?(n1) max (m?/(nin2), m/ns) < p? (max (m?/(nins), m/ng))2 . )

In particular, we will see that for this step, it is sufficient if m > nf/gn;/gp*2/3 + /ninap~t. We
begin with a case analysis. In the first case, we have that m?/(njnz) is the dominating term in
Equation (9). It is not hard to verify that

m?/(ning) < p*m*/(ning)?

as long as m > /ninzp~!. So Equation (9) easily holds in this case. In the second case, we

have that m?/(n1n2) < m/ny and so m/ns is the dominating term. In this case, we need to show
that m/ny < p?(m/n2)?, which is true as long as m > nop~2. In particular, the case assumption
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indicates that n2/ 3 1/ #p=2/3 <« m < ny. This implies that ny >> nop~2, which further implies that

m > \/ninap~ > n2 p~2. This hence concludes the proof of Equation (9).

To argue the correctness of the tester, we analyze the completeness and the soundness cases separately.
Denote by G := C'y max (m2 /(ninz2), m/ ng). In the completeness case, the expectation is at most
G, and the variance is at most O(1) log®(n1)G. By Chebyshev’s inequality and Equation (9), the
statistic N, (.Sp, Sy) will be at most 2G with high constant probability. In the soundness case, suppose
E[N,(S,,S,)] > 101G. Tt is not hard to verify that G >> log?(n; ) as our choice of m ensures that

m > 1og2(n1)\/n1n2 > 1og2(n1)n2. In particular, this implies that 4/log(n;)G < G. In this case,

by Chebyshev’s inequality, N, (S, S,) is at least 101G — 1/log?(n;)G > 100G. The above ensures
that the tester will be correct with high constant probability. Combining this with the standard median
trick then ensures correctness with probability at least 1 — p at the cost of increasing the sample
complexity by an extra log(1/p) factor.

To argue the replicability of the tester when we are in neither the completeness nor the soundness
case, we note that the variance is at most log(n1)G. By Chebyshev’s inequality and Equation (9),
we have that the test statistic will concentration around an interval of size y/log(n1)G < pG with
high constant probability. Again, combining this with the median trick ensures that N, (.S,, S;) will
lie in an interval (around its expected value) of size pGG with probability at least 1 — p (at the cost
of increasing the sample complexity by an extra factor of log(1/p)). Conditioned on that, we have
that the tester will be replicable as long as the random threshold lies outside this interval of size pG,
which happens with probability at least 1 — p. We can therefore conclude that the tester is replicable
with probability at least 1 — 2p by the union bound.

Conditioned on that the first-stage testing passes, we hence must have that
Var[Z,(Sp, Sy))] < log?(n1) E[Na(Sp, S,)] < O (logQ(nl)) (m?/(nin2) + m/ns) .

Besides, since Z, (.S, S,) is the average over some statistic that is Lipchitz in the input samples, we
also have the trivial variance bound Var[Z,(Sp, S¢)] < O(m). Again, we begin with a quantitative
bound that will be useful for both the replicability and correctness analysis:

\/logQ(nl) min(m, m2/(ning) + m/ns) < p min (Em,m252/(n1n2)7m3/252/«/n1n2). (10)

Again, we proceed by a case analysis. Suppose the right hand side evaluates to em. We note that
log(n1)y/m < pem as long as m > log®(n1)p~2e~2. So Equation (10) clearly holds in this
case. Suppose that the right hand side evaluates to m?e?/(ninz). The case assumption implies
that m*/2 < /nins, which further implies that m < nin». Since we always have m >> na, this
suggests that m/no will be the dominating term on the left hand side. However, we always have
log(n1)y/m/n2 < pm?e*/(n1n2) as long as m > log /B(nl) 2/302/3 p=2/32=4/3  This verifies
the validity of Equation (10) in this case. The last case is when the right hand side evaluates to
m3/2e2 /\/mins. In this case, it suffices to show that log(n1)v/m < pm®/2e? /| /ninz, which is true
as long as m > log(ny)y/ninze2p~ . This concludes the proof of Equation (10).

To argue the correctness of the second stage, we again break into the completeness and the soundness
cases. For convenience, denote by Hg := min (Em m2e?/(niny), 3/262/\/W) and Hy =
log?(n1) min(m, m?/(n1ng) + m/ny). In the completeness case, by Lemma 2.5, we have that
E[Z,(Sp, Sq)] < Cr, Hg. By Equation (10) and Chebyshev’s inequality, we have that Z,(S,, Sq) <
Cr, Hg + O (VHy) < (Cr, +0(1)) Hp with high constant probability. In the soundness case, by
Lemma 2.5, we have that E[Z,(S,, S;)] > C1, Hg. By Equation (10) and Chebyshev’s inequality,
we have that Z,(S,, S;) > Cr, Hg—O (VHy) < (C1, — o(1)) Hg with high constant probability.
This shows that the test on Z,(.S,, S,) is correct with high constant probability. Combining this
with the median trick ensures correctness with probability at least 1 — p at the cost of increasing the
sample complexity by an extra factor of log(1/p).

To argue the replicability of the second stage, we note that Z,(.Sy,, S;) must lie in an interval around
its expected value with size at most v/ Hy < pH g with high constant probability. Again, combining
this with the median trick ensures that Z,(S,, S,;) must lie in an interval L of size pHg with
probability at least 1 — p (at the cost of increasing the sample complexity by an extra factor of
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log(1/p)). Thus, the tester will be replicable as long as the random threshold chosen uniformly
random from [C, Hg, C, Hg] falls outside of this interval L. This happens with probability at least

1- % > 1 — O(p). We can then conclude that the tester is replicable with probability at
2 1
least 1 — O(p) by the union bound.

Lastly, it is clear from the description of REPINDEPENDENCESTATS that the tester draws ©(m)
many samples, and m (Line 1 of INDEPENDENCESTATS) is within the sample budget of Theorem 1.6.
This concludes the proof of Theorem 1.6. O

C Replicable Closeness Testing Algorithm

In this section, we present a replicable closeness tester with optimal sample complexity.

Algorithm 3 REPCLOSENESSTESTER((p, q), €, p, n)
Input: sample access to distribution p and q supported on [n].
Parameter: ¢ € (0,1/4) tolerance, p € (0, 1/4) replicability, n support size.
Output: ACCEPT if p = q, REJECT if drv(p,q) > €.

~ 2/3
1: m+ © (;ﬂ%”w + % pzlj P
(mp, My, Mg, Mg) < Multinom(4m, (1/4,1/4,1/4,1/4)).

2: Draw two multisets Dy, D of iid samples from p of sizes m,,, m;, respectively; and two multisets
D3, Dy of iid samples from p of sizes m,, m;, respectively. Vi € [n] let X;, X[, Y;, Y/ be the
occurrence of ¢ in D1, Do, D3, Dy, respectively.

3: Compute the statistic Vi € [n|,Z; « |X; = Yi| + | X! - Y/| — |X; — X[| — |Y; — Y/| and
Z Z?:l Z;.

4: Set threshold 7 +— Cy\/m + ro (R — C1y/m) where ro <Unif(%, 2) and R, C; are given in
Lemma C.1.

5: return ACCEPT if Z < r. REJECT otherwise.

To show Theorem 1.5, the key idea is that firstly, to guarantee correctness the threshold we randomly
picked needs to fall between an upper bound on the test statistic of the completeness case and a
lower bound on the test statistic of the soundness case whp and the proof follows from

[ ]; secondly, to guarantee replicability we need to further make sure that the randomly
picked threshold falls in the high confidence interval of the statistic with probability < p, so that
upon multiple runs, the algorithm gives same answers whp. Remark that the main difference between
replicable closeness tester and high confidence closeness tester is that the former needs to whp output
the same result upon receiving different sample set even in the case when 0 < drv(p, q) < ¢, yet
there’s no requirement on the behavior of the latter in such case.

The main ingredients are the two following facts: a concentration bound on statistic Z and the
expectation gap between the case when p = q and the case when drv(p, q) > €. Luckily, both facts
were shown in [ ].

Lemma C.1. (Expectation Gap, Lemma 3.3 in [ ]) Given m, e, p,n, Z as
specified in Algorithm 3, there exists universal constants Cy,Cs > 0 s.t.

L Ifp=q E[Z] < Ciy/m;
2. If drv(ip,d) > ¢ E[Z] > R := Cymin (em, m262,m:1//2§2). In particular, R >

Cav/mlog(1/p).

Lemma C.2. (Concentration bound on Z, Section 3.2 in
[ ]) Given m,p,Z as specified in Algorithm 3, there exists a universal constant

C > 0 such that Pr {|Z—E[Z]|ZC\/mlog(1/p)} < & where Cy/mlog(l/p) <
3 (Cov/mlog(1/p) - Crv/m) .

We are now ready to show the proof of Theorem 1.5.
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Proof of Theorem 1.5. We first argue the correctness. From Lemma C.1 and Lemma C.2, with
probability > 1 — p/2 threshold r falls between the value of Z for the completeness case and the
soundness case, whence successfully separates two cases,

We next show replicability. We break into 3 cases based on the value of R. Essentially we need to

- concentration bound P
show that for each case the ratio expectationgap =~ 6"

. 2 20/m log(1
e When R = Cyem, since m > 36(20201/6) 108(1/0) \ye have that m log(1/p) <t

2p? “Crem—Ciy/m
* When R = () mifz , since m > 4(202?3/6)2/3 . 1::/(31;5)3 , we have that % < £
* When R = Cy ™75, since m > (202201/6) . 1og1/2/§€12/p)f we have that 3/T+g(l/p) < £
Co o2 —Cry/m
By a union bound, Algorithm 3 is p-replicable. O

D Poissonization and Internal Randomness Elimination

Let A be a replicable tester that satisfies the correctness requirement of the corresponding testing
problem. To show a sample complexity lower bound against .4, we often construct a meta-distribution
B¢ parametrized by a positive number { € [0, €] over potential testing instances. In particular, B¢ will
be constructed such that 3, represents a collection of instances satisfying the property to be tested
while B. represents ones that are “far” from satisfying the property.

Our end goal is to show that A cannot be p-replicable under a random choice of p ~ B¢, where
& ~ U([0,¢€]), with non-trivial probability.

There are two common techniques towards the goal. Firstly, the tester is usually assumed to take
a fixed number of samples from a probability distribution. Nonetheless, a common practice in
distribution testing is to first show lower bounds in the so-called Poisson sampling model, which
allows for the more general sampling process for pseudo-distributions, i.e., non-negative measures
over the discrete domain, and is often more amenable to analyze. After that, one can use a reduction-
based argument to translate the lower bound back to the standard sampling model.

Definition D.1 (Poisson Sampling). Given a non-negative measure p over [n] and an integer m, the
Poisson sampling model samples a number m’ ~ Poi (m||p||1), and draws m’ samples from p/||p||1.
Define T € R™ to be the random vector where 'T;; counts the number of element i seen. We write
PoiS(m, p) to denote the distribution of the random vector T. We say A is a Poissonized tester with
sample complexity m if it takes as input a sample count vector T ~ PoiS(m, p).

Secondly, the tester A is in general allowed to use internal randomness. Yet, since we have already
fixed the hard instance meta-distribution over the testing instances, a common approach in showing
replicability lower bounds is to use a minimax style argument that allows us to fix a “good” random
string  such that the induced deterministic algorithm .A(;r) enjoys about the same correctness
and replicability guarantees under the meta-distribution as the original randomized algorithm. This
then allows us to focus on analyzing the replicability of deterministic algorithms under p ~ Bg.
To facilitate the discussion of the minimax argument, we introduce the notion of distributional
correctness and replicability.

Definition D.2 (Distributional Correctness/Replicability). Let By, B., H be meta-distributions over
non-negative measures over [n). Let A be a Poissonized tester with sample complexity m.

» We say A is §-correct with respect to By and Be if Pr,. 5w, T~pois(m,p) [A(T) = Accept] > 1 -6
and Prr,pNBE,TNPoiS(Tn,p) [A(T) - ACCEpt] <.

* We say Ais p-replicable with respect to H if it holds that Pty 3 1.1 ~pois(m.p) [A(T) # A(T')] <
p-.

The notions of distributional correctness/replicability for a non-Poissonized tester taking m samples
are defined similarly with the sampling process S ~ (p/||p||1)®™ instead of T ~ PoiS(m, p).

To make our lower bound arguments more modular, we prove the following meta-lemma that allows
us to focus on lower bounds against deterministic algorithm within the Poisson sampling model.
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Lemma D.3. Let B¢ be a meta-distribution parametrized by a number § € (0,¢), H be a meta-
distribution. Both B¢ and H are over non-negative measures p over a finite universe X satisfying
lplli € (0.5,2). Let §,p € (0,1/3), and m be a positive integer satisfying m > log(10/0) +
log(10/p). Consider the following two statements:

o For any deterministic Poissonized tester A with sample complexity m, if A is d-correct with respect
to By and B, then A cannot be p-replicable with respect to H.

* For any randomized tester A that consumes m’ < m/10 samples over X, if A is § /10-correct with
respect to By and B, then A cannot be p/10-replicable with respect to H.

The first statement implies the second statement.

Proof. Let A be a randomized tester that consumes m’ samples. Consider the negation of the second
statement. In particular, assume that A is § /10-correct with respect to By and B. as well as p/10
replicable with respect to . We show that this will contradict the first statement.

By Markov’s inequality, with probability at least 2/3 over the choice of the random string 7, we have
that the induced deterministic tester A(; ) is 0.35-correct with respect to By and B.. Similarly, with
probability at least 2/3 over the choice of r, A(; r) is 0.3p-replicable with respect to . By the union
bound, with probability at least 1/3 over the choice of r, A(; ) is at the same time 0.3p-replicable
with respect to . and 0.36-correct with respect to 5y and B..

We will now convert the tester into a Poissonized one. In particular, consider the Poissonized tester
A obtained as follows. We first take k& ~ Poi(m) samples from the underlying distribution p/||p||;.
If k > m/, we take the first k samples, and feed it to A(; 7). If k < m’, we simply return reject.
Since we assume ||p|1 € (0.5,2) and m > log(10/6) + log(10/p), it then follows from standard
Poisson concentration that &k > m with probability at least 1 — min(d, p). In particular, this implies
that A is a Poissonized tester with sample complexity m that is at the same time 0.4p-replicable w.r.t.
‘H and 0.40-correct with respect to By and 5. This therefore contradicts the first statement of the
lemma. O

E Onmitted Proofs for Replicable Uniformity Testing Lower Bounds

In this section, we provide the omitted proofs for replicable uniformity testing. We give the proofs of
Lemma 3.5, Lemma 3.9, Lemma 3.6, Proposition 3.4, and finally Theorem 1.3. Remark that since in
Section 3 we assumed that ©(y/ne~2p~!) dominates € ~2p~2, throughout this section we have the
implicit upper bound \/ne~2p~1 =5 (nsfz).

E.1 Bounding the Average Acceptance Probability for Uniformity Testing

In this subsection, we provide the proof of Lemma 3.5.

At a high level, we appeal to the same argument as in [ ] to analyze the expected
acceptance probability of the tester. The framework proceeds as follows. Fix any €y < €1 in [0, €]
such that e; — €y < ep. Let X be an unbiased random bit, p ~ M., be defined as in Definition 3.2,
and T ~ PoiS(m, p) be defined as in Definition D.1. Then, the mutual information between X
and 7T is bounded from above by a function of the parameters m, n, €, and p, as stated formally in
Lemma E.1. Secondly, given the mutual information bound, we know that with limited amount of
samples, for any pair of ¢p, 1 € [0, ¢] that are pe close to each other, Ep a1, [Acci (P, A)] and
Ep~m., [Acc,, (P, A)] must be close to each other. See Lemma E.3 for the formal statement. Lastly,
given A as above and is 0.1-correct w.r.t. M and M., then the acceptance probability function
should satisfy that Ep,aq, [Acc,, (P, A)] > 0.9 and Ep a1, [Acc,, (P, A)] < 0.1. Thus, by the mean
value theorem there exists £* € (0, €) such that Ep a4, [Acc,, (p, A)] = 5. Furthermore, from the
above Lipschitzness of Ep a1, [Acc,, (P, A)] in { we know that for at least p fraction of £ € [0, €],
Ep~ae [Acc, (p, A)] € (1/3,2/3), which concludes the proof of Lemma 3.5.

We begin by by showing the mutual information bound.

Lemma E.1 (Mutual Information Bound for Uniformity Testing Hard Instance). Let m =
o(ne=2log™?n), e < €1 € [0,€] be such that e, — ¢y < ep, X be an unbiased random bit,
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M. be the distribution over measures defined as in Definition 3.2, p ~ M., T ~ PoiS(m,p).
Then the mutual information I(X : Ty, --- | T,) satisfies:

2
I(X:T,---,T,)=0 (me4p2 1og4n> +o(1).
n

Proof of Lemma E.1. Let § := €1 — ¢y = O(ep). Since M]s are conditionally independent condi-
tioned on X, we have that

I(X Ty, To) <Y I(X:Ty) =nl(X : Ty).
i=1

Therefore, it suffices show that I(X : T}) = O (%2264p2 log* n) +o(2).

1
n

We start by expanding the conditional probabilities of 7 conditioned on value of X.
1. ./m 1. /m
T3|(X = 0) ~ ;Poi (g(l + 60)) + 5 Poi (g(l - 60)) :
and similarly,
T(X = 1) ~ 2P '(@(H ))+1P '(@(1— ))
1 = B (6 n €1 2 (61 n €1 s

then we can expand Pr[T} = a|X = 0] and Pr[T} = a|X = 1] accordingly. Indeed,

Pr[T} = a|X = 0] = 2%' (%) (14 €0)® exp (—%(1 +e0)) + %% (%) (1— €)% exp (—%(1 ~ )
o (2 (2) (0 (-2 0 - () 1)
Pr[Ty =alX =1] = 2%1! (%)a exp (—%) (exp (m(q;l—kcs)) (I4+e+0)"+exp <m(62+5)> (1 —€— 6)“) .

Since & = o(€), Pr[Th = a|X = 0] = © (Pr[T} = a|X = 1]). By Claim A.2, it suffices to show

T (Pr[T1=a|X=0]—-Pr[T1=a|X=1])% _ m2 4 1
that I := 3, " =aix=0/Pr{Ti=aix=1]" = O (F€4p2 log ") +o(3)-

Let
m m
fa(y) == exp (—Ty) (1+y)" +exp (%) (1—y)" an

Then it holds

. < 1 mya m\ (faleo) = faleo +8))? S

i=oa 7(7) e (_7) —01)S I,

W2 aG) e 0 et e OV

where for simplicity, denote I,, := % (%)a %. Then by the mean value theorem I, <

2 2 _
5?2 maxy;[zg(‘:)‘f;] Eéiy+f§)(y)) , whence to bound I, from above, it suffices to bound the denominator

of RHS from below and the numerator of RHS from above separately. We next break into 3 cases
depending on the size of 7.

Case 1: For the sublinear regime, i.e., % < 1/2, we break into 3 cases depending on the value of a.
when ¢ = 0, applying the mean value theorem gives that |fo(eo) — fo(eo + 9)] <
f%éwexp (W) Since fo(eo) + fole1) = (1), we have that I, =

n

O(1) (fo(eo) = foleo +6))* = O (2 e36?) = O (25 e3?).
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whena =1,

| f1(e0) — f1(eo + )]
< |fo(eo) — foleo +9)|

o (o0 (%52) exp (= 52)) — 0 . 0) (o (25D ) g (202D ) )

2
<O <m260§> + €o |exp (—@) — exp (_m(eo—i—é))‘ + €0
n n n

+

n

+ 0 |exp (m(eo h 5)> — exp (_m(eo i 5)>
n n
=0 (@606) . (the mean value theorem)
n
Combining with the fact that fi(eo) + fi(e1) = (1), we have that I; =
O(1) (fuleo) = faleo +))” = O (25 e26?)
when a > 2,

(%fa(y) = - % exp (—%) (1+y)*+a(l+y)* 'exp (—%)

m m m
+ —exp (—y) (1—y)*—a(l —y)* texp (—y> .
n n n
Before bounding ’8% fa (y)’ , we introduce a technical claim that is helpful in the rest of the proof to
show the monotonicity of specific families of functions.
Claim E.2. For a,b,s,d,x € R, when s + dx > 0, if dk > (<, resp.)b(s + dx) then exp(a —

bx)(s + dx)* is nondecreasing(nonincreasing, resp.) as a function of .

Proof of Claim E.2. £ (exp(a — bz)(s + dz)*) = exp(a — bx)(s + dz)*~*[dk — b(s + dx)], then
if dk > b(s + dx), we have that % (exp(a — bx)(s + dz)¥) > 0. Similar argument applies when
dk < b(s + dx). O
When y € [eg, g + 6], by Claim E.2, sincea — 1> 12> (1 +y)™,

;’yfa@\ <ep (-20) [ ((1+y)" — (1 -y +a(+y T =1 -y )]

m
< Ea(l +9) 2y +ala—1)(1+y)* 2y =0 (2“a2y) .

2
Thus, we have that max,e e, o] (a%fa(y)> = MaXycle.cra] (O (22%a%y?)) = O (4%a*¢?).
Since fa(é()) + fa(e() + 5) = Q(l),

o) B ) e 4 a
Srzowa S ()

a=2

Since Y 07, 42‘;4 is a converging series, it can be bounded by O(1). Therefore, > oo, I, <

0(82) 3202, ()" = 0 (20%¢2).
In conclusion, from the above three cases, I = O (%25262> )

Case 2: For the superlinear regime when n/2 <m < o ( ) , we start by noticing that when a

m(l—e—94)
n b

__n__
e2log?n

deviates far enough from 7%, the sum of all such I, is negligible. More specifically, let A =
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and ¢ > 0 be a constant such that exp (_2(;\:74:»

< % then by Lemma A.1,

z:clogn\/m
Z (Pr[Ty = a|X = 0] — Pr[T} = a|X = 1])? Y (1)
Pr[Ty = a|X =0]+Pr[l1 = a|X =1] n)’
a>|Atelogny/m/n]
a<[A—clogny/m/n]
Therefore, to compute [, it suffices to consider I, when a €

[/\ —clogny/m/n, A+ clog m/m/n} . Instead of directly bounding |f.(eo) — fa(e1)], we
separate f,(y) into parts. In particular, by the Taylor expansion of exp(z)

fa(y) = exp (_%y + alog(1 + y)) +exp (%y + alog(1 — y))
=1 m i m i
_ 2
=2+alog(l—y )+Z2; <<ny+alog(1 +y)) + (geralog(l —y)) > .
Define g, (y) := alog(1 — y?) and hq(y) := > o0y & (= 2y + alog(1 + y))l Then it follows that
)

fa(y) = 2"‘91(?}) + ha(y) + ha(_y)'

On one hand,

1— € 1 — €
a(c0) — ga(e)] = fatog (1= )| <alt - 12C] Gorw > 1, |1og(a)| <2~ 1)
— € 1—¢f
a
= (€0 +€1)]e0 — €1
1—e2
=0 (%eélog n) . (12)
On the other hand,
0 m a ad 1 m i—1
I haly) = (=2 (_7 log(1 )
e = (54 75) g (v etest +0

When y € [eo, €1],

1
‘—m—i— a ’S’—m—i— (T(l—eo—é)—kclogn\/m/n)

n 14y

n 14y n
—y—€—0om c
< —|+ logny/m/n
’ 1+y n 1+y s /

=0(1) (%60 + log nM) =0 (log nW) )

where the last equality follows from the fact that /7" = o( L ) =o0 (@) implies that

elogn

logny/m/n > e For |exp (—2y) (14 y)* — 1|, from Claim E.2, since a > m/n(1 + y),
exp (—%) (1 + y)* nondecreasing and takes value 1 when y = 0. Therefore, we can remove
absolute value directly, which gives that

o —-m/n
m —m/n x
‘eXp(—ny)(Hy)a—l‘S( ‘3,) (I+y*—1<(1+y) ™" (1+y)" -1
[log ny/m/n]
<2(1+y)lEnvmin_1< Y <ﬂognkm/nw)y’“
k=1

k

Mog nv/m/n] k
<o(1) Z (eelogndm/n) '

k=1
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To show that O (e logny/m/ n) dominates the last term, it suffices to show that eelog+ Vm/n o(1)
ie.e=o (1\1/—/) which is equivalent to showing that /m/n = o (Wgﬁ) . This is true if
ogny/m/n

and only if m = o (%) as assumed in the premise.
e2log®n

Therefore, we have that max, ¢

8%ha(y)‘ = O (elog?n™) . By the mean value theorem, we

€0,€1]
have that
_ — 2, M
haleo) = haler)] = O (edlog?n™) (13)
and
e ) B ()| — 2, M
ha(—€0) — ha(—€1)] O(e5log nn) (14)

Combining Equation (12),Equation (13),and Equation (14), we have that
_ — 2, M
faleo) — faler)] = O (6610g nn> (15)

We now consider bounding from below the denominator f, (o) + f.(€1). Recall that from Equa-
tion (11), we have that

faly) = exp (—%) (1+y)* +exp (%) (1—y)*
Since 1 + x > exp(x — x2), we have that (1 + y)® > exp(ay — ay?). This implies that
faleo) + faler) = Q1) exp (€ +8) (~2 +a) — ale +6)?)
=Q(1) exp (—%(e +6)% — (e + d)clogny/m/n — a(e + 6)2>

=Q(1) exp (—%62 — elogny/m/n — €*log n\/m/n) .

Since 7 = o ( ) , we have that

I
e2log?n

faleo) + faler) > Q(”m — Q). (16)

Hence, by Equation (15) and Equation (16),

reow S () e () Gl

a=0

m? 1 /m\e m 1
= O (5252 10g4 nn2) Z a (E) exp (*g) + o0 <n) .
a>|A+clogny/m/n]
a<[A—clogny/m/n]

a€Z

n

Since ZD\—clogn\/m/n'\ 1 (m)a < Zoo

Dot elogny/mym) 4 > o & ()" = exp(m/n), this term cancels out with the
a= clogny/m/n| @ !

succeeding exp(—m/n) term. Thus
_ 2 1
I1<0 (6262 log4 nng) + o0 ()
n n

The above 2 cases conclude the proof of Lemma E.1. [

as desired.

The second step of the framework is as follows.
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Lemma E.3 (Lipschitzness of Expected Acceptance Probability). Assume that m = 6(y/ne=2p~1).
Let A be a deterministic tester that takes a sample-count vector over [n] as input. Let €9 < €1 € [0, €]
be such that g — €1 < ep. Then it holds that

|Ep~M<0 [Accr (p, A)] — Ep~om,, [Acem(p, A)]] < 0.1,

where Acc,, is the acceptance probability function defined as Acc,,(p,A) =
Propois(m,p) A(T') = Accept].

Proof of Lemma E.3. Assume for the sake of contradiction that [Ep.ai, [Accy,(p,A)] —
Ep~m,, [Acc(p, A)]| > 0.1. Let X be an unbiased random bit, and Y be the random variable

defined as follows: let p ~ M., , T ~ PoiS(m, p), then Y = 1 if A(T) accept, Y = 0 otherwise.
It follows from the definition and the assumption that Pr[Y" = 1|X = 0] = Ep ., [Acc,, (p, A)]

and Pr[Y = 1|X = 1] = Epm,, [Ace,(p, A)], which implies a mutual information bound of

I(X :T)>I1I(X :Y) = Q(1). This clearly contradicts the result from Lemma E.1, and hence
concludes the proof of Lemma E.3. O

We are ready to show the main result of this subsection.

Proof of Lemma 3.5. Since A is 0.l-correct w.r.t. Moy and M., we have that
Epa,[Ace, (P, A)] > 09 and Epoa, [Acc(p,A)] < 0.1.  Furthermore, since
Ep~ae [Acc, (p, A)] is a polynomial in &, it is continuous in £. Hence, by the mean value
theorem, there exists {* € (0, €) such that Ep s, [Acc,, (P, A)] = 1/2. It follows immediately
from E.3 that V¢ € [¢* — pe, £ + pe] we have that

Ep~ae [Acc (p, A)] € (EPNM@ [Accm(p, A)] — 0.1, Ep o, [Acen (p, A)] + 0.1)
= (0.4,0.6) C (1/3,2/3).
In conclusion, if we uniformly at randomly select a & € [0, €], then once it falls in interval [¢* —

pe, £ + pe] of length 2pe, which happens with probability 2pe, we have that Ep a1, [Acc,, (p, A)] €
(1/3,2/3) as desired. O

E.2 Concentration of Acceptance Probability

In this subsection, we prove Lemma 3.6. Throughout this section we identify the Accept outcome
with 1 so that Acc,, (P, A) = Proypois(m,p) [A(T) = Accept] = Erpois(m,p) [A(T)]-

A key technical result in this section is to bound the mixing time of the random walk RW,;, .,
which we abbreviate as RW,,, « within this section for convenience.

Lemma 3.8. Let & € (0,¢) and m = 6(ne~2). Then RW,, ¢ has mixing time 7(5) = O(log(n/9)).

We analyze the transition probability of the random walk RW,, .. We first note that drawing Poi (m)
samples from p ~ M is equivalent as drawing Poi (mp;) samples from each bucket independently

where p; € {1—15, 171;5} is the mass of bucket 7 under the measure p. Since the observed count of
each bucket i € [n] is independent, we may decompose the random walk RW,,, ¢ as a product of n
independent random walks.

Definition E.4. The Coordinate Sample Random Walk RW ,,, ¢ ; is defined on the graph whose vertex
set is N and transitions (T1[i], T»[i]) are defined by the conditional distribution of T»[i] given T i)
induced by the joint distribution given by the following process:

n '’ n

1. Choosep; €U ({i& 1-¢
2. T1[i], To[i] are sampled independently from PoiS(m, p;).

Given a sample count T'[i], we denote RW,]fm ¢.i(T'[i]) the random variable representing the outcome
after k steps of random walk from T. For p; > 0, we denote by RW]fn’g’i(pi) the distribution of
RW? . .(T[i]) where T[i] ~ PoiS(m, p;).

m,&,i
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By independence, we have that

RW,, ¢ = f[ RW,, ¢ ..

i=1

For a sample T, let T'[i] denote the empirical frequency of the i-th bucket in 7. Let Ty ~
RW,, ¢.i(To). We can write the joint distribution of Ty, T; as

(e—2m(1+£)/n ((1+£)af!r2{n)“+b 4 e—2m(1-¢)/n ((b&%{n)“*U

Pr(Toli] = a,T1[i] = b) = 2

_ 1 —2m/n (T atb —2ém/n a+b 26m/n a+b
b ) B e R (R A F

Furthermore, we have that

oo (6—2(1+€)m/”% + 6_2(1_5)’"/"%)
Pr(Tyli] = a) = — -
b=0
e—(1+§)m/n((1 + f)m/n)“ + e—(l—&)m/n((l _ f)m/n)a
2a!

- e () (s )

Combining the two gives that the probability of the transition P(a,b) := Pr(Ty[i] = b|Ty[i] = a) is

Pr(Ty[i] = b, Ty[i] = a)
Pr(Ty[i] = a)

= Lo () (2O - )
b! n e—€m/n(1 4 £)a 4 efm/n(] — £)a

P(a,b) =

This defines the random walk RW,, ¢ ; for each ¢ € [n] with transition probabilities given above.
Given RW,,, ¢ ; for all ¢, we can write the transition probability of RW,, ¢ from a = (a1, ..., a,)
tob= (by,...,by,) as

Pr(RW,, ¢(a) = b) = [ [ Pr(Th[i] = b;|To[i] = a;)
i=1
o n 1 m bi 6725m/n(1 4 é—)aﬂrbi + 62§m/n(1 _ f)aieri
- 1;[1 b! (5) < e=m/n(1 4 &) 4 efm/n(1 - )m ) '

In particular, the stationary distribution of RW,,, ¢ is the vector m € [m|" given by

m((a1,... an)) = [[Pr(To[i] = a:)
i=1

n

=[] ! (T)ai (efﬁm/"(l + €)% 4 Sm/M(1 — g)ai) :

LL9g;!' \n
1=1

It is not hard to see that our random walk is ergodic and reversible.

Lemma E.5. The random walk RW ,, ¢ is ergodic and reversible.
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Proof. The random walk RW,, ( is ergodic since every transition is possible (including self-loops).
Furthermore, RW,, ¢ is reversible since 7(7)P(,7) is a joint distribution that is the same as

()P, ). O
We proceed to show that RW,, ¢ ; mixes rapidly.
Lemma E.6. Suppose m = o(n/e?). The random walk RW ,,, ¢ ; has mixing time 7(0.04) < 2.

Proof. Note that the random walk RW,,, ¢ ; has transition probabilities from Yy > 0to Y; > 0 given
by the conditional distribution induced by the following joint distribution.

1. Let X ~ U ({0,1}) be a uniformly random bit.
2. Independently sample Yy, Y7 ~ Poi (m(1 — &) /n) if X = 0 and otherwise sample Yp, Y1 ~
Poi (m(1+¢)/n)if X = 1.

A useful fact is that the total variation distance between Poi (m(1 — £)/n) and Poi (m(1 + £)/n) is

small.

Claim E.7. Let Ay > Ag > 0. Let X ~ Poi(\1) and Y ~ Poi (\a). Then

(A1 — A2)?

X, Y)<
dTV( 9 )— 2)\2

Proof. We begin by bounding the KL-divergence as

A1 — Ao
A2

(A1 = X2)?
A2

A
DKL:)\llog)\;+>\2_/\1§/\1< >+/\2—)\1§

where we have used logxz < x — 1 for z > 0. Now, using Pinsker’s inequality, we can bound

(A1 — Ag)?
d X.Y) <y ——.
TV( ) ) = 2A2

This concludes the proof of Claim E.7. O

We handle the sub-linear and super-linear cases separately.

Sub-linear Case: m < n. Note that Claim E.7 implies that the total variation distance between
Zy ~ Poi(m(1 —¢&)/n) and Z; ~ Poi(m(1 + &)/n) is at most

eme/m? _ [2me2/n
\/2m<1—£>/n§¢ - =%

where in the final inequality we have used m/n < land 1 — ¢ > 0.5.

Now consider a step of the random walk from initial state Yy = ¢. The distribution of Y7 is given by
the mixture of two Poisson distributions

Pr(Y; = k|Yy = ) = Pr(X = 0|Yy = 0) Pr(Zy = k) + Pr(X = 1|Yy = £) Pr(Z, = k).

The total variation distance between this distribution and the stationary distribution 7 is at most

1 1
§;|Pr<m = kYo =10) —m(k)| <2|Pr(X =0[Yo =) — ;| € <2

Now, consider a step from Y; = k. By the total variation distance bound, we can conclude that
an algorithm cannot distinguish X = 0 with advantage better than 2§ < 0.2. Therefore, we can
bound 0.3 < Pr(X = 0]Y; = k) < 0.7 otherwise the algorithm that returns X with this conditional
probability is a distinguisher. From our previous calculation we conclude that after two steps, the
random walk mixes to within 0.4¢ < 0.04 of the stationary distribution.
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Super-linear Case: n < m = o (E%) Following similar arguments as in the sub-linear case,
the total variation distance between Zy, Z; is at most o (1) < 0.1. As in the sub-linear case, no
algorithm can distinguish X = 0 with advantage better than the total variation distance 0.1. Since
Pr(X = 0|Y1 = k) < 0.6, we can conclude that the random walk mixes within 0.01 of the stationary
distribution in two steps. This concludes the proof of Lemma E.6. O

Given Lemma E.6, we can bound the relaxation time of each coordinate random walk via Theo-

rem A.10. In particular, we have that for RW,, ¢ ;, t;e1 < % + 1. Combining this with
Lemma E.6 gives that
7(0.04) 2
t 1< 1=0(1).
= Tog(1/0.08) = log(1/0.08) 1)

We are now ready to bound the mixing time of the product random walk RW,, ¢.

Lemma E.8. Letm = o (%). Let v(x) ~ Poi (1 + &)m/n) or y(x) ~ Poi ((1 — £)m/n) denote
the initial distribution. Then, under either initial distribution -y, RW , ¢ ; has mixing time:

7:(6) = Olog(1/9)).

Proof. Consider a coordinate random walk RW,,, ¢ ;. Let P denote the transition matrix and P’
denote the transition matrix after ¢ steps. Let 7 denote the stationary distribution. Recall that we have
shown that RW,,  ; has constant relaxation time and therefore constant absolute spectral gap ..
Given either initial distribution (), our goal is to bound the quantity

> (Z 7($)Pt($7y)> —m(y)].

We begin with the following inequality that follows from the proof of Theorem 12.5 of
[ ]. For any two states z, y,

’ P(x,y) ’ <N
m(y) ~ Vr@)m(y)
Multiplying both sides by 7(y)~(x) we obtain the inequality

(@) P! (x,y) = y(@)m(y)| < W

The next claim bounds the ratio between ~y(x) and 7 (z).

Claim E.9. Forany x > 0,
(2)

7)

2

<2

A

Proof. Let Zy ~ Poi((1 — &)m/n) and Z1 ~ Poi((1 + §)m/n). Let Ag, A1 denote the means of
Zy, Z1 respectively. First, we show that v(x)/7(x) is bounded when v ~ Zj.

Pr(Zy = x) B 2Pr(Zy = x)
(Pr(Zy = x) + Pr(Zy =x2))/2  Pr(Zy=x)+ Pr(Z, = )
< 2Pr(Zy = ) _9
- PI'(ZQ = LIJ)
A similar argument holds for v ~ Z;. This concludes the proof of Claim E.9. O

Continuing from our previous calculation, we obtain

|v(2) P (2, y) — v(z)m(y)| < Av/2y(x)7(y).

Summing over x, applying the triangle inequality and noting that ) ©_~(x) = 1, we now have
(Z (@) P! (x, y)> — ()| < AV27(y) > VA ().
xz T

For the remainder of the proof, we will consider the sub-linear and super-linear cases separately.
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Sub-linear Case: m < n. Since m < n, in both cases the Poisson distribution has parameter
A < (1 +€) < 1.1. By standard Poisson concentration, for both ¢ € {0, 1}

Pr(Z; > XA +1t) < e~ t2/200+1) _ —(t)

In particular, y(z 4+ 2) < e~=) for all z. Therefore,

oo C oo )
S V@ <Y VA + S VA =+ Y e o)
=0 x=0 z=C z=C

for some large enough absolute constant C'. Here, we observe that for x > C, e~ Ua/2-1)  o—a/C"

for some constant C’ so that the second term is an infinite geometric series with ratio e =1/ ¢ <.
Similarly, we can bound ZZO:O m(y) = O(1). Thus, to conclude we sum over y and note that

> (Z v(m)P%:c,y)) —r)| < VI Y VaW) Y Vale) = 0 (M),

y
In particular, from the initial distribution -, the random walk RW mixes to ¢ in time O(log(1/9)).

Super-linear Case: n < m < o(%). Recall that 2,y ~ Poi(}) for A € {(1 + &)m/n, (1 —
&)m/n}. Using standard Poisson concentration (e.g. Lemma A.1) and noting that A > 1 — &, we
observe that for any x, we have () < e~?(2=A)_ Ag in the sub-linear case, we begin by bounding
>~ /() for initial distribution . For sufficiently large constant C', we can bound

YV < Y VA + Y VAl =00).

lz—A|<C lz—A|>C

As above, we observe that for large enough C, Z‘m_ A>C N /~(x) can be decomposed into two
geometric series with ratio strictly less than 1. Since 7 is a mixture of both v, we have that
>-, V7(y) = O(1) as well. The conclusion then follows as in the sub-linear case. This concludes
the proof of Lemma E.S8. O

Proof of Lemma 3.8. The proof follows immediately from Lemma E.8 and Lemma A.6. O

We are now ready to show that the acceptance probability of the algorithm on sample drawn from
PoiS(m, p) for a random p ~ Mg is well concentrated assuming that the algorithm is sufficiently
replicable in terms of the mixing time of the random walk.

Lemma E.10. Ler K = 7(0.01) and & € [0,¢]. Suppose A is 137 -replicable with respect to Hy.
Then,
1

1
ook (‘E%Poism,p) [A(T)] = Eprpte o mpois(m,pry MAT)]| > 4) =7

Proof. Consider the following sampling process:

1. Sample p ~ M..
2. Sample Ty ~ PoiS(m, p).
3. For1 <k < K :=7(0.01) = O(log n), sample T, ~ RW , ¢(T}_1).

From Lemma 3.9 we know that on average over p ~ Mg, A(Tp) = A(Th) = ... = A(Tx) with
probability at least 0.9. By Markov’s inequality, for 3-fraction of S, we have that A(Ty) = A(Ty) =
... = A(T}) with probability at least 0.8.

We now argue that the distribution of T} is 0.01-close to the distribution of 7" drawn from the stationary

distribution 7 in total variation distance. Since RW,, ¢ is a product random walk, Lemma A.6
0.01

implies that it suffices to argue that each coordinate random walk RW,,, ¢ ; mixes to within ==

of the stationary distribution on that coordinate in 7;(0.01/n) steps. Fix a coordinate . Note that
Toli] ~ Poi((1 4 &)m/n) or Poi ((1 — &)m/n). In either case, the initial distribution satisfies the
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assumptions of Lemma E.8, so that after O(log n) steps, the random walk RW,,, ¢ ; mixes to within
% of the stationary distribution. Given that T}, is close to the stationary distribution, the data
processing inequality says that the probability of acceptance under either distribution cannot differ by
more than 0.01.

Here, recall that 77 ~  is given by 7" ~ p where p ~ M. In particular, since the stationary
distribution is exactly the probability of a sample drawn from random p ~ M, we have that for
1 -

5-fraction of S,

Ep- e, (A(Th)) — ET/NAA(T'))] <

To~p

Bt (AT) = By rows; y (A(Ti)|
o~p

+ B crwss (1) (A(Ti)) = Ezrnn (A(T)|

<0.2+0.01
1

< -.

— 4

We are now ready to prove the main lemma of this subsection.

Proof of Lemma 3.6. From Lemma 3.8 we note that the mixing time K = 7(0.01) = O(logn).
Then, since we assume that A is (logn)~2-replicable with respect to Hy, we have A is 1o7-
replicable with respect to Hy. Applying Lemma E.10, we obtain the desired result noting that
Acco, (P7 A) = IETwPoiS(m,p) [A(T)] 0

E.3 Random Walk Indistinguishability

In this subsection, we show that a moderately replicable tester in general cannot distinguish a sample
from the outcome after one random walk step.

Proof of Lemma 3.9. We first show that

k
Z]EPN Me [ Pr [A(T) # A(T)]| < kk, (17)

T~RW,1(p) , T'~RW ¢ (T)

After that, the lemma will follow from Markov’s inequality.
Note that if we sample p ~ M,, and then T ~ PoiS(m,p), we obtain exactly the stationary
distribution of the random walk. Thus, the distribution of ' ~ RW' 1(p), T’ ~ RW,, «(p) is

m,&

equivalentas p ~ Mg, T ~ PoiS(m,p), T' ~ RW,, ¢(T). If we focus on just the joint distribution
of T, T', by the definition of RW,, ¢, this is the same as T, 7" ~ PoiS(m, p), where p ~ M.

This therefore gives rise to the identity Ky, [PFTNRWi—é(p) T/RW,, ¢ (T) [A(T) # A(T’)]} =

P Me, 7,77 ~PoiS(m,p) [A(T) # A(T")] = k. Summing over all i then concludes the proof of
Equation (17) as well as Lemma 3.9. O

E.4 Lower Bound for Poissonized Tester and Proof of Theorem 1.3

Proof of Proposition 3.4. By Lemma 3.5, with probability at least {2(p) over the choice of £, we have
that

Ep~re [Acen(p, A)] € (1/3,2/3). (18)

Conditioned on some ¢ satisfying the above, we claim that we must have

/ —2
EPNMg T7T’~15)irs(m,p) [A(T) # A(T )] > log n. (19)
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We will proceed by a proof of contradiction. Assume that the opposite of Equation (19) holds. In that
case, Lemma 3.6 becomes applicable, which gives that

Pr [|Accm (p, A) — Eprt, [Acci(p, A)l| > 1/4] < 1/2. (20)

p~Me

Combining Equations (18) and (20) then gives that Acc,,(p,A) € (1/3 — 1/4,2/3 + 1/4)
with probability at least 1/2 when we choose p ~ M. Conditioned on such a p, we
immediately have that Prop prpois(m.p)[A(T) # A(T")] > Q(1). This therefore implies
that Ep s, [PrT,T,NPmS(m’p) [A(T) # .A(T’)H > Q(1), which contradicts the assumption

Ep~Me [PrTVT/Npois(m,p) [A(T) # A(T’)]] < log~%(n). This concludes the proof of Equation (19).

Recall that the meta-distribution H is precisely the distribution of p if one first chooses & from [0, €]
uniformly at random, and then chooses p ~ M¢. Thus, combining Equations (18) and (19) gives that

P P T | > Q(plog™2n).
IR R . [A(T) # A(T")]| = Q(plog™" n)

Moreover, ||p|l1 € (1—¢,14¢) C (0.5,2) with high probability. This therefore concludes the proof
of Proposition 3.4. O

Our lower bound for replicable uniformity test easily follows from Proposition 3.4, and Lemma D.3.

Proof of Theorem 1.3. Assume without loss of generality that m > log(10/8) 4 log(101log® n/p).
From Proposition 3.4, any deterministic Poissonized tester with sample complexity m =
6(y/ne2p~1) that is 0.1-correct with respect to Mg and M. cannot be plog ™2 n-replicable with
respect to . Furthermore, any p ~ Hy satisfies ||p||; € (0.5,2) with high probability. Thus, even
conditioned on p ~ Hy; satisfying the norm condition, the deterministic Poissonized tester cannot be
both 0.1-correct and < plog™ 2 n-replicable. The conclusion therefore follows from Lemma D.3 (i.e.
any randomized tester that is 0.01-correct cannot be p/polylog(n)-replicable. O

F Omitted Proofs for Replicable Closeness Testing Lower Bounds

In this section, we give a sample complexity lower bound of Q(n2/3e=4/3p=2/3 4\ /ne=2p~1 4
£72p~2) for replicable closeness testing.

Note that closeness testing is at least as hard as uniformity testing (even when replicability is of

concern). Hence, it remains for us to show a lower bound of 2 (n?/?c=4/3p=2/3). Note that this
term dominates exactly in the sub-linear regime so it suffices to prove a lower bound in the regime
m < n.

We start by describing the hard instance for replicable closeness testing in this regime. In particular,
we construct meta-distributions over pairs of non-negative measures that will be used as inputs to the
closeness testing problem.

Definition F.1 (Closeness Test Hard Instance). For & € [0, €], we define N to be the distribution
over pairs of non-negative measures P, ¢ generated as follows: Yi € [n]

l1—e 1—¢ m
( m ' m ) w.p- n
. . 2e+€ 2e—¢& n—m
(pE (7')’ ¢ 13 (Z)) = 2(n—m)’ 2(n—m) w.p- n 201

2e—¢ 2e+¢ —
2(;—m)’ 2(;—m) w.p. n2nm'

The meta-distribution Hc is the distribution over random pairs of non-negative measures (p,q)
generated as follows: choose & uniformly at random from [0, €], and return (p,q) ~ Ne.

Again, thanks to Lemma D.3, after fixing the hard instance to be H¢, it then suffices for us to show

sample complexity lower bounds against deterministic closeness tester .A within the Poisson sampling
model.
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Proposition F.2. Let H ¢ be the meta-distribution defined as in Definition F.1, A be a deterministic
tester that takes as input a sample count vectors T € N?",> and m = 6(n2/3674/3p’2/3 +n). Then
it holds

r r A(T) # A(T")] > log™%n and ®q) /2|1 € (0.5,2)| > p.
(p,q)~Hc T,T'NP()iS(m,pQ)q)[ ( )7& ( )] = 108 H(p q)/ Hl ( ) ZpP

In the rest of the section, we focus on showing Proposition F.2.

Define Acc,, (P, d, A) := Prrpois(m,paq) MA(T) = Accept] . Similar to the argument for replicable
uniformity testing lower bound, we begin by showing the intermediate result that the average
acceptance probability E(p, gy~ [Accn (P, q,.A)] is close to 1/2 with probability at least p if £ is
chosen randomly from [0, £].

F.1 Bounding the Average Acceptance Probability for Closeness Testing

We dedicate this section to show the following lemma.

Lemma F.3. Let A be a deterministic Poissonized tester that’s 0.1-correct w.rt. Ng, then
Pre (o,e)) [E(pa)~ne [Acem (P, q, A)] € (1/3,2/3)] > p as long as m = o(n?/3e=4/3p=2/3 4

The argument again uses information theory and is similar to the proof of Lemma 3.5. We follow the
road map similar to the one to show Lemma 3.5 in Appendix E.1, where the main difference is that
we work with a different hard instance. We therefore present the needed lemmas without restating the
outline.

Lemma F.4 (Mutual Information Bound for Closeness Testing Hard Instance). Let m < n/2, ¢y <
€1 € [0, €] be such that €1 —ey < €p, X be an unbiased random bit, (p, q) ~ N, be defined as in Def-
inition F.1, T ~ PoiS(m, p® q) as in Proposition F.2 where (Tlf), T2f’7 o TP, Tfl, Tf‘, e ,Tq) =

n

1, T{ counts the

T € R?" where Tif’ counts the occurrences of element i sampled from p/|p
occurrences of element i sampled from q/|q||1. Then

5 ~ - B 3
(X TP, TR TR, T3) :O(m€4p2>.

Proof of Lemma F4. Denote § := €1 — 9 = O(ep). Since (T3, N;)'s are conditionally independent
on X, we have that

J(X:Tf’,.-- TP, T3, ... ,T;}) SZI(X:Tif’Jf‘) —nl (X:Tlf’,Tfl).
=1

Therefore, it suffices to show that [ (X . TP ,Tfi) = 0 (%6252). We first note that
Pr [Tf’ = a, T3 =b|X = 0} = O(1)Pr [Tlf’ =a, T3 =b|X = 1} since § = o(e). Therefore,

(Pr[TP=a,T{=b| X=0]-Pr[TP=a,T3=b| x=1])"
@ Pr[TP=a,Ti=b| X =0]+Pr[TP=a,T=b| X =1]

by Claim A.2 it suffices to show that I := >

3Note that a closeness tester .A should in principle receive two sets of samples (or two sample count vectors
in the Poisson sampling model) — one from p and the other from q. However, it is not hard to see that do not
lose any information if we simply concatenate the two sample count vectors together. For notational convenience,
we denote by (p @ q) the non-negative measures over [2n], where the first n entries agree with p and the last
n entries agree with g. Then the distribution over the concatenated sample count vectors is simply given by
Poi(m, p © q).
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0 (ng 6252) We next expand Pr {Tf’ =a, T =bX =0].

Pr [Tf’ =, T3 = b X = o}
m 1

= 21— g exp(—(1 - )3 (1 - ) exp(—(1 - )

W (Y g (<)) (el o ()
55 (5

i) )1 (2

on b 2(n—m) ) a!

—-m

L <T:(1 — €)% exp(—2(1 — ¢)

(5
e (2

Then it follows that

I = O(l) Z i (fa,b(EO) — fa,b(el))2 — O(l) Z ja,b
a,bEZ>q

a,bE€Z>g alb! fa,b(eo) + fu,b(el)

where we denote fa,b = ﬁ % To bound fa7b, we break into 3 cases regarding the

value of a.
when a +b =0, viz. a = b = 0, Pr [T{’:o Tf‘:O|X:O} =Pr [Tf’:O,T{i:mX:l} =
exp(—2(1—¢€)) + ( Zme ) Therefore, Ip o = 0.

when a + b =1, wlog a = 0,b = 1 (by the symmetry between a and b.) We have that

Pr[Tlf’:o 1‘3‘:1|X70}7Pr[T1p:0 Tfl:1|X—1}:
_m n—m (m(2e— €) 2me
= n(l e)exp(—2(1 —¢€)) + o <2 )exp( )

(n—m) n—m

ThUS, j071 = f170 =0.
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when a + b > 1, wlog a < b, then the denominator term f, ;(€0) + fap(€1) = Q (
On the other hand consider the numerator. When y € [eq, €1],

fab( )’ M ex p< 2me >

2n “m
o (5 (2 gty (s
+mm)< ( ((2€+“3>)> (o) () () >|

2(
MM (e 4 ) (26 — )" 2e(a — b) — yla+ )
n 2(n —m)

3|3
—~
i
|
o))
£
Q
+
o
\_/

+ (2 +9)" 1 (2e — 1) 2e(b — a) — y(a + b)]| .

Let ¢ > 1 be such thatn — m = %n, then

— O(c**) (%)a“’ [2¢(b — a) |(2¢ +9)" (26 — )" — (2 +y)" (26 — )"
Fy(a+b) [(2e + )" " (2 — )"+ (2e + )" (2e — )" Y]

< O(c™+) (%)‘”b ea+b) [(2e +1)"71(2e — )" + (2e + 1) (26 — )P ]

—0 ((4c)“+b (%)Hb 1 (a + b)) .

_ a-+b a
This implies that Va + b > 2,1, , = O <a,15, ((4@2) (m)2FB T 2atb-1) (g 4 b)252> then

e’} a b
1 [ (4c)? 1 [ (4c)? my2a+2b=1
a+b—1) 252
Z Lo = Za'(l—e Z bl \1—e¢ (n) ¢ (a+0)%07 |,
a,b€Z>q a=0 b>a
a+b>2 b>2—a
a<b

where Y >4 ((f C)E ) < exp((4c)?/(1 — €)) and the sum of infinite geometric series is domi-
b>2—a
nated by the first term when common ratio < 1, we have that

¥ ho-o(E 5 (FE) () er) o ((2)'ar) - ¥ ne

a,bEZZO a,bEZZO
a+b>2 a+b>2
a<b a>b
as desired.

In conclusion, from the above 3 cases we have that

I<Do+loar+hot+ Y, Tap+ Y, Iap=0 <(’Z>3€252) ’

a,bEZZO a,bEZzo
a+b>2 a+b>2
a>b a<b
which concludes the proof of Lemma F.4. O

Lemma F.5 (Lipchitzness of Expectation of Acceptance Probability Function). Assume that m =
o(n?/3c=4/3p=2/3 1 n), and A be a deterministic tester takes a sample-count vector over [n] as
input and returns 1 if accept 0 otherwise, and recall the acceptance probability function is defined via
Accm (P, 9, A) := Proppisim,paq) A(T) = Accept] . Let ey < €1 € [0, €] be such that e, — e < €p.
Then it holds that

|E(p,q)~/\/FO [Accm(p7 q, A)] - IE(p,q))N/\ﬁ1 [Accm(p, q, A)]l < 0.1
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Proof of Lemma F.5. Assume the opposite E(p,q)~., [AcCi (P, q; A)] -
E(pa)~n., [Accr(p,a, A)]| > 0.1. Then, let X be an unbiased random bit, and Y be the
random variable defined as follows: let (p,q) ~ N.,, T ~ PoiS(m,p & q), then Y = 1 if
A(T) accept, Y = 0 otherwise. From the definition, we notice that Pr[Y = 1|X = 0] =
Ep.a)~n,, [Accn (P, a, A)] and Pr[Y = 1[X = 1] = E(, g)~,, [Accim (P, g, A)], which implies a
mutual information bound of I(X : T) = I(X : Y) = Q(1). This contradicts with the result from
Lemma F.4. 0

We are now ready to prove Lemma F.3.

Proof of Lemma F.3. Since A is 0.1-correct w.r.t. No and N, we have that
E(p,q)~n, [AcCr (P, q, A)] > 0.9 and E, g)n. [Accn (P, q, A)] < 0.1. Furthermore, since
E(p,q)~Ne [Acc,,(p, q,.A)] is a polynomial in &, it is continuous in £, then by mean value theorem
there exists {* € (0, €) such that E(;, g)~n. [Acci (P, g, A)] = 1/2. Immediately following from
Lemma F.5 that V€ € [£* — pe, £* 4 pe] we have that

]E(p,q)r\/,/\/'§ [ACCm(IL q, A)} € (E(p,q)NNE* [ACCm(IL q, A)} = 0.1, E(PQ)NNg [ACCm(pa q, A)] + 01)
— (0.4,0.6) C (1/3,2/3).

In conclusion, if we uniformly at randomly select a £ € [0, €], then once it falls in interval [£* —
pe, §* + pe] of length 2pe we have that E(p, o)~ [Accn (P, g, A)] € (1/3,2/3) as desired. O

Conditioned on some ¢ satisfying the probabilistic condition in Lemma F.3, we then proceed to
show that the acceptance probability Acc,,(p, q,.4) concentrates around the expected acceptance
probability Ep )~ [Accm (P, q, A)].

F.2 Concentration of Acceptance Probabilities

In this section we prove that the acceptance probabilities concentrate.

Lemma F.6 (Concentration of Acceptance Probabilities). Let £ € (0, ) and A be a deterministic
tester satisfying that is log ™2 n-replicable with respect to H¢. Then it holds

1 1
Pr (‘Accm(p7q7 A) - ]E(p’,q’)ng [Accm(p’,q/,.A)H > 4> < 5

(p,q)~Ne

This is achieved by analyzing the sample random walk RW,,, »7, analogous to the one considered in
the uniformity testing case.

We begin by defining a random walk on samples drawn from distributions in NV¢.

Definition F.7. The Sample Random Walk RW ,,, ¢ is defined on the graph with vertex set N*" (where
each vertex corresponds to sample count vector T drawn from PoiS(m,p ® q),) and transitions
(T1,T») are defined by the conditional distribution of T given Ty induced by the joint distribution
given by the following process:

1 (p,a) ~ Ne
2. Ty, T, are independently sampled from PoiS(m,p & q).

For any sample count vector T, let RW ,, ¢(T') be the random variable representing the next step of
the random walk from T.

Given a sample count vector 7', we denote Tp,[i] (resp. Tq4¢]) the frequency of bucket i from p
(resp. q). Let us analyze the random walk RW,,, . As before, we have T, [i] ~ Poi (mp;) and
Tq4[i] ~ Poi (mq;) independently for all i. Thus, RW,, ¢ is the product of n independent random
walks RW,, ¢ ; on vertex set [m]| x [m]. We describe RW,, ¢ by describing each random walk
RW,, ¢.i.
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If S, T are drawn from the joint distribution defining RW, ¢ ;,

Pr(Spli] = @ Toli] = b, Sqli] = ¢, Tyli] = d)
m 64(1—5) (1 _ 6)a+b+c+d

T n aldleld!

e(2e+€&)m/(n—m) ((25+f)m)a+b e(2e=€)m/(n—m) ((25—5)m)c+d
n—m 2(n—m) (n
+ (
2n

7771)
alb! cld!

(n—m) n—m)

+

ald! cld!
met(1me) (1 — )ttt Lnom m atbterd gdem/(n-m)
B 2( a'dblcld!

o(2e=E)m/(n—m) ((k—é)m)‘“’b o(2e+6)m/(n—m) ((2(e+£)m) ‘+d>

fa,b,c,d(g)

n - albleld! 2n n—m)

where
farvera(€) = (26 + &) (26 — ) + (26 — )" (2 + )T,

Similarly, we compute the marginal distribution as

Pr(Sp[i] = a, Sqli] = ¢) = fa,e(§)-

alc!

me2(1—¢) (1 _ E)‘H‘C n—m m a+tc e2em/(n—m)
+
n - alc! 2n

2(n—m)

To describe the random walk transition probability, we compute the conditional distribution

P((a,c),(b,d)) =Pr(Tpli] = b,Tqli] =d | Spli] = a, Sqli] = ¢)
Pr(TpH—b Tqli] = d, Spli] = a, Sqli] = c)
Pr(Spli] = a, Sqli] = ¢)
and note that as before, the stationary distribution is given by the probability vector 7(a,c) =
Pr(Spli] = a, Sqli] = ¢).

Following identical arguments as Lemma 3.9, we show that over few steps of the random walk, the
outcome of the algorithm does not change significantly.

Lemma F.8. Let A be 1/(10K)-replicable with respect to Hc. Let (p,q) ~ Ng and Ty ~
PoiS(m,p @ q). For1 <k < K, let T, ~ RW,,, ¢(Tx—1). Then,

TO,,,_, 3 <U{A Ti—1) # A(Tk)}> < %

k=1

‘We now bound the mixing time of the random walk RW,, ¢. As in the argument for uniformity, we
begin by bounding the (constant) mixing time of a single coordinate.

Lemma F.9. Suppose m < n/10. The random walk RW ,,, ¢ ; has mixing time 7(0.11) = O(1).

Proof. Let Yy = (¢1,¢3) denote the current step. Let X ~ {4, B,C’} be drawn randomly with

probabilities 2, 2= 2= regpectively. Let Z{' ~ Poi(1 —¢), Zf ~ Poi ((2(8%)77;) VALRN

Poi (<2§ jj;) and Z& ~ Poi(1—¢),ZE ~ Poi (<2E‘5>T”) ,Z§ ~ Poi ((2”5’”’/). The next

2(n—m) 2(n—m)
step of the random walk Y7 ~ RW,, ¢ ;(Y)) is taken according to the distribution

P((01,62), (k1,k2)) = Pr(X = A | Yo = (01, 62)) Pr(Z* = k1, Z5' = ko)
+Pr(X =B | Yy = (01,6))Pr(Z8 = ky, Z8 = ky)
+Pr(X =C[Yy = (€1>£2))Pr(zlc = kl»Zg = ka).
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We show that regardless of the current state ({1, ¢s), the random walk reaches state (0,0) with
reasonable probability. Since € < 0.1,

(1-9))
PmeQZ§0)<eOE>W> =e2179) > .13,

2et+)m _ (2e=&m 2em

Pr(ZP =0,Z8 =0) = e 20-m e  20mm) = e nom > e % > 0.8,
Pr(Z¢ =0,25 =0) > 0.8

where we have used m < n/10 in the second bound. In particular, note that nTm < % (here
we only use that 1/9 < 1). The last follows identically. Then, regardless of ({1, {2), we have
P((¢1,€3),(0,0)) > 0.13. In particular, after O(1) steps, we can guarantee that with probability

0.99 we reach the state (0,0). We can then assume without loss of generality that {; = {5 = 0.

We now examine the distribution of X conditioned on Yy = (0, 0). First, note that
PI‘(}/O — (O O)) — ﬂ672(175) + n—m (6725m/(n7m) + ef2sm/(n7m)>
’ n 2n
— Te—2(1—5) + n-—- me—2am/(n—m)'
n
Then, we argue that distribution of X conditioned on Yy = (0, 0) is reasonably random.
Pr(X = B,Y; = (0,0))
Pr(Yy = (0,0)

—2e/(n—m)

Pr(X = B| Y, = (0,0)) =

n—m

2n
me—2(1—¢) 4 n—m e—2¢/(n—m)
n n

1/2
s exp (2 - 2(1-6)) +1

(&

Observe {7 < Zexp (—2) < - exp (fi”;@ —-2(1 - e)) < 2mexp (5 —1.8) < ™ so that
applying 0.5 — x < &—‘Z < 0.5 — x/3 for small x > 0,
m m
05— —<Pr(X=B|Y,=1(0,0) <05— —.

As a result, we can conclude
m

Ton <Pr(X=A|Yy,=(0,0)) < o
In the stationary distribution, we have
—m
2n
In particular, the total variation distance between X in the stationary distribution and X conditioned
on Yy = (0,0) is at most 2 < ;- using our assumption m < n/10. Thus, from initial state (0,0),
the random walk mixes to within 0.1 total variation distance to the stationary distribution. We union

bound with the 0.01 probability of not reaching the stationary distribution in O(1) steps to conclude
the argument. O

mu:m:%,mw:m:muzm:"

Thus, we can bound the relaxation time of RW,,, ¢ ; as

7(0.11)

tre = 1 /1 /A an)
"= log(1/0.22)

+1=0(1).

We now bound the mixing time from the initial distribution.

Lemma F.10. Ler m < n/10. Let v(z) ~ Poi(1 —¢) ® Poi(1 —¢), v(z) ~ Poi ((22(57152:)1) ®

Poi ((22&7_57),:;’), or y(x) ~ Poi (g&fg) ® Poi ((22(5:_57)7:7)1) denote the initial distribution. The

random walk RW , ¢ ; has mixing time 7(§) = O(log(n/9)).
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Proof. As in Lemma E.8, we begin with following the inequality for any pair of states x = (z1, 22)

and y = (y1,y2). f
(@) P (2.5) ~ A(@)(y)] < W
We bound the ratio y(z) /7 ()

Claim F.11. For all states x = (z1, T2),

Proof. We split into the cases 7 ~ Z4,v ~ ZB v ~ ZC as defined in Lemma F.9. First, we write

n—m n—m

m
m(x) = g Pr(Z4 =)+ o Pr(Z8 =z) + o™ Pr(Z¢ = z)
Then
Pr(Z4 =) Pr(Z4 =) o
m(z) nPr(ZA=z) " m
Pr(Z®B =) Pr(Z8 =) 2n <4
m(z) SR Pr(ZB=x) T n—m
Pr(Z¢ =) <4
m(x) -

where in the second and third cases we used n — m > n/2. Finally, we conclude by observing

n >y, 0
Then, we sum over z to observe
n
<Z (@) P!(x, y)) =) <A/ —aly) Y V().
x xr

We now bound 3" /(). In all three cases Z4, ZB, Z©, we have that the Poisson distribution (in
both distributions) has parameter A < 1. By standard Poisson concentration, for any ¢ € {1,2} and
D € {A, B,C} we have

Pr(ZP > 2) = Pr(ZP > A+ (x — 1)) = e 91,
Then, we bound for any X € {A, B,C'}

ZF ZZ\/Pr 7 = 01) Pr (2§ = u»)

1= OZI/’Q 0

S @ =) S e (2 =)

:L’1:O IQIO
= 0(1).

where the first equality follows by definition of « and independence of p, q, and the second and
third equalities follow as > /Pr(Z;¥ = x) converges absolutely, which we showed in Lemma E.8.
Thus, we arrive at the inequality
n
=0 (A — .
( . mﬁ(y)>

(Zv Ptrcy) (y)

Summing over y and applying a similar argument (see Lemma E.8 for details), we obtain

Z (Zv thy) m(y) =O(Ai\/Z)'
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Thus, since A\, < 1 is an absolute constant less than 1, we conclude that from any of the three initial
distributions, the random walk RW,, ¢ ; mixes to within ¢ of the stationary distribution in time

7(6) = O(log((n/m)/8)) = O(log(n/9)).
O

Now, using identical arguments as in Lemma E.10, we can conclude with the following lemma.

Lemma F.12. Ler K = 7(0.01) and £ € [0,¢€]. Suppose A is 1(%K—replicable with respect to He.
Then,

1
o ([Eroa A = B anienton AT > 1) <

N

(p.a)~Ne¢

We now prove Lemma F.6.

Proof. From Lemma F.10, we have that 7(0.01/n) = O(logn)). Since A is log ™2 n-replicable w.r.t.
He, itis also 1/(10K)-replicable w.r.t. H¢. The conclusion follows. O

F.3 Proof of Proposition F.2 and Theorem 1.4

Combining Lemma F.3 and Lemma F.6 then yields the proof of Proposition F.2.

Proof of Proposition F.2. The proof follows using analogous arguments as Proposition 3.4, applying
Lemma F.3 and Lemma F.6 where appropriate. O

We are ready to prove Theorem 1.4. The theorem follows from Proposition F.2 and Lemma D.3.

Proof of Theorem 1.4. Note that a lower bound of Q(y/ne~2p~! + 72p~2) follows immediately
from lower bounds for uniformity testing and bias estimation respectively. It suffices to show a lower

bound of Q(n?/3=4/3p=2/3),

Proposition F.2 says that any deterministic tester that is 0.01-correct takes Poissonized samples with
sample complexity m = 6(n?/3e=%/3p=2/3) is not p/(log n)>-replicable with respect to the hard
instance H . Then, from Lemma D.3 we may conclude that any randomized tester with fixed sample
complexity m = 6(n?/3e=%/3p=2/3) is not p/polylog(n)-replicable with respect to ¢, concluding
the proof. O
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