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ABSTRACT

Guided diffusion sampling relies on approximating intractable likelihood scores,
which introduces significant noise into the sampling dynamics. We propose using
adaptive moment estimation to stabilize these noisy likelihood scores during sam-
pling. Despite its simplicity, our approach achieves state-of-the-art results on im-
age restoration and class-conditional generation tasks, outperforming more com-
plicated methods, which are often computationally more expensive. We provide
empirical analysis of our method on both synthetic and real data, demonstrating
that mitigating gradient noise through adaptive moments offers an effective way
to improve alignment.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have become
one of the most successful generative modeling approaches, achieving state-of-the-art results in
text-to-image synthesis (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022a), image-
to-image translation (Saharia et al., 2022b), audio generation (Kong et al., 2020; Liu et al., 2023),
video synthesis (Ho et al., 2022; Brooks et al., 2024), and molecular design (Hoogeboom et al.,
2022; Watson et al., 2023).

Plug-and-play conditional generation enables sampling from a conditional distribution p(x|y) using
a diffusion model trained only on the marginal distribution p(x). These methods guide the sampling
process toward desired conditions y without task-specific training. While some approaches like
Classifier Guidance (Dhariwal & Nichol, 2021) train time-aware models directly on the diffusion
latents, many plug-and-play methods leverage existing models that operate on clean data – whether
analytical forward operators for inverse problems or pre-trained classifiers – making them highly
flexible for diverse applications.

The plug-and-play guidance literature has evolved from early methods like Diffusion Posterior Sam-
pling (DPS) (Chung et al., 2022) to increasingly sophisticated techniques. Recent work such as
Universal Guidance for Diffusion Models (UGD) (Bansal et al., 2023) and Training-Free Guidance
(TFG) (Ye et al., 2024) compose multiple algorithmic components, combining gradient computa-
tions in both latent and data spaces, Monte Carlo approximations, and iterative refinement proce-
dures.

At the heart of plug-and-play guidance lies the challenge of incorporating the desired condition
into the diffusion sampling process. Sampling in diffusion models can be understood as annealed
Langevin dynamics using the score function ∇xt log p(xt) (Song & Ermon, 2019; Karras et al.,
2022). For conditional sampling, Bayes’ rule gives us:

∇xt log p(xt|y)︸ ︷︷ ︸
Posterior Score

= ∇xt log p(xt)︸ ︷︷ ︸
Prior Score

+∇xt log p(y|xt)︸ ︷︷ ︸
Likelihood Score

(1)

While the prior score is provided by the unconditional diffusion model, the likelihood score
∇xt log p(y|xt) is intractable to compute directly, necessitating approximation strategies (Chung
et al., 2022; He et al., 2023; Song et al., 2023).

Prior work as predominately studied improving the likelihood score approximation. Orthogonal to
this, we investigate whether information from earlier sampling steps can help mitigate approxima-
tion errors in later sampling steps. Instead of developing more sophisticated approximation methods,
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we use adaptive moment estimation – a technique from stochastic optimization (Kingma, 2014) – to
stabilize the noisy guidance gradients that arise in plug-and-play methods.

Our approach maintains exponential moving averages of the first and second moments of the like-
lihood gradients across sampling steps, effectively dampening noise while preserving the guidance
signal. Despite its simplicity, this modification yields substantial improvements: DPS augmented
with adaptive moments (AdamDPS) outperforms state-of-the-art methods across diverse bench-
marks.

We also examine how task difficulty affects the relative performance of different methods. Exist-
ing evaluations typically employ relatively mild degradations that provide a strong guidance signal–
for instance, 4x super-resolution or moderate blur kernels. We demonstrate that as task difficulty
increases (e.g., 16x super-resolution or severe degradations), the performance landscape shifts sig-
nificantly. Many recently proposed approaches that have been shown to outperform DPS in simpler
settings degrade rapidly under challenging conditions and ultimately underperform the simpler DPS
method. We find that adaptive moment estimation consistently improves upon DPS across difficulty
levels and outperforms a comprehensive selection of recent methods.

Our contributions are: (i) we demonstrate that adaptive moment estimation can substantially im-
prove plug-and-play guidance methods, achieving state-of-the-art results with minimal added com-
plexity; (ii) we provide empirical analysis through synthetic Gaussian mixture experiments that
illustrate how our method stabilizes noisy gradients; and (iii) we reveal that task difficulty signifi-
cantly impacts relative method performance, suggesting the need for more comprehensive evaluation
protocols. Our extensive empirical results across diverse tasks demonstrate its effectiveness and ro-
bustness.

2 BACKGROUND

Diffusion Models and Score-Based Sampling. Diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020) learn to generate samples from a data distribution p(x) by reversing
a gradual noising process. The forward process progressively corrupts data into Gaussian noise over
time t ∈ [0, T ], defining marginal distributions p(xt|x) where xt = αtx + σtϵ with ϵ ∼ N (0, I).
The noise schedule parameters αt and σt satisfy α2

t + σ2
t = 1, ensuring variance preservation. A

neural network ϵθ is trained to predict the noise at each timestep by minimizing:
Lϵ(θ) = Et,x,ϵ

[
∥ϵθ(xt, t)− ϵ∥22

]
(2)

This objective implicitly trains the network to approximate the score function ∇xt
log p(xt) ≈

−ϵθ(xt, t)/σt. Importantly, the predicted noise also provides a minimum mean squared error es-
timate of the clean data:

x0|t = E[x0|xt] =
xt − σtϵθ(xt, t)

αt
(3)

under optimal training (Efron, 2011). This clean data estimate, denoted x0|t, becomes crucial for
plug-and-play guidance methods.

Sampling proceeds via annealed Langevin dynamics (Song & Ermon, 2019; Karras et al., 2022),
iteratively denoising from xT ∼ N (0, I):

xs =
1

αt|s
xt +

σ2
t|s

αt|s
∇xt

log p(xt) +
σt|sσs

σt
ϵ (4)

where αt|s = αt/αs, σ2
t|s = σ2

t − α2
t|sσ

2
s , and ϵ ∼ N (0, I) (Kingma et al., 2021). This process

gradually transitions from high noise to low noise sampling as we move from t = T to t = 0.

The Plug-and-Play Guidance Challenge. For conditional generation p(x|y), Bayes’ rule decom-
poses the posterior score as:

∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt) (5)

The prior score is well approximated by the diffusion model ϵθ. The likelihood score ∇xt
log p(y|xt)

requires intractable marginalization to compute from a model for p(y|x):

p(y|xt) =

∫
p(y|x)p(x|xt)dx (6)
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Plug-and-play methods often approximate this likelihood score using the denoised estimate:
∇xt

log p(y|xt) ≈ ∇xt
log p(y|x0|t) which introduces error.

Algorithm 1 Adam Diffusion Posterior Sampling
Require: Diffusion Model θ, Guidance Model fϕ, Condition y, Guidance Strength ρ, Sampling Timesteps

tn, . . . , t0 ⊆ T , First Moment m = 0, Second Moment v = 0, Adam Step k = 0, First Moment
Exponential Decay Rate β1, Second Moment Exponential Decay Rate β2

1: xtn ∼ N (0, I)
2: for t = tn, . . . , t1 do
3: ∆t = ∇xtL(fϕ(x0|t, y)

4: ∆̃t,m, v, k = AdaptiveMomentEstimate(∆t,m, v, k, β1, β2)

5: xs = Sample(x0|t, xt, t, s) + ρ∆̃t/αt|s
6: end for
7: return xt0

Algorithm 2 Adam Classifier Guidance
Require: Diffusion Model θ, Guidance Model fϕ, Condition y, Guidance Strength ρ, Sampling Timesteps

tn, . . . , t0 ⊆ T , First Moment m = 0, Second Moment v = 0, Adam Step k = 0, First Moment
Exponential Decay Rate β1, Second Moment Exponential Decay Rate β2

1: xtn ∼ N (0, I)
2: for t = tn, . . . , t1 do
3: ∆t = ∇xtL(fϕ(xt, t), y)

4: ∆̃t,m, v, k = AdaptiveMomentEstimate(∆t,m, v, k, β1, β2)

5: xs = Sample(x0|t + ρ∆̃tσ
2
t /αt, xt, t, s)

6: end for
7: return xt0

3 GUIDANCE WITH ADAPTIVE MOMENT ESTIMATION

Plug-and-play conditional generation requires approximating the intractable likelihood score
∇xt

log p(y|xt) to guide the diffusion sampling process toward desired conditions. In practice,
this score is typically approximated by the gradient of a loss function L that measures alignment
between the generated sample and the condition y.

Existing Likelihood Score Approximations. Two prominent approaches have emerged for this
approximation, distinguished by the domain in which the guidance function operates. Diffusion
Posterior Sampling (DPS) (Chung et al., 2022), a widely adopted plug-and-play method, leverages
existing models fϕ : X → Y that operate on clean data. DPS approximates the likelihood score as:

∇xt
log p(y|xt) ≈ ∇xt

L(fϕ(x0|t), y) (7)

where x0|t is the predicted clean sample from Equation 3. This approach enables the use of pre-
trained models without modification but requires backpropagation through the denoising network.

Alternatively, Classifier Guidance (CG) (Dhariwal & Nichol, 2021) trains time-aware models fϕ :
Xt × T → Y directly on the noisy latents of the diffusion process, approximating:

∇xt log p(y|xt) ≈ ∇xtL(fϕ(xt, t), y) (8)

While this requires training a specialized model, it provides a more direct approximation by condi-
tioning on the actual noisy latent rather than a point estimate.

Stabilization via Adaptive Moments. Examining the guided sampling update which follows from
Equation 4 and Equation 5, we observe that it performs gradient ascent on the likelihood component
at each timestep:

xs =
1

αt|s
xt +

σ2
t|s

αt|s

(
sθ(xt, t) +∇L(·)

)
+

σt|sσs

σt
ϵ (9)

Drawing from stochastic optimization, where adaptive moment estimation has proven effective at
stabilizing noisy gradients (e.g. Adam (Kingma, 2014), AdaGrad (Duchi et al., 2011)), we propose

3
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maintaining exponential moving averages of the likelihood gradients across sampling steps:

gt = ∇xt
L(fϕ(·), y) (DPS or CG) (10)

mk = β1mk−1 + (1− β1)gt (11)

vk = β2vk−1 + (1− β2)g
2
t (12)

where g2t denotes element-wise squaring and k is a step counter. The stabilized likelihood score is
then computed as:

ĝt =
m̂k√
v̂k + ϵ

(13)

with bias-corrected moments m̂k = mk/(1− βk
1 ) and v̂k = vk/(1− βk

2 ), and ϵ a small constant for
numerical stability (Kingma, 2014).

This adaptive moment estimation serves multiple purposes: the first moment (momentum) smooths
the optimization trajectory by accumulating gradient information across steps, while the second mo-
ment adaptively scales the updates based on the historical variance of each gradient component.
For conditional sampling, where the likelihood approximation can vary dramatically across noise
levels, this stabilization is particularly beneficial. We denote the resulting methods as AdamDPS
(Algorithm 1) when applied to DPS and AdamCG (Algorithm 2) when applied to classifier guid-
ance, demonstrating that this simple modification yields substantial improvements in both sampling
stability and final sample quality.

4 SYNTHETIC STUDY
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Figure 1: Final sample distributions on the 2D GMM for different sampling methods when condi-
tioning on component 0 (target indicated by yellow star).
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Figure 2: Analysis of DPS and AdamDPS on a 2D Gaussian Mixture Model.
We first analyze our method in a tractable 2D Gaussian Mixture Model (GMM), see Figure 1, where
both the unconditional score ∇xt log pt(xt), the true conditional score ∇xt log pt(xt|y), and the
DPS likelihood approximation ∇xt log p(y|x0|t) are available in closed form. This allows direct
evaluation of approximation error. We construct a GMM with three components and condition on
one target component for conditional sampling.

DPS replaces ∇xt
log p(y|xt) with ∇xt

log p(y|x0|t). Even with perfect x0|t, this substitution is
imperfect. Figure 2 (left) shows the L2 error across noise levels σt: negligible at very low or high
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noise, but peaking at intermediate levels. This inherent error motivates more robust guidance. To
mimic imperfect guidance models, we inject Gaussian noise of magnitude ζ∥∇xt

log p(y|x0|t)∥
into the DPS gradient. We observe that DPS trajectories oscillate and fail to converge under noise,
yielding diffuse samples that deviate from the oracle posterior, see Figure 1 (ζ = .18).

AdamDPS Stabilization. AdamDPS smooths and rescales these noisy gradients. Trajectories are
more stable and converge directly to the target, producing concentrated samples close to the oracle
posterior. Quantitatively, Figure 2 shows AdamDPS consistently achieves lower KL in settings with
non-negligible gradient noise. The GMM study highlights two points: (i) the DPS approximation
itself introduces error, and (ii) DPS is highly sensitive to gradient noise. By contrast, AdamDPS
dampens noise, stabilizes trajectories, and yields more faithful conditional samples.

5 BENCHMARKS

We conducted extensive experiments across a range of tasks to validate the effectiveness of adaptive
moments for plug-and-play guidance. All methods benchmarked were tuned extensively using 150
trials of Bayesian Optimization (Jones et al., 1998) on a held-out validation set of 32 images. Recon-
struction tasks were tuned to minimize LPIPs (Zhang et al., 2018), while class conditional sampling
was tuned for CMMD (Jayasumana et al., 2024) since tuning for accuracy encourages generating
adversarial examples. To measure alignment with the desired condition, we report LPIPs for recon-
stuction tasks and accuracy for class conditional sampling. We also report FID (Heusel et al., 2017)
as a measure of fidelity, computed on 2048 samples following the evaluation procedure from Ye
et al. (2024). We benchmark against Loss Guided Diffusion (LGD) (Song et al., 2023), Manifold
Preserving Guided Diffusion (MPGD) (He et al., 2023), DPS, UGD, and the state-of-the-art TFG
on ImageNet (Deng et al., 2009), CIFAR10 (Krizhevsky et al., 2009), and the Cats subset of Cats
vs. Dogs (Elson et al., 2007). We set Nrecur = 1 for TFG and sweep Niter = 1, 2, 4 for UGD and
TFG, while tuning the remaining hyperparameters as recommended by Ye et al. (2024). We provide
additional quantitative and qualitative results in the appendix.
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Figure 3: Comparison of all methods on ImageNet and Cats for Super Resolution at 16x Downsam-
pling, Gaussian Deblur at Blur Intensity 12, and Inpainting at 90% Uniform Random Mask.
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Figure 4: Qualitative examples from the Cats dataset: Super Resolution at 12x Downsampling and
Gaussian Deblurring at Blur Intensity 9.

Reconstruction Qualitatively, AdamDPS generates images with superior perceptual fidelity, pre-
serving finer details particularly in challenging regions where other methods struggle. TFG recon-
structions frequently exhibit visual artifacts, while DPS lacks the refined detail recovery of our ap-
proach, see Figure 4. Quantitatively, for both ImageNet and the Cats dataset AdamDPS outperforms
all other methods on all reconstruction tasks: super resolution at 16x downsample, Gaussian deblur
at blur intensity 12, and inpainting at 90% uniform random masking, see Figure 3. Interestingly,
the second best performing method across datasets in super resolution and Gaussian deblurring is
DPS. We observe this happens in challenging settings where conditioning information provides lim-
ited direct correspondence to the target image, causing other methods to degrade significantly while
DPS remains robust. Inpainting at 90% uniform random masking proves easier than super resolution
at 16x downsample and Gaussian deblur at blur intensity 12, as evidenced by lower LPIPS scores
across all methods. In this simpler setting, TFG Niter = 4 outperforms DPS.
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Figure 5: Comparison of DPS, TFG, and AdamDPS on CIFAR10 and ImageNet with a Standard
Classifier, as well as CG and AdamCG on ImageNet with a Time-Aware Classifier.

Class Conditional Sampling. AdamDPS demonstrates strong performance on class conditional
tasks, see Figure 5. On CIFAR-10, AdamDPS outperforms the next best method, DPS, by 9.86%
in classification accuracy, establishing clear superiority over existing approaches. The more striking
results is on ImageNet, where all other approaches fail to exceed random guessing, achieving top-
10 classification accuracies at or below the 1% random baseline. In contrast, AdamDPS achieves
10.49% top-10 accuracy, a substantial improvement that demonstrates the method’s ability to gen-
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erate samples satisfying the desired condition in challenging settings. In the time-aware classifier
setting, AdamCG improves upon CG by more than 20% in classification accuracy.
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Figure 6: Task Difficulty Ablation on Cats comparing AdamDPS and TFG to DPS.

Task Difficulty Ablation. We examine how task difficulty affects the relative performance
of AdamDPS and TFG compared to DPS. Figure 6 shows the relative LPIPS improvement of
AdamDPS and TFG over DPS on the Cats dataset as super resolution and deblurring tasks increase
in difficulty. For super resolution, AdamDPS consistently maintains substantial positive improve-
ment over DPS across all difficulty levels, achieving nearly 10% relative improvement at 12x down-
sampling. While certain TFG variants (Niter ≥ 2) marginally outperform AdamDPS in the easiest
settings, their advantage rapidly diminishes as task difficulty increases, with performance eventually
falling below the DPS baseline, as we saw in Figure 3. Deblurring tasks exhibit a similar pattern:
while TFG variants (Niter ≥ 2) outperform AdamDPS in the easiest setting, AdamDPS demonstrates
robust positive improvement that becomes more pronounced at higher blur intensities, as TFG vari-
ants show declining performance and ultimately underperform DPS on the most challenging tasks.
These results underscore AdamDPS’s robustness, maintaining effectiveness even when conditioning
information is limited.
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Figure 7: Left: Ablation of sampling steps for Super Resolution 16x Downsampling on Cats dataset.
Middle: Ablation of Adam β1 β2 for Super Resolution 16x Downsampling, Gaussian Deblur as Blur
Intensity 12 and Inpainting at 90% Uniform Random Mask on the Cats dataset. Right: Wall clock
comparison on 1 H100 GPU class conditional sampling a batch of 8 256x256 Images.

Sampling Steps Ablation. We analyze the effect of reducing sampling steps on LPIPS performance
for Super Resolution at 16x Downsampling on the Cats dataset, as shown in Figure 7. AdamDPS
consistently achieves superior LPIPS compared to both DPS and TFG Niter = 4 across all step
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counts. AdamDPS’s advantage persists at lower step counts, maintaining a width gap even at 25
steps, underscoring its efficiency and suitability for few-step sampling.

Wall Clock. Figure 7 shows average wall clock time from 5 trials of ImageNet class conditional
sampling using 1 H100 GPU with a batch size 8. AdamDPS and DPS substantially outpace TFG,
whose cost scales with Nrecur(1 +Niter) gradient computations and Nrecur backpropagation steps.

6 ANALYSIS

Sampling Loss Trajectories. We track the measurement loss L(fϕ(x̂θ(xt, t)), y) along the reverse
trajectory to explore the behavior of the different methods. Figure 8 aggregates losses over images
for four settings: 4x SR, 16x SR, class conditional sampling with a standard or time-aware classi-
fier. We observe that for challenging settings (16x SR and class conditional sampling) AdamDPS
reduces the loss early and steadily compared to TFG, and consistently acheives a lower terminal
loss than DPS. On the other hand, TFG typically stalls early in sampling for challenging tasks. This
demonstrates that adaptive moments are particularly beneficial in stabilizing guidance early when
the signal is noisiest. For easy inverse setting (4x SR) TFG descends quickly and reaches com-
petitive terminal losses, while AdamDPS remains smoothly monotone and competitive. In these
settings the conditioning information provides very rich guidance signals. For the class conditional
setting, TFG and DPS often fail to make meaningful progress while AdamDPS exhibits reliable,
monotonic descent and consistently converges to a lower terminal loss (right panel). Representative
per-sample curves in Figure 9 (16x SR) visualize these behaviors. Consistent with the loss trajectory
visualization, AdamDPS makes consistent progress towards the conditioning information early in
the sampling process.

Adam β1, β2 Ablation. Figure 7 shows an ablation of Adam hyperparameters β1 and β2 for
AdamDPS across inpainting, super-resolution, and deblurring tasks. We compare the relative LPIPS
improvement over DPS for three configurations: default AdamDPS, AdamDPS with β1 = 0, and
AdamDPS with β2 = 0. AdamDPS consistently outperforms both ablated variants across all tasks,
demonstrating that both momentum and adaptive scaling are essential for optimal performance, with
their relative importance varying by task.
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Figure 8: Sample figure caption.
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Figure 9: Sample figure caption.

7 RELATED WORK

Conditional generation with diffusion models, often termed classifier guidance, was initially pro-
posed for class-conditional sampling using a learned time-aware classifier with an unconditional dif-
fusion model (Dhariwal & Nichol, 2021). This concept has since been broadly applied, particularly
to inverse problems involving known analytical models fϕ(x) that map data x to a condition y. For
these inverse problems, Diffusion Posterior Sampling (DPS) (Chung et al., 2022) uses the denoised
estimate x̂θ(xt, t)≈E[x0 |xt] (Efron, 2011) and applies ∇xt

log p(y|xt)≈∇xt
L(fϕ(x̂θ(xt, t), y)).

Related approaches include PiGDM (Song et al.), which handles non-differentiable measurements
via pseudoinverse guidance, and DDRM (Kawar et al., 2022), which leverages variational inference
for efficient posterior sampling. MPGD sidesteps backprop through the diffusion model by optimiz-
ing in data space on x̂θ (He et al., 2023). Orthogonal improvements include timestep resampling
(“time travel”) and efficient recurrence (Mokady et al., 2023; Wang et al., 2022; Lugmayr et al.,
2022; Du et al., 2023; Yu et al., 2023), Monte-Carlo smoothing of the DPS surrogate via Loss-
Guided Diffusion (LGD) (Song et al., 2023), and covariance estimation as in TMPD (Boys et al.,
2023) and FreeHunch (Rissanen et al., 2024). Compositional frameworks such as UGD (Bansal
et al., 2023) and TFG (Ye et al., 2024) unify DPS/MPGD with reoccurrence and LGD.

8 CONCLUSION

Guidance in diffusion models often involves navigating noisy likelihood estimates, particularly when
dealing with complex, real-world conditional generation tasks where analytical guidance models can
be computationally expensive. While recent approaches have combined multiple sophisticated tech-
niques, increasing algorithmic complexity, we have demonstrated that a simple adaptation can yield
significant improvements. AdamDPS, by incorporating adaptive moment estimation from stochastic
optimization, effectively stabilizes the noisy gradients inherent in the Diffusion Posterior Sampling
approximation. Our experiments show that this straightforward modification leads to comparable
or superior performance against more complex methods, especially in challenging settings and with
limited computational budgets where multiple guidance steps per iteration are infeasible. The key
advantage of AdamDPS lies in its simplicity: it requires minimal changes to existing DPS frame-
works while leveraging a well-understood and robust optimization technique. This work suggests
that focusing on effectively managing the inherent noise in fundamental guidance signals can be as,
or more, beneficial than composing increasingly elaborate guidance schemes.

ETHICS

Our work focuses on improving plug-and-play diffusion sampling; an important problem with many
practical applications. While its possible for this technology to be misused, we advocate for respon-
sible use in line with established guidelines.
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REPRODUCIBILITY

All experiments are conducted on publicly available data with publicly available pretrained models.
Upon acceptance we will release the necessary code to reproduce all of our results.
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A ADDITIONAL QUANTITATIVE RESULTS

Table 1: Super Resolution at 16x Downsampling, Gaussian Deblur at Blur Intensity 12, and Inpaint-
ing at 90% Uniform Random Mask on ImageNet.

Super Resolution Gaussian Deblur Inpainting
Method LPIPs ↓ FID ↓ LPIPs ↓ FID ↓ LPIPs ↓ FID ↓

DPS 0.30 35.55 0.34 40.25 0.16 27.79
LGD 0.32 38.10 0.39 46.11 0.18 37.37

MPGD 0.35 52.66 0.38 52.11 0.45 142.47
UGDNiter=1 0.34 38.52 0.40 43.06 0.29 47.30
UGDNiter=2 0.32 40.05 0.38 44.48 0.20 33.18
UGDNiter=4 0.31 39.56 0.37 47.04 0.20 33.72
TFGNiter=1 0.32 42.27 0.36 47.34 0.20 41.49
TFGNiter=2 0.32 42.69 0.35 46.44 0.13 26.17
TFGNiter=4 0.32 42.92 0.36 49.55 0.13 26.87
AdamDPS 0.27 30.16 0.33 38.35 0.12 23.42

Table 2: Super Resolution at 4x Downsampling, Gaussian Deblur at Blur Intensity 3 on ImageNet.

Super Resolution Gaussian Deblur
Method LPIPs ↓ FID ↓ LPIPs ↓ FID ↓

DPS 0.19 26.43 0.23 27.66
TFGNiter=1 0.14 25.37 0.20 27.21
TFGNiter=2 0.13 25.03 0.17 26.01
TFGNiter=4 0.14 26.62 0.16 25.74
AdamDPS 0.12 20.92 0.17 23.45

Table 3: Super Resolution at 16x Downsampling, Gaussian Deblur at Blur Intensity 12, and Inpaint-
ing at 90% Uniform Random Mask on Cats.

Super Resolution Gaussian Deblur Inpainting
Method LPIPs ↓ FID ↓ LPIPs ↓ FID ↓ LPIPs ↓ FID ↓

DPS 0.25 30.68 0.29 34.74 0.13 17.13
LGD 0.27 35.15 0.33 40.10 0.17 35.29

MPGD 0.28 44.16 0.32 49.50 0.42 76.60
UGDNiter=1 0.29 33.60 0.35 43.10 0.32 64.22
UGDNiter=2 0.27 38.07 0.34 49.98 0.22 38.14
UGDNiter=4 0.27 38.07 0.32 47.14 0.21 37.68
TFGNiter=1 0.27 39.75 0.32 50.49 0.15 18.24
TFGNiter=2 0.26 38.82 0.31 46.90 0.09 17.78
TFGNiter=4 0.26 38.83 0.29 44.95 0.09 17.77
AdamDPS 0.24 27.62 0.27 30.22 0.08 14.64
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Table 4: Super Resolution at 4x Downsampling, Gaussian Deblur at Blur Intensity 3 on Cats.

Super Resolution Gaussian Deblur
Method LPIPs ↓ FID ↓ LPIPs ↓ FID ↓

DPS 0.14 17.74 0.18 23.58
TFGNiter=1 0.09 14.81 0.15 20.78
TFGNiter=2 0.08 13.54 0.12 18.20
TFGNiter=4 0.08 14.09 0.11 16.42
AdamDPS 0.09 13.19 0.14 20.43

Table 5: Class Conditional Sampling with Standard Classifier on CIFAR10.

Method Accuracy ↑ Top3 Accuracy ↑ FID ↓

DPS 42.77 64.65 32.26
LGD 21.83 46.88 31.02

MPGD 26.66 56.40 34.11
UGDNiter=1 9.28 28.86 25.40
UGDNiter=2 24.61 56.10 32.44
UGDNiter=4 31.88 63.67 37.18
TFGNiter=1 39.40 67.09 50.29
TFGNiter=2 17.04 42.53 25.07
TFGNiter=4 19.43 44.97 26.15
AdamDPS 52.64 79.00 57.98

Table 6: Class Conditional Sampling with Standard Classifier on ImageNet.

Method Top10 Accuracy ↑ FID ↓

DPS 0.73 43.04
LGD 0.68 42.51

MPGD 0.88 43.63
UGDNiter=1 0.83 42.35
UGDNiter=2 1.42 45.29
UGDNiter=4 1.71 43.58
TFGNiter=1 0.98 42.72
TFGNiter=2 0.93 43.19
TFGNiter=4 1.42 43.15
AdamDPS 10.50 52.81

Table 7: Class Conditional Sampling with Time-Aware Classifier on ImageNet.

Method Accuracy ↑ FID ↓

CG 61.04 30.78
AdamCG 82.47 29.64
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B ADDITIONAL QUALITATIVE RESULTS

Condition Ground Truth AdamDPS DPS TFG Niter = 4
Super Resolution on ImageNet

Figure 10: Additional Qualitative Results for Super Resolution at 16x Downsampling on Imagenet.

C LLM USAGE

Large language models were used for proofreading and revising the wording of the paper. All claims
and arguments were drafted and verified by the authors.
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Condition Ground Truth AdamDPS DPS TFG Niter = 4
Gaussian Deblur on ImageNet

Figure 11: Additional Qualitative Results for Gaussian Deblur at Blur Intensity 12 on Imagenet.
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Condition Ground Truth AdamDPS DPS TFG Niter = 4
Super Resolution on Cats

Figure 12: Additional Qualitative Results for Super Resolution at 12x Downsampling on Cats.
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Condition Ground Truth AdamDPS DPS TFG Niter = 4
Gaussian Deblur on Cats

Figure 13: Additional Qualitative Results for Gaussian Deblur at Blur Intensity 9 on Cats.
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Truck

Condition AdamDPS DPS TFG Niter = 4

Ship

Ship
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Automobile
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Class Conditional on CIFAR10 (Standard Classifier)

Figure 14: Additional Qualitative Results for Class Conditional Sampling with a Standard Classifier
on CIFAR10.
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Pirate

Condition AdamDPS DPS TFG Niter = 4
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Figure 15: Additional Qualitative Results for Class Conditional Sampling with a Standard Classifier
on ImageNet.
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Espresso

Condition AdamCG CG
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Class Conditional on ImageNet (Time-Aware Classifier)

Figure 16: Additional Qualitative Results for Class Conditional Sampling with a Time-Aware Clas-
sifier on ImageNet.
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