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Abstract
Large-scale machine learning models deliver
strong performance across a wide range of tasks
but come with significant computational and re-
source constraints. To mitigate these challenges,
local smaller models are often deployed along-
side larger models, relying on routing and deferral
mechanisms to offload complex tasks. However,
existing approaches inadequately balance the ca-
pabilities of these models, often resulting in un-
necessary deferrals or sub-optimal resource usage.
In this work we introduce a novel loss function
called GATEKEEPER for calibrating smaller mod-
els in cascade setups. Our approach fine-tunes the
smaller model to confidently handle tasks it can
perform correctly while deferring complex tasks
to the larger model. Moreover, it incorporates a
mechanism for managing the trade-off between
model performance and deferral accuracy, and is
broadly applicable across various tasks and do-
mains without any architectural changes. We eval-
uate our method on encoder-only, decoder-only,
and encoder-decoder architectures. Experiments
across image classification, language modeling,
and vision-language tasks show that our approach
substantially improves deferral performance.

1. Introduction
Large-scale machine learning models such as Gemini (Gem-
iniTeam et al., 2023), GPT-4 (Achiam et al., 2023), and
Claude (Anthropic, 2024) have demonstrated remarkable
capabilities across diverse tasks, including language under-
standing, generation, and computer vision. Their strong
generalization has enabled deployment in domains such as
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Figure 1. Overview of the cascading setup (left) and perfor-
mance trade-off (right). Left: Cascading determines which inputs
should be predicted by a small model MS or routed to a large
model ML. Right: Performance is measured as a trade-off be-
tween joint accuracy across MS and ML and deferral ratio. Ideal
deferral strategies optimize this trade-off and push the realized
deferral curve closer to the ideal deferral depicted in (d). (a) de-
picts full deferral; (b) depicts no deferral; and (c) depicts excessive
deferral of requests that could have been handled by MS .

healthcare (Nazi & Peng, 2024), finance (Li et al., 2023),
education (Wang et al., 2024b), and entertainment (Gallotta
et al., 2024). However, the substantial computational, mem-
ory, and latency costs associated with these models pose
significant scalability issues (Pope et al., 2023).

To address these challenges, two main strategies have
emerged. The first compresses the large model itself—via
pruning (Ma et al., 2023), distillation (Yang et al., 2024),
or sparsity techniques (Hoefler et al., 2021). The sec-
ond—arguably more promising given empirical scaling
laws (Kaplan et al., 2020)—maintains the large modelML

and reduces cost by selectively offloading easy inputs to a
smaller, cheaper modelMS . This idea underlies speculative
decoding (Leviathan et al., 2023) and model cascades (Do-
han et al., 2022; Gupta et al., 2024; Chen et al., 2024a),
which pair a fastMS with a more powerfulML.

In speculative decoding,MS drafts candidate outputs that
ML verifies in parallel. In contrast, model cascades rely on
a deferral rule to decide which model should handle a given
request (Figure 1, left). Cascades are attractive because
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they permit the use of a less capableMS—provided it can
accurately identify when it is likely to make mistakes. The
success of such systems hinges on balancing compute cost
and joint accuracy. As shown in Figure 1 (right), cascades
can fail if MS defers too often, too little, or defers only
on correct predictions. The optimal scenario occurs when
MS defers only when it is wrong, yielding the best accu-
racy–efficiency trade-off. We refer to how well a cascade
approximates this ideal as its deferral performance.

Our Contribution. We address the question: How can
we optimize model cascades to maximize deferral perfor-
mance? That is, how can we train MS not only to be
competent on easy examples, but also to know when to
defer? We propose GATEKEEPER, a simple and general-
purpose loss function that fine-tunes MS to output high
confidence when correct and low confidence when incorrect.
This calibration improves uncertainty estimates, enabling
more accurate routing and better cascade-level performance.
Our approach directly shapes MS ’s confidence through
uncertainty-aware fine-tuning. GATEKEEPER also includes
a tunable parameter that controls the trade-off between pre-
dictive and deferral performance, and is applicable to a wide
range of architectures without architectural modifications.

We demonstrate the effectiveness of GATEKEEPER on
encoder-only vision models, decoder-only language models,
and encoder-decoder vision-language models. Across tasks
such as image classification, closed-form text generation,
and image captioning, GATEKEEPER significantly improves
deferral performance. For instance, it achieves up to 2× im-
provement on TinyImageNet and 10× on ARC-e/c. These
results show that GATEKEEPER enables more reliable, cost-
efficient cascaded inference—paving the way for scalable
deployment of machine learning systems across domains.

2. Related Work
Model Cascades: Model cascades consist of a deferral
rule and a sequence of models, routing inputs to the ap-
propriate model based on difficulty. Originally introduced
to accelerate object detection (Viola & Jones, 2001), cas-
cades have since been applied in classification (Wang et al.,
2017; Trapeznikov & Saligrama, 2013; Bolukbasi et al.,
2017; Jitkrittum et al., 2023) and NLP (Dohan et al., 2022;
Mamou et al., 2022; Varshney & Baral, 2022).

Cascades are especially useful for LLMs and VLMs, re-
ducing inference cost by deferring only hard examples to
larger models. Unlike speculative decoding (Leviathan
et al., 2023), which accelerates generation, cascades focus
on selective model invocation, though both can be com-
bined (Narasimhan et al., 2025; Chen et al., 2024b). Most
prior work applies post-hoc deferral logic to pre-trained
models (Narasimhan et al., 2022; Yue et al., 2024; Kolawole

et al., 2024; Gupta et al., 2024). Recent approaches improve
deferral through training: Wang et al. (2024a) restrictMS

training to easier tokens; Enomoro & Eda (2021) introduce
calibration-aware training. Our method extends these ideas
to VLMs and generative models by encouragingMS to be
uncertain when wrong.

Uncertainty-Aware Models: Uncertainty estimation is
well-studied for classifiers (Abdar et al., 2021), but remains
challenging for generative models. Methods differ by access
to model internals:

1. Black-box methods modify prompts to elicit more cau-
tious responses (Shrivastava et al., 2023; Kadavath et al.,
2022; Gou et al., 2023; Xiong et al., 2024).

2. Gray-box approaches analyze model outputs using en-
tropy or logit post-processing (Hendrycks & Gimpel,
2016; Malinin & Gales, 2021; Kuhn et al., 2023).
While effective, techniques like ensembling (Lakshmi-
narayanan et al., 2017) and Bayesian inference (Blundell
et al., 2015) are often impractical at scale.

3. White-box methods incorporate uncertainty into training
objectives (Chuang et al., 2024; Krishnan et al., 2024).
Rawat et al. (2021) pre-partition data based on ML’s
confidence to train MS . In contrast, we dynamically
adjust training based onMS’s uncertainty, ensuring it is
confident when correct and uncertain when wrong. This
improves performance in cascade setups.

3. The GATEKEEPER Loss
3.1. Overview & Setup

We consider a model cascade consisting of a large, accu-
rate model ML and a smaller, resource-efficient model
MS , with parameter counts L � S. Both models may
be classifiers (M : RD → [C]) or sequence models
(M : RD → [V ]T ), and need not share the same archi-
tecture family. For instance, MS may be a lightweight
CNN and ML a vision transformer (Dosovitskiy, 2020).
Our goal is to fine-tune MS such that it knows when to
trust its predictions and when to defer to ML. Deferral
signals are derived solely fromMS . This avoids the addi-
tional compute cost of methods that queryML at inference
time (Mielke et al., 2022; Kuhn et al., 2023), which defeats
the purpose of deferral. Our setup assumesMS is strictly
less capable thanML —consistent with scaling laws (Ka-
plan et al., 2020)—so errors made byML are likely also
made byMS , but not vice versa.

We assume white-box access toMS , enabling us to inte-
grate the deferral mechanism into its training objective. This
allowsMS to learn during fine-tuning how to distinguish
between reliable and unreliable predictions. Rather than
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Figure 2. GATEKEEPER Overview: Correct predictions are made
more confident (lower cross-entropy), while incorrect predictions
are trained to produce uniform output distributions (higher en-
tropy). This enables better deferral decisions at test time.

relying on post-hoc uncertainty thresholds or hand-crafted
heuristics, we ask: Can we directly optimizeMS to sepa-
rate correct from incorrect predictions via fine-tuning?
We show this is achievable using a new loss that requires no
architectural changes and integrates into standard pipelines.

3.2. Confidence-Tuning for Deferral

Stage 1: Initial Training. We begin with a MS that
has been trained on the target task. We make no assump-
tions about the training pipeline—MS may be trained from
scratch or via distillation.

Stage 2: Correctness-Aware Fine-Tuning. We then fine-
tuneMS using a novel hybrid loss function, GATEKEEPER,
which promotes high confidence on correct predictions and
low confidence on incorrect ones (see Figure 2). This objec-
tive is based on the intuition that a reliable deferral mecha-
nism requires well-calibrated uncertainty estimates.

The loss takes the form:

L = αLcorr + (1− α)Lincorr (1)

Lcorr =
1

N

N∑
i=1

1{yi = ŷi}CE(pi, yi) (2)

Lincorr =
1

N

N∑
i=1

1{yi 6= ŷi}KL(pi ‖ U) (3)

where pi is the predicted distribution for input xi, yi is
the true label, ŷi is the predicted label, U is the uniform
distribution over all classes, and N is the batch size. The
cross-entropy term reduces the entropy of correct predic-
tions, while the KL term increases entropy of incorrect ones.

The scalar α ∈ (0, 1) balances the two terms. Smaller val-
ues emphasize penalizing overconfident errors (increasing
deferral conservativeness), while larger values sharpen cor-

rect predictions and improve predictive accuracy. Thus, α
directly controls the trade-off between deferral reliability
and standalone model utility.

This idea is inspired by the OE loss for out-of-distribution
detection (Hendrycks et al., 2018), which encourages uni-
form predictions on outlier data. However, to our knowl-
edge, this formulation has not been used for improving
deferral in model cascades.

Extension to Token-Based Models. For sequence models
(e.g., LMs or VLMs), we compute the loss token-wise:

Lcorr =
1

N

N∑
i=1

T∑
t=1

1{yi,t = ŷi,t}CE(pi,t, yi,t) (4)

Lincorr =
1

N

N∑
i=1

T∑
t=1

1{yi,t 6= ŷi,t}KL(pi,t ‖ U) (5)

where T is the sequence length, and pi,t is the token distri-
bution at position t. This ensures fine-grained calibration
across the sequence.

Stage 3: Confidence-Based Deferral. After fine-tuning
with GATEKEEPER, we use calibrated confidence scores
fromMS to make deferral decisions. Following the selec-
tive prediction framework (El-Yaniv & Wiener, 2010), we
define a gating function g(x) and threshold τ for routing:

(MS ,ML, g)(x) =

{
MS(x) if g(x) ≥ τ
ML(x) otherwise.

(6)

For classification models, we use max-softmax confidence:

gCL(x) = max
c
p(y = c | x) (7)

For sequence models, we use negative predictive entropy
averaged across tokens:

gNENT(x) =
1

T

T∑
t=1

C∑
c=1

p(yt = c | x) log p(yt = c | x) (8)

In both cases, higher scores indicate higher confidence.
By thresholding this signal, we control which inputsMS

handles autonomously and which are escalated to ML—
enabling an efficient, robust cascaded inference system.

4. Experiments
In this section, we detail the experiments used to evalu-
ate the effectiveness of GATEKEEPER across three distinct
model architectures: encoder-only classification models,
decoder-only language models, and encoder-decoder vi-
sion–language models. Each setup involves a cascade where
a smaller model defers uncertain inputs to a larger model.
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Figure 3. Performance metrics overview: (a) Distributional Overlap so: the densities of confidence scores for correctly (green) and
incorrectly classified (red) samples, with the overlap area shaded in blue. Smaller values are better (↓). (b) Deferral Performance sd:
how joint accuracy between MS and ML varies with deferral ratio, showing random (red), ideal (green), and realized (black) deferral
strategies. The blue region shows the realized performance gain, the hatched portion represents the range of useful deferral functions, and
the green region indicates the potential headroom over the realized deferral. Larger values are better (↑).

4.1. Encoder-only Setup (Classification Models)

We begin our evaluation with image classification using
encoder-only models. We train a small modelMS and a
larger model ML on CIFAR-10/100 (Krizhevsky et al.,
2009), Food-101 (Bossard et al., 2014), and TinyIma-
geNet200 (Le & Yang, 2015). For CIFAR,ML is a ResNet-
18 andMS is a custom CNN. For Food-101 and TinyIm-
ageNet,ML is a ResNet-50 andMS is a MobileNet V3
Small (Howard et al., 2019) trained by distillingML.

Evaluation Metrics. We evaluate the effectiveness of
GATEKEEPER and the resulting deferral function g(·) using
three metrics that reflect different aspects of performance
(see Figure 3 for an illustrative example):

1. Distributional Overlap of Confidence Scores so: Mea-
sures how well MS separates correct from incorrect
predictions based on output confidence. We estimate
KDEs over confidence scores for correctly (p̂corr) and
incorrectly (p̂incorr) classified samples and define:

so =

∫ 1

0

min {p̂corr(c), p̂incorr(c)} dc. (9)

Lower so indicates better separability (so = 0 for perfect,
so = 1 for complete overlap). This metric is related to
AUROC but compares full probability mass rather than
prediction ranking.

2. Deferral Performance sd: Quantifies how effectively
MS defers uncertain inputs to ML. We compute the
joint accuracy accreal(r) over varying deferral rates r,
and compare it against two baselines: random deferral
accrand(r) and ideal deferral accideal(r). The score is the
normalized area between real and random deferral:

sd =

∫ 1

0
(accreal(r)− accrand(r)) dr∫ 1

0
(accideal(r)− accrand(r)) dr

. (10)

A value of sd = 1 indicates optimal deferral; sd =
0 implies no improvement over random routing. See
Appendix B.3 for details.

3. Small Model Accuracy acc(MS): Since GATE-
KEEPER prioritizes uncertainty calibration over classifi-
cation accuracy,MS may sacrifice performance on the
full data distribution to better recognize its errors. We re-
port acc(MS) to quantify this trade-off and assess utility
loss when optimizing for deferral.

Results. Figure 4 shows results for models trained with
varying α values, compared against a baseline model and
the cascading method of Narasimhan et al. (2022). At low
α, GATEKEEPER effectively separates correct and incorrect
confidence scores (lower so), improving deferral perfor-
mance sd. However, this comes with reduced small model
accuracy, asMS increasingly focuses on easy examples and
assigns lower confidence to hard ones. As α increases, ac-
curacy improves or stabilizes, but gains in deferral diminish.
Notably, the baseline from Narasimhan et al. (2022) main-
tains model accuracy but requires auxiliary mechanisms
to predict expert correctness—such as additional heads or
networks—which can increase deployment complexity. In
contrast, GATEKEEPER is architecture-agnostic and operates
purely via confidence calibration.

The accuracy-deferral trade-off is further explored in Fig-
ure 5, where we observe: (i) a negative correlation between
deferral performance sd and small model accuracy, and (ii)
a strong relationship between confidence overlap so and
both deferral and accuracy. The effect mirrors well-known
trade-offs in fairness (Dutta et al., 2020; Yaghini et al., 2023)
and privacy (Abadi et al., 2016; Rabanser et al., 2023). Cru-
cially, GATEKEEPER exposes this trade-off explicitly via a
single tunable parameter α, allowing practitioners to tailor
cascaded systems to their computational or reliability needs.
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Figure 4. Performance on image classification tasks. We observe that lower levels of α lead to decreased distributional overlap between
correct/incorrect predictions (left), increased deferral performance (center) and generally decreased performance over the full data
distribution (right). These results support our conclusion that the small model MS learns to refocus on easier subsets of the distribution
while understanding more reliably when it should defer to the large model ML.

0.2 0.4 0.6 0.8
Small model accuracy acc( S) ( )

0.2

0.3

0.4

0.5

0.6

D
is

tr
ib

ut
io

na
l O

ve
rl

ap
 s

o 
(

)

Baseline

0.9
0.7

0.5
0.3

0.1
0.2 0.4 0.6 0.8

Small model accuracy acc( S) ( )

0.4

0.5

0.6

0.7

0.8

0.9

D
ef

er
ra

l P
er

fo
rm

an
ce

 s
d 

(
)

Baseline

0.5
0.3

0.1

0.7
0.9

tinyimagenet200 food101 cifar10 cifar100

Figure 5. Performance trade-off between small model accu-
racy acc(MS) and deferral performance sd. The baseline
model obtained without fine-tuning using GATEKEEPER is often
the most accurate model over the full data distribution. With the
introduction of GATEKEEPER we can improve distinguishability of
correct/incorrect predictions (left) as well as deferral (right) at the
expense of model utility. Successful cascading solutions in practice
need to balance both model accuracy and deferral performance.

4.2. Decoder-only Setup (Language Models)

We next evaluate GATEKEEPER on decoder-only language
models. Our setup uses Gemma2B asMS and Gemma7B as
ML (GemmaTeam et al., 2024), forming a scalable cascade
for next-token prediction. As in the classification case, the
deferral decision is based solely on the output ofMS , using
predictive entropy to route uncertain tokens toML.

Both models are first instruction-tuned on the training split
of each dataset to ensure strong base performance and ad-
herence to task format. We then fine-tuneMS with GATE-
KEEPER to reduce its confidence on incorrect token pre-
dictions. Evaluation is performed on the validation split
using the same metrics as in Section 4.1. We use three
representative benchmarks: ARC-e/c (Clark et al., 2018),
MMLU (Hendrycks et al., 2020), and GSM8K (Cobbe et al.,

2021). These span symbolic reasoning, factual recall, and
multi-step arithmetic generation, respectively.

Results. Figure 6 shows that GATEKEEPER leads to im-
proved deferral performance and better separation of cor-
rect/incorrect predictions, particularly at lower α. As
with classification, higher α values preserve MS accu-
racy but yield weaker separation. In addition to the base-
line (Gemma2B with entropy-based deferral), we compare
against: (i) the token-level cascading technique from Gupta
et al. (2024); and (ii) two uncertainty prompting baselines
(see Appendix C.2): Reduce Confidence and Answer “N”.
These methods follow Kadavath et al. (2022) and aim to
elicit uncertainty via prompting. Overall, we find that GATE-
KEEPER consistently outperforms both prompting and token-
level deferral baselines in terms of deferral quality, without
modifying the model architecture or inference pipeline.

4.3. Encoder-Decoder Setup (Vision-Language Models)

We conclude by evaluating GATEKEEPER on encoder-
decoder vision-language models. Specifically, we use the
PaliGemma family (Steiner et al., 2024), which supports
tasks like image captioning, VQA, and descriptive classifi-
cation. MS is PaliGemma1B, andML is PaliGemma7B.
Our cascade runsMS on all inputs and defers toML when
the predictive entropy ofMS is low. Following Section 4.2,
we first fine-tune both models on the task using standard su-
pervised instruction tuning. We then apply GATEKEEPER to
MS alone and evaluate the resulting cascade on two classifi-
cation datasets (VQAv2 (Goyal et al., 2017), AI2D (Hiippala
et al., 2021)) and two captioning datasets (Cococap (Lin
et al., 2014), Screen2Words (Wang et al., 2021)), covering
both closed-form and generative VL tasks.

Factuality Scoring. For classification tasks, we evaluate ac-
curacy and confidence separation as before. For captioning,
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that smaller αs lead to improved deferral performance.

however, we assess factual alignment between generated
and reference captions using the Gemini LLM (GeminiTeam
et al., 2023). The model is prompted with: “Are these
captions semantically equivalent?” and outputs “Yes” or
“No.” We compute the normalized log-likelihood of each
response to obtain a factuality score sFac(ŷi,yi), reflecting
the model’s confidence in semantic agreement. Full details
are provided in Appendix C.4.

Uncertainty/Factuality Correlation. Since factuality
scores are continuous, we adapt our metrics accordingly.
Instead of binary accuracy-based separation, we compute
the Pearson correlation ρ

(
gNENT(xi), sFac(ŷi,yi)

)
between

negative predictive entropy and factuality. We also gen-
eralize our deferral performance metric sd to operate on
factuality instead of accuracy.

Results. Figure 7 shows our main results. For classifica-
tion tasks (left), trends match those observed in Sections 4.1
and 4.2: lower α improves deferral but reduces raw accuracy.
For captioning tasks (right), GATEKEEPER increases the cor-
relation between confidence and factuality, demonstrating
effective deferral in generative settings. Prompting base-
lines from Section 4.2 could not be evaluated: PaliGemma
failed to return valid outputs under prompt modifications,
likely due to rigid pretraining (Beyer et al., 2024).

5. Conclusion
In this work we present a novel loss function called GATE-
KEEPER for improving confidence calibration in a cascade
between a small local and a larger remote model. Our loss is
architecture and task agnostic, making it flexibly applicable
across a wide range of applications. Our results demonstrate
that our approach improves over standard confidence-based
deferral rules and effectively leads the small model to un-
learn how to handle complex queries in favor of easier ones.

Limitations. Despite achieving strong performance across
tasks and architectures, several limitations remain: (i) We
assume that onlyMS is fine-tuned. Although this simpli-
fies deployment and avoids retrainingML, it may overlook
gains achievable through joint adaptation. (ii) In language
modeling, GATEKEEPER may be overly strict: different
token sequences can express the same meaning, and penal-
izing deviations based on exact tokens may suppress valid
linguistic variation. Ideally, deferral decisions should reflect
semantic correctness rather than surface-level mismatches.
(iii) While we evaluate across multiple model families for
classification, our experiments in the LLM and VLM set-
tings focus on a single architecture per task, limiting insights
into generalization. (iv) Our use of a generative model
(Gemini) to score factuality introduces potential noise, as
LLMs may produce inconsistent or inaccurate judgments.
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A. Broader Impact
This work contributes to the responsible and efficient deployment of machine learning systems by improving the decision-
making capabilities of smaller, local models in model cascade architectures. By introducing a loss function that calibrates
model confidence with respect to correctness, our approach enhances both the performance and transparency of automated
systems that must decide when to act autonomously and when to defer to a more capable model. This design can
improve the accessibility and sustainability of machine learning applications by reducing reliance on large, energy-intensive
models—particularly important in low-resource environments or edge computing.

At the same time, the ability to fine-tune smaller models to strategically abstain from uncertain predictions raises important
considerations for fairness and accountability. In high-stakes applications such as healthcare or finance, improper tuning of
the deferral threshold—or uncalibrated confidence estimates—could lead to the systematic denial of service or misallocation
of computational resources. Care must be taken to ensure that such systems are thoroughly evaluated not only for average
performance but also for differential performance across subgroups. Moreover, the use of large models as fallback decision-
makers assumes their correctness, which may not always hold, especially in underrepresented domains. We therefore
encourage developers and practitioners to accompany deployments of cascade-based systems with rigorous audits of fairness,
reliability, and alignment with human values.

B. Additional Background
B.1. Related Work

B.1.1. LLM ROUTING

Ding et al. (2024) propose a hybrid LLM inference pipeline that routes each query either to a small on-device model or
a larger high-quality model based on the query’s predicted difficulty and a tunable quality threshold. This cost-aware
router allows dynamically trading off accuracy for efficiency, enabling up to a 40% reduction in expensive model calls
without degrading answer quality. Similarly, Shnitzer et al. (2023) present a method to select the best model from a pool of
pre-trained LLMs for each input by learning a “router” on many benchmark tasks. Without requiring labeled examples from
the new target task, their approach uses existing datasets to train input-based model selectors, which consistently outperform
always using the single best LLM for all queries.

B.1.2. MODEL CASCADE LEARNING

Nie et al. (2024) introduce an online cascade-learning framework where lightweight models are incrementally trained
to imitate a powerful LLM’s decisions on a data stream, deferring to the LLM only when necessary. They cast cascade
construction as an imitation-learning problem with theoretical no-regret guarantees, achieving LLM-level accuracy while
cutting inference cost by up to 90% and maintaining robustness to distribution shifts over time. Chen et al. (2023) outline
strategies for reducing LLM usage cost and present FrugalGPT, a cascade approach that learns to route queries through
combinations of smaller or larger LLMs to balance cost and performance. Their experiments show that an adaptive use of
multiple models can match the accuracy of the strongest individual LLM (e.g., GPT-4) with up to 98% cost savings. It can
also slightly exceed GPT-4’s accuracy at equal cost, highlighting the benefit of cascades that allocate queries to the most
appropriate model for each input.

B.1.3. CONFIDENCE CALIBRATION IN LLMS

Jitkrittum et al. (2023) analyze the classical strategy of confidence-based deferral in model cascades, wherein a model hands
off to a stronger model if its confidence is below a threshold, to determine when this simple strategy succeeds or breaks down.
They derive the optimal deferral policy in theory and show that naı̈ve confidence thresholds perform well in general but can
fail when later models are specialists (only reliable on certain inputs), when there is label noise, or under distribution shift –
scenarios where more sophisticated deferral criteria yield better performance. Geng et al. (2023) provide a comprehensive
survey of methods for confidence estimation and calibration in LLM outputs. They review recent techniques to quantify
uncertainty in large language model predictions, discuss challenges unique to LLMs, and highlight advancements that
improve alignment between a model’s reported confidence and its actual accuracy across tasks. Azaria & Mitchell (2023)
find evidence that an LLM’s internal activations encode whether or not it is producing a truthful answer, even when the
model’s output is incorrect or fabricated. By training a classifier on the model’s hidden state (without fine-tuning the LLM
itself), they can often detect when the model is “lying” or unsure, suggesting that large models internally recognize their
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mistakes or uncertainty despite outwardly confident responses. Similarly, Liu et al. (2024) propose a supervised approach
to LLM uncertainty quantification that leverages labeled examples and the model’s hidden representations to predict the
correctness of its answers. They show that incorporating features from the model’s internal layers yields significantly
improved uncertainty estimates and calibration across diverse tasks, with these gains transferring robustly to new domains.
Notably, their method is easy to implement and can be adapted to different levels of model access (black-box vs. white-box),
making it widely applicable.

B.1.4. CONFIDENCE VERBALIZATION IN LLMS

Lin et al. (2022) demonstrate that GPT-3 can be fine-tuned to output a calibrated verbal confidence (e.g., “I’m 90% sure”)
along with each answer. This model’s stated confidence levels align well with its true correctness likelihood and remain
fairly well-calibrated even under distribution shift, marking the first instance of an LLM explicitly expressing useful
uncertainty estimates in natural language. Xiong et al. (2024) thoroughly evaluate black-box methods for eliciting an LLM’s
self-reported confidence through prompting and answer sampling. They find that current LLMs tend to verbalize overly
high confidence (mirroring human overconfidence), but that carefully designed prompts, consistency checks across multiple
sampled answers, and improved aggregation strategies can mitigate this issue. Moreover, larger models generally show better
calibration and an improved ability to predict their own failures, though room for further improvement remains in making
their expressed uncertainty truly reliable. Mielke et al. (2022) examine whether a conversational agent’s expressed certainty
corresponds to its actual knowledge, showing that off-the-shelf dialogue models are poorly “linguistically calibrated.” They
demonstrate that a model’s likelihood of giving a correct answer can be estimated via an auxiliary model and used as a
control signal to adjust the agent’s responses. The resulting dialogue agent exhibits far less overconfident language when
it is likely to be wrong, improving transparency about uncertainty in its answers. Finally, Mahaut et al. (2024) assess the
reliability of various methods to estimate an LLM’s factual confidence – the probability that its answer is correct – under
both in-domain and paraphrased inputs. Through a rigorous evaluation on QA and fact-checking tasks, they conclude
that the most trustworthy confidence scores come from model-introspective approaches (e.g., a trained probe on hidden
states), albeit at the cost of requiring full model access and training data. They also highlight that an LLM’s confidence
can be unstable under meaning-preserving input variations (paraphrases), underscoring the need for more robust and stable
confidence estimation techniques for factual correctness.

B.2. Model Access Levels

In Figure 8, we show a schematic overview of different model access levels discussed in Section 2.

B.3. Ideal Deferral Curve

We present the functional form of the ideal deferral curve, denoted accideal(r), for a small (student) modelMS and a large
(teacher) modelML. Recall that r ∈ [0, 1] denotes the deferral ratio, i.e., the fraction of inputs thatMS “defers” toML.
Let ps = acc(MS), and pl = acc(ML) with 0 ≤ ps ≤ pl ≤ 1. Our goal is to describe the maximum achievable joint
accuracy if exactly a fraction r of the data is deferred to the large model.

Intuition and Setup SinceMS achieves accuracy ps, it misclassifies a fraction (1−ps) of the inputs. In an ideal scenario,
we defer exactly those inputs thatMS is going to misclassify. BecauseML is more accurate (pl ≥ ps) every example
misclassified byMS benefits from being passed toML.

• Case 1: r ≤ (1− ps).
We can use our entire deferral “budget” r to cover only those inputsMS would get wrong. Hence, deferring a fraction
r of the data (all fromMS’s mistakes) raises the overall accuracy by substitutingMS’s errors withML’s accuracy pl
on that fraction.

• Case 2: r > (1− ps).
We have enough capacity to defer all ofMS’s mistakes, so the joint accuracy saturates at pl. Deferring additional
examples (whichMS would have classified correctly) will not improve the overall accuracy beyond pl.
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Figure 8. An overview of different uncertainty quantification strategies depending on model access level.

Piecewise Functional Form Thus, the ideal deferral curve can be expressed as:

accideal(r) =


ps +

pl − ps
1− ps

r, 0 ≤ r ≤ (1− ps),

pl, (1− ps) < r ≤ 1.

(11)

When 0 ≤ r ≤ (1 − ps), the overall accuracy grows linearly from accideal(0) = ps to accideal(1 − ps) = pl. Past
r = (1− ps), it remains constant at pl.

Figure 3 (b) in the main paper plots this ideal deferral curve (green line). It serves as an upper bound on how effective any
real deferral strategy can be. In contrast, a purely random deferral strategy produces a linear interpolation (the red line),
which is strictly below the ideal curve for most r. Consequently, the difference accideal(r) − accrand(r) represents the
maximum possible gain one can achieve by carefully selecting which examples to defer rather than choosing them at random.

Summary We summarize the key take-aways below:

• Ideal Deferral Routes All Mistakes: Only the inputs misclassified byMS get deferred, guaranteeing the highest
possible joint accuracy at each deferral level r.

• Piecewise Definition: Accuracy increases linearly from ps to pl over the interval r ∈ [0, (1− ps)], then remains at pl.
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• Upper Bound on Realized Deferral: No actual strategy can exceed this ideal curve, as it assumes perfect knowledge
of which specific inputsMS would misclassify.

C. Additional Experimental Details
C.1. CNN Used in Image Classification Experiments

Below we include a representation of the SmallCNN model used asMS in image classification experiments discussed in
Section 4.1:

1 SmallCNN(
2 (features): Sequential(
3 (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
4 (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
5 (2): ReLU(inplace=True)
6 (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
7 (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
8 (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
9 (6): ReLU(inplace=True)

10 (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
11 )
12 (classifier): Sequential(
13 (0): Linear(in_features=2048, out_features=64, bias=True)
14 (1): ReLU(inplace=True)
15 (2): Linear(in_features=64, out_features=10, bias=True)
16 )
17 )

C.2. Reduce Confidence and Answer “N” Baselines

In addition to the baseline model in Section 4.2 (i.e., a model that was not fine-tuned with our specialized Ldef loss but from
which we still compute predictive entropy as a deferral signal), we also examine two additional methods aimed at eliciting
uncertainty from the model directly via prompt modifications. Both methods are black box approaches that only rely on a
query interface to the model via prompt injection, and we provide their implementation details below.

Reduce Confidence. In this setting, we modify the original prompt x by appending an additional instruction x′ that
encourages the model to respond with lower confidence when it is uncertain: x ← x

∣∣ x′. For instance, the instruction we
add is:

x′ = ‘‘Respond with low confidence if you are uncertain.’’

We treat this appended text as a hint to the model to self-regulate its confidence when producing an answer. This is similar
in spirit to other black box approaches such as confidence quantification, rejection awareness, remote model notice, and
self-critiquing. Although Xiong et al. (2024) show that large language models can express aspects of their confidence via
prompting, our experiments indicate that simply prompting the model to express lower confidence does not reliably improve
the separation of correct versus incorrect predictions, nor does it offer advantages in a deferral setting. These findings are in
line with those reported in (Kadavath et al., 2022).

Answer “N.” We also consider an alternate prompt modification, in which the appended instruction is:

x′ = ‘‘Respond with ‘N’ if you are uncertain.’’

This approach explicitly instructs the model to produce a special “N” token to indicate uncertainty or lack of confidence. The
intuition is that by introducing a designated “uncertain” response, one might isolate uncertain cases for deferral. However,
our results in Section 4.2 similarly show that the model’s ability to follow this instruction is inconsistent and does not
substantially improve performance as a deferral model. The model often remains overconfident and fails to produce “N” in
cases where it is in fact incorrect.
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C.3. Additional metrics

In addition to the metrics outlined in Section 4, we also consider the Area Under the Receiver Operating Characteristic
Curve (AUROC) (sAUROC). The AUROC quantifies the model’s ability to discriminate between correctly and incorrectly
classified data points by evaluating the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR)
across various confidence thresholds τ . Formally, given the confidence sets Ccorr and Cincorr, the AUROC is defined as

sAUROC =

∫ 1

0

TPR(τ) dFPR(τ), (12)

where for each threshold τ ∈ [0, 1] we compute TPR(τ) = |{c∈Ccorr|c≥τ}|
|Ccorr| and FPR(τ) = |{c∈Cincorr|c≥τ}|

|Cincorr| . Note that
sAUROC = 1 indicates perfect separability and sAUROC = 0.5 corresponds to a random guessing baseline.

C.4. Factuality Scoring

Factuality scoring with Gemini for a reference caption r and a candidate caption c is computed as follows:

1. Compute the log-likelihoods. Let `Same(c, r) be the log-likelihood that the model outputs “Same” for a given candidate
caption c and reference r, and let `Diff(c, r) be the log-likelihood that the model outputs “Different”.

2. Apply softmax. To convert these log-likelihoods into probabilities, we exponentiate and normalize:

p(Same | c, r) =
exp
(
`Same(c, r)

)
exp
(
`Same(c, r)

)
+ exp

(
`Diff(c, r)

) ,
p(Diff | c, r) =

exp
(
`Diff(c, r)

)
exp
(
`Same(c, r)

)
+ exp

(
`Diff(c, r)

) .
3. Interpret the probability. The value p(Same | c, r) is then taken as the factual alignment score, expressing how

confidently the model believes the candidate caption is factually aligned with the reference.

C.5. Additional Experimental Results

In this section, we provide additional experimental results further supporting our findings reported for image classification
experiments in Section 4.1. In particular, we show ROC curves in Figure 9 and distributional overlap in Figure 10, both
demonstrating that GATEKEEPER increases the separation of correct/incorrect confidence scores. Similarly, the deferral
curves in Figure 11 clearly show that GATEKEEPER successfully pushed the realized deferral (black line) closer to the ideal
one (marked with dashed upper line). Lastly, we report the joint accuracy ofMS across varying α parameter in Figure 12.
As discussed in Section 4, we observe thatMS’s accuracy generally decreases with α→ 0.
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Figure 9. ROC curves for image classification experiments. Each figure shows the ROC curves for each of the datasets considered in
Section 4.1. We observe that GATEKEEPER consistently increases separation of correct and incorrect confidence scores across varying α
(colored curves) compared to the baseline (denoted with black dashed line).
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Figure 10. Distributional overlap for image classification experiments. Left-most column shows the results obtained using the untuned
baseline, while the remaining columns correspond to the results obtained using GATEKEEPER with decreasing α values. Rows correspond
to the datasets considered in Section 4.1. We see that GATEKEEPER increases separation of correct and incorrect confidence scores
compared to the baseline.
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Figure 11. Deferral curves for image classification experiments. Left-most column shows the results obtained using the untuned
baseline, while the remaining columns correspond to the results obtained using GATEKEEPER with decreasing α values. Rows correspond
to the datasets considered in Section 4.1 The results show that GATEKEEPER brings the realized deferral (black line) closer to the ideal
deferral (dashed upper line).
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Figure 12. Joint accuracy across different levels of α. For varying fixed deferral ratios, we observe that the accuracy of MS generally
decreases as α→ 0.
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