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Abstract—In visual navigation, Simultaneous Localization
and Mapping (SLAM) faces the pivotal challenge of loop closure
detection, which is vital for refining position estimates and map
construction. Current approaches relying on deep learning-
based global descriptors struggle with robustness and
interpretability. To overcome these limitations, we propose a
novel method that integrates partial semantic segmentation with
traditional location recognition networks through a weighted
fusion mechanism. By harnessing the synergy of semantic and
spatial information, our approach provides deeper insights into
image content and spatial relationships. The carefully crafted
weighting scheme enables a more comprehensive assessment of
image similarity, considering both the "what" and "where" of
image features. Experimental evaluations conducted on the
Pittsburgh 250k dataset, comprising an extensive collection of
250,000 images, consistently showcase the effectiveness of our
fusion strategy. Across all three tested backbone networks, we
observe a notable improvement of over 3% in recall rate for loop
closure detection. Notably, when employing MobileNet as the
backbone, the enhancement is even more pronounced, surpassing
5% with an optimal configuration featuring a semantic vector
weight of 0.94 and a location network weight of 0.06. This
significant achievement not only underscores the robustness and
accuracy gains achievable through our approach within SLAM
systems but also highlights its potential as a versatile strategy for
semantic-spatial integration, with promising applications in
various computer vision tasks that require advanced spatial-
semantic comprehension.

Keywords—Semantic Information, Loop Closure Detection,
VLAD Encoding, Global Semantic Descriptors, Weighted Fusion,
Visual SLAM

[. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
technology, as one of the core technologies in the field of
visual navigation [1,25], currently holds a pivotal position in
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robotic applications. The mainstream visual SLAM solutions
rely on continuous image sequences captured by cameras,
utilizing geometric principles to estimate the motion changes
between adjacent images and optimizing the backend of the
system to enhance the accuracy of localization and mapping [2],
[24].

Within this process, Loop Closure Detection [3,26] plays a
crucial role as a key support technology for backend
optimization. Loop Closure Detection aims to identify whether
the camera has revisited a previous location, providing vital
global consistency constraints for the backend optimization
process. Ensuring the accuracy of loop closure detection
algorithms hinges on effectively reducing false positives
(incorrectly identified loops) and false negatives (missed true
loops), with achieving accurate and efficient detection being
the core challenge in algorithm design.

Currently, loop closure detection algorithms are widely
researched and applied in the visual SLAM field, with their
implementation strategies primarily categorized into three types:
(1) Map-to-Map methods, represented by the "segmented" map
concept proposed by Clemente and Davison in 2007 [4], which
significantly enhances stability in complex dynamic
environments. However, relying on sparse map construction,
these methods suffer from limited spatial feature information,
potentially leading to inaccurate loop closure results due to
insufficient information. (2) Image-to-Map methods, where
Williams et al. [5] introduced a method to determine loop
relationships by matching current image frames with map
features in designing a relocalization module. Although
intuitive and effective, this approach wastes computational
resources as it requires training classifiers with all loop
information for each loop detection. (3) Image-to-Image
methods, currently the most popular loop closure detection
strategy, focus on assessing image similarity using feature



descriptors, which can be further divided into local [6] and
global descriptors [7]. Global descriptors like PCA (Principal
Component Analysis) [8] describe entire images with a single
global descriptor but are susceptible to environmental changes.
Local descriptor methods, especially when combined with the
Bag-of-Words (BoW) technique, compare visual words in
images to filter loop candidates and verify loop authenticity
with global descriptors. The DBoW (Direct Binary Bag-of-
Words) algorithm by Galvez-Lopez and Tardos [9] further
enhances computational efficiency by vectorizing images
through a vocabulary tree and utilizing forward and reverse
index structures, effectively addressing the issue of traditional
algorithms' increasing time consumption with the number of
images. Subsequently, NetVLAD [10], introduced in 2016 as a
scene recognition algorithm, revolutionized traditional VLAD
algorithms. While the original VLAD algorithm relies on SIFT
or similar algorithms as its foundation, encoding the features
generated by these algorithms into a concise feature vector,
NetVLAD ingeniously integrates this process with
Convolutional Neural Networks (CNNs), leveraging CNNs as
powerful feature extraction tools to construct an end-to-end
trainable system. In short, by introducing deep learning
techniques, particularly CNNs, NetVLAD optimizes feature
extraction and encoding, enabling more efficient and accurate
scene recognition.

In summary, while progress has been made in the field of
loop closure detection, even advanced algorithms like
NetVLAD face numerous challenges and issues. Firstly, the
accuracy of loop closure detection in complex and dynamic
scenarios remains insufficient, directly impacting the
performance of the entire SLAM system. Specifically, a
correctly detected true positive loop significantly improves the
precision of visual odometry and reduces accumulated errors,
whereas a false positive loop (incorrectly identified) may guide
the backend optimization module towards erroneous
convergence, negatively affecting the stability and accuracy of
the entire SLAM system. Secondly, for deep learning
algorithms like NetVLAD, while they can automatically learn
complex feature representations from vast amounts of data,
their decision-making processes often lack transparency,
making them difficult for humans to directly comprehend. This
leads to difficulties in tracing the root causes of false positive
loops and effectively adjusting algorithm parameters or
structures to avoid similar errors.

Addressing the challenges of insufficient accuracy and
interpretability in loop closure detection, this paper proposes an
innovative loop closure detection algorithm based on an in-
depth study of existing algorithms. This algorithm not only
inherits the advantages of deep learning in feature extraction,
effectively capturing global scene features through global
descriptors, but also innovatively introduces an image semantic
verification module to enhance the algorithm's robustness and
interpretability. This module refines loop candidates obtained
through global descriptor matching by comparing the
consistency and similarity of semantic information between
candidate loop frames and reference frames. To achieve this, a
novel method combining deep semantic networks and VLAD
encoding technology is proposed, aiming to generate robust
and discriminative global semantic descriptors. Initially, rich

semantic features are extracted from images using pre-trained
deep semantic networks. Subsequently, these local semantic
features are aggregated into a compact global semantic
descriptor through VLAD encoding technology.

The major contributions are given as follows:

e Generation of Global Semantic Descriptors: This
method commences by extracting rich semantic features
from images using a pre-trained deep semantic network.
Subsequently, these features are aggregated into a
compact global semantic descriptor through a custom-
trained VLAD encoding process. This custom VLAD
network is specifically trained to optimize the
representation of the semantic features for the task at
hand.

e Novel fusion:Our approach integrates the visual
descriptors, typically derived from traditional place
recognition networks, with the global semantic
descriptors generated by the custom-trained VLAD
network through a weighted fusion approach.The
weights for this fusion process are also optimized
through training, ensuring a more precise assessment of
inter-frame similarity.

e Experimental Validation: Extensive experiments
conducted on three distinct backbone networks reveal
that the integration of the custom-trained VLAD model
and optimized fusion strategy significantly enhances the
performance of the recognition system. Notably, the
MobileNet-based recognition network achieves a
remarkable 5% boost in recall rate, while the other two
backbone networks also demonstrate improvements of
over 3%, underscoring the algorithm's efficiency and
robust adaptability to diverse network architectures.

II. RELATED WORK

With the rapid advancements in computer vision and deep
learning, a surge of research based on deep learning has
emerged in the field of computer vision. An increasing number
of researchers are leveraging deep learning algorithms to
extract semantic information embedded in the environment,
facilitating high-level understanding of scenes and integrating
the acquired semantic information with SLAM (Simultaneous
Localization and Mapping) technology to build semantic
SLAM systems.

The first step in semantic VSLAM is to extract semantic
information from images captured by cameras. By classifying
image information, semantic information derived from image
content can be obtained [11]. In the early days, the only
available method for semantic information extraction was
object detection, which relied on interpretable machine
learning classifiers such as decision trees and support vector
machines for classifying and extracting objects. However, with
technological evolution, modern semantic VSLAM systems
have increasingly adopted deep learning techniques to
construct semantic extraction modules like object detection and
semantic segmentation for extracting semantic information
from images [23].



Ren et al. proposed Faster R-CNN, unifying the
fundamental steps of object detection into a single deep
network framework, significantly enhancing training and
testing efficiency [12]. Mask R-CNN, introduced by He et al.,
is a paradigmatic application of the Faster R-CNN concept in
instance segmentation. Its core idea is to augment the target
classification and regression branches with a semantic
segmentation branch to predict regions of interest, utilizing
Fully Convolutional Networks (FCN) to predict the category of
each pixel [13]. Wang et al. presented RDS Net, which
incorporates three modules: a mask refinement and target
localization module, a mask pruning module, and a target
frame-assisted instance mask relationship module. Its two-
stream network design substantially addresses the issue of low
resolution in instance masks [14]. Cai et al. proposed Cascade
R-CNN, extending the cascade architecture to image
segmentation tasks by integrating a segmentation branch at
each cascade stage [15]. Hurtik et al. improved upon YOLOV3
by introducing poly-YOLO, which addresses the issues of
extensive label overwriting and inefficient anchor distribution
in YOLOV3, enhancing accuracy while reducing parameters
[16]. Instance segmentation tasks have also found widespread
applications in scenarios such as remote sensing images and
face detection.

In the research field of utilizing semantic information to
assist Simultaneous Localization and Mapping (SLAM),
several pioneering works have demonstrated how semantic
information significantly enhances the performance and
intelligence of SLAM systems. Specifically, Wen et al. [17]
proposed a semantic topological map framework based on a
binocular visual-inertial SLAM system, adopting a hybrid 3D
point cloud semantic topological map construction framework
for autonomous navigation and loop closure detection. Han and
Xi [18] introduced a semantic SLAM method for dynamic
environments, utilizing optical flow to identify and exclude
dynamic points, and treating feature points located on dynamic
objects as dynamic points for exclusion. Furthermore, semantic
information was used to generate point cloud maps and
semantic octree maps. Cheng et al. [19] combined deep
learning with visual SLAM, constructing a semantic map of the
environment while simultaneously employing an optical flow-
based approach to handle dynamic objects, enabling the system
to operate in dynamic environments.

Currently, although research in the semantic SLAM domain
has made initial progress, existing works primarily focus on
integrating semantics into localization and mapping. In contrast,
research on effectively applying semantic information to loop
closure detection remains relatively scarce. Loop closure
detection, as a crucial component of SLAM systems, is
essential for eliminating accumulated errors and constructing
globally consistent maps. If semantic information could be
more fully exploited, by recognizing objects, scenes, and their
relationships in the environment, it would undoubtedly further
improve the accuracy and robustness of loop closure detection.
As a result, the field of semantic SLAM research offers ample
opportunities for advancement and refinement [20-22].

III. SEMANTIC INFORMATION-ENHANCED LOOP CLOSURE
DETECTION

This section centers on the localization aspect of the
Semantic SLAM system, specifically enhancing the loopback
detection mechanism beyond conventional visual SLAM.
Rather than detailing the pose estimation methods of traditional
SLAM, we integrate semantic information to introduce a novel
loop detection approach tailored for our Semantic SLAM
system. As illustrated in Fig. 1, the methodology is concisely
outlined, showcasing how semantic cues augment the loopback
detection process, enhancing its robustness and accuracy.

Fig. . An overview of our proposed semantic information-enhanced loop
closure detection method

A. Problem Formulation and Training Objective

The framework outlined incorporates two primary phases:
global retrieval and semantic consistency constraint. The aim
of loop closure detection is to devise an embedding space,
given a collection of query images { I, } and reference
images { I, }, where each query image [, is proximally
positioned to its corresponding positive reference image I, .
During training, reference images that share the same location
as the query images are classified as positive samples, adhering
to a standard threshold of 10 meters. In line with prior research
[27], we designate the reference image nearest to each query in
the embedding space as the definitive positive sample.
Conversely, reference images positioned more than 25 meters
away are designated as negative samples.

To bolster training efficiency and the model's ability to
distinguish between samples, we implement partial negative
mining [27], a strategy that selects the most challenging
negative samples from a randomly selected subset. The global
embedding representations of the queries, positive samples,
and negative samples are labeled as E,, E, , and E,,
respectively. To refine the model, we optimize the global
retrieval loss utilizing a margin triplet loss function.

Ly = max(m + ||E, — E,||° = |[Eq — Ea[50). (1)

In this context, ||*||? stands for the square of the L2 norm,
and m denotes the boundary margin.

B. Global Retrieval Module

The Global Retrieval Module (GRM) serves as a pivotal
component in our proposed system, tasked with extracting and
integrating global features from images or objects to facilitate
efficient classification, recognition, and matching tasks. This
module leverages the robust feature extraction capabilities of



deep learning models, coupled with advanced feature
aggregation techniques, to generate highly representative and
robust global descriptors.

e Deep Feature Extraction:Firstly, a pre-trained deep
neural network (such as convolutional neural network
CNN) is used as the feature extractor to process the
input image layer by layer, and gradually abstract the
feature representation of the image from the bottom
layer to the top layer.

e Feature Aggregation and Encoding:After extracting the
local features, they are subsequently fed into the feature
aggregation and encoding stage, where we employ
VLAD (Vector of Locally Aggregated Descriptors) as
the primary technique. VLAD is a powerful method that
effectively converts local features into a fixed-length
global descriptor while preserving the image's overall
characteristics and critical information.

e Global Retrieval:The generated global descriptors are
stored in a database equipped with a corresponding
indexing mechanism. Upon receiving a query, the
system computes the global descriptor of the query
image and utilizes efficient similarity metrics (such as
cosine similarity or Euclidean distance) to alculate the
global descriptor score.

C. Semantic consistency constraint

To overcome the limitations of traditional global
descriptors in capturing robust and semantically meaningful
representations of images, we propose a Semantic Consistency
Constraint that integrates deep semantic information with
VLAD encoding. This constraint serves as a refinement step
after initial global descriptor matching, ensuring that only
semantically consistent and similar frames are considered as
valid loop closure candidates.

e Semantic Segmentation:We utilize a pre-trained
semantic segmentation model, such as Deeplab, to
extract rich semantic features from the input images.
This model is capable of identifying different regions
within an image and assigning them to specific
semantic categories, providing a detailed understanding
of the scene content.

e Feature Selection and Processing:From the output of the
semantic segmentation model, we select the most
representative  feature maps that contain rich
information about key semantic categories. These
feature maps undergo further processing, including
pooling and normalization, to reduce their
dimensionality while preserving the most important
information for downstream tasks.

e VLAD Encoding Layer for Semantic Similarity:To
harness the rich semantic information extracted from
images and encode it into a compact yet discriminative
global representation, we introduce a customized
VLAD (Vector of Locally Aggregated Descriptors)
encoding layer tailored specifically for our framework.
This layer serves as a pivotal step in our proposed
method, transforming processed semantic features into

a semantic global descriptor that enables precise
semantic similarity computations.

e End-to-End Training:Instead of training the semantic
segmentation model and VLAD layer separately, we
adopt an end-to-end training approach. This allows us
to optimize both components jointly, ensuring that the
generated global semantic descriptors are tailored
specifically for the loop closure task. During training,
we minimize a loss function that captures both the
accuracy of the semantic segmentation and the
discriminative power of the generated descriptors.

D. Weighted Fusion

Our method is specifically designed to enhance the recall
rate of loop closure detection, which is crucial for ensuring that
all actual loop closures are identified without missing any.
Rather than solely focusing on accuracy, we emphasize the
importance of minimizing false negatives (missed loop
closures) through a comprehensive approach.

In this step, we integrate visual and semantic information in
a novel way.A global visual descriptor is extracted from the
reference frame and compared to candidate frames using a
suitable metric, denoted by the symbol G, 5 . Additionally, we
analyze semantic features to generate a semantic similarity
score Spp, which captures deeper understanding of the scene
context and further aids in the detection process. By combining
the visual similarity score G,p and the semantic similarity
score S, p , through weighted fusion, we obtain a composite
similarity score C,p. This process integrates both visual and
semantic information to provide a holistic assessment of the
similarity between frames.

Cap = (1 —a)Gyp+ aSpp 2

Here, o serves as a tuning knob, allowing the system
designer to emphasize either the visual or semantic component
as needed. By strategically adjusting o, the system can tailor its
loop closure detection to specific environments or requirements.
For instance, if semantic information is deemed more crucial in
a given application, o can be set to a higher value (close to 1).

The advantage of this approach lies in its ability to harness
the complementary strengths of visual and semantic
information. While visual similarity helps identify structural or
textual similarities, semantic similarity adds a layer of
robustness by capturing meaning beyond mere visual
appearances. This is due to the fact that images captured from
adjacent locations but with different viewpoints retain semantic
similarity. Even when the camera is moving at a relatively fast
speed, the semantic information described in adjacent images
remains largely consistent. By harnessing the power of
semantics, our method achieves a heightened sensitivity to loop
closures, especially in complex and dynamic environments,
significantly boosting the recall rate and ensuring that genuine
loop closures are rarely overlooked.



IV. EXPERIMENTS AND RESULTS

A. Improving the Experimental Environment for loop
detection

To validate the effectiveness of our proposed method for
enhancing loop detection in Simultaneous Localization and
Mapping (SLAM) systems, we utilized the comprehensive and
challenging Pittsburgh 250k dataset. This dataset, sourced from
Google Street View, comprises a vast collection of 250,000
panoramic images that capture diverse street-level views of
Pittsburgh, Pennsylvania, USA. These images not only offer
rich visual features but also exhibit significant variations in
lighting conditions, seasonal changes, and viewpoint angles,
making it an ideal testbed for evaluating the robustness and
accuracy of loop detection algorithms.

Specifically, we leveraged the 24,000 query images
provided in the dataset, which were captured at different times
from the database images, to simulate real-world conditions
where loop candidates may appear significantly dissimilar due
to temporal gaps. By employing this large-scale and realistic
dataset, we aimed to create a more stringent experimental
environment that could thoroughly assess the performance of
our weighted semantic-visual fusion approach.

Moreover, the Pittsburgh 250k dataset allows for a
comprehensive evaluation of the recall rate, a crucial metric in
loop detection, as it enables the identification of true positive
loops amidst a vast pool of potential candidates. By analyzing
the performance of our method on this dataset, we were able to
demonstrate its capability to significantly improve the recall
rate compared to traditional approaches, thereby enhancing the
overall robustness and reliability of SLAM systems.

B. Evaluation Metrics

Two evaluation metrics, namely Precision and Recall, can
be utilized to quantify the accuracy of loopback detection,
based on its categorization. These metrics are determined
through the following calculations:

.. TP
Precision = TPiFP
TP (2)

TP+FN

Recall =

Precision quantifies the fraction of correctly identified loop
closures among all the detected loops, indicating the likelihood
that a detected loop is genuinely a true loop. Recall, on the
other hand, measures the proportion of actual true loop
closures that have been successfully detected, reflecting the
capability of the system to find all existing true loops.

C. Results and discussion

In this study, we delved into the influence of semantic cues
on the recall rate of loop closure detection within the context of
place recognition systems. To achieve this, we employed
several prevalent deep learning backbones, namely ResNet,
VGG16, and MobileNet, as the foundations for our
experimental frameworks. These backbones were selected due
to their varying complexity and capabilities in extracting robust
visual features, enabling us to evaluate their potential
contribution to enhancing loop closure detection performance.

Our core approach involved leveraging partial semantic
segmentation outcomes and fusing them with the outputs of
traditional location recognition networks through a weighting
mechanism. Specifically, we use the Faiss library to efficiently
perform similarity search on large-scale vector data. With L2
distance as the similarity metric, the most similar vector sets
are successfully retrieved from massive data for given queries.
This integration strategy aimed to harness the complementary
strengths of both semantic and spatial information, ultimately
boosting the system's ability to accurately detect loop closures.

In this study, we have set different a values for distinct
backbone architectures to optimize their performance.
Specifically, we adopted an o value of 0.938 for the ResNet
model, 0.920 for the VGG16 model, and 0.940 for MobileNet.
The results of our experiments, presented in Tab. 1,
demonstrate a marked improvement in the recall rate including
@1, @5, and @10, when partial semantic results are
incorporated into the decision-making process, as compared to
solely relying on either traditional place recognition networks
or purely semantic networks.

TABLE L RESULTS
Recall(@ Distinct Backbone Architectures
1,5,10) ResNet50 VGG 16 MobileNet
Semantic 0.4278/0.6401 0.3971/0.5394 0.3833/0.5670
/0.7196 /0.6512 /0.6688
Normal 0.6165/0.8297 0.7917/0.9024 0.4949/0.7359
/0.8658 /0.9319 /0.8214
Fusion 0.6852/0.8530 0.8173/0.9372 0.6067/0.8025
(ours) /0.9007 /0.9653 /0.8743

D. Qualitative evaluation

In this section, we present a qualitative assessment of our
proposed integration strategy that leverages partial semantic
segmentation outcomes and fuses them with traditional
location recognition networks. This evaluation aims to provide
insights into how the fusion of semantic and spatial
information enhances the system's ability to accurately detect
loop closures, beyond the quantitative improvements
demonstrated in the previous section.

1) Fusion results analysis: First, we analyze the results
using the provided method. Fig. 2 showcases the results of
combining semantic and spatial information in detecting loop
closures. Specifically, we observe that in complex
environments with similar visual appearances but distinct
semantic contexts, the fusion method is able to distinguish
between these scenarios more effectively than either the
purely semantic or purely spatial approach alone. The
semantic information helps in identifying unique objects or
features that are indicative of a specific location, while the
spatial information provides context about the relative
positions and orientations of these features.
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Fig. 2. Our fusion results

2) Ablation  studies:  To  further illustrate  the
complementary nature of semantic and spatial information, we
present the results of two ablation studies: one using only
semantic information and the other using only spatial
information.

a) Semantic-only approach: In the purely semantic
approach, as Fig. 3 shows, we observe that while the system is
capable of recognizing different objects and features within
the environment, it encounters difficulties in scenarios where
the semantic content is similar but the spatial layouts differ.
For instance, two images depicting roads and houses with
similar semantic information but distinct spatial details may be
mistakenly classified as the same location due to the absence
of spatial context. This underscores the limitation of relying
solely on semantic information for loop closure detection,
highlighting the need for additional cues to accurately
distinguish between similar yet spatially distinct environments.

Query Retrieval @1 Retrieval @2 Retrieval @3  Retrieval @4

Fusion

Normal

Semantic

Fig. 3. Semantic-only results

b) Spatial-only approach: On the other hand, the
spatial-only approach, while adept at capturing the macro-
level layout and geometry of the environment, falters in fine-
grained distinctions where spatial layouts are nearly identical

but semantic nuances diverge significantly. For instance, in
our experiments(Fig. 4), we encountered cases where two
images—both showcasing a similar composition with an
upper half dominated by the sky, a verdant green landscape in
the middle, and a road network in the lower portion—were
erroneously matched as loop closures due to their striking
similarity in spatial configuration. Despite these visual
similarities, the presence of key semantic elements like
bridges, pedestrian walkways, or specific lane configurations
varied significantly between the images. The inability of the
spatial-only approach to discern these critical semantic
differences undermined its accuracy in distinguishing between
visually similar yet semantically distinct locations. This
highlights the pivotal role that semantic information plays in
augmenting spatial data. By incorporating semantic
understanding into the system, it becomes possible to
recognize the subtle yet important differences that truly
distinguish one location from another. This, in turn, enables
more accurate loop closure detection, avoiding erroneous
matches and improving the overall performance of the
approach. Therefore, combining spatial and semantic
information is crucial for developing robust and reliable
systems that can accurately navigate and map complex
environments.

Retrieval @1 Retrieval @2 Retrieval @3

Retrieval @4

L.

Fusion

Normal

Semantic

Fig. 4. Normal(spatial-only) results

V. CONCLUSION

This study has investigated the impact of incorporating
semantic information, through the utilization of pre-trained
semantic segmentation networks (specifically, Deeplabv3 and
UNet), on the recall rate of loop closure detection within
SLAM systems. By leveraging three distinct backbone
architectures—ResNet50, VGG16, and MobileNet—we
conducted a comprehensive evaluation to assess the
effectiveness of semantic cues in enhancing the performance of
loop closure detection.

Our findings reveal a pivotal observation: the fusion of
partial semantic results with the outputs of traditional location
recognition networks, through a weighted approach, leads to a
substantial improvement in the recall rate of loop closure
detection. The results underscore the complementary nature of
semantic and spatial information in loop closure detection,
demonstrating that the integration of these modalities can
significantly enhance the precision and robustness of SLAM
systems. This work not only challenges the conventional
wisdom of limited semantic utilization in traditional SLAM



frameworks but also presents a promising direction for future
optimizations and upgrades, emphasizing the potential of
multi-modal fusion strategies to advance the state-of-the-art in
loop closure detection and, consequently, the overall
performance of SLAM systems.

By highlighting the positive influence of semantic
information on recall rate, our study contributes to the growing
body of research exploring the integration of semantic cues
into SLAM pipelines, offering valuable insights for researchers
and practitioners alike.
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