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Abstract

Primates display remarkable prowess in making rapid visual inferences even when1

sensory inputs are impoverished. One hypothesis about how they accomplish2

this is through a process called visual simulation, in which they imagine future3

states of their environment using a constructed mental model. Though a growing4

body of behavioral findings, in both humans and non-human primates, provides5

credence to this hypothesis, the computational mechanisms underlying this ability6

remain poorly understood. In this study, we probe the capability of feedforward7

and recurrent neural network models to solve the Planko task, parameterized to8

systematically control task variability. We demonstrate that visual simulation9

emerges as the optimal computational strategy in deep neural networks only when10

task variability is high. Moreover, we provide some of the first evidence that11

information about imaginary future states can be decoded from the model latent12

representations, despite no explicit supervision. Taken together, our work suggests13

that the optimality of visual simulation is task-specific and provides a framework14

to test its mechanistic basis.15

1 Introduction16

A longstanding goal in the brain sciences is to understand the neural algorithms and computations17

that support humans’ ability to interact optimally with their surroundings. A popular cognitive level18

theory for how humans visually reason about their environments, under uncertainty, is that they19

rely on “simulation” through rich internal generative models of the world Kersten & Yuille (1996);20

Tenenbaum et al. (2011); Battaglia et al. (2013); Ullman et al. (2017) to build and test hypotheses21

about the future and plan effective behavior. The notion of visual simulation has been discussed22

since at least Descartes, who theorized that this ability is implemented in the brain through the23

same neural mechanisms as perception, and operates without any stimulation from the external24

world Lokhorst (2005). Ullman expanded upon this theory in his seminal Visual Routines (Ullman25

(1984)), in which he suggested that in order for visual simulation to work effectively it must utilize26

syntactic computations, which can be flexibly re-applied to any visual features. Recent studies in27

humans and non-human primates have provided insight into the potential neural underpinnings of28

these cognitive-level theories Ahuja et al. (2022); Ahuja & Sheinberg (2019); Rajalingham et al.29

(2021, 2022). While Ahuja & Sheinberg (2019) demonstrated the ability of simple feedforward30

neural networks (FFNs) to perform their visual simulation task, they find a misalignment between31

model and primate behavior. Similarly, Rajalingham et al. (2021) show this misalignment in recurrent32

neural networks (RNNs) trained to play a simplified version of Pong (M-Pong) where the RNN had33

to guess where to move a paddle to catch a linearly-moving ball. However, the authors found that34

the same RNNs, when trained to predict the position of M-Pong balls across their trajectories, were35
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Figure 1: Planko as a visual simulation task. Observers are shown a single image of a game board
and asked to predict whether the ball at the top of the image (in light blue) will fall into the catcher
at the bottom of the image. The grey lines in each image depict the trajectory of the ball at the top,
simulated in a world with Newtonian physics. We generate positive and negative game boards for
every ball and cup position, in which the planks are placed in a way to bounce the ball into the
catcher or not. We also generate four different versions of the game, in which the properties of the
ball and cup are modified: (a) Fixed positions of each, (b) the ball position is randomly sampled, (c)
the bucket position is randomly sampled, and (c) both the ball and bucket positions are randomly
sampled. Each modification increases the total number of game boards that can be generated, and
hence, the game’s difficulty.

able to learn routines for visual simulation that explained significantly more variance in behavior and36

neural activity than RNNs without this constraint.37

Contributions We explore the conditions under which visual simulation naturally emerges as the38

optimal computational strategy in deep neural networks purely driven by task-constraints. We refrain39

from providing any source of information about temporal dynamics to our network models, for40

example, watching object trajectories or explicit supervision about the locations of objects in the41

world. We start with the visual simulation task developed by Ahuja & Sheinberg (2019) and adapt it42

to our suite of models and call it Planko (Figure. 1). In Planko, observers are tasked with predicting43

the outcome of a ball falling through a random series of oriented planks without ever seeing the ball’s44

trajectory. Unlike M-Pong, Planko is parameterized to make it possible to generate game boards that45

range from trivially easy to extremely difficult. We investigate whether models can learn to solve46

Planko, and whether the solutions they learn resemble the Newtonian physics used to generate game47

boards despite having no explicit access to that information.48
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• We find that a variety of feedforward deep neural networks (FFNs) and RNNs learn accurate49

solutions for easy versions of Planko, but only an attentional circuit model grounded in neurobiology50

can solve harder versions of the task (InT, Linsley et al. 2021).51

• The InT’s attention maps indicate that it learns to focus on paddles that may interact with the52

Planko ball, and regions of the game board where it expects the ball to fall through.53

• A decoding analysis demonstrated that the InT incrementally simulates a Planko ball’s trajectory54

through the game board, in hard but not easy game boards, and that this path closely approximates55

the ground-truth trajectory generated in each board with Newtonian physics.56

• Our findings indicate that robust visual simulation emerges as an optimal algorithm in difficult57

environments, and that prior work Rajalingham et al. (2021, 2022) suggesting that additional58

learning constraints are needed for visual simulation may be a byproduct of a trivial task driving59

models to learn shortcuts.60

2 The Planko challenge61

The Planko challenge is inspired by prior work in visual simulation, which measured primate accuracy62

in simulating the trajectory of moving balls, and used fMRI to identify regions of cortex that correlated63

with their behavior (Ahuja et al., 2022). Much like M-Pong, models trained on that task learned64

shortcut solutions to solve it (Ahuja & Sheinberg, 2019). With our Planko challenge, we have65

controlled for variations in the task space to explicitly prevent the learning of shortcut solutions,66

and in order to understand the extent to which it changes the strategies learned by models for visual67

simulation.68

Each Planko board depicts a ball at the top of the screen placed above ten randomly oriented and69

positioned planks. A catcher is placed at the bottom of the screen (Figure. 1). Each plank is70

parameterized by its angle of inclination, length, and its position on the screen. The Planko ball and71

catcher are placed in accordance with task difficulty as discussed below. The physics of this world72

are specified by Newton Dynamics (http://www.newtondynamics.com). The ball’s trajectory as73

Figure 2: FFN and RNN performance on the Planko challenge. Error bars depict 95% bootstrapped
confidence intervals. The InT is significantly more accurate than any other model on the most
challenging versions of Planko: when the basket position or both the basket and ball positions are
randomly placed across stimuli.
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Figure 3: The InT learns to solve Planko by learning a visual simulation strategy that resembles
the ground truth physics. Sample positive and negative Planko boards were shown to an InT
while decoding the position of the ball from the activities of excitatory units. Ground truth paths are
depicted in red and decoded paths from the InT are depicted in blue.

it falls downward is tracked to determine if it eventually lands in the catcher (positive class) or falls74

to the ground (negative class). Figure 1 illustrates example Planko ball trajectories for both positive75

and negative classes.76

2.1 Parameterizing Planko board difficulty77

By bounding the variations in the Planko board elements, we systematically control for the challenge78

associated with solving the board for neural network models. Planko-D1 (Figure. 1a) is the easiest79

variant of the task in which both the ball and catcher positions are constant across the entire dataset.80

Planko-D2 (Figure. 1b) and Planko-D3 (Figure. 1c) are intermediate-level boards. While in Planko-81

D2 the initial ball position is randomly sampled from the upper 40% of the game board (with the82

catcher position remains constant), Planko-D3 places the catcher in a random location sampled from83

the lower 40% of the game board (with the ball position constant). Planko-D4 (Figure. 1d) is the84

version of the task wherein both the ball and catcher positions are stochastic. Boards in which the85

ball hits either vertical wall are excluded from the data used for the neural network analysis.86

3 RNNs, but not FFNs, solve Planko-D487

General setup All models used herein were trained to classify each Planko game board into one88

of either positive or negative classes. Model parameters were optimized with Stochastic Gradient89

Descent implemented via the Adam algorithm Kingma & Ba (2014) with an initial learning rate of90

3e − 4. Binary Cross Entropy (BCE) was used as the training objective. Each train (test) dataset91

consisted of 200K (5K) Planko boards of dimensions 64× 64 pixels. Training was carried out on a92

NVIDIA TITAN Xp GPU for 100 epochs while measuring validation accuracy after each epoch over93

a held-out set of 10K boards.94

The InT Model The Index-and-Track circuit (a complete model description in Linsley et al. 2021)95

architecture consisted of an input layer with 64 1× 1 convolutional filters followed by the InT circuit96

with 3× 3 horizontal kernels and 64 output channels. A 1× 1 convolutional “readout" followed by a97

linear layer transformed the final RNN hidden state to the classification output. The RNN is trained98

for T = 24 time steps.99
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Figure 4: The InT’s attention maps reveal solution strategies. (a) Testing the RNN (InT) with
boards where everything is held constant except the ball which is horizontally translated. (b) The
hidden state activity at timestep T for the RNN for the boards in (a). (c) The decoded ball positions
from the hidden state vs the ground truth simulated paths.

Baselines In addition to the InT, we trained a simple feedforward 2-layer convolutional neural network100

(termed “Baseline CNN"), a standard VGG16 Simonyan & Zisserman (2014), and a 12-layer CNN101

with a parameter count identical to the InT circuit.102

Classification results The performance landscape of models across the Planko tasks revealed that103

both FFNs and RNNs solved easier versions of the task (Figure. 2). However, the InT was significantly104

more accurate on Planko-D4, the most challenging version.105

Decoding analysis We train a decoder to extract the coordinates of the Planko ball positions from106

the final timestep InT activities. The decoder is trained to minimize the mean-squared error between107

the predicted ball coordinates and the ground truth ball position obtained from the physics simulator.108

The decoder consisted of three layers of 1× 1 convolution and pooling operations and finally a linear109

readout layer. The model was trained on 64 channel 64× 64 feature tensors from the final timestep110

of the trained InT ciruit. A total of 16 decoder models are trained for each of the 16 ball positions111

from the simulator for 20 epochs with 200,000 feature tensors. The mean-squared error is measured112

on the validation set after every epoch and the model with the least error is used to predict the ball113

position from new boards.114

4 Conclusion115

We explore the conditions under which “visual simulation" emerges as the naturally optimal algorithm116

in task-optimized RNNs. We demonstrate that only the most performant RNN, on our most variable117

task, adopts a “simulation" strategy. To the best of our knowledge, we provide the first evidence that118

information about imaginary future states can be decoded from RNN internal representations. While119

this work is preliminary, we are hopeful that it paves the way for RNN-guided electrophysiology120

research to understand the mechanistic basis of visual simulation.121

5



Checklist122

The checklist follows the references. Please read the checklist guidelines carefully for information on123

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or124

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing125

the appropriate section of your paper or providing a brief inline description. For example:126

• Did you include the license to the code and datasets? [Yes] See Section ??.127

• Did you include the license to the code and datasets? [No] The code and the data are128

proprietary.129

• Did you include the license to the code and datasets? [N/A]130

Please do not modify the questions and only use the provided macros for your answers. Note that the131

Checklist section does not count towards the page limit. In your paper, please delete this instructions132

block and only keep the Checklist section heading above along with the questions/answers below.133

1. For all authors...134

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s135

contributions and scope? [Yes]136

(b) Did you describe the limitations of your work? [Yes]137

(c) Did you discuss any potential negative societal impacts of your work? [N/A]138

(d) Have you read the ethics review guidelines and ensured that your paper conforms to139

them? [Yes]140

2. If you are including theoretical results...141

(a) Did you state the full set of assumptions of all theoretical results? [N/A]142

(b) Did you include complete proofs of all theoretical results? [N/A]143

3. If you ran experiments...144

(a) Did you include the code, data, and instructions needed to reproduce the main experi-145

mental results (either in the supplemental material or as a URL)? [No]146

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they147

were chosen)? [Yes]148

(c) Did you report error bars (e.g., with respect to the random seed after running experi-149

ments multiple times)? [Yes]150

(d) Did you include the total amount of compute and the type of resources used (e.g., type151

of GPUs, internal cluster, or cloud provider)? [Yes]152

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...153

(a) If your work uses existing assets, did you cite the creators? [Yes]154

(b) Did you mention the license of the assets? [N/A]155

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]156

157

(d) Did you discuss whether and how consent was obtained from people whose data you’re158

using/curating? [N/A]159

(e) Did you discuss whether the data you are using/curating contains personally identifiable160

information or offensive content? [N/A]161

5. If you used crowdsourcing or conducted research with human subjects...162

(a) Did you include the full text of instructions given to participants and screenshots, if163

applicable? [N/A]164

(b) Did you describe any potential participant risks, with links to Institutional Review165

Board (IRB) approvals, if applicable? [N/A]166

(c) Did you include the estimated hourly wage paid to participants and the total amount167

spent on participant compensation? [N/A]168
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