Under review as a conference paper at ICLR 2023

DYNAMIC NEURAL NETWORK IS ALL YOU NEED:
UNDERSTANDING THE ROBUSTNESS OF DYNAMIC
MECHANISMS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neural Networks (DNNss) have been used to solve different day-to-day prob-
lems. Recently, DNNs have been deployed in real-time systems, and lowering the
energy consumption and response time has become the need of the hour. To ad-
dress this scenario, researchers have proposed incorporating dynamic mechanism
to static DNNs (SDNN) to create Dynamic Neural Networks (DyNNs) perform-
ing dynamic amount of computation based on the input complexity. Although
incorporating dynamic mechanism into SDNNs would be preferable in real-time
systems, it also becomes important to evaluate how the introduction of dynamic
mechanism impacts the robustness of the models. However, there has not been a
significant number of works focusing on the robustness trade-off between SDNNs
and DyNNs. To address this issue, we propose to investigate four aspects of in-
cluding dynamic mechanism into SDNNs. For that purpose, we evaluate four
research questions. These evaluations are performed on three models and two
datasets. Through the studies, we find that attack transferability from DyNNs to
SDNNSs is higher than attack transferability from SDNNs to DyNNs. Also, we
find that DyNNs can be used to generate adversarial samples more efficiently than
SDNNs. We also provide insight into the design choices through research stud-
ies. Finally, we propose a novel attack to understand the additional attack surface
introduced by the dynamic mechanism.

1 INTRODUCTION

Deep Neural Networks (DNNs) are used in multiple applications such as computer vision and nat-
ural language processing. After the rapid growth of IoT and embedded devices, many real-time
systems use DNNS in their applications. As the real-time systems require faster response time and
low energy consumption, researchers have proposed to incorporate energy-saving dynamic mecha-
nism (Wang et al., 2018}; [Kaya et al., 2019; Wu et al., [2018)) to popular static DNN (SDNN) models
like ResNet (He et al., 2015), VGG (Simonyan & Zisserman, [2014), MobileNet (Howard et al.,
2017) etc. Early-exit is one of the dynamic mechanism techniques where multiple exits are included
in SDNNSs (creating multiple sub-networks), and SDNNs can terminate the operation early if a cer-
tain sub-network is confident about the prediction. These types of DNNs are named as early-exit
Dynamic Neural Networks (DyNNs). Although the transition from SDNNs to DyNNs is preferred
in real time systems because of increased efficiency, whether the use of dynamic mechanism will
impact the robustness of the systems is still unknown. Studying the impact of the dynamic mech-
anisms on the robustness is important for developers or users to understand the trade-offs between
DyNN and SDNN.

In this work, we propose to investigate four different aspects of including dynamic mechanism
through four research questions. These four aspects are: Transferability, Impact on Efficiency, Early-
exits Design and, Added Attack Surface.

Transferability. First, we investigate the adversarial attack transferability between SDNNs and
DyNNss to evaluate the robustness of the models in black-box scenarios. In the black-box scenarios,
adversaries normally assume the target models are always static. However, the target models can be
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dynamic also. Hence, it is important to find out if a surrogate SDNN model is used to attack a target
DyNN model or vice-versa, then, to which extent the adversary can be successful.

To address this issue, in this paper, we first conduct a comparative study on the adversarial attack
transferability between SDNNs and DyNNs (Section[3). Our study results suggest that adversarial
transferability from DyNNs to SDNNS is better and surprisingly using DyNNs as surrogate models
for attack seems to be a more efficient and more effective way to generate adversarial samples. The
adversaries are able to generate more adversarial samples in the same amount of time compared to
using SDNNss as the surrogate model, and the generated adversarial samples often can also attack
SDNNs .

Impact on Efficiency. Second, we conduct another study to understand whether the original purpose
of DyNNs (i.e., saving inference time) will be impacted by the adversarial samples (Section
generated through SDNNs. Our study results suggest that the adversarial samples generated by
existing white-box attacks and black-box attacks do not increase the inference time significantly.

Early-exits Design. Third, we perform a detailed analysis of which design choices in the dynamic
mechanisms or DyNN architectures (specifically position of early exits) may impact the robustness
of DyNNs (Section[5). We consider two attack scenarios in this study: first, the output layer label of
an SDNN is modified by a white-box adversarial example, and we study the impact of the example
on corresponding DyNN’s early-exit layers; second, in a black-box scenario, the output of SDNN
is modified by a sample, and the sample is fed to separate model’s DyNN. We have made multi-
ple findings based on the empirical results, for example, putting the first exit earlier in the model
architecture can help to improve the robustness of DyNNs.

Added Attack Surface. Last but not least, we design an adversarial attack approach to understand
the extra attack surface introduced by the dynamic mechanisms in neural network (Section [6). In
this attack, the synthesized adversarial examples will not change the prediction of the final output
layer’s label, but will change the prediction of all the early exits. Based on the attack results, we
find that the dynamic mechanism is more vulnerable in scenarios where dependency among DyNN
layers is lesser and when the exits are sparse w.r.t the layers.

2 RELATED WORKS AND BACKGROUND

Dynamic Neural Networks. The main objective of DyNNs is to decrease the energy con-
sumption of the model inference for inputs that can be classified with fewer computational re-
sources. DyNNs can be classified into Conditional-skipping DyNNs and Early-exit DyNNs.
Early-exit DyNNs use multiple exits (sub-networks) within a single model and because of the
model’s working mechanism, the model is more suited for resource constrained devices. If, at
any exit, the confidence score of the predicted label exceeds user defined threshold, inference
is stopped. The resource-constrained devices usually deploy a lightweight sub-network of early
exit network locally and resort to a server for further computations if needed (Teerapittayanon
et al) [2017) . |Graves| (2016)), [Figurnov et al.| (2017)), [Teerapittayanon et al.| (2016)), Kaya et al.
(2019) have proposed Early-termination AdNNs. Specifically |[Kaya et al.| (2019) and Zhou et al.
(2020) propose early exit networks based on popular SDNNs. [Zhou et al| (2020) also show
that white-box robustness of the DyNNs is better than SDNNs. In addition to that multiple
works (Teerapittayanon et al., 2017; Scardapane et al., [2020) provide practical usability of DyNNs.

Figure [I] shows the working mechanism of
Early-exit DyNNs. For example, an Early-exit
DyNN has N parts and each part has an exit.
x is the input, f? , represents prediction after
the 7*" part (generated by specific computation
unit), f,,: represents prediction of the Neural
Network, C; represents confidence score after
ith part, Hid!™ represents input of 7** part,
Hid?"* represents output of i part, and 7; is
the predefined threshold to exit the network af-
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Figure 1: Working mechanism of Early-exit
DyNN
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Figure 2: Transferable Attack Success Rate for CIFAR-10 and CIFAR-100 data

ter it" part. The working mechanism of the Early-exit DyNN can be represented as, fo,:(7) =
f;ut(x)vif Cz(’l}) > Ti.

Adversarial Attacks. Adversarial Examples are the input that can change the prediction of the
DNN model when those are fed to the model. |(Goodfellow et al.| (2014) propose Fast Gradient Sign
Method (FGSM) that uses single-step first order entropy loss to generate adversarial inputs. This
attack is modified by [Madry et al.| (2017) to add initial noise to the benign sample. This attack is
referred as projected gradient descent (PGD). Other than that,[Dong et al.| (2018)); |Carlini & Wagner
(2017); [Croce & Hein| (2020); [Lin et al| (2019) have proposed white-box attack methods, while
[Liu et al|(2016); |Andriushchenko et al.| (2020); Tlyas et al.| (2018) have proposed black-box attack
methods.

3 IS ADVERSARIAL EXAMPLE TRANSFERABILITY FROM DYNN 1O SDNN 1S
LOWER THAN ADVERSARIAL EXAMPLE TRANSFERABILITY FROM SDNN
TO DYNN?

In this research question, we investigate the “transferability”” of adversarial inputs generated based
on SDNN and DyNN, respectively, i.e., whether adversarial examples generated based on SDNNs
are adversarial to DyNNs and vice versa. Transferability is an important metric for evaluating the
feasibility of black-box attack. To evaluate the transferability, one of the popular way
let all 2017 [Liu et all 2016)) is creating a similar model (i.e., surrogate model) as the target model.
In a black-box attack, normally, adversaries assume the underlying model to be SDNN, so for a
deployed DyNN, the adversaries may likely use an SDNN as surrogate model. Hence, this research
question (RQ) is important to evaluate the robustness of DyNNs.

3.1 EXPERIMENTAL SETUP.

Dataset and Models. We use CIFAR-10 and CIFAR-100 (Krizhevsky et al, [2009) datasets for
evaluation. For SDNNs, we use VGG-16 (Simonyan & Zisserman) 2014), ResNet56 (He et al.)
[2015), and MobileNet (Howard et al, [2017) model. As DyNNs, we use the early exit version of
these models (Kaya et al., 2019). In all other RQs, we keep the models and dataset setup same.

Black-box Attack. For the attack scenario, we use surrogate model (Papernot et all, 2017}
based black-box attack scenario. Here, we feed a set of inputs to the target model and
collect the output labels. These inputs are generated using 50% of the held-out validation data, and
naturally corrupted versions of those validation data. As the number of partial held-out validation
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data is not significant, adding corrupted inputs would help to increase training data size for the
surrogate model. For natural corruption (Hendrycks & Dietterichl 2019), we use gaussian noise and
brightness. For each type of corruption, we have five intensity levels. For example, if the number of
held out data is 5000, for each corruption, we generate 25000 additional data. Once the input-output
pairs are collected, a surrogate model is trained based on those pairs. For a target model, we use
both SDNNs and DyNN:ss. If the target model is SDNN, then an DyNN is trained as surrogate model
and vice-versa.

To make the surrogate-target pairs, we use different types of DNN architectures. For example, if
the the target model is DyNN VGG, we choose ResNet56 SDNN as the surrogate model. This as-
sumption is valid because the attacker doesn’t have information about the target model architecture,
hence the possibility of choosing the same architecture as the surrogate model is less. We define two
terms to represent two different types of transferability based on different types of surrogate model
and target model: D2S transferability and S2D transferability. D2S transferability evaluates DyNN
to SDNN attack transferability, where S2D transferability evaluates SDNN to DyNN attack trans-
ferability. We have chosen following pairs to evaluate S2D transferability: (SDNN ResNet56 (sur-
rogate), DyNN VGG (target)), (SDNN MobileNet (surrogate), DyNN MobileNet (target)), (SDNN
MobileNet (surrogate),DyNN ResNet56 (target)). Similarly, for D2S transferability, earlier men-
tioned surrogate models become the target model and earlier mentioned target models become the
surrogate model.

Algorithms. We use FGSM (Goodfellow et al.,[2014) and PGD (Madry et al.,[2017) algorithms to
attack the surrogate models.

Metric. We measure percentage of adversarial examples that can mis-classify the output w.r.t num-
ber of generated adversarial examples as the attack success rate.

3.2 EVALUATION RESULTS

Figure [2]shows the effectiveness of black-box attacks on DyNNs and SDNNs. On average, it can be
noticed that for target SDNN and surrogate DyNN, the attack success rate is higher than the success
rate of target AANN and surrogate SDNN. One of the reasons for this behavior is the lower variance
of the DyNNs. DyNNs use lower number of parameters, hence the feature space for adversarial
samples of DyNNs is smaller than the feature space for adversarial samples of SDNNs (Schonherr
et al.,|[2018)). Also, we find that for the target DyNN, FGSM attack performs better than PGD attack.
If only dataset-specific results are considered, then for CIFAR-100 the attack success rate is higher
than for CIFAR-10.

Also, as the DyNN-generated adversarial inputs can attack SDNNGs, then it can be time efficient to
create adversarial inputs using DyNN. Through Figure |7| (Appendix), we can find the probability
density plots of different exit numbers of DyNN that have been used to generate adversarial exam-
ples. Lower exit number suggests that lesser number of computations has been used to generate
adversarial examples. It can be noticed that for PGD attack, more than 70% of adversarial examples
are generated from exit 0, 1 and 2 (first - third exit). Although for FGSM attack, in a few scenarios
(CIFAR-10 VGG, CIFAR-100 MobileNet, and CIFAR-100 ResNet), more than 50% of adversarial
examples are generated through later exits (higher computation required).

Finding 1: The D2S transferability is higher than the S2D transferability.
Finding 2: Using DyNNs as surrogate models is more efficient and more effective way to
generate adversarial examples than using SDNNs.

4 DOES ADVERSARIAL EXAMPLES IMPACT EARLY-EXIT EFFICIENCY IN
DYNNSs?

In this section, we investigate whether the original purpose of including dynamic mechanism in
DyNNs (i.e., saving inference time) will be impacted by the adversarial samples. Specifically, we
study whether the adversarial inputs exit earlier or later in a DyNN compared to the original inputs.
The main objective of this investigation is to find out whether the adversarial samples generated on
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SDNN can have an impact on the amount of computation of the DyNN. For this purpose, we conduct
both white-box and black-box attacks to find out the impact of adversarial samples on the amount
of computation.

Here, the white-box attack scenario can also be considered a practical scenario. There have been
studies (Chen et al., 2022; Wu et al., [2022)) that focus on reverse engineering of SDNN models
from binary code of on-device models, but no techniques have been proposed to reverse engineer
the dynamic mechanisms in the models. Hence, adversaries are more likely to get SDNN models
instead of their dynamic counterparts. So it is important to find out how adversarial samples affect
the efficiency of the DyNN for both white-box and black-box scenarios.

4.1 EXPERIMENTAL SETUP.

Attack. We use PGD and FGSM for both white-box and black-box attacks. For black-box setup,
we use the same setup as previous RQ. For black-box scenario, we use DyNNs as target model
and SDNNs as surrogate model. In a white-box setting, we attack the SDNN and evaluate on the
performance of corresponding DyNN.

Metric. We use the difference between the exit number selected by adversarial input and the exit
number selected by benign input. If the difference is positive, then the latency of the adversarial
sample is increased w.r.t benign input.

4.2 EVALUATION RESULTS.

Figure [3|and Figure [10|(in Appendix) show the impact of adversarial examples generated on SDNN
on changing in exit number in DyNN in a white-box setting. It can be observed that for the majority
of the scenarios, accuracy-based adversarial samples do not increase the computation significantly
in the DyNN. On average, FGSM-generated examples increase more computation in DyNNs than
PGD-generated examples. For CIFAR-10 data, for MobileNet and VGG-16 DyNN models, 25%-
37% of the FGSM generated examples could increase the number of exits by more than one. Also,
it can be noted that adversarial samples generated on CIFAR-100 data is more likely to increase
computation than adversarial samples generated on CIFAR-10. Especially, more than 45% of the
FGSM samples generated on CIFAR-100 data can increase the number of exits by more than one.

Figure dand Figure[IT](in Appendix) show the impact of adversarial examples generated on SDNN
on change in exits in DyNN in a black-box setting. It can be noted that, for CIFAR-10 dataset,
black-box attack can generate more computation-increasing examples than in white-box attack. For
ResNet and VGG model, more than 40% PGD attack generated examples can increase the number
of exits by more than one. For all three models, 35% of the FGSM attack generated examples can
increase the number of exits by more than one. FGSM attack generates more inputs that induces low
confidence in early-exit layers than PGD attack. For CIFAR-100 dataset, the increase of computation
caused by adversarial attacks is higher than that of CIFAR-10. As CIFAR-100 data uses larger
model, the robustness of the model is reduced. For CIFAR-100 dataset, more than 40% examples
generated through both the attack can increase the number of exits by more than one. However,
increasing the number of exits by two or three exits does not decrease the efficiency in DyNNs
significantly.

Finding 3: Accuracy-based adversarial samples do not decrease the efficiency significantly
in the DyNN.

Finding 4: The adversarial examples, whose output confidences are significantly lower, can
perform better in terms of decreasing the efficiency in DyNNs.

Finding 5: Adversarial examples generated on a larger model (w.r.t model parameters) is
more likely to decrease efficiency in DyNNs.

5 WHAT DESIGN OF DYNNS MAY IMPACT THE ROBUSTNESS?

In this section, we evaluate which architecture design choices (position of early exits) in DyNNs may
impact the robustness of early layers. In this RQ, we consider DyNNs as multi-exit networks, where
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Figure 3: Density plots of change in exit numbers because of PGD and FGSM attack (For CIFAR-10
data). The x axis represents the change in exit number while y axis represents the density.
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Figure 4: Density plots of change in exit numbers because of PGD and FGSM black-box attack (For
CIFAR-10). The x axis represents the change in exit number while y axis represents the density.

each exit will provide an output. For evaluation, we assess if we attack the final exit, from which
early-exit layer the label modification begin. If the output label is not modified in any earlier layer,
then for that type of model, the robustness is higher because the model can produce correct results
at any layer. This RQ will provide us an insight into which type of design choice may improve the
robustness of early layers.

5.1 EXPERIMENTAL SETUP.

Attack Setup. We use same attack setup as previous research questions. However, while we attack
the DyNN, we do not consider one specific exit layer. Instead of that, we consider each exit layer.

Metric. We use the early exit from which the label modification starts. For example, there are N
exits. First, Nth exit’s label is modified through adversarial sample. If till K'th exit the original
prediction was same, then we report K + 1th exit in the experimentation.

5.2 EVALUATION RESULTS.

Figure [ and Figure[8] (in Appendix) show probability density plot on which exit the output label is
changed using the white-box adversarial examples. It can be observed that for all the model-dataset
pairs, for more than 77% of the examples, the label is modified in the first exit. For CIFAR-10 data,
only for MobileNet and ResNet models, the label is changed after the first exit for more than 20%
of the examples (using FGSM attack).

Figure [6]and Figure[9] (in Appendix) show probability density plot on which exit the output label is
changed using the black-box adversarial examples. From results, we can see that the robustness of
earlier exits is better against black-box attack than white-box attack. For CIFAR-10 data, more than
45% of the both attack generated samples could not misclassify the first exit for VGG-16 model.
For CIFAR-100 data (larger model), robustness of early exit layers is worse than that of CIFAR-10
data (smaller model). For CIFAR-100 data, for both attacks and three models, less than 30% of the
adversarial examples can not mis-classify the first exit.

For black-box attack scenario, VGG-16 model’s first layer on-average shows better robustness
against black-box attack. In the DyNN, the first exit of the VGG model is placed only after sec-
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Figure 5: Density plots representing during which exit number output label is changed because of
PGD and FGSM attack (For CIFAR-10 data). The x axis represents the exit number while y axis
represents the density.
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Figure 6: Density plots representing during which exit number output label is changed because of
PGD and FGSM black-box attack (For CIFAR-10 data). The x axis represents the exit number
while y axis represents the density.

ond layer, while for others, more computations are performed before using the first exit. Hence,
having the first exit in the early layers can increase the robustness of DyNN. Although lower num-
ber of parameters would be used to predict output, but with VGG we can notice that a significant
number of inputs can be classified correctly through first exit.

s ~

Finding 6: We find that having the first exit in the earlier layers can increase the robustness
of early exits of the DyNNzs.

Finding 7: Black-box attack success rate is lesser than white-box attack success rate against
early-exit layers.

Finding 8: For black-box scenario, early-exit layers are more robust against adversarial
examples generated on a smaller surrogate model than adversarial examples generated on a
larger surrogate model.

6 CAN WE SYNTHESIZE CERTAIN EXAMPLES TO EVALUATE THE ADDED
ATTACK SURFACE OF DYNAMIC MECHANISM?

In this section, we evaluate if specific examples can be generated only to understand the additional
attack surface introduced by the dynamic mechanism in DyNNs. We aim to design an attack such
that the synthesized adversarial examples will not change the prediction of the final SDNN label, but
change the prediction of all the early exits. This threat model is practical because the attack evades
the existing detection that relies on the final output of SDNN while the attacker creates a situation
where all the early exit networks do not provide correct prediction, therefore decreasing the usability
of DyNNs. However, this attack is also challenging to be performed successfully because final layer
output is dependent on the earlier exit layers and it is challenging to impact all the early exits’
prediction without modifying the final exit’s prediction.

6.1 PROBLEM FORMULATION
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We propose a novel attack technique called Early Attack to evaluate the effectiveness of the early
layers of DyNNs. Let’s assume f is an DyNN with [V exits. Given an input z, the output softmax
layer in an exit i can be defined as y° = f;(x), where i = 1,2, 3...N. For synthesizing adversarial
examples, we have two main objectives. First, the initial prediction in the N'*" exit (final layer) does
not change. Let’s assume, the initial prediction at final layer is p. Second, the prediction of all the
other exits should be different than p.

Based on the aforementioned objectives, we can propose an
iterative optimization procedure to optimise a loss function
L. For each of the objectives, one loss function component

Algorithm 1: Input generation

using Early Attack is formulized. For the first objective, we propose loss function
g‘lll’t‘l’:stsz i,::lgggfulr’ggig[emaqe L1 = (—l*zﬁép max(yév —y]N, 0)). In L1, we maximize the
begin ) difference between softmax value of label p and other label’s
Initialize(w) softmax value, therefore the prediction won’t get changed at

T = number.ofiterations the final exit. For the second objective, we propose loss func-
351’1:;;;?0 < Tdo tion L2 = (vazl y5). The L2 ensures that for any other exit

o = tanh(w)tl than the final exit, p’s softmax value would be minimized. The

output = model(z') final loss function L = a * L1 + L2. Here the « is a user-
'f‘suiiiz";,(sg/p)ut) then defined variable that provides balance between two loss terms.

?d: loss(a, w, ¢, @) Finally, we need to ensure the added perturbation to gener-
Lypew,w = Optim (L, w) ate adversarial examples are limited, hence, the final opti-

o iter-no + + mization function would be, minimize(||5|| + ¢ - L), where,

o/ tanh(u)+1 (x + 6) € [0,1]™. Here, 6 represents the added perturbation

end 2 and c is a user-defined variable to provide weightage on a spe-

cific component. ¢ controls the magnitude of generated per-
turbation (]|d;|]), where a large ¢ makes the loss function more
dependant on the L.

This constrained optimization problem in § can be converted into a non-constrained optimization

problem in w, where the relationship between § and w is: 6 = % — x The tanh function
would ensure that the generated adversarial input values stay between O and 1. The equivalent
optimization problem in w is:

tanh 1
minimize %—x +c- L (D

Algorithm|[1]shows the optimization algorithm. The algorithm outputs the adversarial input 2’ given
a benign image x as input. w is initialized to a random tensor that has equal shape as the input
image. For each iteration, the loss function of the attack is computed (at line 11). Based on the
back-propagated loss, the optimizer updates w with its next value. Once the iteration threshold (7)
is reached or the attack is successful, the algorithm computes and returns the adversarial input 2’ (at
Line 9 and 15).

6.2 EVALUATION

6.2.1 EVALUATION SETUP.

Baseline. We use PGD and FGSM attacks as baseline to modify the early exit label.

Metric. We use attack success rate as metric in the evaluation. If the adversarial input generated
final layer output is same as the output generated by benign input and all the other exit layers out-
put is different than the final output label, then we consider attack is successful for that particular
adversarial input.

Hyperparameters. We use « = {0.001,0.01,0.1, 1, 20,40} and ¢ = 50 as hyperparameters.
6.2.2 EFFECTIVENESS

Table [I] shows the evaluation results of the attack success rate of Early Attack and baseline tech-
niques. Except two model-dataset pair, Early Attack’s success rate is higher than 80% in all other
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scenarios. PGD and FGSM attacks are unsuccessful because the loss function only considers early
layer output and does not consider final layer output. Although FGSM’s attack success rate is higher
than PGD’s success rate. Also, w.r.t best performing o values, a = 1 performs well for 70% of the
model-dataset pairs.

We also analyze why early attack fails for VGG16 and MobileNet models for CIFAR-10 data. First,
for CIFAR-10 data, final fully connected layer has lower number of parameters than the final layer
for CIFAR-100 data. Hence, the dependency between the final layer and earlier layers is higher
for CIFAR-10. However, for CIFAR-10 data, attack success rate is higher for ResNet model. First
we discuss the failed cases for VGG16 and MobileNet model, and then we discuss why the attack
succeeded for ResNet model.

For VGG16 model, the failed examples can be divided into two types. For the first type, the final
output label is changed with all the other early exit layers. In the second type, first few layers get
the output label mis-classified, but along with the final layer, few previous layers also get the output
correctly classified. For MobileNet, all the layers except the final and last to final layer get the output
label mis-classified. For MobileNet, we also find that the final two exits are separated by only two
layers, which is significantly lower than other model’s separation layers between final two exits.
Hence, the dependency between final two layers is higher.

For ResNet model, there are 56 layers divided into 27 blocks. The exits are sparsely divided between
these blocks. For Mobilenet and VGG models, the exit distributions are less sparse. Hence, the
dependency between exits is lower for ResNet and because of that reason, we could successfully
attack ResNet model.

6.2.3 TRANSFERABILITY

In this section, we discuss about the transferabil-

ity of the Early Attack examples. As Early Attack Taple 1: Attack accuracy percentage of
has two different components, instead of measur- Early Attack and the baseline techniques

ing attack success rate directly, we measure tWo against different model and dataset, along
parameters 7'1 and 7'2. T'1 represents the percent- with « value.

age of inputs for which the final output remains

same as the output generated by benign input. 72 Dataset_| Model | Early Attack | best o val [ PGD [ FGSM
represents from the examples selected from 7'1, VGG 35 1 0] 0
. . CIFAR-10 [MobileNet 11 0.1 0 0
how many early exit layers on average are mis- ResNet 81 ; 00
classified. Having both high 7’1 and 7'2 values en- VGG 86 20 0 1
1 CIFAR-100 [MobileNet 97 T 0 0
sures transferability. o o ] s

We show the transferability results in Appendix

(Table @]) For CIFAR-10 data, the T'1 values are

high, but 7’2 values are significantly low except for MobileNet to ResNet transferability. For CIFAR-
100 data, T'2 values are higher than of CIFAR-10 data, however, T'1 values are low. From the results,
we can notice that the generated examples either can keep the final layer label the same or can change
the early exit layer outputs. Our finding suggests that early attack transferability is limited.

Finding 9: With increasing number of exits in DyNNs, the dependency between multiple
exits will increase. Hence, more exits in DyNNs can increase the robustness against the
Early Attack.

Finding 10: Early Attack transferability between DyNNs is not significant.

7 CONCLUSION

In this work B we discuss the robustness of including dynamic mechanism in DNN through four
research questions. We find out that DyNNs are more robust than SDNNs and also efficient to gen-
erate adversarial examples. We also propose DyNN design choices through final two RQs. Finally,
we propose a novel attack to understand additional attack space in DyNNs.

'https://github.com/anonymous2015258/Early_Attack/tree/main
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Figure 7: Density plots of exit numbers in DyNN that are used to generate black-box adversarial
inputs using PGD and FGSM attacks. The x axis represents the exit number while y axis represents
the density.

£ PGD
FGSM

Aitne
=1 pPGD
FGSM

tack for cifarl00 and mobilenet model  Label Change Density Plot with PGD and FGSM Attack f
=1 PGD o
FGSM
m \
04

[

A

(a) CIFAR-100 VGG

1

(b) CIFAR-100 MobileNet (c) CIFAR-100 ResNet

Figure 8: Density plots representing during which exit number output label is changed because of
PGD and FGSM attack (For CIFAR-100 data). The x axis represents the exit number while y axis
represents the density.

Appendices

A RQ1 DENSITY PLOTS

The density plots in Figure[7] shows the probability density plots of exit numbers in DyNN that are
used to generate black-box adversarial inputs using PGD and FGSM attacks.

B EARLY ATTACK SUCCESS RATE WITH DIFFERENT o« VALUES

Table 2: Attack accuracy percentage of Early Attack with different o values

Dataset Model | EA(a=0.001) | EA(a=0.01) | EA(a=0.1) | EA(a=1) | EA(a=20) | EA(a=40)
VGG 0 0 0 35 10 7
CIFAR-10 [ MobileNet 0 0 T 7 0 0
ResNet 7 32 73 81 49 32
VGG I 5 48 82 36 70
CIFAR-100 [ MobileNet 0 16 74 97 92 77
ResNet 76 74 92 96 96 93
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Figure 9: Density plots representing during which exit number output label is changed because of
PGD and FGSM black-box attack (For CIFAR-100 data). The x axis represents the exit number
while y axis represents the density.
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Figure 10: Density plots of change in exit numbers because of PGD and FGSM attack (For CIFAR-
100 data). The x axis represents the change in exit number while y axis represents the density.

C TRANSFERABILITY

Table [2| shows the T'1 and 71°2 values of all three models on two datasets.

D RQI1 RESULTS BASED ON MI-FGSM ATTACK

Here, through Figure[T2} we show the adversarial transferability results between DyNNs and SDNNs
using MI-FGSM attack. These results again confirm that adversarial examples from DyNN to SDNN
are more transferable than adversarial examples from SDNN to DyNN.

E TRANSFERABILITY EXPERIMENTS ON MI-FGSM ATTACK

Through Figure [T2} we show the S2D and D2S transferability with MI-FGSM attack [Dong et al.
(2018)). The results confirm our claim that D2S transferability is higher than S2D transferability.

Table 3: T'1 and T2 values for measuring transferability between three models. TSM represents
Target Model and SM represents Surrogate Model. T'1 presents the percentage of inputs for which
the final output remains same as the output generated by benign input. 7'2 represents from the
examples selected from 7'1, how many early exit layers on average is mis-classified.

CIFAR-10 CIFAR-100
Type SM ™ VGG | MNet | RNet | VGG | MNet | RNet
VGG - 85% | 13% | - 65% | 39%
T1 MNet 86% - 74% | 51% - 38%
RNet 89% | 82% - | 79% | 75% -
VGG - 0.73 | 1.65 - 1.58 | 2.69
T2 MNet 1.06 - 23 | 1.52 - 3.26
RNet 095 | 0.85 - 1.32 | 1.28 -
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Figure 11: Density plots of change in exit numbers because of PGD and FGSM black-box attack
(For CIFAR-100 data). The x axis represents the change in exit number while y axis represents the
density.
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Figure 12: Transferable Attack Success Rate for MI-FGSM attack

F COMPARING DIFFERENT ADVERSARIAL IMAGES

In this section, we show original images, adversarial images generated through DyNNs and adver-
sarial images generated through SDNNs through Figure [[3]Figure [I5] and Figure[T4] We find that
in terms of quality, images generated through SDNNs (Average PSNR 2016) = 23.20)
are slightly better than images generated through DyNNs (Average PSNR = 23.19).

G RQI1 RESULTS BASED ON TINY IMAGENET IMAGES

Here, through Figure[16] we show the adversarial transferability results between DyNNs and SDNNs
for Tiny Imagenet (Chrabaszcz et al.|[2017) datasets. These images are larger in size (64 x 64) than
CIFAR images (size 32 x 32). These results reconfirm that adversarial examples from DyNN to
SDNN are more transferable than adversarial examples from SDNN to DyNN, even if the input
feature space is larger. Although, we can notice a slight decrease in transferability for both D2S and
S2D.
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Figure 14: Adversarial Images generated on SDNNs
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Figure 15: Adversarial Images generated on DyNNs
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Figure 16: Transferable Attack Success Rate for Tiny Imagenet Data
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