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Abstract

Few-shot event detection (ED) has been widely001
studied, while this brings noticeable discrep-002
ancies, e.g., various motivations, tasks, and003
experimental settings, that hinder the under-004
standing of models for future progress. This005
paper presents a thorough empirical study, a006
unified view of ED models, and a better uni-007
fied baseline. For fair evaluation, we choose008
two practical settings: low-resource setting to009
assess generalization ability and class-transfer010
setting for transferability. We compare ten rep-011
resentative methods on three datasets, which012
are roughly grouped into prompt-based and013
prototype-based models for detailed analysis.014
To investigate the superior performance of015
prototype-based methods, we break down the016
design and build a unified framework. Based017
on that, we not only propose a simple yet ef-018
fective method (e.g., 2.7% F1 gains under low-019
resource setting) but also offer many valuable020
research insights for future research.021

1 Introduction022

Event Detection (ED) is the task of identifying023

event triggers and types in texts. For example,024

given “Cash-strapped Vivendi wants to sell Univer-025

sal Studios”, it is to classify the word “sell” into026

a TransferOwnership event. ED is a fundamental027

step in various tasks such as knowledge systems (Li028

et al., 2020; Wen et al., 2021), story generation (Li029

et al., 2022a), etc. However, the annotation of event030

instances is costly and labor-consuming, which mo-031

tivates the research on improving ED with limited032

labeled samples, i.e., the few-shot ED task.033

Extensive studies have been carried out on few-034

shot ED. Nevertheless, there are noticeable discrep-035

ancies among existing methods from three aspects.036

(1) Motivation (Figure 1): Some methods focus on037

model’s generalization ability that learns to classify038

with only a few samples (Li et al., 2022b). Some039

other methods improve the transferability, by intro-040

ducing additional data, that adapts a well-trained041

Model
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Figure 1: Task settings to access Generalization (a) and
Transferability (b). Colors denote event types.

model on the preexisting schema to a new schema 042

using a few samples (Lu et al., 2021). There are 043

also methods considering both abilities (Liu et al., 044

2020; Hsu et al., 2022). (2) Task setting: Even 045

focusing on the same ability, methods might adopt 046

different task settings for training and evaluation. 047

For example, there are at least three settings for 048

transferability: episode learning (EL, Deng et al. 049

2020; Cong et al. 2021), class-transfer (CT, Hsu 050

et al. 2022) and task-transfer (TT, Lyu et al. 2021; 051

Lu et al. 2022). (3) Experimental Setting: Even fo- 052

cusing on the same task setting, their experiments 053

may vary in different sample sources (e.g., a subset 054

of datasets, annotation guidelines, or external cor- 055

pus) and sample numbers (shot-number or sample- 056

ratio). Table 1 provides a detailed comparison of 057

representative methods. 058

In this paper, we argue the importance of a uni- 059

fied setting for a better understanding of few-shot 060

ED. First, based on exhaustive background inves- 061

tigation on ED and similar tasks (e.g., NER), we 062

conduct an empirical study of ten SOTA meth- 063

ods under two practical settings: low-resource 064

setting for generalization ability and class-transfer 065

setting for transferability. We roughly classify the 066

ten methods into two groups: prototype-based mod- 067

els to learn event-type representations and proxim- 068

ity measurement for prediction and prompt-based 069

models that convert ED into a familiar task of Pre- 070

trained Language Models (PLMs). 071

The second contribution is a unified view of 072

prototype-based methods to investigate its supe- 073

rior performance. Instead of picking up the best- 074
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Table 1: Noticeable discrepancies among existing few-shot ED methods. Explanations of task settings can be found
in Section 2.1, which also refer to different motivations: LR for generalization, EL, CT, and TT for transfer abilities.
Dataset indicates the datasets on which the training and/or evaluation is conducted. Sample Number refers to the
number of labeled samples used. Sample Source refers to where training samples come from. Guidelines: example
sentences from annotation guidelines. Datasets: subsets of full datasets. Corpus: (unlabeled) external corpus.

Method Task setting Experimental setting
LR EL CT TT Dataset Sample Number Sample Source

Pr
ot

ot
yp

e-
ba

se
d

Seed-based (Bronstein et al., 2015) ✓ ACE 30 Guidelines
MSEP (Peng et al., 2016) ✓ ✓ ACE 0 Guidelines
ZSL (Huang et al., 2018) ✓ ACE 0 Datasets
DMBPN (Deng et al., 2020) ✓ FewEvent {5,10.15}-shot Datasets
Zhang’s (Zhang et al., 2021) ✓ ACE 0 Corpus
PA-CRF (Cong et al., 2021) ✓ FewEvent {5,10}-shot Datasets
ProAcT (Lai et al., 2021) ✓ ACE / FewEvent / RAMS {5,10}-shot Datasets
CausalED (Chen et al., 2021) ✓ ACE / MAVEN / ERE 5-shot Datasets
Yu’s (Yu et al., 2022) ✓ ACE 176 Guidelines + Corpus

Pr
om

pt
-b

as
ed

EERC (Liu et al., 2020) ✓ ✓ ✓ ACE {0,1,5,10,20}% Datasets
FSQA (Feng et al., 2020) ✓ ✓ ACE {0,1,3,5,7,9}-shot Datasets
EDTE (Lyu et al., 2021) ✓ ACE / ERE 0 -
Text2Event (Lu et al., 2021) ✓ ACE / ERE {1,5,25}% Datasets
UIE (Lu et al., 2022) ✓ ✓ ACE / CASIE {1,5,10}-shot/% Datasets
DEGREE (Hsu et al., 2022) ✓ ✓ ACE / ERE {0,1,5,10}-shot Datasets
PILED (Li et al., 2022b) ✓ ✓ ACE / MAVEN / FewEvent {5,10}-shot Datasets

performing method as in conventional empirical075

studies, we take one step further. We break down076

the design elements along several dimensions, e.g.,077

the source of prototypes, the aggregation form of078

prototypes, etc. And third, through analyzing each079

effective design element, we propose a simple080

yet effective unified baseline that combines all081

advantageous elements of existing methods. Exper-082

iments validate an average 2.7% F1 gains under083

low-resource setting and the best performing model084

under class-transfer setting. Further analysis also085

provides many valuable insights for future research.086

2 Preliminary087

Event detection (ED) is usually formulated as ei-088

ther a span classification task or a sequence labeling089

task, depending on whether candidate event spans090

are provided as inputs. We brief the sequence la-091

beling paradigm here because the two paradigms092

can be easily converted to each other.093

Given a dataset D annotated with schema E094

(the set of event types) and a sentence X =095

[x1, ..., xN ]T ∈ D, where xi is the i-th word and096

N the length of this sentence, ED aims to assign097

a label yi ∈ (E ∪ {N.A.}) for each xi in X . We098

say that word xi triggering an event yi if yi ∈ E.099

2.1 Few-shot ED task settings100

We categorize few-shot ED settings to four101

cases: low-resource (LR), class-transfer (CT),102

episode learning (EL) and task-transfer (TT). Low-103

resource setting assesses the generalization ability 104

of few-shot ED methods, while the other three set- 105

tings are for transferability. We adopt LR and CT 106

in our empirical study towards practical scenarios. 107

More details can be found in Appendix A.1. 108

Low-resource setting assumes access to a dataset 109

D = (Dtrain,Ddev,Dtest) annotated with a label 110

set E, where |Ddev| ≤ |Dtrain| ≪ |Dtest|. It as- 111

sesses the generalization ability of models by (1) 112

utilizing only few samples during training, and (2) 113

evaluating on the real and rich test dataset. 114

Class-transfer setting assumes access to a source 115

dataset D(S) with a preexisting schema E(S) and a 116

target dataset D(T ) with a new schema E(D). Note 117

that E(S) and E(D) contain disjoint event types. 118

D(S) contains abundant training samples, while 119

D(T ) is the low-resource setting dataset described 120

above. Models under this setting are expected to 121

be pre-trained on D(S) then further trained and 122

evaluated on D(T ). 123

2.2 Category of existing methods 124

We roughly group existing few-shot ED meth- 125

ods into two classes: prompt-based methods and 126

prototype-based methods More details are intro- 127

duced in Appendix A.2. 128

Prompt-based methods leverage the rich language 129

knowledge in PLMs by converting downstream 130

tasks to the task with which PLMs are more fa- 131

miliar. Such format conversion narrows the gap 132

between pre-training and downstream tasks and 133
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benefits knowledge induction in PLMs with lim-134

ited annotations. Specifically, few-shot ED can135

be converted to machine reading comprehension136

(MRC, Du and Cardie 2020; Liu et al. 2020; Feng137

et al. 2020), natural language inference (NLI, Lyu138

et al. 2021), conditional generation (CG, Paolini139

et al. 2021; Lu et al. 2021, 2022; Hsu et al. 2022),140

and the cloze task (Li et al., 2022b). We give exam-141

ples of these prompts in Table 6.142

Prototype-based methods predict an event type143

for each word/span mention by measuring its repre-144

sentation proximity to prototypes. Here we define145

prototypes in a generalized format — it represents146

some event type. For exmple, Prototypical Network147

(ProtoNet, Snell et al. 2017) and its variants (Lai148

et al., 2020a,b; Deng et al., 2020; Zhang et al.,149

2021; Cong et al., 2021; Lai et al., 2021) construct150

prototypes via a subset of sample mentions for few-151

shot ED. Except for event mentions, a line of work152

leverage related knowledge to learn prototypes’ rep-153

resentation, including AMR graph (Huang et al.,154

2018) and definitions (Shen et al., 2021).155

For comprehensiveness, we also include some156

competitive methods from similar tasks, mainly157

Named Entity Recognition (NER) and Slot Tag-158

ging (ST), which are highly adaptable to ED. Such159

expansion enriches the categorization and enables160

us to build a unified view in Section 3. For in-161

stance, some methods leverage label semantics to162

enhance (Hou et al., 2020) or directly construct (Ma163

et al., 2022) the prototypes. Das et al. (2022) re-164

cently introduce contrastive learning (Hadsell et al.)165

in NER and we view it a generalized format of166

prototype-based methods as well: it also deter-167

mines the event by measuring the distances with168

other samples and aggregates these distances to169

evaluate an overall distance to each event type.170

3 A Prototype-based Unified View171

Due to the superior performance (Sections 5 and172

6), we zoom into prototype-based methods to pro-173

vide a unified view towards a better understanding.174

We observe that they share lots of similar com-175

ponents. As shown in Table 2 and Figure 2, we176

decompose prototype-based methods into 5 design177

elements: prototype source, transfer function, dis-178

tance function, aggregation form, and CRF module.179

This unified view enables us to compare choices in180

each design element directly. By aggregating the181

effective choices, we end with a Unified Baseline.182

Formally, given an event mention x, prototype-183
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(a) CONTAINER (b) PA-CRF (c) L-TapNet-CDF

(d) ProtoNet (e) FSLS (f) Unified baseline

Figure 2: The architectures of five existing prototype-
based methods and the unified baseline. Given event
mention x and event type y, each sub-figure depicts how
to compute the P-score(x, y). White circles: representa-
tion of predicted event hx. Purple circles: representation
of prototypes hcy (cy ∈ Cy). Yellow modules: transfer
functions. Green modules: distance functions. Blue
modules: aggregation form. Orange modules: CRF
modules. Dashed lines in (a) and (c) represent that their
CRFs are only used during inference.

based methods predict the likelihood p(y|x) from 184

P-score(x, y) for each y ∈ (E ∪ {N.A.}) 185

p(y|x) = Softmaxy∼(E∪{N.A.})P-score(x, y) 186

The general framework is as follows. Denote 187

the PLM’s output representation of event men- 188

tion x and data cy in prototype source Cy as hx 189

and hcy respectively, where h ∈ Rm and m is 190

the dimension of PLM’s hidden space. The first 191

step is to convert hx and hcy to appropriate rep- 192

resentations via a transfer function f(·). Then 193

the methods maintain either a single or multiple 194

prototypes cy’s for each event type, determined 195

by the adopted aggregation form. Third, the dis- 196

tance between f(hx) and f(hcy) (single proto- 197

type) or f(hcy)’s (multiple prototypes) is computed 198

via a distance function d(·, ·) to learn the prox- 199

imity scores P-score(x, y). Finally, an optional 200

CRF module is used to adjust P-score(x, y) for x 201

in the same sentence to model their label depen- 202

dencies. For inference, we assign the sample with 203

nearest event type in ∪y∈(E∪{N.A.})Cy , i.e. 204

ŷ(x) = argmin
y∈(E∪{N.A.})

min
cy∈Cy

d(f(hx), f(hcy)) 205

Next, we detail the five design elements: 206

Prototype source Cy (purple circles in Figure 2, 207

same below) indicates a set about the source of 208
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Table 2: Decomposing five prototype-based methods and unified baseline along design elements. "Both" in column
1 means both event mentions and label names for y are prototype sources. JSD: Jensen–Shannon divergence.M:
Projection matrix in TapNet. N (µ(h),Σ(h)): Gaussian distribution with mean µ(h) and covariance matrix Σ(h).

Method Prototype Cy Aggregation Distance d(u, v) Transfer f(h) CRF Module

ProtoNet (Snell et al., 2017) Event mentions feature ||u− v||2 h −
L-TapNet-CDT (Hou et al., 2020) Both feature −uT v/τ M h

||h|| CRF-Inference
PA-CRF (Cong et al., 2021) Event mentions feature −uT v h

||h|| CRF-PA
CONTAINER (Das et al., 2022) Event mentions score JSD(u||v) N (µ(h),Σ(h)) CRF-Inference
FSLS (Ma et al., 2022) Label name − −uT v h −

Unified Baseline (Ours) Both score + loss −uT v/τ h
||h|| −

data / information for constructing the prototypes.209

There are mainly two types of sources:210

(1) event mentions (purple circle without words):211

ProtoNet and its variants in Figure 2(b),(c),(d) addi-212

tionally split a support set Sy from training data as213

prototype source, while contrastive learning meth-214

ods in Figure 2(a) view every annotated mention as215

the source (except the query one).216

(2) Label semantics (purple ellipses with words):217

Sometimes, the label name ly is utilized as the218

source to enhance or directly construct the proto-219

types. For example, FSLS in Figure 2(e) views220

the text representation of type names as prototypes,221

while L-TapNet-CDT in Figure 2(c) utilizes both222

the above kinds of prototype sources.223

Transfer function f : Rm → Rn (yellow mod-224

ules) transfers PLM outputs into the distance space225

for prototype proximity measurement. Widely used226

transfer functions include normalization in Fig-227

ure 2(b), down-projection in Figure 2(c), reparame-228

terization in Figure 2(a), or an identity function.229

Distance function d : Rn × Rn → R+ (green230

modules) measures the distance of two transferred231

representations within the same embedded space.232

Common distance functions are euclidean distance233

in Figure 2(d) and negative cosine similarity in234

Figure 2(b),(c),(e).235

Aggregation form (blue modules) describes how236

to compute P-score(x, y) based on a single or mul-237

tiple prototype sources. Aggregation may happen238

at three levels.239

(1) feature-level: ProtoNet and its variants in Fig-240

ure 2(b),(c),(d) aims to construct a single prototype241

hc̄y for each event type y by merging various fea-242

tures, which ease the calculation P-score(x, y) =243

−d(f(hx), f(hc̄y)).244

(2) score-level: CONTAINER in Figure 2(a) views245

each data as a prototype (they have multiple proto-246

types for each type y) and computes the distance247

d(f(hx), f(hcy)) for each cy ∈ Cy. These dis-248

tances are then merged to obtain P-score(x, y). 249

(3) loss-level: Such form has multiple parallel 250

branches b for each mention x. Each branch has 251

its own P-score(b)(x, y) and is optimized with dif- 252

ferent loss components during training. Thus it 253

could be viewed as a multi-task learning format. 254

See unified baseline in Figure 2(f). 255

CRF module (orange modules) adjusts predictions 256

within the same sentence by explicitly consider- 257

ing the label dependencies between sequential in- 258

puts. The vanilla CRF (Lafferty et al., 2001) and 259

its variants in Figure 2(a),(b),(c) post additional 260

constraints into few-shot learning. 261

4 Experimental setup 262

4.1 Few-shot datasets and Evaluation 263

Dataset source. We utilize ACE05 (Doddington 264

et al., 2004), MAVEN (Wang et al., 2020) and 265

ERE (Song et al., 2015) to construct few-shot ED 266

datasets in this empirical study. Detailed statistics 267

about these three datasets are in Appendix B.1. 268

Low-resource setting. We adopt K-shot sampling 269

strategy to construct few-shot datasets for the low- 270

resource setting, i.e., sampling Ktrain and Kdev 271

samples per event type to construct the train and 272

dev sets, respectively.1 We set three (Ktrain,Kdev) 273

combinations in our evaluation: (2, 1), (5, 2) and 274

(10, 2). we follow Yang and Katiyar (2020) taking a 275

greedy sampling algorithm to approximately select 276

K samples for each event type. See Appendix B.2 277

for details and the statistics of the sampled few-shot 278

datasets. We inherit the original test set as Dtest. 279

Class-transfer setting. The few-shot datasets are 280

curated in two sub-steps: (1) Dividing both event 281

1Recent systematic research on few-shot NLP tasks (Perez
et al., 2021) is of opposition to introducing an additional dev
set for few-shot learning. We agree with their opinion but
choose to keep a very small dev set mainly for feasibility
consideration. Given the number of experiments in our empir-
ical study, it is infeasible to conduct cross-validation on every
single train set for hyperparameter search.
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types and sentences in the original dataset into282

two disjoint parts, named source dataset and target283

dataset pool, respectively. (2) Sampling few-shot284

samples from the target dataset pool to construct285

target dataset. The same sampling algorithm as286

in low-resource setting is used. Then we have the287

source dataset and the sampled target dataset. See288

Appendix B.2 for details and the statistics of the289

sampled few-shot datasets.290

Evaluation Metric We use micro-F1 score as the291

evaluation metric. To reduce the random fluctu-292

ation, the reported values of each setting are the293

averaged score and sample standard deviation, of294

results w.r.t 10 sampled few-shot datasets.295

Implementation Details See Appendix B.4.296

4.2 Evaluated methods297

We evaluate 10 representative methods, including 5298

prompt-based and 5 prototype-based methods. The299

10 methods are detailed in Appendix B.3.300

Fine-tuning To validate the effectiveness of few-301

shot methods, we also fine-tune a supervised clas-302

sifier for comparison as a trivial baseline.303

Prompt-based (1) EEQA (QA-based, Du and304

Cardie 2020), (2) EETE (NLI-based, Lyu et al.305

2021), (3) PTE (cloze task, Schick and Schütze306

2021) , (4) Text2Event (generation-based, Lu et al.307

2021), (5) DEGREE (generation, Hsu et al. 2022).308

Prototype-based (6) ProtoNet (Snell et al., 2017),309

(7) L-TapNet-CDT (Hou et al., 2020), (8) PA-310

CRF (Cong et al., 2021), (9) CONTAINER (Das311

et al., 2022), (10) FSLS (Ma et al., 2022). See312

Table 2 and Figure 2 for more details.313

5 Results: Low-resource Learning314

5.1 Overall comparison315

We first overview the results of the 10 methods316

under the low-resource setting in Table 3.317

Fine-tuning. Despite its simpleness, fine-tuning318

achieves acceptable performance. In particular, it is319

even comparable to the strongest existing methods320

on MAVEN dataset (only being 1.1% and 0.5%321

less under 5-shot and 10-shot settings). One possi-322

ble reason that fine-tuning is good on MAVEN is323

that MAVEN has 168 event types, much larger than324

others. When the absolute number of samples is rel-325

atively large, PLMs might capture implicit inter-326

actions among different event types, even though327

the samples per event type are limited. When the328

sample number is scarce, however, fine-tuning is329

much poorer than existing competitive methods330

ProtoNet (before adjust)
ProtoNet (after adjust)

CONTAINER (before adjust)
CONTAINER (after adjust)

FSLS (before adjust)
FSLS (after adjust)
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Figure 3: Results of existing methods before (dashed
lines) and after (solid lines) adjustment that substitute
their transfer and distance functions to appropriate ones.
See full results in Table 8.

(see ACE05). Thus, we validate the necessity and 331

progress of existing few-shot methods. 332

Prompt-based methods. Prompt-based methods 333

deliver much poorer results than expected, even 334

compared to fine-tuning , especially when the sam- 335

ple number is extremely scarce. It shows designing 336

effective prompts for ED tasks with very limited 337

annotations is still challenging. We speculate it is 338

due to the natural gap between ED tasks (sequence 339

labeling or span extraction) and pre-training tasks 340

in PLMs (sentence classification or generation). 341

Among prompt-based methods, PTE and DE- 342

GREE achieve relatively robust performance un- 343

der all settings. DEGREE is advantageous when 344

the sample size is small, but it cannot well han- 345

dle a dataset with many event types like MAVEN. 346

Note that, DEGREE enumerates event types to 347

query their potential triggers; both efficiency and 348

effectiveness drop with the increasing number of 349

event types. When sample sizes are relatively large, 350

EEQA shows competitive performance as well. 351

5.2 Prototype-based methods 352

Since prototype-based methods have overall better 353

results, we zoom into the design elements to search 354

for effective choices based on the unified view. 355

Transfer function, Distance function, and CRF. 356

We compare combinations of transfer and distance 357

functions and four variants of CRF modules in Ap- 358

pendices C.1 and C.2. We make two findings: (1) A 359

scaled coefficient in the distance function achieves 360

better performance with the normalization transfer 361

function. (2) There is no significant difference be- 362

tween models with or without CRF modules. Based 363

on these findings, we observe a significant improve- 364

ment in five existing methods by simply substitut- 365

ing their d and f for more appropriate choices, see 366

Figure 3 and Appendix C.1. We would use these 367

new transfer and distance functions in further anal- 368

ysis and discussion. 369

Prototype Source. We explore whether label se- 370
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Table 3: Overall results of fine-tuning method, 10 existing few-shot ED methods, and the unified baseline under
low-resource setting. The best results are in bold face and the second best are underlined. The results are averaged
over 10 repeated experiments, and sample standard deviations are in the round bracket. The standard deviations are
derived from different sampling few-shot datasets instead of random seeds. Thus high standard deviation values
do not mean that no significant difference among these methods.

Method ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

Fine-tuning 33.3(4.4) 42.5(4.6) 48.2(1.5) 40.8(4.7) 52.1(0.7) 55.7(0.2) 32.9(2.1) 39.8(2.9) 43.6(1.7)

Pr
om

pt
-b

as
ed EEQA 24.1(12.2) 43.1(2.7) 48.3 (2.4) 33.4(9.2) 48.1(0.9) 52.5(0.5) 13.7(8.6) 34.4(1.7) 39.8(2.4)

EETE 15.7(0.6) 19.1(0.3) 21.4(0.2) 28.9(4.3) 30.6(1.3) 32.5(1.1) 10.6(2.3) 12.8(2.2) 13.7(2.8)
PTE 38.4(4.2) 42.6(7.2) 49.8(1.9) 41.3(1.4) 46.0(0.6) 49.5(0.6) 33.4(2.8) 36.9(1.3) 37.0(1.8)
UIE 29.3(2.9) 38.3(4.2) 43.4(3.5) 33.7(1.4) 44.4(0.3) 50.5(0.5) 19.7(1.5) 30.8(1.9) 34.1(1.6)
DEGREE 40.0(2.9) 45.5(3.2) 48.5(2.1) 43.3(1.0) 43.4(5.9) 45.5(4.3) 31.3(3.1) 36.0(4.6) 40.7(2.2)

Pr
ot

ot
yp

e-
bs

d ProtoNet 38.3(5.0) 47.2(3.9) 52.3(2.4) 44.5(2.2) 51.7(0.6) 55.4(0.2) 31.6(2.7) 39.7(2.4) 44.3(2.3)
PA-CRF 34.9(7.2) 48.1(3.9) 51.7(2.6) 44.8(2.2) 51.8(1.0) 55.3(0.4) 30.6(2.8) 38.0(3.9) 40.4(2.0)
L-TapNet-CDT 43.2(3.8) 49.8(2.9) 53.5(3.4) 48.6(1.2) 53.2(0.4) 56.1(0.9) 35.6(2.6) 42.7(1.7) 45.1(3.2)
CONTAINER 40.1(3.8) 47.7(3.3) 50.1(1.8) 44.2(1.4) 50.8(0.9) 52.9(0.3) 34.4(3.6) 39.3(1.9) 44.5(2.3)
FSLS 39.2(3.4) 47.5(3.2) 51.9(1.7) 46.7(1.2) 51.5(0.5) 56.2(0.2) 34.5(3.1) 39.8(2.5) 44.0(2.0)

Unified Baseline 46.0(4.6) 54.4(2.6) 56.7(1.5) 49.5(1.7) 54.7(0.8) 57.8(1.2) 38.8(2.4) 45.5(2.8) 48.4(2.6)
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Figure 4: Results of three approaches aggregating label
semantics and event mentions on MAVEN and ERE
few-shot datasets. Lf: feature-level. Ls: score-level. Ll:
loss-level. See full results on three datasets in Table 9.

mantic and event mentions are complementary pro-371

totype sources, i.e., whether utilizing both achieves372

better performance than either one. We choose373

ProtoNet and FSLS as base models which contain374

only a single kind of prototype source (mentions375

or labels). Then we combine the two models using376

three aggregating forms mentioned in Section 3377

and show their results in Figure 4. Observe that:378

(1) leveraging label semantics and mentions as pro-379

totype sources simultaneously improve the perfor-380

mance under almost all settings, and (2) merging381

the two kinds of sources at loss level is the best382

choice among three aggregation alternatives.383

Contrastive or Prototypical Learning. Next, we384

investigate the effectiveness of contrastive learning385

(CL, see CONTAINER) and prototypical learning386

(PL, see ProtoNet and its variants) for event men-387

tions. We compare three label-enhanced (since388

we have validated the benefits of label semantics)389

methods aggregating event mentions with different390

approaches. (1) Ll-ProtoNet: the strongest method391

utilizing PL in last part. (2) Ll-CONTAINER: the392

method utilizing in-batch CL as CONTAINER393

Ll−ProtoNet Ll−CONTAINER Ll−MoCo

44
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54
56

2 5 10
ACE05

F
1 

sc
or

e

48

50

52

54

56

58

2 5 10
MAVEN

F
1 

sc
or

e
Figure 5: Results of (label-enhanced) PL and CL meth-
ods on ACE05 and MAVEN few-shot datasets. See full
results on three datasets in Table 10.

does. (3) Ll-MoCo: the method utilizing CL with 394

MoCo setting (He et al., 2020). The in-batch CL 395

and MoCo CL are detailed in Appendix C.4. 396

Figure 5 suggests CL-based methods outperform 397

Ll-ProtoNet. There are two possible reasons: (1) 398

CL has higher sample efficiency since every two 399

samples interact during training. PL, however, fur- 400

ther splits samples into support and query set dur- 401

ing training; samples within the same set are not in- 402

teracted with each other. (2) CL adopts score-level 403

aggregation while PL adopts feature-level aggrega- 404

tion. We find the former also slightly outperforms 405

the latter in Figure 4. We also observe that MoCo 406

CL usually has a better performance than in-batch 407

CL when there exists complicated event types (see 408

MAVEN), or when the sample number is relatively 409

large (see ACE 10-shot). We provide a more de- 410

tailed explanation in Appendix C.4. 411

5.3 The unified baseline 412

Here is a summary of the findings: (1) Scaled eu- 413

clidean or cosine similarity as distance measure 414

with normalized transfer benefits existing methods. 415
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(2) CRF modules show no improvement in perfor-416

mance. (3) Label semantic and event mentions are417

complementary prototype sources, and aggregating418

them at loss-level is the best choice. (4) As for419

the branch of event mentions, CL is more advanta-420

geous than PL for few-shot ED tasks. (5) MoCo421

CL performs better when there are a good number422

of sentences, otherwise in-batch CL is better.423

Based on these findings, we develop a simple424

but effective unified baseline as follows. We uti-425

lize both label semantic and event mentions as426

prototype sources. We aggregate two types of427

sources at loss-level, while merge multiple event428

mentions at score-level and adopt CL. Specifically,429

we assign two branches with their own losses for430

label semantic and event mentions respectively:431

L = Llabel + Lmention. For label semantic branch,432

we follow the design of FSLS. For event men-433

tion branch, we inherit CONTAINER except minor434

change: if the total sentence number in train set is435

smaller than 128, we take MoCo CL rather than in-436

batch CL. Both two branches adopt scaled cosine437

similarity as distance function and normalization438

as transfer function, and we do not add any CRF439

modules. The diagram of the unified baseline is440

illustrated in Figure 2(f) and its performance is441

shown in Table 3. Clearly, unified baseline out-442

performs all existing methods significantly under443

every low-resource setting, on all datasets.444

6 Results: Class-transfer Learning445

In this section, we evaluate existing methods and446

the unified baseline under class-transfer setting.447

6.1 Prompt-based methods448

We first focus on 4 existing prompt-based methods449

and explore whether they could smoothly trans-450

fer event knowledge from a preexisting (source)451

schema to a new (target) schema. We show re-452

sults in Figure 6 and Appendix D.1. The findings453

are summarized as follows. (1) The transfer of454

knowledge from source event types to target event455

types facilitates the model prediction under most456

scenarios. It verifies that an appropriate prompt457

usually benefits inducing the knowledge learned458

in PLMs. (2) However, such improvement gradu-459

ally fades with the increase of sample number from460

either source or target schema. For example, the 5-461

shot v.s 10-shot performance for PTE and UIE are462

highly comparable. We speculate these prompts act463

more like a catalyst: they mainly teach model how464
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Figure 6: Class-transfer results of 4 prompt-based meth-
ods. We plot fine-tuning (red dash lines), and best and
second best prototype-based methods (black solid/dash
lines) for comparison. See full results in Table 11.

to induce knowledge from PLMs themselves rather 465

than learn new knowledge from samples. Thus 466

the performance is at a standstill once the sample 467

number exceeds some threshold. (3) Overall, the 468

performance of prompt-based methods remains in- 469

ferior to prototype-based methods in class-transfer 470

setting (see black lines in Figure 6). 471

6.2 Prototype-based methods 472

We further explore the transfer ability of exist- 473

ing prototype-based methods and unified baseline2. 474

Thanks to the unified view, we conduct a more 475

thorough experiment that enumerates all possible 476

combinations of models used in the source and tar- 477

get domain, to assess if the generalization ability 478

affects transferability. That is, the parameters in 479

PLMs will be shared from source to target model. 480

We show results in Figure 7 and Appendix D.2. 481

1. Is transfer learning effective for prototype-based 482

methods? It depends on the dataset (compare the 483

first row with other rows in each column). For 484

ACE05 and MAVEN datasets, the overall answer is 485

yes. Contrary to our expectation, transfer learning 486

affects most target models on ERE dataset nega- 487

tively, especially for 2- and 5-shot settings. 488

2. Do prototype-based methods perform better than 489

simple fine-tuning? It depends on whether fine- 490

tuning the source or target model. When fine-tuning 491

2Transfer and distance functions in all methods are substi-
tuted to appropriate ones and CRF modules are removed, as
described in Section 5.2
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(b1) MAVEN 2-shot (b2) MAVEN 5-shot (b3) MAVEN 10-shot

(a1) ACE05 2-shot (a2) ACE05 5-shot (a3) ACE05 10-shot

(c1) ERE 2-shot (c2) ERE 5-shot (c3) ERE 10-shot

Figure 7: Class-transfer results of fine-tuning methods and four prototype-based methods on three datasets. For
each matrix, row and column represent the source and target models, respectively. For example, the value in top-left
corners of every matrix means the performance when directly finetuning a model in target dataset (source: N.A. /
target: Fine-tuning). Each value is the results averaged over 10 repeated experiments. See full results in Table 12.

a source model (row 2), it sometimes achieves com-492

parable even better performance than the prototype-493

based methods (last 4 rows). When fine-tuning a494

target model (column 1), however, the performance495

drops significantly. Thus, we speculate that pow-496

erful prototype-based methods are more neces-497

sary in target domain than source domain.498

3. Is the choice of prototype-based methods impor-499

tant? Yes. When we select inappropriate prototype-500

based methods, they could achieve worse perfor-501

mance than simple fine-tuning and sometimes even502

worse than models without class transfer. For exam-503

ple, CONTAINER and L-TapNet are inappropriate504

source model for ACE05 dataset.505

4. Do the same source and target models benefit the506

event-related knowledge transfer? No. The figures507

show the best model combinations often deviate508

from the diagonals. It indicates that different source509

and target models sometimes achieve better results.510

5. Is there a source-target combination performing511

well on all settings? Strictly speaking, the answer512

is No. Nevertheless, we find that adopting FSLS513

as the source model and our unified baseline as the514

target model is more likely to achieve competitive 515

(best or second best) performance among all alter- 516

natives. It indicates that (1) the quality of different 517

combinations show kinds of tendency though no 518

consistent conclusion could be drawn. (2) a model 519

with moderate inductive bias (like FSLS) might be 520

better for the source dataset with abundant sam- 521

ples. Then our unified baseline could play a role 522

during the target stage with limited samples. 523

7 Conclusion 524

We have conducted a comprehensive empirical 525

study comparing ten representative methods un- 526

der unified low-resource and class-transfer set- 527

tings. For systematic analysis, we proposed a 528

unified framework of promising prototype-based 529

methods. Based on it, we presented a simple 530

and effective baseline that outperforms all existing 531

methods significantly under low-resource setting, 532

and is an ideal choice as the target model under 533

class-transfer setting. In the future, we aim to 534

explore how to leverage unlabeled corpus for few- 535

shot ED tasks, such as data augmentation, weakly- 536

supervised learning, and self-training. 537
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A Related Work878

A.1 Taxonomy of task settings879

Various solutions have been proposed to improve880

the generalization and transfer abilities of few-shot881

ED methods. There exists a bottleneck: the models882

adopt very different tasks and experimental settings.883

We categorize existing task settings to four cases as884

shown in Figure 8: low-resource (LR), class trans-885

fer (CL), episode learning (EL), and task transfer886

(TT) settings. LR is used to evaluate the gener-887

alization ability, learning rapidly with only few888

examples in target domain. The other settings (CL,889

EL, and TT) evaluate the transfer ability, adapting890

a model trained with a preexisting schema with891

abundant samples, to a new (target) schema with892

only few examples. Based on the pros and cons pre-893

sented here, we adopt the low-resource and class894

transfer settings in our empirical study.895

1. Low-resource setting assesses the generaliza-896

tion ability of models by (1) utilizing only few897

samples during training, (2) evaluating on the real898

and rich test dataset. Conventionally, the few-shot899

|Dtrain| and |Ddev| are downsampled from a full900

dataset by two main strategies: (1) K-shot sam-901

pling which picks out K samples for each event902

type, or (2) ratio sampling which picks out partial903

sentences with a fixed ratio. We view both sam-904

pling strategies as reasonable and adopt K-shot905

sampling in this work.906

The surging development of PLMs makes train-907

ing with only few (or even zero) examples possible,908

and achieves acceptable performance (Devlin et al.,909

2019; Raffel et al., 2020; Brown et al., 2020). Ac-910

cordingly, a series of prompt-based methods (Du911

and Cardie, 2020; Liu et al., 2020; Feng et al., 2020;912

Paolini et al., 2021; Lu et al., 2021; Hsu et al., 2022;913

Li et al., 2022b) adopt the low-resource setting to914

train and evaluate their models.915

2. Class transfer setting assesses the transferabil-916

ity of a model by providing abundant samples in917

the source (preexisting) schema and scarce sam-918

ples in target (new) schema. It trains a classifier in919

source schema and then transfers such classifier to920

the target schema with only few examples.921

Such setting has been applied since an early922

stage (Bronstein et al., 2015; Peng et al., 2016;923

Zhang et al., 2021), and is often used together with924

low-resource setting to additionally evaluate trans-925

ferability of the models (Paolini et al., 2021; Lu926

et al., 2021; Hsu et al., 2022).927

3. Episode learning setting is a classical setting928

in few-shot Computer Vision (CV) tasks and has 929

been adapted to NLP tasks. It has two phases, meta- 930

training and meta-testing, each of which consists of 931

multiple episodes. Each episode is a few-shot prob- 932

lem with its own train (support) and test (query) 933

sets and event-type classes. Since the sets in each 934

episode are sampled uniformly having K different 935

classes and each class having N instances, episode 936

learning is also known as N -way-K-shot classifi- 937

cation. 938

Many existing few-shot ED methods adopt this 939

setting (Lai et al., 2020a,b; Deng et al., 2020; Cong 940

et al., 2021; Lai et al., 2021; Chen et al., 2021). 941

However, we argue that episode learning assumes 942

an unrealistic scenario. First, during the meta- 943

training stage, a large number of episodes is needed, 944

for example, 20,000 in Cong et al. (2021). Though 945

the label sets of meta-training and meta-testing 946

stages are disjoint, class transfer setting is more 947

reasonable when there are many samples in an- 948

other schema. Second, tasks with episode learning 949

are evaluated by the performance on samples of the 950

test (query) set in the meta-testing phase. The test 951

sets are sampled uniformly, leading to a significant 952

discrepancy with the true data distribution in many 953

NLP tasks. The absence of sentences without any 954

events further leads to distribution distortion. Fur- 955

ther, each episode contains samples with only K 956

different classes, where K is usually much smaller 957

than the event types in the target schema. All these 958

factors may lead to an overestimation on the ability 959

of few-shot learning systems. For above reasons, 960

we do not consider this setting in our experiments. 961

4. Task transfer setting is very similar to class 962

transfer. The main difference is that it relaxes the 963

constraint in source phase, from the same task with 964

different schema to different tasks.3 The develop- 965

ment of this setting also heavily relies on the suc- 966

cess of PLMs. Liu et al. (2020), Feng et al. (2020) 967

and Lyu et al. (2021) leverage model pre-trained 968

with SQuAD 2.0 (QA dataset, Rajpurkar et al. 969

2018) or MNLI (NLI dataset, Williams et al. 2018) 970

to improve the performance of zero-/few-shot ED 971

models. Paolini et al. (2021) and Lu et al. (2022) 972

recently construct unified generation frameworks 973

on multiple IE tasks. Their experiments also reveal 974

3Generally speaking, all methods using PLMs belong to
this setting in which the source task is exactly the pre-training
task of PLMs, masked- or next-word prediction. In this work,
we limit the discussion of task transfer to which the source task
is another downstream task rather than the general pre-training
task in PLMs.
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Figure 8: Four few-shot settings summarized from previous work. Different colors represent different event types.
Different shapes represent samples with different tasks.

that pre-training on these tasks benefits few-shot975

ED. Though task transfer setting is reasonable and976

promising, we do not include this setting out of its977

extreme diversity and complexity. That is, there978

are (1) too many candidate tasks as pre-training979

tasks, and (2) too many optional datasets for each980

pre-training task. Thus it is almost infeasible to981

conduct a comprehensive empirical study on task982

transfer setting.983

A.2 Taxonomy of methods984

We categorize existing methods to two main985

classes, prompt-based methods and prototype-986

based methods, and list them in Table 1. Here we987

give a detailed introduction of existing methods.988

Note that in our empirical study, we also include989

some methods which are originally developed for990

similar few-shot tasks but can be easily adapted to991

ED. We leave a special subsection for them.992

Few-shot ED methods. Due to the prohibitively993

cost for labeling amounts of event mentions, few-994

shot ED is a long-standing topic in event-related995

research community. The proposed solutions are996

mainly in two branches. The first branch, prototype-997

based 4 methods, is a classical approach on few-998

shot learning. It defines a single or multiple999

prototypes for each event type representing the1000

label-wise properties. It then learns the embed-1001

ding representation of each sample via shorten-1002

ing the distance from its corresponding prototypes1003

given a distance/similarity metric. Bronstein et al.1004

(2015) and Peng et al. (2016) leverage the seed1005

instances in annotation guideline and mine the1006

lexical/semantic features of trigger words to ob-1007

tain the prototypes. Zhang et al. (2021) inherit1008

such paradigm and define prototypes as the aver-1009

age contextualized embeddings of the related trig-1010

ger words weakly labeled in external corpus. With1011

the help AMR Parsing, Huang et al. (2018) addi-1012

4Different from other sections, here we adopt a chronolog-
ical order and firstly introduce prototype-based methods.

tionally consider the graph structures of preexist- 1013

ing schema as prototypes, and encode AMR graph 1014

representation of each event mention as represen- 1015

tations. Deng et al. (2020) introduces Dynamic 1016

Memory Network (DMN), while Lai et al. (2020a) 1017

and Lai et al. (2021) introduce two different aux- 1018

iliary losses improving intra-/inter-consistency of 1019

different episodes to facilitate their prototype repre- 1020

sentations. Cong et al. (2021) amortize CRF mod- 1021

ule by modeling the sequence dependency (transi- 1022

tion probability) of different event types with their 1023

prototypes. Recently Chen et al. (2021) leverage 1024

causal inference and intervene on context via back- 1025

door adjustment during training to reduce overfit- 1026

ting of trigger words for more robust prototypes. 1027

The other branch, prompting methods, is made 1028

possible with the surge of development in PLMs. 1029

Given a specific task, prompting methods map the 1030

task format to a new format with which the PLMs 1031

are more familiar, such as masked word predic- 1032

tion (Schick and Schütze, 2021) and sequence gen- 1033

eration (Raffel et al., 2020; Brown et al., 2020). 1034

Such format conversion narrows down the gaps 1035

between pre-training tasks and downstream tasks, 1036

which is beneficial for inducing learned knowledge 1037

from PLMs with limited annotations. As for event 1038

detection (and many other IE tasks), however, it 1039

is not trivial to design a smooth format conver- 1040

sion. One simple idea is leveraging one single 1041

template to prompt both event types and their trig- 1042

gers simultaneously (Paolini et al., 2021; Lu et al., 1043

2021). However, such prompting methods show 1044

performance far from satisfactory, especially when 1045

they are not enhanced by two-stage pre-training 1046

and redundant hinting prefix (Lu et al., 2022). An- 1047

other natural idea is enumerating all legal spans and 1048

querying the PLMs whether each span belongs to 1049

any class, or vice versa (Hsu et al., 2022). A major 1050

limitation here is the prohibitively time complex- 1051

ity, particularly when there are many event types. 1052

Combining the merits of prompting methods and 1053
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conventional fine-tuning methods is another solu-1054

tion. Du and Cardie (2020) and Liu et al. (2020) use1055

QA/MRC format to prompt the location of trigger1056

words, while still predicting their event types via1057

an additional linear head. Lyu et al. (2021) first seg-1058

ment one sentence into several clauses and view the1059

predicates of clauses as trigger candidates. Then1060

they leverage NLI format to query the event types1061

of these candidates. Recently, Li et al. (2022b)1062

propose a strategy combining Pattern-Exploiting1063

Training (PET, Schick and Schütze 2021) and CRF1064

module. Initially, they conduct sentence-level event1065

detection determining whether one sentence con-1066

tains any event types or not. For each identified1067

event type, they further use a linear chain CRF to1068

locate the trigger word.1069

Few-shot NER/ST methods. There are several1070

models which are originally designed for similar1071

tasks like Named Entity Recognition (NER) and1072

Slot Tagging (ST) but could be applied to ED task.1073

Similar to ED methods, one classical paradigm1074

in NER is utilizing ProtoNet (Snell et al., 2017)1075

and its variants to learn one representative pro-1076

totypes for each class type with only few exam-1077

ples. Fritzler et al. (2019) firstly combine Pro-1078

toNet and CRF module to solve NER tasks. Hou1079

et al. (2020) propose L-TapNet-CDT, which en-1080

hances TapNet (Yoon et al., 2019), a variant of1081

ProtoNet, with textual label names and achieves1082

great performance among several ST tasks. Both1083

methods construct prototypes by computing the1084

average embeddings of several sampled examples1085

(support set). Yang and Katiyar (2020) propose a1086

simpler algorithm, leveraging supervised classifier1087

learned in preexisting schema as feature extractor1088

and adopting nearest neighbors classification dur-1089

ing inference, and show competitive performance1090

in class transfer setting for few-shot NER task. Das1091

et al. (2022) introduce contrastive learning into few-1092

shot NER and their proposed CONTAINER actu-1093

ally could be viewed as a special prototype-based1094

method with multiple prototypes rather than one.1095

Ma et al. (2022) recently developed a simple but1096

effective method on few-shot NER by constructing1097

prototypes only with their label names.1098

B Datasets and Models1099

We curate few-shot datasets used in this emprical1100

study from three full and commonly-used datasets:1101

ACE05 (Doddington et al., 2004), MAVEN (Wang1102

et al., 2020) and ERE (Song et al., 2015).1103

Table 4: Statistics of three full ED datasets.

Dataset ACE05 MAVEN ERE

#Event type 33 168 38

#Sents Train 14,024 32,360 14,736
Test 728 8,035 1,163

#Mentions Train 5,349 77,993 6,208
Test 424 18,904 551

B.1 Full dataset 1104

ACE05 is a joint information extraction dataset, 1105

with annotations of entities, relations, and events. 1106

We only use its event annotation for ED task. It 1107

contains 599 English documents and 33 event types 1108

in total. We split documents in ACE05 following 1109

previous work (Li et al., 2013) to construct train 1110

and test dataset respectively. MAVEN is a newly- 1111

built large-scale ED dataset with 4480 documents 1112

and 168 event types. We use the official split for 1113

MAVEN dataset. ERE is another joint information 1114

extraction dataset having a similar scale as ACE05 1115

(458 documents, 38 event types). We follow the 1116

preprocessing procedure in Lin et al. (2020). Ta- 1117

ble 4 reports detailed statistics of the three datasets. 1118

ED could be viewed as either a span classifi- 1119

cation or a sequence labeling task. In our work, 1120

we adopt span classification paradigm for MAVEN 1121

dataset since it provides official spans for candi- 1122

date triggers (including negative samples). For the 1123

other two datasets, we follow sequence labeling 1124

paradigm to predict the event type word by word. 1125

B.2 Dataset construction 1126

This section introduces how we construct few-shot 1127

datasets from the three full ED datasets. 1128

Low-resource setting. We downsample sentences 1129

from original full training dataset to construct 1130

Dtrain and Ddev, and inherit the original test set as 1131

the unified Dtest. For Dtrain and Ddev, we adopt 1132

K-shot sampling strategy that each event type has 1133

(at least) K samples. Since our sampling is at 1134

sentence-level and each sentence could have multi- 1135

ple events, the sampling is NP-complete5 and un- 1136

likely to find a practical solution satisfying exactly 1137

K samples for each event type. Therefore, we fol- 1138

low Yang and Katiyar (2020) and Ma et al. (2022) 1139

and adopt a greedy sampling algorithm to select 1140

sentences, as shown in Alg. 1. Note that the actual 1141

sample number of each event type can be larger 1142

5The Subset Sum Problem, a classical NP-complete prob-
lem, can be reduced to this sampling problem.
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than K under this sampling strategy. The statistics1143

of the curated datasets are listed in Table 5 (top).1144

Algorithm 1 Greedy Sampling

Require: shot number K, original full dataset
D = {(X,Y)} tagged with label set E

1: Sort E based on their frequencies in {Y} as
an ascending order

2: S ← ϕ, Counter← dict()
3: for y ∈ E do
4: Counter(y)← 0
5: end for
6: for y ∈ E do
7: while Counter(y) < K do
8: Sample (X,Y) ∈ D s.t.∃j, yj = y
9: D ← D\(X,Y)

10: Update Counter (not only y but all
event types in Y)

11: end while
12: end for
13: for s ∈ S do
14: S ← S\s and update Counter
15: if ∃y ∈ E, s.t. Counter(y) < K then
16: S ← S

⋃
s

17: end if
18: end for
19: return S

Class-Transfer setting This setting has a more1145

complicated curation process, and roughly consists1146

of two sub-steps: (1) Dividing both event types and1147

sentences in the original dataset into two disjoint1148

parts named source dataset and target dataset pool.1149

(2) Using the entire source dataset, and selecting1150

few-shot samples from the target pool to construct1151

target set.1152

For step (1), we follow Huang et al. (2018) and1153

Chen et al. (2021) to pick out the most frequent 10,1154

120, and 10 event types from ACE05, MAVEN and1155

ERE dataset respectively, as E(S). The remaining1156

types are E(T ). Then we take sentences containing1157

any annotations in E(T ) to D
(T )
full for enriching the1158

sampling pool of target dataset as much as possible,1159

D
(T )
full = {(X, R(Y ;E(S)))|(X,Y ) ∈ D,∃yj ∈ E(T )}1160

where R(Y ;E(S) represents the relabeling op-1161

eration that substituting any yj ∈ E(S)) to N.A.1162

to avoid information leakage. The remaining sen-1163

tences are collected as D(S).1164

D(S) = {(X, R(Y ;E(T )))|(X,Y ) /∈ D
(T )
full}1165

Table 5: The statistics of curated datasets for few-shot
ED tasks. Top: Low-resource setting. Bottom: Class
transfer setting. We set different random seeds and
generate 10 few-shot sets for each setting. We report
their average statistics.

Low-resource # Labels # Sent # Event # Avg shot

ACE05
2-shot

33
47.7 76.4 2.32

5-shot 110.7 172.2 5.22
10-shot 211.5 317.5 9.62

MAVEN
2-shot

168
152.6 530.1 3.16

5-shot 359.6 1226.3 7.30
10-shot 705.1 2329.2 13.86

ERE
2-shot

38
43.6 108.9 2.87

5-shot 102.5 249.9 6.58
10-shot 197.1 472.3 12.43

Class-transfer # Labels # Sent # Event # Avg shot

ACE05
2-shot

23
37.1 50.2 2.18

5-shot 84.6 113.0 4.91
10-shot 159.8 209.9 9.13

MAVEN
2-shot

48
84.3 97.4 2.03

5-shot 211.3 236.6 4.93
10-shot 417.3 453.6 9.45

ERE
2-shot

28
39.7 66.1 2.36

5-shot 95.0 153.5 5.48
10-shot 182.5 291.0 10.39

For step (2), we adopt the same strategy as low- 1166

resource setting to sample K-shot D(T )
train and D

(T )
dev 1167

from target sampling pool D(T )
full. Statistics of cu- 1168

rated datasets are summarized in Table 5 (bottom). 1169

B.3 Existing methods 1170

We conduct our empirical study on ten represen- 1171

tative existing methods. Five of them are prompt- 1172

based and the other five are prototype-based. 1173

1. Prompt-based methods leverage the rich knowl- 1174

edge in PLMs by converting specific downstream 1175

tasks to the formats that PLMs are more familiar 1176

with. We give examples about prompt format of 1177

the five prompt-based methods in Table 6. 1178

EEQA (Du and Cardie, 2020): a QA/MRC-based 1179

method which first extracts the trigger word with a 1180

natural language query then classifies its type with 1181

an additional classifier. 1182

EDTE (Lyu et al., 2021): a NLI-based method 1183

which enumerates all event types and judges 1184

whether a clause is entailed by any event. The 1185

clause is obtained by SRL processing and the trig- 1186

ger candidate is the predicate of each clause. 1187

PTE (Schick and Schütze, 2021): a cloze-style 1188

prompt method which enumerates each word in the 1189

sentence and predicts whether it is the trigger of 1190

any event type.6 1191

6We also notice a recently-proposed cloze-style method
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UIE (Lu et al., 2022): a generation based method1192

that takes in a sentence and outputs a filled univer-1193

sal template, indicating the trigger words and their1194

event types in the sentence.1195

DEGREE (Hsu et al., 2022): also adopts a gen-1196

eration paradigm but it enumerates all event types1197

by designing type-specific template, and outputs1198

related triggers (if have).1199

2. Prototype-based methods predict an event type1200

for each word or span by measuring the representa-1201

tion proximity between the samples and the proto-1202

types for each event type.1203

Prototypical Network (Snell et al., 2017): a clas-1204

sical prototype-based method originally developed1205

for episode learning. Huang et al. (2021) adapt1206

it to low-resource setting via further splitting the1207

training set into support set Sy and query set Qy.1208

The prototype c̄y of each event type is constructed1209

by averaged PLM representations of samples in Sy.1210

hc̄y =
1

Sy

∑
s∈Sy

hs1211

For samples x in Qy during training, or in the test1212

set during inference, P-score(x, y) is defined as the1213

negative euclidean distance between h(x) and c̄y.1214

P-score(x, y) = −||hx − hc̄y ||21215

L-TapNet-CDT (Hou et al., 2020): a ProtoNet-1216

based method with three main improvements: (1) it1217

introduces TapNet, a variant of ProtoNet. TapNet’s1218

main difference from ProtoNet lies in a projection1219

space M analytically constructed. The distance1220

are computed in the subspace spanned byM.1221

P-score(x, y) = −||M(hx − hc̄y)||21222

(2) the basis in column space of M⊥ is aligned1223

with label semantic, thusM(E) is label-enhanced.1224

(3) a collapsed dependency transfer (CDT) module1225

is used solely during inference stage to scale the1226

event-type score.1227

P-score(x, y)← P-score(x, y) + TRANS(y)1228

PA-CRF (Cong et al., 2021): a ProtoNet-based1229

method with a CRF module as well. Different1230

PILED (Li et al., 2022b), that is specially designed for few-
shot ED task. However, the authors have not released their
source code and we fail to reproduce the same result reported
in their paper. Thus we do not include this method to the
unified comparison at the time of paper writing.

from CDT, however, the transition scores are ap- 1231

proximated between event types based on the their 1232

prototypes and learned during training. 1233

FSLS (Ma et al., 2022): a recently proposed few- 1234

shot NER method that generalizes well to ED task. 1235

The prototype of each event type is not constructed 1236

from support set Sy but from the label semantic, i.e. 1237

the PLM representation of the label name. 1238

e = Label_name(y)

P-score(x, y) = hTxhe
1239

CONTAINER (Das et al., 2022): a contrastive 1240

learning approach. We view it as a generalized 1241

ProtoNet-based method since both of their moti- 1242

vations are to pull together the representations of 1243

samples with same event types. Different from Pro- 1244

toNet, there is no explicit division between support 1245

set and query set during training process. Instead 1246

each sample acts as query and other samples as 1247

support samples. For example, given sample x 1248

with event type e, its special supported set can be 1249

viewed as: 1250

Sy(x) = {x′|(x′, y′) ∈ D, y′ = y, x′ ̸= x} 1251

Then its score related to e is calculated as the aver- 1252

age distance with samples in Sy(x). 1253

sy(x) =

∑
x′∈Sy(x)

exp(−d(hx, hx′))/|Sy(x)|∑
y′∈E

∑
x′∈Sy′ (x)

exp(−d(hx, hx′))
1254

B.4 Implementation Details 1255

We unify PLMs in each method as much as 1256

possible for a fair comparison in our empirical 1257

study. Specifically, we use RoBERTa-base (Liu 1258

et al., 2019) for all prototype-based methods and 1259

three non-generation prompt-based methods. How- 1260

ever, we keep the method’s original PLM for two 1261

prompt-based methods with generation prompt, 1262

UIE (T5-base, Raffel et al. 2020) and DEGREE 1263

(BART-large, Lewis et al. 2020). We observe 1264

their performance collapses with smaller PLMs. 1265

For all methods, we initialize their pre-trained 1266

weights and further train them using Huggingface 1267

library.7 Each experiment is run on single NVIDIA- 1268

V100 GPU, and the final reported performance 1269

for each setting (e.g., ACE 2-shot) is the averaged 1270

result w.r.t ten distinct few-shot training datasets 1271

which are sampled with different random seeds. We 1272

further detail the implementation of all methods. 1273

7https://huggingface.co/
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Table 6: Prompt examples for different methods based on a sentence example X: The current government was formed
in October 2000, in which the word formed triggering an Start-Org event. The underline part in UIE prompt is their
designed Structured Schema Instructor (SSI), and the DESCRIPTION(y) in DEGREE prompt is a description about
event type y ∈ E written in natural languages. We refer readers for their original paper in details.

Method Prompt Input Output

EEQA (Du and Cardie, 2020) X. What is the trigger in the event? formed.

EDTE
(Lyu et al., 2021)

Premise: X. Hypothesis: This text is about a Start-Org event. Yes.
· · · · · ·

Premise: X. Hypothesis: This text is about an Attack event. No.

PTE
(Schick and Schütze, 2021)

X. The word formed triggers a/an [MASK] event. Start-Org
· · · · · ·

X. The word current triggers a/an [MASK] event. N.A.

UIE (Lu et al., 2022) <spot> Start-org <spot> Attack <spot> ... <spot>. X. (Start-Org: formed)

DEGREE
(Hsu et al., 2022)

X. DESCRIPTION(Start-Org). Event trigger is [MASK]. Event trigger is formed
· · · · · ·

X. DESCRIPTION(Attack). Event trigger is [MASK]. Event trigger is N.A.

1. Prompt-based methods We keep all other hy-1274

perparameters the same as in their original papers,1275

except learning rates and epochs. We grid-search1276

best learning rates in [1e-5, 2e-5, 5e-5, 1e-4] for1277

each setting. As for epochs, we find the range of1278

appropriate epochsis highly affected by the prompt1279

format. Therefore we search for epochs method by1280

method without a unified range.1281

EEQA (Du and Cardie, 2020): We use their orig-1282

inal code8 and train it on our datasets.1283

EDTE (Lyu et al., 2021): We use their original1284

code9 and train it on our datasets.1285

PTE (Schick and Schütze, 2021): We implement1286

this method on OpenPrompt framework (Ding et al.,1287

2022).1288

UIE (Lu et al., 2022): We use their original code101289

and train it on our datasets.1290

DEGREE (Hsu et al., 2022): We reproduce this1291

method based on their original code11 and train it1292

on our datasets. And we drop event keywords not1293

occurring in few-shot training dataset from prompt1294

to avoid information leakage.1295

2. Prototype-base methods We build a codebase1296

based on the unified view. We then implement1297

these methods directly on the unified framework,1298

by having different choices for each design ele-1299

ment. To ensure the correctness of our codebase,1300

we also compare between results obtained from our1301

implementation and original code for each method,1302

and find they achieving similar performance on1303

8https://github.com/xinyadu/eeqa
9https://github.com/veronica320/Zeroshot-Event-

Extraction
10https://github.com/universal-ie/UIE
11https://github.com/PlusLabNLP/DEGREE

few-shot ED datasets. 1304

For all methods (including unified baseline), we 1305

train them with the AdamW optimizer with linear 1306

scheduler and 0.1 warmup step. We set weight- 1307

decay coefficient as 1e-5 and maximum gradient 1308

norms as 1.0. We add a 128-long window center- 1309

ing on the trigger words and only encode the words 1310

within the window; in other words, the maximum 1311

encoding sequence length is 128. The batch size is 1312

set as 128, and training steps as 200 if the transfer 1313

function is scaled (see Section 5.2) otherwise 500. 1314

We grid-search best learning rates in [1e-5, 2e-5, 1315

5e-5, 1e-4] for each setting. For ProtoNet and its 1316

variants, we further split the sentences into support 1317

set and query set. The number in support set KS 1318

and query set KQ are (1, 1) for 2-shot settings, (2, 1319

3) for 5-shot settings. The split strategy is (2, 8) 1320

for 10-shot dataset constructed from MAVEN and 1321

(5, 5) for others. For methods adopting MoCo-CL 1322

setting (also see Section 5.2), we maintain a queue 1323

storing sample representations with length 2048 for 1324

ACE/ERE 2-shot settings and 8192 for others. For 1325

methods adopting CRF, we follow default hyperpa- 1326

rameters about CRF in their original papers. For 1327

methods adopting scaled transfer functions, we grid 1328

search the scaled coefficient τ in [0.1, 0.2, 0.3]. 1329

C Low-resource Setting-Extended 1330

C.1 Transfer function and Distance function 1331

We consider several combinations about distance 1332

and transfer functions listed in Table 7. We choose 1333

cosine similarity (S), negative euclidean distance 1334

(EU) and their scaled version (SS/SEU) as dis- 1335

tance functions. And we pick out identify (I), 1336
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Table 7: Variants on distance function d(u, v) (top) and
transfer function f(h) (bottom).

Distance function d(u, v)

Cosine similarity (S) uT v
Scaled cosine similarity (SS) −||u− v||2/τ
JS Divergence (KL) JSD(u||v)
Euclidean distance (EU) −||u− v||2
Scaled euclidean distance (SEU) uT v/τ

Transfer function f(h)

Identify (I) h
Down-projection (D) Mh
Reparameterization (R) N (µ(h),Σ(h))
Normalization (N) h/||h||
Down-projection + Normalization (DN) Mh/||h||

down-projection (D) and their normalization ver-1337

sion (N/DN) as transfer function. We additionally1338

consider the KL-reparameterization combination1339

(KL-R) used in CONTAINER.1340

We conduct experiments with four existing1341

prototype-based methods12 by only changing their1342

transfer and distance functions. We illustrate their1343

results on ACE dataset in Figure 9. (1) From com-1344

parison about performance in ProtoNet and TapNet,1345

we find TapNet, i.e., the down-projection transfer,1346

shows no significant improvement on few-shot ED1347

tasks. (2) A scaled coefficient in distance function1348

achieves strong performance with normalization1349

transfer function, while the performance collapses1350

(failing to converge) without normalization. (3) For1351

ProtoNet and TapNet, scaled euclidean distance1352

(SEU) is a better choice for distance function, while1353

other methods prefer scaled cosine similarity (SS).1354

Based on the findings above, we substitute d and1355

f to the most appropriate for all existing methods1356

and observe a significant improvement on all three1357

datasets, as shown in Table 8.1358

C.2 CRF module1359

We explore whether CRF improves the perfor-1360

mance of few-shot ED task. Based on Ll-MoCo1361

model we developed in Section 5.2, we conduct1362

experiment with three different CRF variants, CDT1363

(CRF inference Hou et al. 2020), vanilla CRF (Laf-1364

ferty et al., 2001) and PA-CRF (Cong et al., 2021),1365

on ACE05 and MAVEN datasets. Their results1366

are in Figure 10. It shows different CRF variants1367

achieve similar result compared with model with-1368

out CRF, while a trained CRF (and its prototype-1369

12We degrade L-TapNet-CDT to TapNet, and do not include
PA-CRF here, because CRF and label-enhancement are not
the factors considered in this subsection.
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Figure 9: Performance of different (d, f) combinations
on ACE05.

enhanced variant) slightly benefits multiple-word 1370

triggers when the sample is extremely scarce (see 1371

ACE05 2-shot). These results are inconsistent with 1372

other similar sequence labeling tasks such as NER 1373

or slot tagging, in which CRF usually significantly 1374

improves model performance. We speculate it is 1375

due to that the pattern of triggers in ED task is rel- 1376

atively simple. To validate such assumption, we 1377

count all triggers in ACE05 and MAVEN datasets. 1378

We find that above 96% of triggers are single words, 1379

and most of the remaining triggers are verb phrases 1380

(only about 0.5% of triggers are phrases having 1381

three or more words with complicated structure). 1382

Thus the explicit modeling of transfer dependency 1383

among different event types is somewhat not very 1384

meaningful under few-shot ED task. Hence, we 1385

drop CRF module in the unified baseline. 1386

C.3 Prototype source 1387

We discuss the benefit of combining two kinds of 1388

prototype sources in Section 5.2, i.e., label seman- 1389

tic and event mentions, and show some results in 1390

Figure 4. Here we list full results on all three 1391

datasets in Table 9. The results further validate 1392

our claims: (1) leveraging both label semantics 1393

and mentions as prototype sources improve perfor- 1394

mance under almost all settings. (2) Merging the 1395

two kinds of sources at the loss-level is the best 1396

choice among the three aggregation alternatives. 1397

C.4 Contrastive Learning 1398

Contrastive Learning (CL Hadsell et al.) is initially 1399

developed for self-supervised representation learn- 1400

ing and is recently used to facilitate supervised 1401

learning as well. It pulls samples with same la- 1402

bels together while pushes samples with distinct 1403

labels apart in their embedding space. We view CL 1404
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Table 8: Performance comparison of methods w/ and w/o adjustment on distance function d and transfer function f .
The most appropriate distance functions are scaled euclidean distance (SEU) for ProtoNet and TapNet and scaled
cosine similarity (SS) for other two. The most appropriate transfer function is normalization (N) for all four existing
methods. The results are averaged among 10 repeated experiments and sample standard deviations are in round
brackets. We highlight the better one for each method w/ and w/o adjustment.

Methods ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

ProtoNet w/o adjust 38.3(5.0) 47.2(3.9) 52.3(2.4) 44.5(2.2) 51.7(0.6) 55.4(0.2) 31.6(2.7) 39.7(2.4) 44.3(2.3)

w/ adjust 39.3(4.6) 49.8(4.3) 52.6(1.9) 46.7(1.6) 52.8(0.6) 56.5(0.6) 32.6(3.0) 40.1(1.9) 44.2(1.9)

TapNet w/o adjust 38.7(4.3) 49.1(4.5) 51.2(1.7) 45.7(1.8) 51.7(1.1) 55.0(0.7) 35.3(3.8) 40.2(2.5) 44.7(2.9)
w/ adjust 37.2(5.6) 49.8(3.1) 52.0(1.9) 46.1(1.9) 51.9(0.6) 55.0(0.6) 37.0(4.0) 43.4(1.9) 46.4(2.9)

CONTAINER w/o adjust 40.1(3.8) 47.7(3.3) 50.1(1.8) 44.2(1.4) 50.8(0.9) 52.9(0.3) 34.4(3.6) 39.3(1.9) 44.5(2.3)
w/ adjust 44.0(3.2) 51.1(1.1) 53.1(1.8) 44.6(1.7) 52.1(0.5) 55.1(0.4) 36.5(4.1) 42.0(1.9) 45.4(1.5)

FSLS w/o adjust 39.2(3.4) 47.5(3.2) 51.9(1.7) 46.7(1.2) 51.5(0.5) 56.2(0.2) 34.5(3.1) 39.8(2.5) 44.0(2.0)
w/ adjust 43.1(3.4) 51.0(2.4) 54.4(1.5) 48.3(1.6) 53.4(1.6) 56.1(0.7) 35.7(2.1) 40.6(2.4) 45.4(1.7)

Table 9: Performance with different (1) prototype sources and (2) aggregation form. ProtoNet: only event mentions.
FSLS: label semantic. Lf-ProtoNet: aggregate two types of prototype sources at feature-level. Ls-ProtoNet: at
score-level. Ll-ProtoNet: at loss-level. The results are averaged over 10 repeated experiments and sample standard
deviations are in round brackets.

Methods ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

ProtoNet 39.3(4.6) 49.8(4.3) 52.6(1.9) 46.7(1.6) 52.8(0.6) 56.0(0.6) 32.6(3.0) 40.1(1.9) 44.2(1.9)
FSLS 43.0(3.4) 50.6(2.4) 54.1(1.5) 48.3(1.6) 53.4(0.2) 56.1(0.7) 35.7(2.1) 40.6(2.4) 45.4(1.7)

Lf-ProtoNet 41.9(3.8) 50.8(3.0) 52.9(2.4) 49.0(1.1) 53.4(1.0) 56.3(0.7) 35.3(3.6) 41.8(1.8) 45.3(2.2)
Ls-ProtoNet 42.7(4.8) 51.2(2.9) 52.7(1.7) 49.3(1.9) 53.5(0.7) 56.5(0.1) 36.0(2.5) 41.3(3.6) 44.8(2.5)
Ll-ProtoNet 43.3(4.0) 50.9(2.7) 53.0(2.1) 50.2(1.5) 54.3(0.8) 56.7(0.6) 37.6(3.1) 43.0(2.4) 45.3(1.9)
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Figure 10: Overall performance of different CRF vari-
ants on ACE05 and MAVEN datasets. We also provide
performance grouped by trigger word length: = 1: sin-
gle trigger words. ≥ 2: trigger phrases.

as a generalized format of prototype-based meth- 1405

ods and include it to the unified view. Under such 1406

view, every sample is a prototype and each single 1407

event type could have multiple prototypes. Given 1408

an event mention, its distances to the prototypes 1409

are computed and aggregated by event types to 1410

determine the overall distance to each event type. 1411

Two types of Contrastive Learning 1412

We name the representation of event mention as 1413

query and prototypes (i.e., other event mentions) as 1414

keys. Then CL could be further split into two cases, 1415

in-batch CL (Chen et al., 2020) and MoCo CL (He 1416

et al., 2020), according to where their keys are from. 1417

In-batch CL views other event mentions within the 1418

same batch as the keys, and the encoder for com- 1419

puting the queries and keys in batch-CL is updated 1420

end-to-end by back-propagation. For MoCo CL, 1421

the encoder for key is momentum-updated along 1422

the encoder for query, and it accordingly maintains 1423

a queue to store keys and utilizes them multiple 1424

times once they are previously computed. We refer 1425

readers to MoCo CL (He et al., 2020) for the details 1426

of in-batch CL and MoCo CL. 1427

CONTAINER (Das et al., 2022) adopts in-batch 1428
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CL setting for few-shot NER model and we trans-1429

fer it to ED domain in our empirical study. We1430

further compare the two types of CL for our unified1431

baseline with effective components in Section 5.21432

and present the full results in Table 10. We observe1433

in-batch CL outperforms MoCo-CL when the num-1434

ber of the sentence is small, and the situation re-1435

verses with the increasing of sentence number. We1436

speculate it is due to two main reasons: (1) When1437

all sentences could be within the single batch, in-1438

batch CL is a better approach since it computes1439

and updates all representations of keys and queries1440

end-to-end by back propagation, while MoCo-CL1441

computes the key representation by a momentum-1442

updated encoder with gradient stopping. When the1443

sentence number is larger than batch size, however,1444

in-batch CL lose the information of some samples1445

in each step, while MoCo-CL keeps all samples1446

within the queue and leverages these approximate1447

representations for a more extensive comparison1448

and learning. (2) MoCo-CL also has an effect of1449

data-augmentation under few-shot ED task, since1450

the sentence number is usually much smaller than1451

the queue size. Then the queue would store mul-1452

tiple representations for each sample, which are1453

computed and stored in different previous steps.1454

The benefits of such data augmentation take effect1455

when there are relatively abundant sentences and1456

accordingly diverse augmentations.1457

D Class-transfer Setting-Extended1458

D.1 Prompt-based methods1459

We list the results of existing prompt-based meth-1460

ods on class-transfer setting in Table 11. See de-1461

tailed analysis in Section 6.1.1462

D.2 Prototype-based methods1463

We list the results of existing prototype-based meth-1464

ods plus our developed unified baseline under class-1465

transfer setting in Table 12. Note that we substitute1466

the appropriate distance functions d and transfer1467

functions f obtained in Section 5.2 for existing1468

methods. See detailed analysis in Section 6.2.1469

20



Table 10: Performance with three label-enhanced approaches. The number in square bracket represents (average)
sentence number under this setting. Averaged F1-scores with sample standard deviations on 10 repeated experiments
are shown.

Method
ACE05 MAVEN ERE

2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot
[48] [111] [212] [153] [360] [705] [44] [103] [197]

Ll-ProtoNet 43.3(4.0) 50.9(2.7) 53.0(2.1) 50.2(1.5) 54.3(0.8) 56.7(0.6) 37.6(3.1) 43.0(2.4) 45.3(1.9)
Ll-CONTAINER 45.9(3.7) 54.0(2.6) 55.8(1.3) 49.2(1.6) 54.3(0.6) 57.3(0.7) 39.5(2.4) 45.5(2.8) 46.9(1.8)
Ll-MoCo 42.8(4.1) 53.6(4.1) 56.9(1.6) 49.5(1.7) 54.7(0.8) 57.8(1.2) 38.8(2.4) 46.0(3.0) 48.4(2.6)

Table 11: Prompt-based methods under class-transfer setting. Averaged F1-scores with sample standard deviations
on 10 repeated experiments are shown. We also list results of w/o and w/ transfer for comparison.

Method ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

EEQA w/o transfer 17.6(4.9) 33.2(3.8) 41.9(2.9) 14.9(4.4) 44.8(3.1) 53.9(0.7) 19.6(7.5) 36.8(3.1) 44.2(4.3)
w/ transfer 35.1(8.5) 52.5(6.1) 59.1(2.5) 35.0(4.7) 54.7(1.7) 60.0(0.7) 26.8(5.2) 39.1(3.1) 45.9(2.8)

PTE w/o transfer 39.7(4.1) 51.1(5.4) 54.5(3.0) 52.0(1.3) 61.0(1.4) 62.5(2.3) 47.1(4.9) 51.0(5.7) 54.1(4.1)
w/ transfer 49.1(4.9) 55.4(5.8) 54.2(4.4) 52.0(2.9) 60.8(1.0) 61.5(1.5) 42.6(3.7) 51.0(3.1) 55.3(2.3)

UIE w/o transfer 24.5(3.9) 39.3(3.2) 40.6(3.9) 25.3(8.1) 49.2(2.2) 57.4(2.3) 22.9(9.0) 35.1(4.2) 39.3(2.3)
w/ transfer 47.0(5.4) 54.0(4.2) 54.7(7.3) 40.3(1.7) 49.8(1.6) 54.1(1.5) 36.9(4.6) 41.1(4.2) 41.9(4.6)

DEGREE w/o transfer 33.4(6.6) 44.2(2.2) 50.5(6.3) 53.6(1.9) 56.9(5.7) 63.8(1.2) 39.1(5.9) 41.8(3.2) 43.9(6.2)
w/ transfer 52.4(3.7) 56.7(4.6) 59.0(4.7) 54.5(5.1) 59.6(6.3) 65.1(2.7) 50.1(3.6) 50.3(2.8) 48.5(2.5)

Table 12: Full results about prototype-based methods under class transfer setting. Averaged F1-scores with sample
standard deviations on 10 repeated experiments are shown. We enumerate all possible combinations on models of
source and target datasets.

Method ACE05 MAVEN ERE
Source Target 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

_

Fi
ne

-t
un

in
g

28.1(9.9) 37.0(8.3) 45.8(4.0) 21.2(11.5) 46.6(4.2) 55.3(4.8) 40.4(3.8) 45.9(3.8) 48.2(2.2)
Fine-tuning 39.1(6.7) 49.5(11.9) 51.4(9.3) 44.4(1.8) 58.3(1.9) 63.0(1.9) 34.1(6.9) 47.0(4.5) 50.0(2.3)

CONTAINER 28.7(5.8) 37.4(11.6) 42.7(8.0) 49.4(2.8) 59.3(1.4) 63.6(1.7) 36.3(8.9) 47.3(3.7) 47.3(4.0)
L-TapNet 31.7(5.7) 41.5(4.2) 43.1(2.6) 40.0(1.8) 54.3(1.4) 59.9(1.4) 36.8(4.7) 44.0(5.3) 48.7(2.1)

FSLS 42.3(8.5) 51.6(6.9) 56.7(8.6) 47.1(2.7) 58.1(1.1) 62.9(1.6) 41.2(4.7) 49.8(3.6) 53.2(3.4)
Unified Baseline 39.8(6.0) 47.4(6.2) 54.3(6.4) 48.8(1.7) 58.8(1.0) 63.9(1.0) 39.8(5.2) 46.1(3.5) 50.8(3.4)

_

C
O

N
TA

IN
E

R 40.1(3.0) 47.3(5.8) 49.1(4.7) 47.9(3.5) 63.5(1.1) 68.5(2.1) 46.5(4.9) 49.2(3.0) 53.5(3.3)
Fine-tuning 37.2(9.5) 45.0(8.1) 52.7(8.7) 54.3(3.4) 64.3(1.1) 66.8(2.9) 35.0(4.0) 42.1(4.6) 47.6(4.0)

CONTAINER 30.6(5.4) 38.3(5.4) 37.6(4.5) 47.5(6.4) 57.1(3.4) 54.7(2.2) 42.1(4.8) 46.6(4.9) 51.7(2.9)
L-TapNet 33.0(2.7) 38.3(4.9) 41.6(3.6) 36.8(5.6) 43.4(3.1) 50.0(6.0) 39.6(4.4) 44.0(4.0) 48.5(2.7)

FSLS 42.8(8.0) 49.0(10.5) 53.4(11.8) 52.7(2.5) 62.2(1.5) 65.2(2.7) 39.0(5.5) 48.8(1.7) 50.8(3.1)
Unified Baseline 39.0(6.1) 45.9(9.4) 47.0(8.3) 52.8(2.1) 60.8(3.4) 60.0(4.9) 37.6(6.8) 45.9(4.5) 47.8(4.2)

_

L
-T

ap
N

et

42.6 (3.8) 50.8(4.1) 50.8(2.8) 53.2(2.3) 63.3(1.6) 68.5(0.7) 44.5(4.5) 52.3(2.1) 52.5(2.5)
Fine-tuning 43.9(11.4) 54.8(9.4) 57.2(5.0) 52.2(3.2) 64.4(2.1) 68.5(0.7) 38.8(3.7) 48.1(2.5) 51.7(3.6)

CONTAINER 34.4(4.7) 43.6(4.6) 45.3(4.2) 44.9(10.8) 63.4(2.8) 69.4(1.1) 39.5(4.6) 49.2(4.7) 52.8(3.3)
L-TapNet 37.2(4.6) 45.4(2.8) 45.1(3.7) 52.1(2.2) 62.6(2.6) 68.0(1.4) 44.9(5.4) 49.7(2.9) 52.0(5.2)

FSLS 51.8(6.4) 59.1(6.3) 60.4(6.7) 51.1(10.2) 63.8(2.2) 68.5(1.6) 45.0(5.6) 53.6(3.1) 54.2(2.2)
Unified Baseline 45.8(5.6) 52.7(6.9) 59.4(5.3) 56.1(2.1) 63.6(2.5) 68.0(1.8) 45.8(4.6) 51.2(2.9) 55.3(2.2)

_

FS
L

S

42.9(4.0) 49.9(4.3) 52.5(2.7) 43.5(4.9) 58.2(1.1) 64.1(0.7) 46.1(7.0) 49.3(3.9) 53.5(3.5)
Fine-tuning 49.6(5.2) 56.0(7.7) 56.5(6.5) 44.9(5.0) 59.2(2.0) 64.2(1.5) 39.1(5.0) 45.7(3.2) 51.3(3.6)

CONTAINER 32.0(4.5) 40.9(4.1) 45.1(3.8) 48.0(1.6) 59.2(3.2) 64.1(2.5) 40.0(3.6) 45.6(4.6) 48.9(4.5)
L-TapNet 36.8(3.0) 43.3(3.4) 47.1(2.7) 43.9(2.1) 55.9(1.9) 62.4(1.5) 44.1(4.6) 47.3(3.1) 51.0(2.7)

FSLS 51.7(7.3) 61.5(7.9) 66.2(4.3) 50.8(1.9) 59.3(1.9) 65.5(1.4) 46.4(3.4) 54.4(3.5) 56.2(2.2)
Unified Baseline 44.5(8.5) 53.4(7.2) 57.7(6.4) 50.6(3.3) 59.7(0.7) 64.0(0.8) 46.1(4.4) 50.4(4.4) 55.1(2.1)

_

U
ni

fie
d

B
as

el
in

e 47.4(5.8) 55.9(3.4) 56.8(3.4) 49.1(1.2) 63.9(1.1) 68.2(1.3) 51.7(5.9) 57.1(2.0) 56.8(4.0)
Fine-tuning 51.2(4.8) 58.6(8.3) 61.9(8.7) 52.0(1.1) 63.6(2.2) 68.1(1.4) 40.0(5.9) 51.8(4.5) 57.1(3.4)

CONTAINER 34.3(3.5) 43.9(4.9) 50.9(3.1) 51.7(2.0) 63.7(1.4) 67.8(1.5) 47.5(4.6) 51.7(3.7) 55.0(2.9)
L-TapNet 42.3(4.0) 49.0(4.6) 51.6(3.7) 49.1(3.2) 63.5(2.1) 67.5(1.3) 47.2(6.1) 53.4(2.0) 55.0(3.6)

FSLS 56.4(5.6) 61.4(6.7) 67.3(4.2) 55.7(2.7) 64.8(1.7) 68.9(1.4) 47.6(4.1) 57.1(2.8) 58.6(4.0)

Unified Baseline 49.6(6.5) 60.0(6.0) 64.1(7.2) 52.9(3.3) 63.8(2.6) 69.2(0.7) 45.4(4.4) 53.5(2.3) 57.4(3.8)
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