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ABSTRACT

Single-modality object detectors have witnessed a drastic boost in the past few
years thanks to the well-explored data augmentation and training techniques. On
the contrary, multi-modality detectors adopt relatively simple data augmentation
due to difficulty in ensuring cross modality consistency between point clouds and
images. Such a limitation hampers fusion effectiveness and performance growth
of multi-modality detectors. Therefore, we contribute a pipeline, named trans-
formation flow, to bridge the gap between single and multi-modality data aug-
mentation with transformation reversing and replaying. In addition, considering
occlusions, a point in different modalities may be occupied by different objects,
making augmentations such as cut and paste non-trivial for multi-modality detec-
tion. We further present Multi-mOdality Cut and pAste (MoCa), which simultane-
ously considers occlusion and physical plausibility to maintain the multi-modality
consistency. Without using ensemble of detectors, our multi-modality detector
achieves new state-of-the-art performance on nuScenes dataset and competitive
performance on KITTI 3D benchmark. Code and models are released at MMDe-
tection3D.

1 INTRODUCTION

Three-dimensional (3D) object detection is an essential vision task with wide applications such
as in robotics and autonomous driving cars. In the context of autonomous driving, encouraging
results (Shi et al., 2020) have been obtained with point cloud data from Light Detection and Ranging
(LiDAR) devices. Nonetheless, these single-modality LiDAR-based methods also have limitations:
a typical LiDAR system can only perceive objects in a limited range (Caesar et al., 2019), and cannot
distinguish categories of similar structures, e.g., pedestrians and trees.

Meanwhile, imagery features, by nature, play a complementary role. It is believed that imagery fea-
tures can facilitate more accurate detection by providing richer semantic information. Much effort
has geared towards adding RGB camera images to complement point cloud data (Cho et al., 2014;
Liang et al., 2019; 2018; Qi et al., 2017b; Vora et al., 2020). However, compared to single modality
detectors (e.g., 2D detectors (Lin et al., 2017; Ren et al., 2015) and LiDAR-based 3D object detec-
tors (Shi et al., 2020; Yan et al., 2018; Yang et al., 2019)) with extensively explored single modality
data augmentation (Yan et al., 2018; Yun et al., 2019; Fang et al., 2019) and training practices in the
past few years, relevant techniques for multi-modality 3D detectors are under-explored and appear
less aggressive than those in single-modality detectors, making the performance of multi-modality
algorithms under expectation (Liang et al., 2018; Qi et al., 2017b).

Previous multi-modality detectors (Liang et al., 2019; 2018; Qi et al., 2017b) refrain from using rich
data augmentations. This phenomenon is mainly due to the difficulties in maintaining the consis-
tency between point cloud and images. In other words, multi-modality augmentations should ensure
exact correspondence between a point in one modality and that of another modality after a series
of transformations. With such a constraint, previous methods (Liang et al., 2018; Qi et al., 2017b)
find difficulties in applying random flipping or rotations. An alternative way for finding the corre-
spondence is to use the inputs before augmentation. However, it is not applicable to those points
generated during model inference, e.g., box coordinates or votes (Qi et al., 2019a; 2020).

To tackle this problem, we contribute a pipeline, named multi-modality transformation flow, to en-
sure multi-modality consistency to cope with rich set of augmentations. Multi-modality consistency
can be maintained if and only if the augmentation can be reversed and replayed. Thus, transforma-
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Figure 1: Step-by-step performance
improvements brought by multi-
modality augmentations, MoCa, and
beneficial practices. Random flip-
ping, scaling, rotation, and translation
enabled by the transformation flow
are equally effective for both SEC-
OND and MVX-Net. Multi-modality
cut and paste (MoCa) with beneficial
practices further improves the per-
formance of MVX-Net, surpassing
its single-modality counterpart (SEC-
OND with cut and paste) by a large
margin on KITTI dataset.

tion flow records the parameters and orders of transformations used by each augmentation. Then in
the multi-modality fusion process, any point in the LiDAR coordinates could find its corresponding
image pixel coordinates by reversing the point cloud transformations and replaying the image trans-
formation. In this pipeline, any transformation can be applied as long as it is invertible; thus, one can
now apply augmentations commonly found in single-modality detectors with equal effectiveness for
multi-modality detectors (Fig. 1).

Based on multi-modality transformation flow, we further propose a new augmentation approach,
multi-modality cut and paste (MoCa). State-of-the-art LiDAR-based detectors (Shi et al., 2020)
benefit significantly from cut and paste augmentation (Yan et al., 2018). However, such an effec-
tive augmentation scheme is absent from multi-modality methods (Sindagi et al., 2019; Vora et al.,
2020), which severely limits their performance. Single-modality cut and paste methods do not need
to consider occlusions and physical plausibility in other modalities. Consequently, they may con-
struct scenes containing objects completely occluded in 2D images or paste an object at implausible
locations. These cases hinder the learning of multi-modality fusion modules as it makes the point
from one modality fusing features from different objects in another modality. MoCa constrains paste
operations to avoid occlusion between objects in both the bird’s eye view (BEV) and the 2D imagery
domain. To further improve the detector’s generalizability, we use randomly selected intersection
over foreground (IoF) to determine the occlusion in imagery domain. MoCa improves object de-
tection performance by a large margin and it is readily applicable to many existing multi-modality
detectors (Sindagi et al., 2019; Vora et al., 2020; Liang et al., 2018; Qi et al., 2018).

The transformation flow, MoCa, together with some beneficial practices, improve the mAP of MVX-
Net (Sindagi et al., 2019), a strong and generic multi-modality detector, by 11.3% moderate mAP
on KITTI dataset (Fig.1) and 5.8% mAP on nuScenes dataset. Without using an ensemble of class-
specialized detectors, the enhanced MVX-Net achieves new state-of-the-art results on nuScenes
dataset and obtains competitive results on KITTI 3D benchmark.

2 METHODOLOGY

We are curious with the limited performance gain after extending single-modality to multi-modality
3D object detectors. We find that multi-modality detectors use relatively fewer kinds of data augmen-
tations than single-modality detectors do, due to the missing principle of maintaining multi-modality
consistency in augmentation. To this end, we first contribute a pipeline, named transformation flow,
to allow any invertible augmentations to be applied in multi-modality detection (Sec. 2.1). Then we
propose multi-modality cut and paste (MoCa) to further improve the performance (Sec. 2.2). We
choose MVX-Net (Sindagi et al., 2019) as a strong and generic baseline for our study. Finally, we
explore different architecture design and training strategies for better performance (Sec. 2.3). The
findings can be easily extended to other multi-modality 3D object detectors.

2.1 TRANSFORMATION FLOW

Data augmentation plays a pivotal role in improving the models generalizability. However, the
augmentation strategies adopted by single-modality 3D detectors are more aggressive than those
used by multi-modality methods. For example, global rotation and random flip are widely applied
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by single-modality methods (Shi et al., 2019; Yang et al., 2019; Liu et al., 2020) but are absent from
some multi-modality methods (Sindagi et al., 2019; Liang et al., 2018; 2019) due to the difficulties
in maintaining the consistency between point cloud and image data.

Multi-modality consistency. The essence of maintaining multi-modality consistency during aug-
mentation is to maintain the correct correspondence between points and image pixels; thus, the
points can still be correctly fused with their corresponding image features after a series of augmen-
tations. While previous studies (Sindagi et al., 2019; Liang et al., 2018) have applied augmentation
in multi-modality detection, they use much fewer augmentations than those single-modality meth-
ods and the issue of maintaining consistency across different modalities has not been systematically
studied. Here, we contribute a pipeline named multi-modality transformation flow, which is use-
ful for maintaining the multi-modality consistency during augmentation, enabling more aggressive
augmentation strategies for multi-modality detection.

Multi-modality transformation flow. As shown in Fig. 2, the multi-modality transformation flow
records all the transformations of point cloud and image data during data augmentations. Such trans-
formation flow is required to transform the augmented data back for finding the correct correspon-
dence between the point cloud and image pixels during fusion. Most augmentations are reversible,
i.e., they contain a forward transformation to augment the data, with a reverse transformation to
transform the data back into its original state. Before training, the image and point cloud data are
augmented by different augmentations independently. Note that the transformations of points are
equivalent to transforming the LiDAR sensor to a new position, resulting in new point coordinates
but not affecting the captured image as the camera is not transformed. Thus, rotation and translation
can be applied to point cloud data, but they do not need to be applied to the image simultaneously.

Reverse and replay. With transformation flow, a point in one modality can obtain its correspond-
ing point in another modality by reversing the augmentations of its own modality and replaying the
augmentation of the other modality (Fig. 2). Specifically, during fusion, the reverse transformation
of each augmentation is applied to the augmented points following the inverse order of point cloud
augmentations (reverse). Next, we can safely project the points onto the imagery pixel coordinates
using the calibration information of data (Geiger et al., 2013; Caesar et al., 2019). The projected
points then obtain their corresponding image features after going through the forward transforma-
tions following the same order of the corresponding image augmentations (replay).

Applications. With multi-modality transformation flow, any augmentation, as long as it is reversible,
can be used to augment multi-modality data without sacrificing the consistency. Therefore, now we
can revisit and validate the gain of existing augmentation techniques that can be extended from
single-modality to multi-modality augmentations. We compare these augmentation techniques step
by step (Fig. 1); such experiments are new in the literature. The results show that global flipping,
scaling, rotation, and translation are all essential augmentations to improve a multi-modality detec-
tor, enabled by the transformation flow. Meanwhile, this formulation is general and applicable to
any kind of points of a modality such as the original points in the point cloud data (Vora et al., 2020),
center of generated voxels (Sindagi et al., 2019), and predicted votes (Qi et al., 2020).

Some methods (Yan et al., 2018) apply a small amount of noise (e.g., random translation and ro-
tation) to each ground truth object separately. They can also be applied in multi-modality trans-
formation flow by recording the transformation of each single ground truth objects. However, the
following works suggest that such strategy either does not add value (Shi et al., 2020) or hurts the
performance in some scenarios (Lang et al., 2019).

2.2 MULTI-MODALITY CUT AND PASTE

Cut and paste is effective to create a diverse combination of scenes and objects when data is lim-
ited (Dvornik et al., 2018; Fang et al., 2019; Dwibedi et al., 2017). It is a common augmentation
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Figure 3: Multi-modality cut and paste. Given one training frame and some GT objects generated
by the database, MoCa checks collisions in both BEV and 2D image based on Intersection over
Foreground (IoF). It then pastes the valid patches of objects to all the modalities. A blind pasting
operation will cause many heavily overlapped objects or put objects at implausible positions (circled
area in (b)), which is far from the natural distribution of data. The gray and red bounding boxes
indicate the original object in the current frame and the pasted objects, respectively. The original
frame (a) contains very few objects and is enriched with more objects after multi-modality cut and
paste (c). The figure is best seen in color.

technique in single-modality detectors but is absent in multi-modality detectors. SECOND (Yan
et al., 2018) introduces cut and paste into the point cloud domain, named as ground truth sam-
pling (GT-sampling). It is shown that GT-sampling not only accelerates model convergence but
also reduces class imbalance issues. Therefore, almost all state-of-the-art single-modality 3D detec-
tors (Shi et al., 2020; Yang et al., 2020) adopt GT-sampling to boost their performance.

It is non-trivial to consistently extend GT-sampling to the imagery domain in multi-modality meth-
ods. A point cloud patch that is visible from the bird’s eye view (BEV) does not guarantee its
corresponding image patch is also perceivable in the imagery domain. Often, an object may be oc-
cluded in the image plane and thus its imagery content only captures the features of the occluding
object. A blind cut and paste would risk having inconsistent point cloud and imagery patches. To
circumvent this intricate problem, multi-modality methods (Liang et al., 2019; Sindagi et al., 2019)
resort to a lower starting baseline without using GT-sampling.

To our knowledge, this is the first work that investigates underlying challenges in multi-modality
cut and paste for 3D object detection. We further propose a more general form of GT-sampling
named multi-modality cut and paste (MoCa). It is readily applicable to existing multi-modality
methods (Sindagi et al., 2019; Vora et al., 2020; Liang et al., 2018; Qi et al., 2018) and brings
substantial improvement.

MoCa first builds a ground truth database for each annotated object offline. Specifically, point cloud
for each object and its corresponding image patch is cropped before training, using ground truth
3D bounding boxes and 2D masks, respectively. MoCa randomly samples point cloud-image patch
pairs and paste them to the original scene according to their 3D bounding boxes and 2D masks
(Fig. 3). The enriched scene will then go through the multi-modality augmentation process within
the transformation flow and then will be used to trained the model. To avoid boundary artifacts
caused by image patches, we follow (Dwibedi et al., 2017) to apply random blending to smoothen
the boundaries of image patches. Such an operation is not needed for point cloud since the data is
sparse. Notably, though it might take hours to build the GT database if the dataset is large, the cost
of the training speed brought by MoCa is less than 5% due to the parallel data loaders.

Occlusion handling. The non-trivial part of multi-modality cut and paste lies in occlusion handling.
Image-based cut and paste (Dwibedi et al., 2017; Dvornik et al., 2018) usually pastes objects at
different locations in the image and ignores the physical plausibility. On the other hand, point cloud
cut and paste (Yan et al., 2018) only avoids occlusion in BEV because objects are generally assumed
to be on the same ground plane and well separated in BEV. Potential occlusions in 2D image are
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neglected because current 3D object detectors (Yan et al., 2018; Yang et al., 2019; Lang et al., 2019)
usually predict bounding boxes only from BEV. However, during the multi-modality fusion process,
due to the occlusion, the projected points of an occluded object might obtain the image features of
occluding objects (Fig. 3 (b)). This makes the image features ambiguous and increases the difficulty
in training feature extractors. Therefore, not handling the occlusion in 2D image will affect the
overall performance as validated by our experiments.

MoCa considers the consistency in both point cloud and image modalities. Specifically, given a
batch of objects with their point cloud and their corresponding image patches, the multi-modality
cut and paste first discards overlapped objects in BEV and then carefully handles the occlusion in
2D images. Given a set P = {pi | i = 1, 2, ..., N} containing the original objects and the objects
to be pasted, we use Intersection-over-Foreground (IoF) of the objects’ bounding boxes to represent
the occlusion degree of an object pi in the 2D image as

IoF (pi, P ) = max{pi
⋂

pj
pi

| j 6= i}. (1)

Once a sampled object’s IoF is greater than a given threshold or that object makes any one of the
original boxes’ IoF greater than the given threshold, the sampled object will not be pasted in the
current training iteration. The original objects will not be discarded.

Mixed IoF thresholds. Different IoF thresholds lead to a different number of objects being pasted.
Therefore, we propose to use a mix of occlusion thresholds to provide more diverse occlusion cases
and scenes during training to improve the detector’s robustness and generalization ability. Specif-
ically, given a threshold set (we use {0, 0.3, 0.5, 0.7} in this work), a threshold will be randomly
chosen from the set. Then objects whose occlusion degrees (in the batch) are greater than the
threshold will be discarded during each iteration. The remaining objects’ point cloud and image
patches will then be pasted to the positions specified by their 3D and 2D bounding boxes without
random perturbation to ensure consistency, respectively. Image patches are pasted in the order of
their depth, i.e., the farther the object, the earlier it is pasted.

2.3 EXPLORING BENEFICIAL PRACTICES

In this paper, we use MVX-Net (Sindagi et al., 2019) to study multi-modality augmentation as it
is simple and generic. MVX-Net uses a pre-trained Faster R-CNN as an image feature extractor
and adopts VoxelNets for 3D detection. For VoxelNet we adopt PointPillars (Lang et al., 2019)
and SECOND (Yan et al., 2018) because they are efficient and generic, and are widely deployed
in autonomous driving systems. During implementation, we explore some beneficial practices in
architecture design and optimization.

Aligned pyramid feature fusion. For feature fusion, the point cloud is first transformed from Li-
DAR coordinates to camera coordinates and then projected to the image pixel coordinates1. Once
the pixel coordinates Pimg are obtained, MVX-Net selects image features using the quantized coor-
dinates P ′img and concatenate them with the point cloud feature. However, as shown in Fig. 4, the
quantization introduces feature misalignment in the fusion process since the quantized coordinates
are not an accurate projection from the given points. Such misalignment brings adverse effects in
multi-modality detection because the quantization is applied to at least 10K projected points with
their corresponding features. Inspired by RoIAlign (He et al., 2017), we introduce aligned feature
fusion, which uses differentiable bilinear sampling kernel (Jaderberg et al., 2015) to overcome the
misalignment issue and obtain the feature of a given point as follows:

n∑
H

m∑
W

Unm max(0, 1− | Py − n |)max(0, 1− | Px −m |), (2)

where H and W are the height and width, respectively, of the feature map U , and Pimg = (Px, Py)
is the pixel coordinates of a projected point.

We further enhance the MVX-Net (Sindagi et al., 2019) by adding a FPN (Lin et al., 2017) in image
branch (Fig. 4). For the feature map in each scale, the pixel coordinate Pimg is divided by the strides
of the current feature map and then used to select the corresponding image features. Then we obtain

1Details are provided in the Section C.
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the multi-scale imagery features of each point from different scales of feature maps, concatenate
them together, and fuse them with the points’ point cloud features by a linear layer.

Retaining the original optimizers. Multi-modality 3D object detectors (Liang et al., 2018; Qi et al.,
2018; Sindagi et al., 2019; Liang et al., 2019) usually use a pre-trained model for image feature ex-
traction because there are limited image data in the problem domain. The image feature extractor is
typically pre-trained on 2D recognition tasks (Russakovsky et al., 2015; Lin et al., 2014) using an
SGD optimizer to ensure good performance. On the other hand, ADAM is shown superior in han-
dling irregular and unstructured point cloud data (Qi et al., 2017a;b). Hence, for multi-modality 3D
object detection, a common practice is to train the point cloud feature extractor from scratch jointly
with the pre-trained image feature extractor using an ADAM optimizer. Empirically, we observe
that the switch of optimizer from SGD to ADAM in the image branch causes a slight performance
drop. We ameliorate this problem by retaining the original optimizer of each modality (Fig. 5).
Specifically, we retain the use of a SGD optimizer for the image feature extractor and an ADAM
optimizer for the point cloud branch during the joint training.

3 EXPERIMENTS

We validate our framework on the KITTI dataset and nuScenes dataset.

KITTI dataset. The KITTI dataset (Geiger et al., 2012) contains 7481 training images and 7518
test images, both with their corresponding point cloud. We train all the models using the train split
containing 3712 samples and evaluate them on the validation split consisting of 3769 samples, fol-
lowing previous works (Chen et al., 2017; Yan et al., 2018; Shi et al., 2019). The KITTI benchmark
evaluates the models by Average Precision (AP) of each class (car, pedestrian, and cyclist) under
easy, moderate, and hard conditions. For simplicity, we use mean AP over three classes to measure
overall performance of the models in the ablation study.

nuScenes dataset. The nuScenes dataset (Caesar et al., 2019) contains 28130 synchronized multi-
view images and point cloud samples for training, 6019 samples for validation, and 6008 samples for
test benchmark. The dataset contains 10 categories and we evaluate the models on these 10 classes
by NDS metric (Caesar et al., 2019). The NDS metric not only measures the mean AP but also takes
translation, scale, orientation, velocity, and attribute errors of the true positives into considerations.

3.1 ABLATION STUDY

Multi-modality transformation flow. We validate the effectiveness of multi-modality transforma-
tion flow with different multi-modality augmentation techniques. To obtain a clear comparison with
SECOND (Yan et al., 2018), we conduct experiments on the vanilla MVX-Net (Sindagi et al., 2019)
without using the beneficial techniques discussed in the previous section.

The original MVX-Net only uses global scaling in the augmentation, and global rotation and trans-
lation are thought as not applicable. Multi-modality transformation flow enables random flipping,
translation, and rotation to be applied for multi-modality detectors. Table 1 verifies that random
flipping, scaling, rotating, and translating point cloud are essential for both single-modality and
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Table 1: Comparison of different augmentation strategies for single-modality 3D detector SECOND
and multi-modality 3D detector MVX-Net on KITTI. The augmentations marked by † are absent
in previous works and enabled by transformation flow. The bolded augmentations are proposed in
this work. The augmentation technique is in order, whereby, each augmentation is added onto the
previous ones sequentially

Method Augmentation mAP (%) Pedestrian Cyclist Car
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND

no augmentation 47.4 46.5 40.0 34.7 55.3 38.7 32.8 71.5 63.4 63.4
+ flipping 51.9 57.6 50.9 45.1 53.7 37.6 37.2 77.3 67.3 65.8
+ scaling 56.5 54.8 47.0 44.5 67.2 48.4 42.3 84.5 74.1 67.6
+ rotation 59.3 59.8 53.0 46.6 66.5 48.8 48.0 87.1 76.0 68.9

+ translation 60.7 61.0 54.6 51.9 69.0 50.7 49.2 87.2 76.8 75.6
+ cut and paste 68.1 68.1 61.1 54.0 79.4 65.8 60.8 87.5 77.4 75.5

MVXNet

no augmentation 48.5 49.1 45.5 40.5 53.2 35.4 31.2 75.3 64.5 57.8
+ flipping† 53.6 49.7 43.3 41.7 57.2 45.6 40.4 81.5 71.9 65.9
+ scaling 56.6 54.4 47.0 44.6 66.2 49.5 42.9 82.7 73.4 67.1

+ rotation† 60.1 62.7 54.7 52.8 67.2 49.5 42.6 87.7 76.0 68.8
+ translation 60.5 62.7 55.6 53.2 65.7 49.1 48.4 87.2 76.9 75.5

+ cut and paste 69.0 68.2 62.3 56.7 83.7 67.3 63.2 87.9 77.4 73.6
+ MoCa (ours) 70.2 68.6 61.9 54.7 86.0 71.2 65.0 87.9 77.6 76.0

Table 2: Ablation study of each component. Modifications are added sequentially

(a) On KITTI validation set
Method 3D mAP (%)

Easy Mod. Hard
SECOND 78.3 68.1 63.4

+ image branch 71.9 60.5 59.1
+ MoCa 80.9 70.2 65.2

+ retain original optimizers 81.2 71.0 65.7
+ aligned pyramid fusion 81.4 71.8 69.5

(b) On nuScenes validation set
Method NDS (%) mAP (%)

PointPillars + FPN 53.4 40.1
+ image branch 54.6 41.8

+ MoCa 55.0 43.0
+ retain original optimizers 57.7 47.3
+ aligned pyramid fusion 58.1 47.9

multi-modality 3D detectors. With these augmentations added sequentially, both the single-modality
(SECOND) and the multi-modality (MVX-Net) detectors obtain significant improvement.

Notably, the results also show that multi-modality cut and paste plays a critical role in bridging
the performance gap between the multi-modality detector and single-modality detector. And the
proposed MoCa improves the vanilla cut and paster by 1.2 moderate mAP. Both single-modality and
multi-modality methods obtain large improvement with the help of cut and paste (moderate mAP
from 60.7% and 60.5% to 68.1% and 70.2%, respectively). Without cut and paste, MVX-Net cannot
even surpass SECOND (60.5% vs. 60.7%). But with the help of MoCa, MVX-Net surpasses its
counterpart by a large margin (70.2% vs. 68.1%). More ablation studies of multi-modality cut and
paste are in the appendix.

Step-by-step results on KITTI dataset. We evaluate the beneficial components step by step in Ta-
ble 2a. We freeze image branch pre-trained on COCO and KITTI dataset when retaining the original
optimizers. MVX-Net enhanced by our method significantly surpasses its previous version (second
row in Table 2a) by 9.5%, 11.3%, and 10.4% in mAP of easy, moderate, and hard conditions, re-
spectively. The enhanced MVX-Net also surpasses its single-modality counterpart, SECOND, by
3.1%, 3.7%, and 6.1% in mAP of easy, moderate, and hard conditions, respectively.

Step-by-step results on nuScenes dataset. We also validate the beneficial components step by step
on the more challenging nuScenes dataset (Table 2b). Since existing results in the literature are
mainly based on PointPillars, we also adopt PointPillars as the 3D detector in MVX-Net. We reim-
plement PointPillars but supplement it with FPN, which achieves 53.4% in the NDS score, higher
than that reported by the dataset provider (44.2% (Caesar et al., 2019)). As shown in Table 2b,
MoCa and the explored practices are all beneficial on nuScenes dataset. The proposed changes
allow MVX-Net to surpass PointPillars by a large margin (7.8% mAP and 4.7% NDS).

3.2 BENCHMARK RESULTS

KITTI dataset. We compare our method with other published methods on the KITTI 3D detec-
tion benchmark for completeness. Note that many previous works (Yang et al., 2019; Yan et al.,
2018; Lang et al., 2019; Ku et al., 2018; Wang & Jia, 2019; Liu et al., 2020) train specialized mod-
els with different hyperparameters for different categories and ensemble their results on the
benchmark. However, using multiple detectors for multiple classes is not ideal for real-world ap-
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Table 3: Comparison with published multi-modality methods on KITTI 3D test benchmark. ‘En-
sembled’ indicates whether the results are ensembled by class-specialized detectors. The best results
are bolded

Method Ensembled mAP (%) Pedestrian Cyclist Car
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

AVOD-FPN
√

65.8 54.9 49.9 50.5 42.3 39.0 63.8 50.6 44.9 83.1 71.8 65.7
F-PointNet 68.3 56.0 49.2 50.5 42.2 38.1 72.3 56.1 49.0 82.2 69.8 60.6

PointPainting 70.0 58.8 53.6 50.3 41.0 37.9 77.6 63.8 55.9 82.1 71.7 67.0
F-ConvNet 73.8 61.6 54.0 52.2 43.4 38.8 82.0 65.1 56.5 87.4 76.4 66.7

MoCa + MVX-Net++ (ours) × 71.0 60.2 54.7 50.9 43.7 40.0 76.1 61.0 53.4 86.0 75.9 70.7

Table 4: Comparison with previous methods on nuScenes validation set. ‘Con. Veh.’, ‘Ped.’, and
‘T.C.’ are the abbreviations of construction vehicle, pedestrian, and traffic cone, respectively. ‘FA’
means FreeAnchor and ‘3×’ means longer training schedule. NDS score, mAP, and APs of each
categories are reported. The single class AP not reported in the paper is marked by ‘-’. The best
results are bolded

Method Modality NDS mAP Car Truck Bus Trailer Con. Veh. Ped. Motor Bicycle T.C. Barrier
PointPillars L 46.8 28.2 75.5 31.6 44.9 23.7 4.0 49.6 14.6 0.4 8.0 30.0

3D-CVF L + I 49.8 42.2 79.7 37.9 55.0 36.3 - 71.3 37.2 - 40.8 47.1
PointPillars+FPN L 53.4 40.1 80.6 35.9 43.5 29.2 5.4 71.9 34.9 11.8 35 52.6

3DSSD L 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
PointPainting L + I 58.1 46.4 77.9 35.8 36.1 37.3 15.8 73.3 41.5 24.1 62.4 60.2
CenterPoint L 65.0 56.6 84.6 54.7 66 32.3 15.1 84.5 56.9 38.6 67.4 66.1

MoCa + MVX-Net++ L+I 58.1 47.9 82.4 41.5 49.6 28.6 9.1 79.1 50.3 27.2 49 61.9
MoCa + MVX-Net++ on stronger PointPillars baselines

+ FA

L + I

60.3 52.9 83.6 48.5 56.4 31.4 10.8 81.6 61.0 35.7 58.1 61.7
+ FA + RegNetX-400MF 62.1 55.2 84.2 51.7 63.6 34.2 18.0 82.0 61.8 32.9 59.4 64.0
+ FA + RegNetX-1.6GF 64.7 58.4 85.2 55.5 64.5 35.0 20.8 84.5 68.0 42.8 62.3 65.1
+ FA + RegNetX-3.2GF 65.4 59.2 85.7 56.8 66.2 35.8 21.7 84.4 67.4 44.2 62.8 66.3

+ FA + RegNetX-3.2GF + 3× 67.8 62.5 87.0 60.8 68.2 39.7 23.9 85.8 70.2 51.6 68.1 69.5

plications. Therefore, in this work, we train all our models on all three classes without tuning the
models for specific categories. Table 3 shows that MoCa achieves promising performance among
multi-modality methods. Despite using a single model for all three classes, MoCa achieves compet-
itive performance against other baselines that use an ensemble of class-specific detectors. On hard
conditions, only MoCa obtains top-3 results of all the categories. In comparison, other methods do
not exhibit such generalizability.

nuScenes dataset. We compare our method with other published methods on the validation set of
nuScenes dataset (Caesar et al., 2019) in Table 4. The dataset has more diverse scenes and need to
detect 10 categories, which is more challenging. We report the performance of enhanced MVX-Net
with MoCa, using the image branch from HTC pre-trained on nuImages dataset. The results show
that MoCa surpasses PointPainting (Vora et al., 2020), the previous multi-modality state of the art,
by 1.5% mAP. To evaluate the scalability of our methods and compare with methods using large
model (Zhu et al., 2019), we also report the performance of MoCa based on stronger baselines en-
hanced by FreeAnchor (Zhang et al., 2019), RegNetX (Radosavovic et al., 2020), and longer sched-
ule with stronger augmentations. Our method brings consistent improvement over strong single-
modality baselines. MoCa achieves new state-of-the-art results not only on the overall metric, but
also on the AP of all the categories. The final performance of MoCa surparsses the previous best re-
sult achieved by a large model of CenterPoint (Yin et al., 2020) trained by CBGS (Zhu et al., 2019),
with an absolute improvement of 2.8% NDS and 5.9% mAP.

4 CONCLUSION

This paper investigates and discusses the pitfalls of applying data augmentations to multi-modality
3D object detection. We contribute a pipeline, multi-modality transformation flow, to ensure consis-
tency during augmentations and to enable a richer set of augmentation strategies. Based on that, we
validate the effectiveness of different augmentations that are absent in previous works and further
present multi-modality cut and paste (MoCa) to bridge the gap of augmentations between multi-
modality and single-modality 3D detectors. Under different strong baselines, our method improves
the performance consistently and achieves new state-of-the-art performance on nuScenes dataset.
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A RELATED WORK

3D object detection. Many approaches (Yang et al., 2019; Shi et al., 2019; Yan et al., 2018; Liu
et al., 2020) have been focusing on processing LiDAR point cloud to improve the performance of
3D object detection. To deal with the irregular and unstructured nature of point cloud, common
approaches either apply convolutional neural network (CNN) to the voxelized representation (Zhou
& Tuzel, 2018; Yan et al., 2018; Lang et al., 2019; Liu et al., 2020; Deng et al., 2020) or process raw
points (Shi et al., 2019; Qi et al., 2019a; Yang et al., 2020) by PointNets (Qi et al., 2017a;b). Later
methods (Shi et al., 2020; Yang et al., 2019; Chen et al., 2019c) exploit both voxel representation
and raw points. There are also attempts (Wang et al., 2019; Chen et al., 2018) that purely rely on
cameras for 3D detection.

Previous works aggregate image and point cloud features from different views (Chen et al., 2017;
Ku et al., 2018); the efficiency is limited by the view aggregation for a large quantity of anchors (Ku
et al., 2018) or the proposals (Chen et al., 2017). There are also works (Liang et al., 2019; 2018;
Sindagi et al., 2019) fuse image features into each point, but they exhibit various feature misalign-
ment issues. For example, MVX-Net (Sindagi et al., 2019) quantizes image coordinates, while
methods (Liang et al., 2019; 2018) based on ContFuse (Liang et al., 2018) use the nearest points
for each BEV feature grid. Frustum-based methods (Qi et al., 2018; Wang & Jia, 2019) obtain
frustum proposals from an image and then apply PointNet (Qi et al., 2017a) to point cloud for 3D
object localization. Their performance is limited by the proposal qualities and they may not fully
exploit the complementary information of multi-modalities. ImVoteNet (Qi et al., 2020) skips the
above-mentioned issue by fusing 2D votes in images and 3D votes in point clouds.

Augmentations for detection. Data augmentation is crucial to improve the models’ performance.
However, the current single-modality 3D detectors (Yang et al., 2019; Shi et al., 2019; 2020) use
more aggressive data augmentations than existing multi-modality methods (Qi et al., 2018; Liang
et al., 2019; Sindagi et al., 2019) do. Conventional image augmentations include but are not limited
to random cropping, random flipping, and multi-scale training (He et al., 2016; Chen et al., 2019b).
For point cloud data, common augmentation techniques are random flipping, rotation, translation,
and scaling (Yan et al., 2018; Zhou & Tuzel, 2018; Shi et al., 2019). In multi-modality 3D detection,
the practices of augmentations vary across different methods (Liang et al., 2018; 2019; Sindagi et al.,
2019). For example, ContFuse (Liang et al., 2018) skips random flip, whereas MVX-Net (Sindagi
et al., 2019) does not apply random rotation and translation to maintain consistency between image
and point cloud.

There are augmentations applied to regions that contain objects of an image (Devries & Taylor, 2017;
Yun et al., 2019; Fang et al., 2019). A representative method is to cut and paste objects (Dwibedi
et al., 2017; Dvornik et al., 2018; Fang et al., 2019). While Dwibedi et al. (Dwibedi et al., 2017)
paste objects randomly, some works use a location probability map (Fang et al., 2019), semantic
and depth information (Georgakis et al., 2017), or a visual context model (Dvornik et al., 2018) to
guide the pasting process. Cutting and pasting the points of objects is also common for LiDAR-
based 3D detection methods (Yan et al., 2018; Liu et al., 2020; Yang et al., 2019) but is absent from
multi-modality methods (Qi et al., 2018; Liang et al., 2019; Sindagi et al., 2019).

B DISCUSSION

Applications to different modalities. Multi-modality transformation flow and MoCa apply to
multi-modality methods that take LiDAR point cloud, range view or depth image, and RGB im-
age as their inputs. For depth or range view images, as long as the data augmentation can be applied
to depth or range view images and the data augmentation has reversible transformation, transfor-
mation flow can be used with these data augmentations to maintain consistency in multi-modality
fusion. For example, as rotation, flip, and cut and paste can be applied to range view images (Fan
et al., 2021), transformation flow can also work to maintain the correspondence to fuse the features
from range view images and RGB images. When range view or depth images are used, MoCa can
also cut and paste the patches of objects from range view or depth images. We can still handle the
occlusion in 3D space by first projecting the depth to 3D space from these images.

Limitations and improvements. For simplicity, MoCa pastes the objects to the same positions in
a new scene as to where they are in their original scenes. The flexibility of MoCa can be improved
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by making the pasting process more editable, e.g., enabling to decide the position of the objects in a
new scene. A more editable pasting process could increase the diversity of the augmented scenes and
may improve the model’s generalizability because it prevents the model from overfitting to objects
at certain locations. Furthermore, we notice that the pasted scenes are not as real as natural scenes
because we only blend the image patches when pasting them to a new image. Therefore, graphic
methods like rendering engines may further improve the performance by improving the realness of
the augmented training samples.

C IMPLEMENTATION DETAILS

Due to the complexity of multi-modality 3D object detection, we discuss the critical details in our
implementation to help avoiding pitfalls in coordinate transformation, data augmentation, and model
training.

Projection from LiDAR to image. For feature fusion, the point cloud is first transformed from
LiDAR coordinates Plidar to camera coordinates and then projected to image pixel coordinates
Pimg . On KITTI dataset (Geiger et al., 2012), the projection is calculated as follows:

Pimg = P 0
rectR

0
rectTcam←lidarPlidar, (3)

where Tcam←lidar is the transformation matrix from LiDAR coordinates to camera coordinates,
R0

rect is the rectifying rotation matrix of the left camera, and P 0
rect is the calibration matrix of the

left camera.

On nuScenes dataset (Caesar et al., 2019), the points in LiDAR coordinates are first transformed
to the ego car’s global coordinates since the LiDAR (20Hz) and camera (12Hz) work at different
frequencies. Therefore, the transformation is calculated as follows:

Pimg = Tcam←egoTegoc←egolTego←lidarPlidar, (4)

where Tego←lidar is the transformation matrix from LiDAR to the ego pose at timestamp tl when the
LiDAR frame is recorded, Tegoc←egol is the transformation matrix from ego pose at timestamp tl to
the ego pose at timestamp tc when the camera frame is captured, and Tcam←ego is the transformation
matrix from ego pose at timestamp tc to the camera.

Multi-modality transformation flow. When training single-modality detectors, the model is trained
on the augmented data with the augmented label, i.e., if the input data is flipped, its training label
should also be flipped. The single-modality detector should obey this rule even if they are trained
inside a multi-modality detector (we should not make the network learn to predict a box at the left
side if the object is in the right side of the image). During fusion, transformation flow allows the
points in a modality to correctly find its corresponding point in another modality. For example,
given a flipped point cloud data and its unflipped image, the image detector should be trained with
unflipped 2D labels and the point cloud detector should be trained with flipped 3D labels. During
fusion, transformation flow allows a point of an object in the right side of LiDAR coordinates to
find its true correspondence, which should be a pixel of the object in the left side of the image. This
could improve the robustness of feature fusion because it forces the detector to exploit the semantic
feature that should be invariant to transformations. On the nuScenes dataset, using un-synchronized
flipping of the two modalities slightly improves the performance (0.5%NDS).

Multi-modality cut and paste. Multi-modality cut and paste (MoCa) needs ground-truth instance
masks to paste image patches of objects, as in (Dwibedi et al., 2017; Dvornik et al., 2018; Fang et al.,
2019). For KITTI dataset, we use the instance masks in KINS dataset (Qi et al., 2019b) to build the
multi-modality GT database. For nuScenes dataset, we use pseudo instance masks predicted by an
instance segmentation model. Specifically, we first train an HTC (Chen et al., 2019a) with ResNeXt
32×4d backbone on COCO dataset with 3× schedule (Chen et al., 2019b). Then we fine-tune the
HTC on nuImages dataset by 20 epochs and use that model to predict instance masks of images
in nuScenes dataset. Note that we only use the objects in the training split to formulate the GT
database in all experiments. No information from validation/test split is used in training.

Training details. On KITTI dataset, both SECOND (Yan et al., 2018) and MVX-Net (Sindagi
et al., 2019) are trained by 80 epochs with a batch size of 16. We adopt a half-period cosine sched-
ule (Loshchilov & Hutter, 2017) for learning rate decaying and use a linear warm-up strategy in the
first 1K iterations. The initial learning rate is 0.003 for all the 3D detectors that use ADAM (Kingma
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Table 5: Ablation study of multi-modality copy-paste

(a) Comparison of different IoF
thresholds on Multi-modality 3D
detector. ‘No test’ means not ap-
plying collision test, and ‘mixed’
means using different thresholds
during training

Threshold 3D mAP (%)
Easy Mod. Hard

No test 79.9 69.0 64.5
0.3 80.9 69.7 66.0
0.5 80.0 69.6 66.0
0.7 80.0 69.7 65.6

Mixed 80.9 70.2 65.2

(b) Comparison of different IoF
thresholds on 2D detector. ‘No test’
means not applying collision test,
and ‘mixed’ means using different
thresholds during training

Threshold 2D mAP (%)
Easy Mod. Hard

No test 84.9 78.2 72.1
0.3 86.1 79.0 73.9
0.5 85.8 79.0 73.6
0.7 86.8 78.7 73.2

Mixed 86.3 79.3 74.4

(c) Comparison of different aug-
mentations and different epochs on
Faster R-CNN. ‘Baseline’– not us-
ing cut and paste. and ‘AutoAug’–
searched augmentation strategies

Method Epochs 2D mAP (%)
Easy Mod. Hard

Baseline 20 86.3 75.2 71.8
36 86.6 73.3 67.4

AutoAug 20 86.4 78.5 73.7
36 84.9 78.2 72.1

MoCa (ours) 20 86.3 79.3 74.4
36 86.6 79.5 74.1

& Ba, 2015) optimizer. When retaining the original optimizers (Sec. 2.3) for MVX-Net, we train
the image branch using SGD optimizer with momentum and the initial learning rate is 0.05. The
hyperparameters for point cloud branch remain the same as those for SECOND.

For nuScenes dataset (Caesar et al., 2019), both PointPillars (Lang et al., 2019) and MVX-
Net (Sindagi et al., 2019) are trained by 20 epochs with batch sizes of 32 and 16, respectively.
Notably, this is different from the official implementation (Caesar et al., 2019), where PointPil-
lars (Lang et al., 2019) is trained by 125 epochs, which costs much time. We adopt step learning rate
decaying schedule following the practice in mmdetection (Chen et al., 2019b), i.e., the learning rate
is decayed by 0.1 after the 16th and 19th epoch, respectively. The initial learning rate is 0.001 for
all the 3D detectors using ADAM (Kingma & Ba, 2015) optimizer. When training MVX-Net, we
also retains the original optimizers, where the image branch is trained by SGD optimizer with mo-
mentum and the initial learning rate is 0.0012. The hyperparameters for point cloud branch remain
the same as those for PointPillars.

Since one training sample for MVX-Net contains six images from multiple views and one LiDAR
point cloud frame, each GPU can only contain one training sample during each iteration. This
degrades the performance siginificantly because the batch size in one GPU is so small that the inac-
curate statistics in Batch Normalization (BN) (Ioffe & Szegedy, 2015) affects the training process.
Therefore, we use Syncronized Batch Normalization (SyncBN) (Liu et al., 2018) to solve this issue.
We report all the results of our methods using SyncBN on nuScenes dataset. We do not use SyncBN
for models on KITTI dataset because the batch size is 2 in each GPU as there is only one image and
one LiDAR point cloud frame in one training sample.

D MORE EXPERIMENTS

Multi-modality cut and paste (MoCa). We evaluate the effectiveness of components in MoCa. We
empirically find that having 6 pedestrians, 6 cyclists, and 12 cars in a frame for training yields the
best performance. Table 5a and Table 5b show that collision test improves the detector’s performance
of both multi-modality 3D detector and 2D detector, and different thresholds lead to different APs
under different conditions. The proposed mixed IoF thresholds yield the best performance and is
adopted in other experiments.

We further compare MoCa with other data augmentation techniques for 2D detectors. We train
Faster R-CNN (Ren et al., 2015) with FPN (Lin et al., 2017) following the standard setting (Chen
et al., 2019b) except that we use 20 or 36 epochs and different augmentation strategies. Cut and
paste significantly improves the results, in comparison with those not using cut and paste and those
using searched augmentation strategies (Zoph et al., 2019) (Table 5c). As the training schedule
becomes longer, cut and paste maintains its high performance, while the performances of baseline
and AutoAug (Zoph et al., 2019) degrade. The results of sustaining a longer training suggest the
effectiveness of MoCa in reducing overfitting.

We provide more visual results in Figure 6. The results show that MoCa provides visually reason-
able results after collision test. The new frames are enriched by more objects from less-frequent
categories such as pedestrian.
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Original frame Final frame Frame w/o collision test

Figure 6: Results of MoCa. The figure is best seen in color with zoomed in.

Table 6: Comparison of different training strategies. ‘Pre-train’ indicates which pre-trained model
is used. ‘COCO’ means the model is pre-trained on COCO dataset, and ‘+ KITTI’ means the model
is further pre-trained on KITTI 2D dataset. ‘Freeze’ indicates whether ResNet-50 (He et al., 2016)
in the image branch is frozen. The average results and standard deviation over 5 runs are reported.
The best results in each setting are bolded

Pre-train Freeze Optimizer 3D mAP (%)
Easy Mod. Hard

COCO ×
SGD 80.2± 1.0 69.9± 0.8 66.1± 1.1

ADAM 80.9± 0.7 70.2± 0.7 66.3± 1.2
Hybrid 81.1± 0.7 71.0± 0.6 67.2± 0.6

COCO
+

KITTI
×

SGD 80.5± 0.8 70.3± 0.2 67.0± 0.4
ADAM 80.6± 0.3 69.6± 0.3 65.7± 0.6
Hybrid 81.1± 0.5 70.6± 0.7 67.0± 1.0

COCO
+

KITTI
X

SGD 80.3± 0.6 70.3± 0.4 66.5± 0.8
ADAM 80.9± 0.6 70.7± 0.5 67.0± 0.3
Hybrid 81.8± 0.4 71.2± 0.5 67.8± 0.7

Retaining the original optimizers. As discussed in Sec. 2.3, the choice of optimizer for the image
feature extractor matters. To verify the versatility of retaining the original optimizers and find a
good training strategy, we adopt three training strategies for pre-training image feature extractors
and jointly training multi-modality detectors.

Here, we compare the following variants: (1) SGD, the SGD optimizer is used for the image-branch
pre-training as well as for both the image and point cloud branches during joint training; (2) ADAM,
the SGD optimizer is used for the image-branch pre-training but the ADAM optimizer is used for
both the image and point cloud branches during joint training; (3) Hybrid, we retain the original
optimizer of each modality branch, as presented in Sec. 2.3. The first strategy trains a Faster R-
CNN (Ren et al., 2015) on COCO2017 dataset by the multi-scale 3× schedule (Chen et al., 2019b;
Wu et al., 2019) with ResNet-50 (He et al., 2016) pre-trained on ImageNet (Russakovsky et al.,
2015). Then we train Faster R-CNN on the subset of COCO training split that only contains three
classes: people (for pedestrian in KITTI), bicycle (for cyclist in KITTI), and car, following Frustum-
PointNet (Qi et al., 2018). The weights of ResNet-50 and FPN pre-trained in the Faster R-CNN are
adopted in the image branch of the multi-modality detector for joint training. The second strategy
further fine-tunes the Faster R-CNN using MoCa for 20 epochs with mixed IoF thresholds (last
row in Table 5a) before joint training. The third strategy uses a similar pre-training strategy as the
SECOND one but freezes the ResNet-50 backbone in joint training. The optimal learning rate and
other hyper-parameters for all the aforementioned variants are found using a grid search to ensure
fair comparisons.

As shown in Table 6, retaining the original optimizers is beneficial, and the synergy of the third
strategy and retaining the original optimizers works best among these training and optimization
strategies. Our results here are purely empirical but they reveal the interesting tendency of using
different optimizers in different modality branches. This phenomenon worths further exploration
especially from the perspective of optimization routes (Keskar & Socher, 2017; Zhou et al., 2020).
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Table 7: Comparison of image branches pre-trained by different detectors

Detector Faster R-CNN Mask R-CNN Cascade HTC
NDS (%) 57.4 57.6 57.9 58.1

Table 8: Ablation study of each component with PointPainting (Vora et al., 2020) on nuScenes
validation set. Modifications are added sequentially

Method NDS (%) mAP (%)
PointPillars (Lang et al., 2019) + FPN (Lin et al., 2017) 53.4 40.1

+ image branch (Zhao et al., 2017) 56.5 45.1
+ MoCa 56.8 45.4

+ retain original optimizers 57.2 45.8

Pre-training on nuScenes dataset. We observe different effectiveness of the image branch in our
experiments when it is pre-trained in Faster R-CNN (Ren et al., 2015), Mask R-CNN (He et al.,
2017), Cascade Mask R-CNN (Cai & Vasconcelos, 2018), and HTC (Chen et al., 2019a) (Ta-
ble 7). Using similar backbones and necks, the image branch from HTC pre-trained on nuImages
dataset (Caesar et al., 2019) shows a gain of 0.7% NDS against that from Faster R-CNN. Thus, we
adopt the image branch from HTC in other experiments on nuScenes dataset.

The image branch from HTC pre-trained on nuImages dataset shows a gain of 0.7% NDS against
that from Faster R-CNN as shown in Table 7. Those pre-trained detectors are first trained by 20
epochs using the standard setting on COCO dataset and released by MMDetection (Chen et al.,
2019b). We further fine-tune those detectors on the nuImages dataset by 20 epochs using similar
hyper parameters as those for the COCO dataset. When jointly training the multi-modality detectors,
the weights in ResNet-50 backbone and FPN of those pre-trained detectors are adopted to initialize
the image branch.

Step-by-step results with PointPainting. We show that our method generalizes to PointPaint-
ing (Vora et al., 2020). PointPainting fuses image segmentation predictions with points for multi-
modality 3D object detection. We use PSPNet (Zhao et al., 2017) with ResNet-18 backbone as the
image branch, which is pre-trained on nuImages dataset by 80000 iterations using the standard set-
tings in MMSegmentation (Contributors, 2020). As the fusion technique in Section 3.3 relies on
FPN-based object detectors, we do not study it here. As shown in Table 8, adding PSPNet (Zhao
et al., 2017) as the image segmentation branch brings improvement of 2.1% NDS. MoCa further
improves the performance by 0.3% NDS, and retaining original optimizer gains 0.4% NDS. The
results verifies the generalizability of MoCa and retaining the original optimizer.

It is worth noting that the official code of PointPainting is not available publicly. Thus, the improve-
ment by our method may also be affected by missing some important implementation details. We
re-implemented the method with our best effort. The PointPainting authors use a higher baseline
(55% NDS on test set, 54.5% NDS on val set) and the training recipe of the segmentation net-
work and multi-modality detector is unknown. Though PSPNet should have stronger representation
ability and performance than FCN, the improvement brought by PSPNet trained by us (+5 AP) is
smaller than that brought by FCN in the original PointPainting (+6.3 AP). The hyper parameters
might need delicate tuning as we adopt the same hyper-parameters of MoCa and optimization as
those for MVX-Net due to limited resources.

Stronger PointPillars baselines. We adopt stronger PointPillars baselines in MVX-Net to verify
our method’s generalizability by enhancing the head, backbone, and training schedule of Point-
Pillars. For completeness, we also put the detailed step-by-step results in Table 9. Notably, our
PointPillars baseline already achieves very high performance on the validation set. However, our
methods consistently improve performance, especially on challenging classes for LiDAR-based de-
tectors, such as bicycles, motorcycles, traffic cones, and pedestrians.
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Table 9: Comparison with previous methods and stronger PointPillars baselines on nuScenes valida-
tion set. ‘Con. Veh.’, ‘Ped.’, and ‘T.C.’ are the abbreviations of construction vehicle, pedestrian, and
traffic cone, respectively. ‘FA’ means FreeAnchor and ‘3×’ means longer training schedule. NDS
score, mAP, and APs of each categories are reported. The single class AP not reported in the paper
is marked by ‘-’. The best results are bolded

Method Modality NDS mAP Car Truck Bus Trailer Con. Veh. Ped. Motor Bicycle T.C. Barrier
PointPillars L 46.8 28.2 75.5 31.6 44.9 23.7 4.0 49.6 14.6 0.4 8.0 30.0

3D-CVF L + I 49.8 42.2 79.7 37.9 55.0 36.3 - 71.3 37.2 - 40.8 47.1
PointPillars+FPN L 53.4 40.1 80.6 35.9 43.5 29.2 5.4 71.9 34.9 11.8 35 52.6

3DSSD L 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
PointPainting L + I 58.1 46.4 77.9 35.8 36.1 37.3 15.8 73.3 41.5 24.1 62.4 60.2
CenterPoint L 65.0 56.6 84.6 54.7 66 32.3 15.1 84.5 56.9 38.6 67.4 66.1

MoCa + MVX-Net++ L+I 58.1 47.9 82.4 41.5 49.6 28.6 9.1 79.1 50.3 27.2 49 61.9
Stronger baselines based on PointPillars+FPN

+ FA

L

55.1 43.7 81.5 40.0 50.0 29.4 9.2 74.3 44.5 16.5 39.6 52.4
+ FA + RegNetX-400MF 56.7 45.5 82.0 41.9 50.7 32.3 11.0 75.4 50.1 19.1 44.1 48.8
+ FA + RegNetX-1.6GF 61.2 51.4 83.2 48.2 60.5 30.4 16.6 78.1 59.4 25.9 49.1 62.3
+ FA + RegNetX-3.2GF 62.2 52.1 83.6 51.1 62.3 36.0 17.3 78.2 56.1 24.7 50.0 62.0

+ FA + RegNetX-3.2GF + 3× 64.2 56.9 85.5 54.9 66.8 35.4 22.2 81.2 62.4 35.6 59.2 65.4
MoCa + MVX-Net++ on stronger PointPillars baselines

+ FA

L + I

60.3 52.9 83.6 48.5 56.4 31.4 10.8 81.6 61.0 35.7 58.1 61.7
+ FA + RegNetX-400MF 62.1 55.2 84.2 51.7 63.6 34.2 18.0 82.0 61.8 32.9 59.4 64.0
+ FA + RegNetX-1.6GF 64.7 58.4 85.2 55.5 64.5 35.0 20.8 84.5 68.0 42.8 62.3 65.1
+ FA + RegNetX-3.2GF 65.4 59.2 85.7 56.8 66.2 35.8 21.7 84.4 67.4 44.2 62.8 66.3

+ FA + RegNetX-3.2GF + 3× 67.8 62.5 87.0 60.8 68.2 39.7 23.9 85.8 70.2 51.6 68.1 69.5
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