
Efficient Interactive Maximization of BP and Weakly Submodular Objectives

Adhyyan Narang1 Omid Sadeghi2 Lillian Ratliff1 Maryam Fazel1 Jeff Bilmes1

1Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
2 Sloan School of Management, Massachusetts Institute of Technology, Boston, MA, USA

Abstract

In the context of online interactive machine learn-
ing with combinatorial objectives, we extend
purely submodular prior work to more general non-
submodular objectives. This includes: (1) those
that are additively decomposable into a sum of
two terms (a monotone submodular and monotone
supermodular term, known as a BP decomposi-
tion); and (2) those that are only weakly submod-
ular. In both cases, this allows representing not
only competitive (submodular) but also comple-
mentary (supermodular) relationships between ob-
jects, enhancing this setting to a broader range of
applications (e.g., movie recommendations, med-
ical treatments, etc.) where this is beneficial. In
the two-term case, moreover, we study not only
the more typical monolithic feedback approach but
also a novel framework where feedback is available
separately for each term. With real-world practi-
cality and scalability in mind, we integrate Nys-
tröm sketching techniques to significantly reduce
the computational cost, including for the purely
submodular case. In the Gaussian process contex-
tual bandits setting, we show sub-linear theoretical
regret bounds in all cases. We also empirically
show good applicability to recommendation sys-
tems and data subset selection. The code for this
paper is available at: https://github.com/
AdhyyanNarang/online_bp.

1 INTRODUCTION

Many machine learning paradigms are offline, where a
learner must understand the associations and relationships
within a dataset that is gathered, fixed, and then presented.
Interactive learning, by contrast, involves a dynamic, re-
peated, and potentially everlasting interaction between the

algorithm (learner) and the environment (teacher), better
mimicking natural organisms as they proceed through life.
Interactive learning is quite important for applications such
as recommender systems [Mary et al., 2015], natural lan-
guage and speech processing [Ouyang et al., 2022], interac-
tive computer vision [Le et al., 2022], advertisement place-
ment [Schwartz et al., 2017], environmental monitoring [Sri-
vastava et al., 2014], personalized medicine [Durand et al.,
2018], adaptive website optimization [White, 2013], and
robotics [Kober et al., 2013], to name only a few.

The fundamental mathematical challenge in these settings is
to optimize a utility function that encapsulates the value or
payoff of different actions within a specific context. While
there are many instances within this paradigm, including re-
inforcement, active, online, and human-in-the-Loop (HitL)
learning, one such setting is contextual bandits. In contex-
tual bandits, the agent observes a set of features (a context
vector), takes an action and then gets a reward from the
environment. The goal is to maximize the total accumu-
lated reward over a series of actions over time. The context
significantly influences the optimal choice of action. For
example, in movie recommendation systems, the context
might include user demographics (even a specific user), past
viewing history, time of day, and so on.

Gaussian Process Contextual Bandits (GPCB) extend this
basic idea by incorporating Gaussian Processes (GPs) for
modeling the unknown reward function [Seeger et al., 2008,
Srinivas et al., 2010, Krause and Ong, 2011, Valko et al.,
2013, Camilleri et al., 2021]. This approach is particularly
effective in scenarios where the relationship between the
context, actions, and rewards is complex and non-linear.
For any given context ϕut

(where ut ∈ [m] is the index of
one of m ∈ Z+ ∪ {∞} possible contexts at time t), GPs
allow the easy expression of a posterior distribution based
on previous rounds in terms of Gaussian conditional mean
µϕut

and condition variance σ2
ϕut

vectors where the former
encodes value and the latter encodes uncertainty. These are
combined in Upper Confidence Bound (UCB) algorithms
as µϕut

(v) + βtσ
2
ϕut

(v) to offer a combined valuation of

mailto:<adhyyan@uw.edu>
https://github.com/AdhyyanNarang/online_bp
https://github.com/AdhyyanNarang/online_bp

Offline Pure Online Online + Nyström Online + Sep. FB Online + Nyström + Sep. FB
Modular Srinivas et al. [2010], Krause and Ong [2011] Zenati et al. [2022] N/A N/A
SM Nemhauser et al. [1978] Chen et al. [2017] ✓ N/A N/A
BP Bai and Bilmes [2018] ✓ ✓ ✓ ✓
WS Das and Kempe [2011], Bian et al. [2019] ✓ ✓ N/A N/A

Table 1: The present paper’s novelty (green ✓ which means new algorithms for sublinear regret) in the context of previous
work. Here SM refers to SubModular, BP to suBmodular-suPermodular, and WS to Weakly Submodular. Sep FB refers to
the separate feedback BP setting introduced in this paper. N/A means not applicable.

action v ∈ V in the context of ϕut
in terms of exploration

(high σ2
ϕut

(v)) vs. exploitation (high µϕut
(v)) where βt is a

computed time-dependent tradeoff coefficient. The goal of
GPCB is traditionally to minimize cumulative regret, where
the rewards at each time are compared to the best choice at
that time:

R(T) =

T∑
t=1

fϕut
(v∗ϕut

)− fϕut
(vt),

where v∗ϕut
is the best choice for context ϕut and vt is the

algorithm’s choice at time t. Sublinear regret means this
increases more slowly than T (i.e., limT→∞ R(T)/T = 0).

Chen et al. [2017] made the important observation that
GPCBs can be used for online combinatorial, specifically
submodular, maximization, where an input set of size T
is incrementally constructed over time. Offline monotone
submodular maximization is NP-hard but a greedy algo-
rithm has an α multiplicative approximation [Nemhauser
et al., 1978] for α = 1 − 1/e. Chen et al. [2017] utilizes
α-regret, where the regret of the online algorithm at time
T is based on comparing with the α approximation of the
offline algorithm, specifically

R(T) = α

m∑
q=1

fϕq (S
∗
q)− fϕq (STq,q),

where fϕq
is the submodular function for context ϕq hav-

ing S∗
q as the optimal solution and STq,q is the algorithm’s

incrementally-computed attempted solution both of size
|S∗

q | = |STq,q| = Tq, and T =
∑

q Tq where Tq is the fre-
quency of context q. Thus, unlike the standard GPCP above
which uses a summation of pointwise quantities, this com-
binatorial α-regret utilizes the interdependencies between
elements evaluated by the submodular function. These inter-
dependencies strongly influence the best choices at different
time steps because of the submodular (i.e., non-independent)
relationships. Another critical feature is that the function f
is not available to the algorithm — rather only noisy gain
queries yt of the form yt = f(v|St) + ϵt are available after
v has been committed, where v is the algorithmic choice,
St = {v1, v2, . . . , vt−1} constitutes the previous and now
fixed set of choices, and ϵt is independent noise. Compared
to the offline setting, the online optimization setting be-
comes significantly more mathematically challenging and
requires smoothness assumptions to achieve sublinear regret.
However, the online setting is natural for many applications.

Despite its many benefits, the purely submodular assump-

tion is not sufficiently expressive to capture essential proper-
ties of many real-world environments. Consider the example
of movie recommendations — in some cases, recommend-
ing a movie and its sequel will yield greater rewards than rec-
ommending the two movies independently, a complementar-
ity (i.e., supermodularity) amongst actions. In personalized
medicine, certain combinations of medicines might together
possess pharmacological synergy (a supermodularity) while
other combinations will be lethal (a submodularity).

Contributions. In the present paper, we offer results that
achieve sublinear α-regret in the GPCB setting for a va-
riety of non-linear non-submodular utility functions that
previously have not been considered in the online setting.

We first consider when non-submodular utility functions
h = f + g can be additively decomposed into the sum of
a monotone submodular f and monotone supermodular g
components, known as a “BP” function (Definition 2). BP
functions allow for a much more expressive representation
of utility, capturing both the diminishing returns inherent in
submodular and the increasing complementary returns char-
acteristic of supermodular functions. Bai and Bilmes [2018]
introduced and studied the offline maximization of BP func-
tions subject to a cardinality constraint — this was shown to
have an approximation ratio of α = 1

κf

[
1− e−(1−κg)κf

]
where κf , κ

g ∈ [0, 1] are the submodular and supermodular
curvatures that respectively measure how far the functions
f, g are from being modular (see Section B). In general,
this problem is inapproximable, but if κg < 1, it is possi-
ble to obtain approximation ratios for this problem using
the greedy algorithm. We study this problem in the α re-
gret case showing sublinear regret. More interestingly, this
decomposition enables us to study a novel form of sepa-
rate feedback where we receive separate rewards each for
the submodular f and supermodular g components. In an
interactive recommender system, for example, the utility
function might represent the combined effects of user sat-
isfaction (submodular due to saturation of interests) and
network effects (supermodular due to the increasing value
of shared community experiences) the rewards each of
which can be available separately. The stronger separate
feedback case allows us to provide a stronger α-regret with
α = min

{
1− κf

e , 1− κg
}

. This choice is inspired by Liu
et al. [2022], who proposed a distorted version of the offline
greedy algorithm for BP maximization problems and pro-
vided an improved min{1− κf

e , 1−κg} approximation ratio.

See Appendix H.1 for further commentary on this approach.

When h : 2V → R is not decomposable as with a BP
function, we next consider a monolithic h that is Weakly
Submodular (WS), defined as the following being true:
∀A ⊆ B ⊆ V ,

∑
b∈B\A h(b|A) ≥ λh(B|A) for some

λ ∈ [0, 1] where h(B|A) ≜ h(B ∪A)− h(A). The largest
λ for which h is weakly submodular is known as the sub-
modularity ratio γ [Das and Kempe, 2011, Calandriello
et al., 2018], and h is submodular if and only if h is 1-
weakly submodular. Bian et al. [2019] also introduced a
generalized version of the submodular curvature ζ for WS
functions and studied the approximation ratio of the offline
greedy algorithm on such functions. Inspired by these re-
sults, we present a sublinear regret bound on WS functions
with α = 1

ζ

(
1− e−ζγ

)
.

We remark that in general, just because an offline algorithm
can achieve an α-approximate solution to an NP-hard prob-
lem does not guarantee that the online GPCB version can
achieve sublinear α-regret — it is in general quite challeng-
ing to show sublinear α-regret for new problems especially
in the combinatorial case when there are such dependencies
between previous and current actions.

A third contribution of our paper further addresses the main
practical computational complexity challenge with GPs, es-
pecially in high-dimensional spaces. The problem arises
from performing operations on Gram covariance matrices,
whose shape increase as the number of observations grow.
We address this challenge, for both the h as a BP function
and h as a WS function cases, by showing the applicability
of Nyström approximations, a technique traditionally used
in kernelized learning to efficiently handle large-scale data.
We show that Nyström approximations facilitate the effi-
cient computation of our utility functions by approximating
its components in a lower-dimensional space. This method
significantly reduces the computational complexity from the
prohibitive O(T 3) to a more manageable form, typically
O(CTN2) where N is substantially smaller than T and rep-
resents the number of points in the Nyström approximation.

Lastly, in our numerical experiments, we empirically demon-
strate the above for two applications, movie recommenda-
tions and in machine learning training data subset selection.

Background and Other Related Work. The above in-
troduces this paper’s novel contributions in the context of
previous work which Table 1 briefly summarizes. A very
detailed literature review is given in Appendix C. We high-
light that our algorithms are inspired by the developments
in GPCBs that enable the optimization of unknown func-
tions in low-information online environments [Srinivas et al.,
2010, Krause and Ong, 2011, Valko et al., 2013, Camilleri
et al., 2021]. In particular, Zenati et al. [2022] improves com-
putational efficiency by using Nyström points to speed up
the algorithm with the same asymptotic regret guarantee as

prior work. Additionally, there is a line of work on “combi-
natorial bandits” that may appear similar to our formulation
at first glance [Takemori et al., 2020, Papadigenopoulos and
Caramanis, 2021, Kveton et al., 2014, Chen et al., 2018, Nie
et al., 2023, Streeter and Golovin, 2008] – these study the
computational complexity of learning an unknown submod-
ular function. However, the feedback model in those papers
is entirely different than us: a new submodular function ar-
rives at each time step and an entire set is recommended.
In the present work, as mentioned above, we accumulate a
selected set over time for functions that arrive repeatedly.
Hence, this body of work is not comparable to the present
work.

In the following section, we begin directly with our prob-
lem formulation. For further background on submodularity,
supermodularity, BP functions, and various curvatures, see
Appendix B.

2 PROBLEM FORMULATION

Our optimizer operates in an environment that occurs over
T time steps. Specifically, at each time step t ∈ [T]:

1. The optimizer encounters one of m set functions from the
set {h1 . . . hm} each defined over the finite ground set
V . The optimizer is ignorant of the function but knows
its index ut ∈ [m] as well as a context or feature-vector
ϕut

for that index at round t.

2. The optimizer computes and then performs/plays ac-
tion vt ∈ V , and then adds vt to its growing context-
dependent set Stut ,ut

of size |Stut ,ut
| = tut

with∑
j∈[m] tj = t. The set Stut ,ut

contains all items so
far selected for the unknown function hut .

3. The environment offers the optimizer noisy marginal
gain feedback. There are two feedback models:

(3a) Monolithic Feedback: The optimizer receives yt
with yt = hut(vt|Stut ,ut) + ϵt.

(3b) Separate Feedback: In the BP case, (yf,t, yg,t) may
be available with yf,t = fut

(vt|Stut ,ut
)+ϵt/2 and

yg,t = gut
(vt|Stut ,ut

) + ϵt/2.

The separate feedback case (3b) is relevant only for appli-
cations (e.g., multiple surveys, etc.) where it is feasible.
Section 5 exploits this richer feedback to improve perfor-
mance. All feature-vectors ϕut are chosen from set Φ of
size |Φ| = m, and we assume that the identity of the utility
function hq is determined uniquely by ϕq; hence, when clear
from context, we use hq to refer to hϕq

.

We observe how two applications may be formalized in our
framework. Vignette 2 is further explored in Appendix I.

Vignette 1 (Movie Recommendations). Each function hq

captures the preferences of a single user q ∈ [m], and the
index ut ∈ [m] reveals which user has arrived at time step t.

The action vt performed at time t is the optimizer’s recom-
mended movie to user ut. The feature vector ϕut contains
user-specific information, e.g., age range, favorite movies
and genres, etc. The feedback gain hut

(v|A) is the enjoy-
ment user ut has from watching movie v having already
watched the movies in set A.

Vignette 2 (Active Learning). The optimizer chooses train-
ing points to be labeled for m related tasks on the same
dataset - for instance classification, object detection, and
captioning. The function hq(A) is the test accuracy of a pre-
dictor trained on set A on the qth task. Choosing an action
vt is tantamount to choosing a training point to be labeled
for task ut ∈ [m].

In our quest to design low regret online item-selection strate-
gies for these problems (made precise in Section 4), we first
study the robustness of the greedy procedure for the of-
fline optimization of Monotone Non-decreasing Normalized
(MNN) functions (see Appendix B) in Section 3. Then in
Section 4, we show that our proposed online procedure
approximates the offline greedy algorithm, leveraging Sec-
tion 3 to obtain online guarantees.

3 OFFLINE ALGORITHM ROBUSTNESS

We consider the problem of cardinality-constrained opti-
mization of a MNN objective h : 2V → R:

max
S∈2V

h(S) : |S| ≤ k (1)

Let S∗ denote an achieving set solving Equation (1). The
most common approximation algorithm for this problem
greedily [Nemhauser et al., 1978] maximizes the available
marginal gain having oracle access to h. In online settings,
however, we do not have this luxury. To help us analyze
the online setting, therefore, we consider a modified offline
algorithm where the greedy choices might be good only with
respect to a set of additive “slack” variables rj , exploring
the impact of this modification on approximation quality for
different classes of functions. Then in Section 4 we develop
an online algorithm that emulates greedy in this way.

3.1 GREEDY SELECTION ROBUSTNESS

We define an approximate greedy selection rule that, given
scalars {rj}kj=1, chooses vj for each j ∈ [k] satisfying:
vj ∈ {v : h(v|Sj−1) ≥ argmaxṽ h(ṽ|Sj−1)− rj}, (2)

where Sj = {v1 . . . vj} and S∗ the optimal set of size k.

Lemma 1. Any output S of the approximate greedy selec-
tion rule in Equation (2) admits the following guarantee for
BP objectives (Def. 2) for Problem (1):

h(S) ≥ 1

κf

[
1− e−(1−κg)κf

]
h(S∗)−

k∑
j=1

rj ,

where κf , κ
g are as defined in Definitions 3 and 4.

A proof is in Appendix F.1. This result is a generalization
of Bai and Bilmes [2018, Theorem 3.7] which is recovered
by setting ∀j, rj = 0. This result is surprising because, with
the supermodular part of the BP function, poor early selec-
tions may preclude the ability to exploit potential increasing
returns from g — the curvature κg is crucial for this. The
result can also be understood as a generalization of Chen
et al. [2017], which studies the robustness of the greedy
algorithm to errors in submodular functions. In their case,
however, they adapt the simple classical greedy algorithm
proof [Nemhauser et al., 1978]. In Appendix E, we provide
an alternate proof using a crude bound that incorporates
the supermodular curvature but ignores the submodular cur-
vature, reminiscent of the argument in Chen et al. [2017].
However, the approximation ratio obtained is much worse
than that of Bai and Bilmes [2018].

Therefore, we study (in Appendix F.1) the robustness using
the detailed analysis in Bai and Bilmes [2018]. This poses
a considerable challenge, since Bai and Bilmes [2018] (in-
spired by Conforti and Cornu’ejols [1984]) formulate an
intricately designed series of linear programs to show that
any selection that has as much overlap with the optimal
solution as the greedy algorithm must achieve the desired
approximation ratio. Here, the errors rj manifest as pertur-
bations to the constraints of the linear programs. We then
perform a sensitivity analysis of the linear programs to argue
that these perturbations to the constraints lead to a linear
perturbation to the optimal objective and does not cause it
to explode.

In the case where h does not have a BP decomposition, we
offer the following result generalizing Bian et al. [2019].

Lemma 2. Any output S of the approximate greedy selec-
tion rule in Equation (2) admits the following guarantee
on objectives with submodularity ratio γ and generalized
curvature ζ (Definitions 5 and 6) for Problem (1):

h(S) ≥ 1

ζ

(
1− e−ζγ

)
h(S∗)−

k∑
j=1

rj .

A proof is given in Appendix F.2. We see in Section 4 that
Lemmas 1 and 2 are key to the analysis of Algorithm 1.

3.2 DISTORTED BP GREEDY ROBUSTNESS

In Liu et al. [2022], the authors present a “distorted” ver-
sion of the greedy algorithm, which achieves a better greedy
approximation ratio than Bai and Bilmes [2018] for Prob-
lem (1) with a BP objective. Here, we study its robustness.

As in Sviridenko et al. [2017], we define the modu-
lar lower bound of the submodular function l1(S) =∑

j∈S f(j|V \{j}). Also, define the totally normalized sub-
modular function as f1(S) = f(S) − l1(S). Note that
f1 always has curvature κf = 1 and also that h(S) =

f1(S) + g(S) + l1(S). We define the function πj(v|A) as:

πj(v|A) =

(
1− 1

k

)k−j−1

f1(v|A)+g(v|A)+ l1(v) (3)

In Liu et al. [2022], the optimizer greedily maximizes the
πj function at step j rather than the original BP gain. In
πj , the submodular part is down weighted relative to the
supermodular part. Intuitively, this is helpful because the
supermodular part is initially much smaller than the sub-
modular part, but ultimately dominates the sum. Thus, it is
in the optimizer’s interest to focus on the supermodular part
early, rather than waiting until it becomes large.

We define the approximate distorted greedy selection
rule as follows. Given scalars {rj}kj=1, in each step j =
{1, . . . , k}, the optimizer chooses an item vj that satisfies
vj ∈ {v : πj(v|Sj−1) ≥ argmaxṽ πj(ṽ|Sj−1)− rj}. (4)

We present a robust version of Liu et al. [2022]:

Lemma 3. Any output S of the approximate distorted
greedy selection rule in Equation (4) admits the following
guarantee for Problem (1) with a BP objective (Def. 2):

h(S) ≥ min
{
1− κf

e
, 1− κg

}
h(S∗)−

k∑
j=1

rj ,

where κf , κ
g are as defined in Def. 3 and 4.

This lemma is the key to the analysis of Algorithm 4 in
Section 5. We remark that the approximation ratio above
is different from Liu et al. [2022]. This is due to us
fixing an error that we noticed in their analysis, which
caused the approximation ratio to change from their α =

min
{
1− κf,q

e , 1− κg
qe

(1−κg
q)
}

to our above. Details are
in Appendix H.1. Additionally, note that Sviridenko et al.
[2017] provided a 1− κf

e lower bound for monotone sub-
modular maximization and later on, Bai and Bilmes [2018]
obtained a 1− κg lower bound for monotone supermodular
maximization. Our approximation ratio in Equation (12) is
simply the minimum of these two quantities. In Appendix H,
we provide a heat map that compares this approximation
ratio to that of Bai and Bilmes [2018], showing that it is
strictly greater for all κf , κ

g . Once their analysis is fixed, we
adapt their argument to the more general case that allows for
errors rj at each stage to complete the robust online proofs.

4 NO-REGRET SINGLE FEEDBACK

In the previous section, we considered the robustness of the
greedy algorithm in the offline setting. We now return to
our interactive problem from Section 2 and will show how
it reduces to the offline problem.

First, we fully define the notion of scaled regret mentioned
in Section 1. The scaling is chosen to compare with the
appropriate offline algorithm for the relevant function class;
it is standard to consider scaled regret for NP-hard problems

(e.g., [Chen et al., 2017]). Recall our interactive setup from
Section 2. Let Tq represent the number of items selected for
function hq by the final round, T , so that

∑m
q=1 Tq = T . The

set STq,q is the final selection for hq and we set Sq = STq,q

for notational simplicity. Let S∗
q ∈ argmax|S|≤Tq

hq(S) be
a maximizing payoff set for hq with at most Tq elements.
Inspired by Bai and Bilmes [2018] and with respect to the
approximation ratio obtained for the greedy baseline for BP
functions, we define the regret metric RBP(T) as follows:

RBP(T) :=

m∑
q=1

1

κq,f

[
1− e−(1−κg

q)κq,f

]
hq(S

∗
q)− hq(Sq).

(5)
From Lemma 1, we recognize that if our online algorithm
is approximately greedy as in Equation (2), then our regret
will be bounded by the accumulation of the approximation
errors rj . This observation bridges the gap between the on-
line and offline settings. Hence, our goal is to design an
algorithm that satisfies this property. Analogously, for func-
tions with bounded submodularity ratio γq (Definition 5)
and generalized curvature ζq (Definition 6), we define:

RWS(T) :=

m∑
q=1

1

ζq

[
1− e−ζqγq

]
hq(S

∗
q)− hq(Sq). (6)

If we knew all the functions {h1 . . . hm}, we could select
the greedy item at each stage and achieve zero regret. Define
∆(ϕ, S, v) = hϕ(v|S) to encapsulate all our m latent objec-
tives succinctly; we also further below use the notational
shortcuts xt = (ϕut

, Sut
, vt) and ∆(xt). If we knew this

function, we would know {h1 . . . hm} as well. Thus, our
task is to design a procedure to estimate ∆(ϕ, S, v) from
data such that the approximation errors rj reduce over time.

To make this possible, we must make additional assump-
tions on ∆(·). To see why, consider what we can infer from
an observation without any additional assumptions. In the
BP case, for instance, the q-th BP gain function is uniquely
defined by 2|V | function evaluations hq(v|S) for each possi-
ble (v, S). If we observe hq(v|S) for some (v, S), then we
can only make inferences about fq(v|A) and gq(v|A) for all
A ⊆ S or A ⊇ S; since we can only choose item v once dur-
ing the optimization for user q, this information is not useful
practically. This motivates the following assumption.1

Assumption 1. The ∆(·) function lives in a Reproducing
Kernel Hilbert Space (RKHS) associated with some kernel
k and has bounded norm i.e ∥∆∥k ≤ B.

The assumption ensures the outputs of the ∆(·) function
vary smoothly with respect to the inputs and is standard with
GPCBs [Seeger et al., 2008, Srinivas et al., 2010, Krause and
Ong, 2011, Chen et al., 2017]. E.g., if two related movies
are watched by two similar users, they should provide simi-
lar ratings. Thus, each query provides information about all

1See [Berlinet and Thomas-Agnan, 2011] for a comprehensive
treatment of RKHS and kernels.

Algorithm 1 MNN-UCB
Input set V , k kernel function

1: Init Sq ← ∅, Vq ← V, ∀q ∈ [m]
2: Init X0 ← ∅, G1 ← ∅
3: for t ∈ 1, 2, 3 . . . T do
4: Observe ut from environment.
5: if t = 1 then
6: Choose v1 ∈ Vut

uniformly at random
7: else
8: Update yt ← [y1, y2, . . . , yt−1]

⊤

9: µt, σt = MEANVARCALC
10: (Vut

, ϕut
, Sut

, Gt, Gt−1, xt−1, Xt−1,yt)
11: Select vt ← argmaxv∈Vut

µt(v) + βtσt(v)
12: end if // βt is defined in Eq. (27).
13: Update Sut ← Sut ∪ {vt}, xt ← (ϕut , Sut , vt),

Xt ← Xt−1 ∪ {xt} , Vut ← Vut \ vt
14: Obtain feedback yt = ∆(xt) + ϵt,
15: // Decide whether to store new point.
16: Gt+1 = NYSTRÖMSELECT(k, Gt, xt)
17: end for

Algorithm 2 NYSTRÖMSELECT Zenati et al. [2022].
Input: k, Gt, xt; Locally stored variables: List L
Hyperparams:Regularization λ, Accuracy η, Budget b

1: If first call, init L to empty list.
2: Compute leverage score τ̂t(λ, η) from Eq. (7)
3: With probability min(bτ̂t(λ, η), 1) include xt in Gt+1.
4: Append τ̂t(λ, η) to L

Result: Gt+1

m · 2|V | other possible queries to all functions, making esti-
mation feasible since the kernel k((ϕq, S, v), (ϕq′ , S

′, v′))
measures similarity between two inputs.

4.1 MNN-UCB ALGORITHM

Algorithm 1 is inspired by [Chen et al., 2017, Zenati et al.,
2022] based on Upper Confidence Bound (UCB) algorithms
for kernel bandits. At time t ∈ [T], the optimizer has avail-
able the noisy evaluations of the unknown ∆(·) function
in vector yt = (yj)

t−1
j=1 for corresponding inputs held in

vector Xt = (xj)
t−1
j=1 — these are updated at the end of

each iteration. These are used by the subroutine MVCALC
that, using GP kernel techniques [Valko et al., 2013, Srinivas
et al., 2010] and the Nyström set of samples Gt ⊂ Xt, effi-
ciently compute estimates of the GP posterior distribution’s
conditional mean and variance used for the UCB marginal
gains in the maximization (line 10 of Algorithm 1).

That is, the algorithm chooses the item vt that has the
highest UCB in line 11 where the parameter βt controls
the algorithm’s propensity towards either exploration or
exploitation (see Appendix G.2). We use the notation
kA(x) = [k(x1, x) . . . k(x|A|, x)] to measure the similar-

Algorithm 3 MEANVARCALC.
Input: Vut

, ϕut
, Sut

, Gt, Gt−1, xt−1, S,yt

Locally stored variables: L1, L2, L3

Hyperparams: Regularization λ

1: // Update K−1
GG,Λt, ỹt.

2: if |Gt| = 1 then
3: Init L1, L2, L3 each to empty lists
4: Init ỹt = ytk(xt−1, xt−1)
5: Init K−1

GtGt
= 1/k(xt−1, xt−1)

6: Init Λt = 1/[k(xt−1, xt−1)
2 + λk(xt−1, xt−1)].

7: else if Gt = Gt−1 then
8: Update Λt using Eq (8)
9: ỹt = ỹt−1 + ytkGt

(xt−1)
10: else
11: Update Λt using Eq. (8) with Schur complements.
12: Update K−1

GtGt
using Eq (10) with Schur comple-

ments // here and line 11 use lists L1, L2, L3

13: ỹt = [ỹt−1 + ytkGt
(xt−1),KS(xt−1)

⊤yt]
⊤

14: end if
15: zt ← (ϕut

, Sut
)

16: Append (K−1
GG,Λt, ỹt) to L1, L2, L3 lists resp

17: // Calculate mean and variance vectors.
18: for v ∈ Vut do
19: µ̃t(v)← kGt

((zt, v))
T Λtỹt

20: δt(v)← kGt
((zt, v))

T (Λt−λ−1 K−1
GG)kGt

((zt, v))
21: σ̃t(v)

2 ← λ−1k((zt, v), (zt, v)) + δt(v)
22: end for
Result: {µ̃t(v)}v∈Vut

, {σ̃t(v)}v∈Vut

ity between x and every element in A = {xj}j∈{1,...,|A|}.
Hence, kGt

((ϕut
, Sut

, v)) measures the similarity of the
input (ϕut

, Sut
, v) to the historical data in Nyström set Gt.

Notation KAB(v) = [k(x, x′)]x∈A,x′∈B contains the ma-
trix of pairwise kernel-similarities for elements in A,B and
KGtGt

is the covariance matrix of the historical data Gt.
Below, we describe the details for the two subroutines used
in Algorithm 1, for the readers who are interested in calcula-
tions for kernel updates, and selection of informative points
to improve computation via Nyström sampling.

Efficiency and NYSTRÖMSELECT In prior submodular
bandits work [Chen et al., 2017], each iteration t ∈ [T]
needs to invert a t× t matrix since all historical data Xt is
used when calculating the conditional means and variances.
Even if online matrix-inverse techniques are used, the run-
time becomes O(T 3), which is impractical. We use Nyström
sampling to mitigate this and only use a selected subset
Gt ⊂ Xt of historical data to compute µt(v), σt(v) for all
v ∈ Vut [Zenati et al., 2022]. Nyström sampling chooses
the points that are most useful for prediction. To define
this precisely, we introduce a bit of notation. Define G′ =
Gt ∪ xt. Define the estimated leverage score τ̂t(λ, η, x) as:

1 + η

λ

[
k(x, x)− k̃G′(x)(K̃G′G′ + λI)−1k̃G′(x)

]
(7)

Define:

Mt =

[
diag

(
[min(τ̂j(λ, η, xj), 1)]xj∈Gt

)
0

0 1

]
It is the diagonal scaling matrix of (clipped) leverage scores
of past selected points with an extra entry with value 1 for
the hypothetical new point xt. In Equation (7) above, we de-
fine k̃G′(xt) = M⊤

t kG′(xt) and K̃G′G′ = M⊤
t KG′G′Mt.

The point xt is included into the Nyström set Gt+1 in
with probability proportional to τ̂t(λ, η, xt) (line 3 of Al-
gorithm 2). To understand why this is reasonable, note that
τ̂t(λ, η, xt) is shown to estimate the ridge leverage score
(RLS) of a point well [Calandriello et al., 2017, 2019]. The
RLS measures intuitively how correlated the new point is
to previous points; if it is highly correlated, it will be sam-
pled with low probability, but if it is orthogonal, it will be
sampled with high probability. This procedure improves the
runtime of Algorithm 1 to O(T |GT |2), where |GT | is the
number of selected Nyström points until the final timestep.
A discussion on setting the hyperparameters η and b, control-
ling the tradeoff between regret and computation, is given
in Appendix G.1.

MVCALC This subroutine calculates the posterior mean
and variance for ∆(·) using Gaussian process posterior cal-
culations after projecting on the Nyström points Gt. We
define the intermediate quantity

Λt = (KGtSt
KStGt

+ λKGtGt
)
−1

,

which is useful in these updates. Note that the algorithms
store and track the local variables K−1

GG,Λt, ỹt across time
steps. It needs to incrementally invert K−1

GG and Λt as the
time steps continue. For Λt, if Gt does not change, it does
this using the Sherman-Morrison formula:

Λt = Λt−1 −
Λt−1kGt

(xt)kGt
(xt)

⊤Λt−1

1 + kGt(xt)⊤Λt−1kGt(xt)
. (8)

This update takes |Gt|2 time. In the case that Gt changes,
we can write the expression for Λt+1 as follows. In the
below, let a = KGt(xt) and c = k(xt, xt).

Λt+1 =

[
KGtSKSGt

+ aa⊤ K⊤
GtS

a+ ca
a⊤KSGt

+ ca a⊤a+ c2

]−1

. (9)

We can use the Schur complement block-matrix inverse
identity to evaluate the above which takes O(t|Gt|) time.
Similarly, for K−1

GtGt
, we write it in block-matrix form as:

K−1
GtGt

=

[
KGt−1Gt−1 KGt−1(xt)
KGt−1

(xt)
⊤ k(xt, xt)

]−1

, (10)

computable using Schur complements in |Gt|2 time.

4.2 THEORETICAL GUARANTEE

For a given set XT = {x1, . . . , xT }, all our bounds are
stated in terms of the effective dimension of the matrix
KT = KXTXT

, as described in Hastie et al. [2009]:

Definition 1. deff(λ, T) = Tr(KT (KT + λI)−1)

Intuitively, the effective dimension is a measure of the num-
ber of dimensions in the feature space that are needed to
capture data variations. Having a smaller effective dimen-
sion enables learning the unknown hq with fewer sam-
ples. If the empirical kernel matrix KT has eigenvalues
(λ1 . . . λT), the effective dimension can equivalently be
written as deff(λ, T) =

∑T
t=1

λt

λt+λ . Thus, if the eigenval-
ues decay quickly, the denominator will dominate for most
summands and deff will be small. If the kernel is finite di-
mensional, with dimension s, then only the first s terms
in the summation will be nonzero and deff ≤ s. Having a
small effective dimension makes the problem of learning
the unknown objective function easier and hence improves
our regret guarantee. This quantity is inspired by classical
work in statistics [Hastie et al., 2009, Zhang, 2002].

It is instructive to bound deff for different kernels. We relate
deff to the information gain γ̃(λ, T) [Srinivas et al., 2010].

deff(λ, T) =

T∑
t=1

λt

λ
λt

λ + 1
≤

T∑
t=1

log

(
1 +

λt

λ

)
= γ̃(λ, T).

Here, we used the inequality x
x+1 ≤ log(1 + x) for x ≥

−1. Srinivas et al. [2010] provides bounds on γ̃(λ, T) for
various kernels. For the (most popular) Gaussian kernel
with dimension d, they show that γ̃(λ, T) ≤ log(T)d+1

which holds under the assumption that the eigenvalues λt

are square summable. We plot the exact deff(λ, T) for the
Gaussian kernel in Figure 3 thereby verifying this bound
empirically. For the linear kernel with dimension d, we
have γ̃(λ, T) ≤ d log(T). In our experimental results (see
Section I), we use a composite over three constituent kernels
and Theorems 2 and 3 of Krause and Ong [2011] bound deff
for the product or sums of kernels, when γ̃(λ, T) is bounded
for each constituent. This all ensures our regret bounds are
sublinear in practice.

Now, we are ready to state our main result.

Theorem 1. Let Assumption 1 hold and assume that ϵt are
i.i.d centered sub-Gaussian (i.e., light tailed) noise. Then
MNN-UCB (Algorithm 1) obtains the following regret:
(a) When all hq are BP functions, we have that

E[RBP(T)] ≤ O
(√

T
(
B
√
λdeff + deff

))
(b) When all hq are WS functions, we have that

E[RWS(T)] ≤ O
(√

T
(
B
√
λdeff + deff

))
Below, we prove case (a); for the proof of case (b), refer to
Appendix G. We see that Lemma 1 and our algorithm design
enables us to relate our notion of regret with the pointwise
notion of regret from Zenati et al. [2022].

Proof. We define Rt =
∑t

j=1 rj where rt =
supv∈V hut

(v|Stut ,ut
)− hut

(vt|Stut ,ut
). Notice Rt is dif-

ferent from RBP(t). From Lemma 1 for all q, and with
RBP(T) defined in Equation (5), we have RBP(T) ≤∑T

t=1 rt = RT . We model the problem of the present work

as a contextual bandit problem in the vein of Zenati et al.
[2022]. Here, the context in round t is zt = (ϕut , Stut ,ut).
We next invoke Theorem 4.1 in Zenati et al. [2022] to com-
plete our result. Further details are in Appendix G.

5 NO-REGRET SEPARATE FEEDBACK

In the previous section, for BP functions, we obtained sub-
linear α-regret with respect to the offline greedy baseline
under the monolithic feedback setting from Section 2. In this
section, we study whether obtaining seperate feedback for
the submodular and supermodular parts of the BP function
can enable us to provide a stronger guarantee. Towards, this
end, we make the following assumption:

Assumption 2. For any (v,A), the optimizer has access to
two oracles that provide it with separate feedback for the
submodular fq(v|A) and supermodular gq(v|A) parts.

This would be satisfied for applications where we have more
fine-grained feedback than just a single reward. For movie
recommendations, we could ask users questions like “why
did you like this movie?” or “what would your rating for
this movie have likely looked like if you had not watched
X?”. Alternatively, we could estimate this from other sim-
ilar users who had not watched "X" – this is likely to be
what would be done in practice when a large user base is
available. For training subset selection, for any chosen point,
we could look at the density of nearby points from the op-
posite class to deduce whether the benefit is coming from
complementary selection of points - see Figure 2 for an
illustration.

In addition to the above, we need another technical assump-
tion. In order to state this, we first introduce some notation.
As in Section 3, we define for each function q the modular
lower bound lq,1(A) as the totally normalized submodular
function fq,1 and also πj,ϕq (v|A) as:(

1− 1

Tq

)Tq−j−1

fq,1(v|A) + gq(v|A) + lq,1(v). (11)

We use πj,q = πj,ϕq
interchangeably for readability. Now,

we additionally assume the following for each q ∈ [m].

Assumption 3. (a) The modular lower bound lq,1(·) is
known by the optimizer. (b) The number of items for each
user Tq is known by the optimizer.

For Assumption (3a), note the modular lower bound is the
summation over items for the minimum possible submodu-
lar gain of selecting that item. For the case of movie recom-
mendation, there is likely to be some marginal enjoyment
from watching a movie, even if all other movies in the set
have already been watched; this would of course depend on
the overall size of the ground set. We could imagine that
domain knowledge could indicate what these “least gain”

quantities would look like - if we are unsure, we can al-
ways choose a conservative estimate and the bound would
degrade smoothly. Note also that the modular lower bound
is defined by |V | function evaluations, whereas the submod-
ular function is defined by 2|V |. Hence, the submodular fq
is still mostly unknown as knowing lq,1 is a much weaker
assumption than the offline setting. For Assumption (3b), if
Tq is not known beforehand, “guess and double" techniques
(Appendix H.4) can be used, the effects of which result in a
bounded additive term.

Given the richer feedback model, we provide sublinear re-
gret guarantees for the stronger notion of regret for BP
functions with respect to the distorted greedy baseline
(Section 3.2). This is defined as:

RBP,2(T) :=
m∑
q=1

min
{
1− κf,q

e
, 1− κg

q

}
hq(S

∗
q)− hq(Sq).

(12)

For applications where Assumption (3a) is not satisfied, we
additionally provide an alternate result in Appendix H.3
without this assumption. Here, the α is slightly reduced to
min

{
1− 1

e , 1− κg
q

}
. However, the heat map in Figure 4

illustrates the bounds are still better than the vanilla greedy
α from Bai and Bilmes [2018] for most choices of κf,q, κ

g
q .

And in cases where Assumption 2 does not hold, we can
default to the results from Section 4.2.

5.1 ALGORITHM AND THEORETICAL
GUARANTEE

We present below our modified algorithm for the case of
richer feedback.

Algorithm 4 MNN-UCB-Separate (modified Algorithm 1)
Line 14 of Algorithm 1 replaced with the following:

1: Calculate distortion Dt ← (1− 1
Tut

)Tut−|Sut |−1.
2: Obtain submodular feedback yf,t = fut

(vt|Sut
) +

ϵf,t/2 and yg,t = gut
(vt|Sut

) + ϵg,t/2.
3: Apply distortion to obtain overall feedback yt =

Dtyf,t + yg,t + (1−Dt)lut,1(vt).

Algorithm 4 is quite similar to Algorithm 1 — line 14 of
Algorithm 1 is modified to the three steps of Algorithm 4.
That is, the feedback, now obtained separately as yf,t for the
submodular and as yg,t for the supermodular part, is aggre-
gated in line 3 of Algorithm 4 as per πj,ϕq

. Our guarantee
for Algorithm 4 is the following:

Theorem 2. Let Assumptions 1, 2, 3 hold and assume that
ϵt are i.i.d centered sub-Gaussian noise. Then, when all hq

are BP functions, Algorithm 4 yields

E[RBP,2(T)] ≤ O
(√

T
(
B
√

λdeff + deff

))
The proof follows along similar lines as Theorem 1 and is
included in Appendix H.2.

Sep FB BP-UCB
BP-UCB
SM-UCB
Random

Figure 1: Algorithm 1 (magenta, green) and Algorithm 4
(gold) applied to the MovieLens dataset. The highlighted
region shows the standard deviation over 10 random trials.

6 NUMERICAL EXPERIMENTS

From MovieLens, we obtain a ratings matrix M ∈
R900×1600, where Mi,j is the rating of the ith user for
the jth movie. Using this dataset, we instantiate an in-
teractive BP maximization problem, as formulated in Vi-
gnette 1. We cluster the users into m = 10 groups using
the k-means algorithm and design a BP objective for each
user-group. The objective for the qth group is decomposed
as hq(A) =

∑
v∈A mq(v) + λ1fq(A) + λ2gq(A), where

the modular part mq(v) is the average rating for movie v
amongst all users in group k. The concave-over-modular
submodular part encourages the recommender to maintain
a balance across genres in chosen suggestions. By contrast,
the supermodular function is designed to encourage the
optimizer to exploit complementarities within genres. The
constants λ1, λ2 are chosen so that the supermodular part
slightly dominates the submodular part, since previous work
already studies primarily submodular functions. Further de-
tails are provided in Section I. Note that these functions are
hand-crafted for illustration purposes and are unknown to
the optimizer in all cases.

In Figure 1, the red curve corresponds to a naive baseline
where movies are recommended at random. The green curve
corresponds to the the algorithm from Chen et al. [2017],
where the supermodular part is ignored. The magenta curve
corresponds to Algorithm 1 from Section 4 in the case where
monolithic feedback is provided to the optimizer. The gold
curve corresponds to Algorithm 4 when separate feedback
is provided to the optimizer.

Since both the gold and purple curves are significantly better
than the green, we see the pitfall of modeling a BP problem
as purely submodular. The improved performance of the
gold curve over the purple shows the impact of the stronger
feedback in Assumptions 2, 3 on performance. This corrob-
orates that the regret guarantee in Theorem 2 is stronger
than that from Theorem 1. Active learning experiments are
given in Appendix D.1.

7 DISCUSSION

In this paper, we presented algorithms for efficient online
optimization of certain non-submodular functions, which
enables better modeling in some applications. We consid-
ered two different feedback models and provided variants
of optimistic kernel-bandit algorithms that achieve sublin-
ear regret. Along the way, we studied the robustness of the
greedy algorithm for these function classes in Section 3,
which is of independent interest.

Limitations and Future Work. A limitation of Gaussian
Process based methods is that the model updates at each
stage are computationally expensive, making them difficult
to use in practice. While we made headway towards ad-
dressing this problem, our time complexity of O(T |GT |2)
may still be prohibitive for some applications of optimizing
submodular or beyond submodular functions. In these cases,
other prediction and uncertainty quantification techniques
may be used - such as the bootstrap. Even simpler heuristic
approaches may be employed that balance between areas of
the input space that the learned model thinks are promising,
and those that are underexplored. Our theory suggests that
such methods are likely to work well.

In general, a decomposition of the utility function h could
take other forms, such as a quotient of two submodular func-
tions, or as a product of a submodular and supermodular
function. The additive BP form is emphasized due to its an-
alytical tractability, its ability to understand bounds, and its
greater expressivity, but the future holds no limit regarding
possible decomposable hs that are viable in the separate
feedback setting that we introduced. A theoretical artifact
of the curvature-based bound for non-modular functions is
that they are independent of fq and gq’s relative magnitude
which are important for experiments. It would be useful to
develop guarantees that incorporate this.

Applications and Social Impact. In Appendix D, we
compare our proposed approach with others from the lit-
erature for the motivating applications of recommendation
systems and active learning. We include some illustrative ex-
amples, which show the utility of modeling these problems
as BP instead of purely submodular.

For recommendation systems, we conjecture that explic-
itly modeling the diminishing/increasing returns of utilities
could help alleviate the primary problem of state-of-the-art
systems today - that they are more likely to show addictive
and harmful content in order to keep users glued onto the
service. For active learning, we conjecture that consider-
ing utilities beyond submodular is likely to provide us with
more flexibility in expressing and balancing our multiple
goals when choosing a subset of datapoints for training.

Acknowledgements AN would like to thank Mitas Ray
for valuable early conversations that led to the inception of
this project. In addition, we would like to thank the anony-
mous reviewers for their helpful feedback. While working
on this project, AN was supported by the Amazon Hub
Fellowship at the University of Washington. This work was
also supported in part by NSF TRIPODS II-DMS 20231660,
NSF CCF 2212261, NSF CCF 2007036, NSF AF 2312775,
NSF IIS-2106937, NSF IIS-2148367.

References

M. Mehdi Afsar, Trafford Crump, and Behrouz Far. Rein-
forcement learning based recommender systems: A sur-
vey, 2021.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman,
Amin Karbasi, and Andreas Krause. Streaming submodu-
lar maximization: Massive data summarization on the fly.
In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
2014.

Wenruo Bai and Jeff Bilmes. Greed is Still Good: Maxi-
mizing Monotone Submodular+Supermodular (BP) Func-
tions. In Proceedings of the 35th International Confer-
ence on Machine Learning, 2018.

Alain Berlinet and Christine Thomas-Agnan. Reproduc-
ing kernel Hilbert spaces in probability and statistics.
Springer Science & Business Media, 2011.

Andrew An Bian, Joachim M. Buhmann, Andreas Krause,
and Sebastian Tschiatschek. Guarantees for Greedy Max-
imization of Non-submodular Functions with Applica-
tions. arXiv preprint arXiv:1703.02100, 2019.

Avinandan Bose, Mihaela Curmei, Daniel L. Jiang, Jamie
Morgenstern, Sarah Dean, Lillian J. Ratliff, and Maryam
Fazel. Initializing Services in Interactive ML Systems for
Diverse Users. arXiv preprint arXiv:2312.11846, 2023.

Avinandan Bose, Simon Shaolei Du, and Maryam Fazel.
Offline Multi-task Transfer RL with Representational
Penalization. arXiv preprint arXiv:2402.12570, 2024.

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen.
A Singular Value Thresholding Algorithm for Matrix
Completion. SIAM Journal on Optimization, 2010.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko.
Second-Order Kernel Online Convex Optimization with
Adaptive Sketching. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, 2017.

Daniele Calandriello, Luigi Carratino, Alessandro Lazaric,
Michal Valko, and Lorenzo Rosasco. Gaussian Process
Optimization with Adaptive Sketching: Scalable and No
Regret. Journal of Machine Learning Research, 2018.

Daniele Calandriello, Luigi Carratino, Alessandro Lazaric,
Michal Valko, and Lorenzo Rosasco. Gaussian Process
Optimization with Adaptive Sketching: Scalable and No
Regret. arXiv preprint arXiv:1903.05594, 2019.

Romain Camilleri, Kevin Jamieson, and Julian Katz-
Samuels. High-dimensional Experimental Design and
Kernel Bandits. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud.
Streaming algorithms for submodular function maximiza-
tion. In Automata, Languages, and Programming: 42nd
International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I 42, 2015.

Lin Chen, Andreas Krause, and Amin Karbasi. Interactive
Submodular Bandit. In Advances in Neural Information
Processing Systems, 2017.

Ling Chen, Zhicheng Liu, Hong Chang, Donglei Du, and Xi-
aoyan Zhang. Online BP Functions Maximization. In Al-
gorithmic Aspects in Information and Management: 14th
International Conference, AAIM 2020, Jinhua, China,
August 10–12, 2020, Proceedings 14, 2020.

Lixing Chen, Jie Xu, and Zhuo Lu. Contextual Combina-
torial Multi-armed Bandits with Volatile Arms and Sub-
modular Reward. In Advances in Neural Information
Processing Systems, 2018.

Michele Conforti and G’erard Cornu’ejols. Submodular
set functions, matroids and the greedy algorithm: tight
worst-case bounds and some generalizations of the Rado-
Edmonds theorem. Discrete applied mathematics, 1984.

Abhimanyu Das and David Kempe. Submodular Meets
Spectral: Greedy Algorithms for Subset Selection, Sparse
Approximation and Dictionary Selection. In Proceedings
of the 28th International Conference on International
Conference on Machine Learning, 2011.

Audrey Durand, Charis Achilleos, Demetris Iacovides, Kate-
rina Strati, Georgios D Mitsis, and Joelle Pineau. Contex-
tual bandits for adapting treatment in a mouse model of de
novo carcinogenesis. In Machine learning for healthcare
conference, 2018.

Robert Epstein and Ronald E. Robertson. The search engine
manipulation effect (SEME) and its possible impact on
the outcomes of elections. Proceedings of the National
Academy of Sciences, 2015.

Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do
less, get more: Streaming submodular maximization with
subsampling. Advances in Neural Information Processing
Systems, 2018.

Daniel Golovin and Andreas Krause. Adaptive Submodu-
larity: Theory and Applications in Active Learning and
Stochastic Optimization. J. Artif. Int. Res., 2011.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-
Optimal Sensor Placements in Gaussian Processes. In
Proceedings of the 22nd International Conference on
Machine Learning, 2005.

A. Guillory and J. Bilmes. Interactive Submodular Set
Cover. In International Conference on Machine Learning
(ICML), 2010.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and
Jerome H Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer, 2009.

Henning Hohnhold, Deirdre O’Brien, and Diane Tang. Fo-
cusing on the Long-term: It’s Good for Users and Busi-
ness. Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, 2015.

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R.
Lyu. Batch Mode Active Learning and Its Application to
Medical Image Classification. In Proceedings of the 23rd
International Conference on Machine Learning, 2006.

Jon Kleinberg, Sendhil Mullainathan, and Manish Ragha-
van. The Challenge of Understanding What Users Want:
Inconsistent Preferences and Engagement Optimization,
2022.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforce-
ment learning in robotics: A survey. Int. J. Rob. Res.,
2013.

Adam D. I. Kramer, Jamie E. Guillory, and Jeffrey T. Han-
cock. Experimental evidence of massive-scale emotional
contagion through social networks. Proceedings of the
National Academy of Sciences, 2014.

Andreas Krause and Cheng Ong. Contextual Gaussian Pro-
cess Bandit Optimization. In Advances in Neural Infor-
mation Processing Systems, 2011.

Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Ey-
dgahi, and Brian Eriksson. Matroid Bandits: Fast Com-
binatorial Optimization with Learning. arXiv preprint
arXiv:1403.5045, 2014.

Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa
Luu, and Marios Savvides. Deep reinforcement learning
in computer vision: a comprehensive survey. Artificial
Intelligence Review, 2022.

Zhicheng Liu, Ling Chen, Hong Chang, Donglei Du, and
Xiaoyan Zhang. Online algorithms for BP functions max-
imization. Theoretical Computer Science, 2021.

Zhicheng Liu, Longkun Guo, Donglei Du, Dachuan Xu, and
Xiaoyan Zhang. Maximization problems of balancing
submodular relevance and supermodular diversity. Jour-
nal of Global Optimization, 2022.

Jeremie Mary, Romaric Gaudel, and Philippe Preux. Bandits
and recommender systems. In Machine Learning, Op-
timization, and Big Data: First International Workshop,
MOD 2015, Taormina, Sicily, Italy, July 21-23, 2015, Re-
vised Selected Papers 1, 2015.

George L Nemhauser and Laurence A Wolsey. Best algo-
rithms for approximating the maximum of a submodular
set function. Mathematics of operations research, 1978.

George L Nemhauser, Laurence A Wolsey, and Marshall L
Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical program-
ming, 1978.

Guanyu Nie, Yididiya Y Nadew, Yanhui Zhu, Vaneet Ag-
garwal, and Christopher John Quinn. A Framework
for Adapting Offline Algorithms to Solve Combinato-
rial Multi-Armed Bandit Problems with Bandit Feedback.
In Proceedings of the 40th International Conference on
Machine Learning, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human
feedback. Advances in Neural Information Processing
Systems, 2022.

Orestis Papadigenopoulos and Constantine Caramanis. Re-
current Submodular Welfare and Matroid Blocking Semi-
Bandits. In Advances in Neural Information Processing
Systems, 2021.

Omid Sadeghi and Maryam Fazel. Online continuous DR-
submodular maximization with long-term budget con-
straints. In Proc. International conference on Artificial
Intelligence and Statistics, 2020.

Omid Sadeghi and Maryam Fazel. Differentially Private
Monotone Submodular Maximization Under Matroid and
Knapsack Constraints. In International Conference on
Artificial Intelligence and Statistics, 2021a.

Omid Sadeghi and Maryam Fazel. Fast First-Order Methods
for Monotone Strongly DR-Submodular Maximization.
arXiv preprint arXiv:2111.07990, 2021b.

Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Cus-
tomer acquisition via display advertising using multi-
armed bandit experiments. Marketing Science, 2017.

Matthias W Seeger, Sham M Kakade, and Dean P Foster.
Information consistency of nonparametric Gaussian pro-
cess methods. IEEE Transactions on Information Theory,
2008.

Pier Giuseppe Sessa, Maryam Kamgarpour, and Andreas
Krause. Bounding inefficiency of equilibria in continuous
actions games using submodularity and curvature. In The
22nd International Conference on Artificial Intelligence
and Statistics, 2019.

Burr Settles. Active Learning Literature Survey. 2009.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental Design. In
Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning, 2010.

Vaibhav Srivastava, Paul Reverdy, and Naomi E Leonard.
Surveillance in an abruptly changing world via multi-
armed bandits. In 53rd IEEE Conference on Decision
and Control, 2014.

Matthew Streeter and Daniel Golovin. An Online Algorithm
for Maximizing Submodular Functions. In Advances in
Neural Information Processing Systems, 2008.

Maxim Sviridenko, Jan Vondr’ak, and Justin Ward. Op-
timal approximation for submodular and supermodular
optimization with bounded curvature. Mathematics of
Operations Research, 2017.

Sho Takemori, Masahiro Sato, Takashi Sonoda, Janmajay
Singh, and Tomoko Ohkuma. Submodular Bandit Prob-
lem Under Multiple Constraints. In Proceedings of the
36th Conference on Uncertainty in Artificial Intelligence
(UAI), 2020.

Michal Valko, Nathaniel Korda, R’emi Munos, Ilias N.
Flaounas, and Nello Cristianini. Finite-Time Analy-
sis of Kernelised Contextual Bandits. arXiv preprint
arXiv:1309.6869, 2013.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in
Data Subset Selection and Active Learning. In Proceed-
ings of the 32nd International Conference on Machine
Learning, 2015.

John White. Bandit algorithms for website optimization.
O’Reilly Media, Inc., 2013.

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo,
Sagar Jain, Ed H. Chi, and Jennifer Gillenwater. Practical
Diversified Recommendations on YouTube with Determi-
nantal Point Processes. In Proceedings of the 27th ACM
International Conference on Information and Knowledge
Management, 2018.

Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien
Mairal, Matthieu Martin, and Pierre Gaillard. Efficient
Kernelized UCB for Contextual Bandits. In Proceed-
ings of The 25th International Conference on Artificial
Intelligence and Statistics, 2022.

Tong Zhang. Effective Dimension and Generalization of
Kernel Learning. In Advances in Neural Information
Processing Systems, 2002.

A TABLE OF NOTATION

Notation Description

V Ground set of items
m Number of set functions
hq q-th set function, q ∈ [m]
ut Index of arrived function at time t
ϕut

Context vector for function hut
at time t

vt Item selected at time t
Sk,q Items selected for function hq up to time k
yt Noisy marginal gain feedback at time t

yf,t, yg,t Separate submodular and supermodular feedback at time t
S∗
q Optimal set for function hq

Tq Number of items selected for function hq by time T
κf , κ

g Submodular and supermodular curvatures
γ, ζ Submodularity ratio and generalized curvature

RBP(T),RWS(T) Regret for BP and WS functions
RBP,2(T) Regret for BP functions with separate feedback
∆(ϕ, S, v) Marginal gain of adding v to S for context ϕ

K Reproducing kernel Hilbert space (RKHS)
B Bound on RKHS norm of ∆
Gt Nyström set at time t
βt Exploration-exploitation tradeoff parameter

deff(λ, T) Effective dimension
l1, l2 Modular lower bounds for f and g
f1, g1 Totally normalized f and g

πj(v|A) Distorted marginal gain for selecting v given A at step j

Table 2: Table of key notation used in the paper.

B BACKGROUND ON SUBMODULARITY, SUPERMODULARITY AND CURVATURES

A set function h : 2V → R is a function that maps any subset of a finite ground set V of size |V | = n to the reals. There are
many possible set functions, and arbitrary set functions are impossible to optimize with any quality assurance guarantee
without an exponential cost. As an example, consider a function h such that h(A) = a > b for some set A ⊆ V and a, b ∈ R
and h(B) = b > 0 for all B ̸= A. Then any algorithm that does not search over all 2|V | subsets can miss set A and the
approximation ratio a/b can be unboundedly large. We are therefore interested in set functions that have useful and widely
applicable structural properties such as the class of submodular and supermodular functions.

A set function f : 2V → R is said to be monotone non-decreasing if f(A ∪ {v}) ≥ f(A) for all A ⊆ V, v ∈ V . It is
normalized if f(∅) = 0. For convenience, we refer to the collection of Monotone Non-decreasing Normalized set functions
as MNN functions. We use the gain notation f(v|S) = f(S ∪ {v})− f(S) to denote the marginal gain of adding element
v to the set S.

A set function f defined over the ground set V is called submodular if for all A ⊆ B ⊆ V and any element v /∈ B we have
f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). A function g : 2V → R is said to be supermodular if −g is submodular — g
has the property of increasing returns where the presence of an item can only enhance the utility of selecting another item.
The class of functions defined below is the primary focus of our paper.

Definition 2 (BP Function). A utility function h is said to be BP if it admits the decomposition h = f + g, where f is
submodular, g is supermodular, and both functions are also MNN.

Next, we introduce the notion of curvature for submodular and supermodular functions. This will enable us to understand
the assumptions required to obtain approximation bounds for offline BP functions, as stated in Bai and Bilmes [2018].

Definition 3 (Submodular curvature). Denote the curvature for submodular f as κf = 1−minv∈V
f(v|V \{v})

f(v) .

Definition 4 (Supermodular curvature). Denote the curvature for supermodular g as: κg = 1−minv∈V
g(v)

g(v|V \{v}) .

These quantities are contained in [0, 1] and measure how far the functions are from being modular: if a curvature is zero, the
function is modular. Important for practical applications, given the function, these can be calculated in linear time in |V |. Bai
and Bilmes [2018] analyzed the greedy algorithm for the cardinality-constrained BP maximization problem and provided
a 1

κf

[
1− e−(1−κg)κf

]
approximation ratio for this problem. They also showed that not all monotone non-decreasing set

functions admit a BP decomposition. However, in cases where such a decomposition is available, one can easily compute
the curvature of submodular and supermodular terms and compute the bound.

Since not all MNN functions are representable as BP functions, we also study arbitrary MNN functions in terms of how far
they are from being submodular.

Definition 5 (Submodularity ratio, [Bian et al., 2019, Das and Kempe, 2011, Calandriello et al., 2018]). The submodularity
ratio of a non-negative set function h(·) is the largest scalar γ such that

∑
v∈S\A h(v|A) ≥ γh(S|A),∀S,A ⊆ V.

The submodularity ratio measures to what extent h(·) has submodular properties. For a non-decreasing function h(·), it
holds that γ ∈ [0, 1] always, and h(·) is submodular if and only if γ = 1.

Definition 6 (Generalized curvature, [Bian et al., 2019]). The curvature of a non-negative function h(·) is the smallest
scalar ζ such that ∀S,A ⊆ V, v ∈ A\S, h(v|A\{v} ∪ S)) ≥ (1− ζ)h(v|A\{v}).

Note that unlike the notions of submodular and supermodular curvature, the submodularity ratio and generalized curvature
parameters are information theoretically hard to compute in general [Bai and Bilmes, 2018]. We refer to the MNN set
functions with bounded submodularity ratio γ and generalized curvature ζ as weakly submodular (WS). Bian et al. [2019]
analyzed the greedy algorithm for maximizing such functions subject to a cardinality constraint and obtained a 1

ζ

(
1− e−ζγ

)
approximation ratio for this problem.

C OTHER RELATED WORK

Submodular maximization with bounded curvature. Nemhauser et al. [1978] studied the performance of the greedy
algorithm for maximizing a monotone non-decreasing submodular set function subject to a cardinality constraint and
provided a 1 − 1

e approximation ratio for this problem. While Nemhauser and Wolsey [1978] showed that the 1 − 1
e

factor cannot be improved under polynomial number of function value queries, the performance of the greedy algorithm is
usually closer to the optimum in practice. In order to theoretically quantify this phenomenon, Conforti and Cornu’ejols
[1984] introduced the notion of curvature κ ∈ [0, 1] for submodular functions—this is defined in Section B. The constant
κ measures how far the function is from being modular. The case κ = 0 corresponds to modular functions and larger
κ indicates that the function is more curved. Conforti and Cornu’ejols [1984] showed the greedy algorithm applied to
monotone non-decreasing submodular maximization subject to a cardinality constraint has a 1

κ (1− e−κ) approximation
ratio. Therefore, for general submodular functions (κ = 1), the same 1 − 1

e approximation ratio is obtained. However,
if κ < 1, 1

κ (1 − e−κ) > 1 − 1
e holds and as κ → 0, the approximation ratio tends to 1. More recently, Sviridenko et al.

[2017] proposed two approximation algorithms for the more general problem of monotone non-decreasing submodular
maximization subject to a matroid constraint and obtained a 1− κ

e approximation ratio for these two algorithms. They also
provided matching upper bounds for this problem showing that the 1− κ

e approximation ratio is indeed optimal. Later on,
the notion of curvature was extended to continuous submodular functions as well and similar bounds were derived for the
maximization problem [Sadeghi and Fazel, 2021a, 2020, 2021b, Sessa et al., 2019].

BP maximization Bai and Bilmes [2018] first introduced the problem of maximizing a BP function h = f+g (Definition 2)
subject to a cardinality constraint as well as the intersection-of-p-matroids constraint. They showed that this problem is
NP-hard to approximate to any factor without further assumptions. However, if the supermodular function g has a bounded
curvature (i.e., κg < 1), it is possible to obtain approximation ratios for this problem. In particular, for the setting with
a cardinality constraint, they analyzed the greedy algorithm along with a new algorithm (SemiGrad) and provided a
1
κf

(
1− e−(1−κg)κf

)
approximation ratio. Note that for general supermodular functions (κg = 1), the approximation ratio is

0 and as κg → 0, the bound tends to that of Conforti and Cornu’ejols [1984] for monotone non-decreasing submodular
maximization subject to a cardinality constraint. Bai and Bilmes [2018] also showed that not all monotone non-decreasing

set functions admit a BP decomposition. However, in cases where such a decomposition is available, one can compute the
curvature of submodular and supermodular terms in linear time and compute the bound. More recently, Liu et al. [2022]
proposed a distorted version of the greedy algorithm for this problem and provided an improved min{1− κf

e , 1−κge−(1−κg)}
approximation ratio Liu et al. [2022].

Submodularity ratio. Das and Kempe [2011] introduced the notions of submodularity ratio γ and generalized curvature ζ
for general monotone non-decreasing set functions (defined in Section B) and showed that the greedy algorithm obtains
the approximation ratio 1

ζ

(
1 − e−ζγ

)
under cardinality constraints [Bian et al., 2019, Das and Kempe, 2011]. Unlike

the BP decomposition, the notions of submodularity ratio and generalized curvature can be defined for any monotone
non-decreasing set function but is, in general, exponential cost to compute.

Adaptive and Interactive Submodularity. Chen et al. [2017] is the work most related to ours – they employ a similar UCB
algorithm to optimize an unknown submodular function in an interactive setting. They define regret as the sub-optimality
gap with respect to a full-knowledge greedy strategy at the final round. They define a different notion of pointwise regret as
the difference between the algorithm’s rewards and that of the greedy strategy at that stage, treating the past choices as fixed.
By viewing the submodular problem as a special case of contextual bandits, they observe that this accumulation of pointwise
regret is precisely bounded by Krause and Ong [2011]. Then, they modify the seminal proof in Nemhauser et al. [1978] to
relate their target notion of regret with the pointwise regrets. Guillory and Bilmes [2010], Golovin and Krause [2011] also
consider different adaptive or interactive submodular problems. They both assume more knowledge of the structure of the
submodular objective than Chen et al. [2017].

Kernel bandits. Srinivas et al. [2010] consider the problem of optimizing an unknown function f that is either sampled
from a Gaussian process or has bounded RKHS norm. They develop an upper-confidence bound approach, called GP-UCB,
that achieves sublinear regret with respect to the optimal, which depends linearly on an information-gain term γT . Krause
and Ong [2011] extend the setting from Srinivas et al. [2010] to the contextual setting where the function fzt being optimized
now depends also on a context zt that varies with time. Valko et al. [2013] replace the γT scaling with

√
γT . Camilleri et al.

[2021] extend experimental design for linear bandits to the kernel bandit setting, and provide a new analysis, which also
incorporates batches. Zenati et al. [2022] use Nyström points to speed up the algorithm, with the same asymptotic regret
guarantee as GP-UCB, which inspires the algorithms developed in this paper.

Combinatorial Bandits In [Takemori et al., 2020, Papadigenopoulos and Caramanis, 2021, Kveton et al., 2014, Chen
et al., 2018], the optimizer chooses a set at each time step and the submodularity is between these elements chosen in
the single time step. In our work, the optimizer chooses a single item at each time and accumulates a set over time; the
submodularity is between these elements chosen at different time steps. While the formulations are similar, the formulation
in our paper would apply to different applications than this body of work.

Comparison with [Liu et al., 2021, Chen et al., 2020] These papers have titles similar to the present work, but actually
apply to a very different setting. Consider Algorithm 1 from [Liu et al., 2021], which describes the setting they work within.
This algorithm is reproduced below for ease of reference. We remark that the setting is better described as “streaming” rather

Algorithm 5 [Liu et al., 2021]: Greedy for “online” (streaming) BP maximization

1: S0 ← ∅
2: for each element ut revealed do
3: if t < k then
4: St ← St−1 + ut

5: else
6: Let u′

j be the element of St−1 maximizing h(St−1 + ut − u′
j)

7: if h(St−1 + ut − u′
j)− h(St−1) >

c(h(St−1))
k(1−ϵ) then

8: St ← St−1 + ut − u′
j

9: else
10: St ← St−1

11: end if
12: end if
13: end for

0
1

(a) Original training set

0
1

(b) Submodular objective

0
1

(c) BP objective

Figure 2: Greedy algorithm selection on submodular (second panel) and BP (third panel) objectives for subset selection
of 100 points of training data from a ground set of 400 points. The first panel depicts the entire training (ground) set. The
details are provided in Section I.

than “online” since it is consistent with a number of streaming submodular maximization algorithms [Badanidiyuru et al.,
2014, Chekuri et al., 2015, Feldman et al., 2018]. The approach in [Liu et al., 2021] assume that the function h is known,
with arbitrary queries available, and there is no cost for evaluating it with different sets as input. However, the items are
revealed one by one, using a fixed order, and the algorithm must decide whether to add the item to the set or to forever forget
it. Hence, there is no statistical estimation component to their setting, and they provide competitive ratio bounds rather than
regret bounds as in our present work.

D APPLICATIONS AND ROLE OF MNN FUNCTIONS

In this section, we present two examples that illustrate the modeling power of BP functions for different applications and
compare this approach with common approaches from the literature.

D.1 ACTIVE LEARNING

From Figure 2, we see that the BP function (third panel) results in the selection of complementary points near the decision
boundary—i.e., points of opposite class that are proximal. It is impossible to choose a submodular function that encourages
this type of desirable cooperative behavior due to the diminishing-returns property.

Comparison with approaches for Pool-based Active Learning In their survey paper, Settles [2009] compare
submodularity-based approaches with other approaches for active learning. The main benefit of framing the active learning
problem as submodular is that the greedy algorithm can be employed, which is much less computationally expensive than
other common active learning approaches. While submodularity has been shown to be relevant to active learning [Guestrin
et al., 2005, Wei et al., 2015, Hoi et al., 2006], Settles [2009] remark that in general, the active learning problem cannot be
framed as submodular.

In our paper, by extending the classes of functions that can be optimized online, we take a step towards addressing this
limitation of submodularity. Further, an open question outlined in Settles [2009] is that of multi-task active learning, which
has not been explored extensively in previous work. However, our formulation in Vignette 2 naturally extends to this
multi-task setting.

D.2 RECOMMENDATION SYSTEMS

In Table 3, the BP function enables the desirable selection of movies from the same series in the correct order. As above, it
is impossible to design a submodular utility function that encourages this type of behavior.

SM Objective BP Objective
0 Lion King, The Godfather, The
1 Speed Godfather: Part II, The
2 Godfather, The Godfather: Part III, The
3 Godfather: Part II, The Star Wars: Episode I
4 Terminator, The Memento
5 Good Will Hunting Harry Potter I
6 Memento Star Wars: Episode II
7 Harry Potter I Harry Potter: II
8 Dark Knight, The Star Wars: Episode III
9 Inception Dark Knight, The

Table 3: Comparison of the selections of the greedy algorithm on submodular and BP objectives for movie recommendation,
on a toy ground set of 23 movies from the MovieLens dataset. The submodular objective is the facility location objective,
chosen from Chen et al. [2017]. In the BP objective, there is an additional reward at each step for choosing a movie that is
complementary with previously selected movies; this results the desirable joint selection of groups of movies from the
same series. The task is formalized mathematically in Section 6, and experimental details are provided in the supplement.

Comparison with approaches for online recommendation For recommender systems, the dependencies between past
and future recommendations may be modeled through a changing “state variable," leading to adopting reinforcement
learning (RL) solutions [Afsar et al., 2021]; these can be framed as multi-task RL problems [Bose et al., 2023, 2024]. These
have been tremendously effective at maximizing engagement; however, Kleinberg et al. [2022] highlight that a key oversight
of these approaches is that the click and scroll-time data that platforms observe is not representative of the users’ actual
utilities: “research has demonstrated that we often make choices in the moment that are inconsistent with what we actually
want." Hence, Kleinberg et al. advocate to encode diminishing returns of addictive but superficial content into the model,
in the manner that we do with submodular functions. Further, RL systems are incentivized to manipulate users’ behavior
[Wilhelm et al., 2018, Hohnhold et al., 2015], mood [Kramer et al., 2014] and preferences [Epstein and Robertson, 2015];
this inspires the use of principled mathematical techniques, as in the present work, to design systems to behave as we want
rather than simply following the trail of the unreliable observed data.

Lion King, The Good Will Hunting
Speed Godfather: Part III, The
True Lies Star Wars: Episode I - The Phantom Menace
Aladdin Gladiator
Dances with Wolves Memento
Batman Shrek
Godfather, The Harry Potter I: The Sorcerer’s Stone
Godfather: Part II, The Star Wars: Episode II - Attack of the Clones
Terminator, The Harry Potter II: The Chamber of Secrets
Indiana Jones and the Last Crusade Star Wars: Episode III - Revenge of the Sith
Men in Black Dark Knight, The

Inception

Table 4: Ground set for Table 3

E A SIMPLE APPROACH TO GUARANTEE LOW REGRET: WHY IT IS TOO WEAK

In this section, we provide an alternate proof for the approximation ratio that the greedy algorithm obtains on a BP function
in the offline setting. The robustness of this proof can be very simply studied, in a manner similar to Chen et al. [2017].
However, the approximation ratio obtained is worse than that of Bai and Bilmes [2018]; hence, the regret guarantee in the
online setting would be provided against a weak baseline. This motivates why we revisit the proof from Bai and Bilmes
[2018]. Just for this section, we use simpler notation h for the BP function and k for the cardinality constraint, since we are
presenting the argument for the offline setting.

Proposition 1. For a BP maximization problem subject to a cardinality constraint, maxS:|S|≤k h(S) where h(S) =
f(S) + g(S), the greedy algorithm obtains the following guarantee:

h(S) ≥ (1− e−(1−κg))h(S∗),

where S∗ = {v∗1 , . . . , v∗k} = argmaxS:|S|≤k h(S) and κg is the curvature of the supermodular function g.

Proof. For t < k, let St = {v1, . . . , vt} be the items chosen by the greedy algorithm. We can write:
h(S∗) ≤ h(S∗ ∪ St)

= h(St) +

k∑
j=1

h(v∗j |St ∪ {v∗1 , . . . , v∗j−1})

≤ h(St) +
1

1− κg

k∑
j=1

h(v∗j |St)

≤ h(St) +
1

1− κg

k∑
j=1

h(vt+1|St)

= h(St) +
k

1− κg

(
h(St+1)− h(St)

)
,

where the first inequality uses Lemma C.1.(ii) of Bai and Bilmes [2018] and the second inequality is due to the update rule
of the greedy algorithm. Rearranging the terms, we can write:

h(S∗)− h(St) ≤
k

1− κg

(
[h(S∗)− h(St)]− [h(S∗)− h(St+1)]

)
h(S∗)− h(St+1) ≤ (1− 1− κg

k
)(h(S∗)− h(St))

Applying the above inequality recursively for t = 0, . . . , k − 1, we have:

h(S∗)− h(S) ≤ (1− 1− κg

k
)k(h(S∗)− h(∅)︸︷︷︸

=0

)

Using the inequality 1− x ≤ e−x and rearranging the terms, we have:
h(S) ≥ (1− e−(1−κg))h(S∗)

If κf = 1, this approximation ratio matches the obtained approximation ratio for the greedy algorithm in Theorem 3.7 of
Bai and Bilmes [2018] without the need to change the original proof of the greedy algorithm.

F PROOFS FROM SECTION 3

F.1 APPROXIMATE GREEDY ON BP FUNCTIONS

Notation We use St to refer to the ordered set of elements chosen for function h until round t, and S to refer to the ordered
final set of items chosen for function h until round T . Hence, Sj refers to the first j elements chosen for h. Let sj be the jth

element of S. Then, we define aj = h(sj |{s1 . . . sj−1}) be the gain of the jth element chosen.

Recall that S is an ordered set. We let C ⊆ [k] denote the indices (in increasing order) of elements in S that are also in S∗.
For instance, for S = {s1 . . . s5} and S ∩ S∗ = {s1, s2, s3}, we have C = {1, 2, 3}. Hence, j ∈ C ⇐⇒ sj ∈ S ∩ S∗.
Further, define filtered sets Ct = {c ∈ C|c ≤ t} as the subset of the first tth elements of S that are also in the optimal S∗.

We restate the lemma for ease of reference.

Lemma 1. Any output S of the approximate greedy selection rule in Equation (2) admits the following guarantee for BP
objectives (Def. 2) for Problem (1):

h(S) ≥ 1

κf

[
1− e−(1−κg)κf

]
h(S∗)−

k∑
j=1

rj ,

where κf , κ
g are as defined in Definitions 3 and 4.

Proof of Lemma 1. From Lemma 4, we have that the approximate greedy procedure obeys k different inequalities, and
we wish to show that this is sufficient to obey the inequality above. In order to complete the argument, we consider the
worst-case overall gain if these k inequalities are satisfied; and show that this worst-case sequence satisfies the desired, and
hence the approximate greedy procedure must satisfy the desired as well.

To characterize the worst-case gains, we define a set of linear programming problems parameterized by a set B and constants
(ξ, ρ).

T (B, ξ, ρ) = min
b

k∑
j=1

bj

s.t. h(S∗) ≤ ξ
∑

j∈[t−1]\Bt−1

bj +
∑

j∈Bt−1

bj +
k − |Bt−1|

1− β
bt ,∀t ∈ [k]

(13)

In the above, the decision variable b = [b1 . . . bk] is a vector in Rk, and satisfies b ≥ 0. The constants k is a fixed value for
the LP. The parameter of the LP, B ⊆ [k], and Bt = {j ∈ B|j ≤ t} is the filtered set. Note that the constraints are linear in
b with non-negative coefficients.

The above LP becomes helpful to our setting when we set (ξ, β) = (κf , κ
g). Additionally, we are interested in the choices

B = C and B = ∅, where C is defined prior to the lemma statement. To show the result, we hope to show the following
chain of inequalities:

h(S) +

k∑
j=1

rj ≥ T (C, κf , κ
g) ≥ T (∅, κf , κ

g) ≥ ωh(S∗) (14)

In the above,

ω =
1

κf

[
1− e−(1−κg)κf

]
Combining the two ends of this chain yields the desired lemma statement. We recognize that T (·) is exactly the LP considered
in Bai and Bilmes [2018], modulo notation differences. Since the second and third inequality are just statements about the
linear program, they follow directly from Lemma D.2 in Bai and Bilmes [2018] when we substitute ξ = κf and β = κg .

For the first inequality, we have from Lemma 4 that bj = aj + rj is a feasible solution for the linear program T (C, κf , κ
g).

Hence,

T (C, κf , κ
g) ≤

k∑
j=1

bj =

k∑
j=1

aj +

k∑
j=1

rj = h(S) +

k∑
j=1

rj

The lemma below is a modified version of Equation (19) in Bai and Bilmes [2018], which accounts for the deviation of our
algorithm from the greedy policy.

Lemma 4. Using the notation above and for S as chosen by the approximate greedy procedure, it follows that ∀t ∈ [k],

h(S∗) ≤ κf

∑
j∈[t−1]\Ct−1

(aj + rj) +
∑

j∈Ct−1

(aj + rj) +
k − |Ct−1|
1− κg

(at + rt)

Proof of Lemma 4. By the properties of BP functions from Lemma C.2 in Bai and Bilmes [2018], it follows for all t ∈ [k]

that
h(S∗) ≤ κf

∑
j∈[t−1]\C

aj +
∑

j∈Ct−1

aj + h(S∗ \ St−1|St−1) (15)

≤ κf

∑
j∈[t−1]\C

(aj + rj) +
∑
j∈C

(aj + rj) + h(S∗ \ St−1|St−1) (16)

The inequality above follows because the coefficients on the first two summations are positive and rj ≥ 0. Now, we must
simplify the third term to obtain the desired. For any feasible v,

h(v|St−1) ≤ sup
v

h(v|St−1) ≤ h(st|St−1) + rt. (17)

The first inequality follows from the definition of sup and the second follows from the definition of rt in the proof of
Theorem 1 above. Now, apply inequality (iv) from Lemma C.1 in Bai and Bilmes [2018]:

h(S∗ \ St−1|St−1) ≤
1

1− κg

∑
v∈S∗\St−1

h(v|St−1)

≤ 1

1− κg

∑
v∈S∗\St−1

h(st|St−1) + rt

The second line follows from Equation (17).

We have that
|S∗ \ St−1| = |S∗| − |S∗ ∩ St−1| = k − |S∗ ∩ St−1|.

Hence,

h(S∗ \ St−1|St−1) ≤
k − |S∗ ∩ St−1|

1− κg
[h(st|St−1) + rt]

Recognizing that |S∗ ∩ St−1| = |Ct−1| completes the argument.

F.2 APPROXIMATE GREEDY ON WS FUNCTIONS

Define S, sj , aj , C as in the proof for BP functions. Below, we present the counterparts of the lemmas in the proof of the BP
functions for the present case. The proof for Lemma 5 is different than Lemma 4 due to the change in the class of functions
being considered. The similarity of the two proofs suggests the generality of our proof technique and indicates that it may be
analogously applied to other classes of functions as well. We restate the Lemma for ease of reference.

Lemma 2. Any output S of the approximate greedy selection rule in Equation (2) admits the following guarantee on
objectives with submodularity ratio γ and generalized curvature ζ (Definitions 5 and 6) for Problem (1):

h(S) ≥ 1

ζ

(
1− e−ζγ

)
h(S∗)−

k∑
j=1

rj .

Proof of Lemma 2. We consider again the parameterized LP T (·), but this time with the constants set as ξ = ζ, ρ = 1− γ.
To show the result, we hope to show the following chain of inequalities:

h(S) +

k∑
j=1

rj ≥ T (C, ζ, 1− γ) ≥ T (ϕ, ζ, 1− γ) ≥ ωh(S∗) (18)

In the above,

ω =
1

ζ

[
1−

(
1− γζ

k

)k
]

Similarly to the argument in Lemma 1, the first two inequalities follow directly from Lemma D.2 in Bai and Bilmes [2018]
when we substitute ξ = ζ and ρ = 1− γ. Under the same choice of constants, we have from Lemma 5 that bj = aj + rj is
a feasible solution for the linear program T (C, ζ, 1− γ). Hence,

T (C, ζ, 1− γ) ≤
k∑

j=1

bj =

k∑
j=1

aj +

k∑
j=1

rj = h(S) +

k∑
j=1

rj

Recognizing that

1

ζ

[
1−

(
1− γζ

k

)k
]
≥ 1− e−ζγ

completes the argument.

The lemma below is a modified version of Lemma 1 in Bian et al. [2019].

Lemma 5. Using the notation above and for S as chosen by the approximate greedy procedure, it follows that ∀t ∈
{0 . . . k − 1},

h(S∗) ≤ ζ
∑

j∈[t]\Ct

(aj + rj) +
∑
j∈Ct

(aj + rj) +
1

γ
(k − |Ct|) (at+1 + rt+1)

Proof of Lemma 5. The proof follows from the definitions of generalized curvature, submodularity ratio, and instantaneous
regret rt.

h(S∗ ∪ St) = h(S∗) +
∑
j∈[t]

h(sj |S∗ ∪ Sj−1)

We can split the summation above to separately consider the elements from St that do and do not overlap with S∗.

h(S∗ ∪ St) = h(S∗) +
∑

j:sj∈St\S∗

h(sj |S∗ ∪ Sj−1) +
∑

j:sj∈St∩S∗

h(sj |S∗ ∪ Sj−1)︸ ︷︷ ︸
=0

= h(S∗) +
∑

j:sj∈St\S∗

h(sj |S∗ ∪ Sj−1) (19)

From the definition of submodularity ratio,

h(S∗ ∪ St) ≤ h(S∗) +
1

γ

∑
ω∈S∗\St

h(ω|St) (20)

From the definition of generalized curvature, it follows that∑
j:sj∈St\S∗

h(sj |S∗ ∪ Sj−1) ≥ (1− ζ)
∑

j:sj∈St\S∗

h(sj |Sj−1)

= (1− ζ)
∑

j:sj∈St\S∗

aj+1 (21)

Then, plugging the inequalities (20) and (21) into (19),

h(S∗) = h(S∗ ∪ St)−
∑

j:sj∈St\S∗

h(sj |S∗ ∪ Sj−1)

≤

h(S) + 1

γ

∑
ω∈S∗\S

h(ω|S)

+

ζ ∑
j:sj∈St\S∗

aj+1 −
∑

j:sj∈St\S∗

aj+1

 (22)

Now, we can rearrange and write

h(S)−
∑

j:sj∈St\S∗

aj+1 =
∑

j:sj∈St∩S∗

aj+1

to simplify Equation (22) as

h(S∗) = ζ
∑

j:sj∈St\S∗

aj+1 +
1

γ

∑
ω∈S∗\S

h(ω|S) +
∑

j:sj∈St∩S∗

aj+1

≤ ζ
∑

j:sj∈St\S∗

aj+1 +
1

γ

∑
ω∈S∗\S

(at+1 + rt) +
∑

j:sj∈St∩S∗

aj+1 (23)

≤ ζ
∑

j:sj∈St\S∗

(aj+1 + rj) +
∑

j:sj∈St∩S∗

(aj+1 + rj) +
1

γ
(k − |Ct|)(at+1 + rt) (24)

Equation (23) follows by using the definitions of rt and supremum, and Equation (24) follows since rt ≥ 0.

F.3 APPROXIMATE WEIGHTED GREEDY ON BP FUNCTIONS

We recap notation for ease of reference. Define the modular lower bound of the submodular function l1(S) =∑
j∈S f(j|V \{j}). Additionally, define the totally normalized submodular function as f1(S) = f(S) − l1(S). Note

that the f1 will always have curvature κf = 1. h(S) = f1(S) + g(S) + l1(S). Now, define the function

πj(v|A) =

(
1− 1

k

)k−j−1

f1(v|A) + g(v|A) + l1(v) (25)

Also define

πj(A) =

(
1− 1

k

)k−j

f1(A) + g(A) + l1(A) (26)

The proof of Lemma 7 follows using the same outline as the approximation-guarantee of the distorted greedy algorithm for
BP functions (Theorem 3 in Liu et al. [2022]). However, Algorithm 4 is not greedy, so we keep record of the deviation of
Algorithm 4 from the best-in-hindsight choice at each stage. This results in the new second term in Lemma 3.

Lemma 3. Any output S of the approximate distorted greedy selection rule in Equation (4) admits the following guarantee
for Problem (1) with a BP objective (Def. 2):

h(S) ≥ min
{
1− κf

e
, 1− κg

}
h(S∗)−

k∑
j=1

rj ,

where κf , κ
g are as defined in Def. 3 and 4.

Proof. Using the submodular and supermodular curvature definition, we can write:

l1(S) =
∑
j∈S

f(j|V \{j}) ≥ (1− κf)f(S)

l2(S) =
∑
j∈S

g(j|∅) ≥ (1− κg)g(S)

Define l = l1 + l2. Then, we can use the result of Lemma 7 to write:
f(S) + g(S) = f1(S) + g1(S) + l(S)

≥
(
1− 1

e

)
f1(S

∗) + l(S∗)−
k∑

j=1

rj

=

(
1− 1

e

)
(f(S∗)− l1(S

∗)) + l1(S
∗) + l2(S

∗)−
k∑

j=1

rj

=

(
1− 1

e

)
f(S∗) +

1

e
l1(S

∗) + l2(S
∗)−

k∑
j=1

rj

≥
(
1− 1

e

)
f(S∗) +

1− κf

e
f(S∗) + (1− κg)g(S∗)−

k∑
j=1

rj

=
(
1− κf

e

)
f(S∗) + (1− κg)g(S∗)−

k∑
j=1

rj

≥ min
{
1− κf

e
, 1− κg

}
hq(S

∗)−
k∑

j=1

rj .

Lemma 6.

πj(sj |Sj−1) + rj ≥
1

k

(
1− 1

k

)k−(j+1)

(f(S∗)− f(Sj) +
1

k
l(S∗)

Proof of 6. From the definition of rj ,

πj(sj |Sj−1) + rj ≥
1

k

∑
e∈S∗

πj(e|Sj−1)

=
1

k

∑
e∈S∗

(
1− 1

k

)k−(j+1)

f1(e|Sj−1) + g1(e|Sj−1) + l(e)

≥ 1

k

(
1− 1

k

)k−(j+1)

(f1(S
∗)− f1(Sj−1)) +

1

k
l(S∗)

The inequality follows from the submodularity of f1 and the supermodular curvature of g1.

Lemma 7. Any approximately weighted greedy procedure with constants {rj}kj=1 returns a set S of size k such that

f1(S) + g1(S) + l(S) +

k∑
j=1

rj ≥
(
1− 1

e

)
f1(S

∗) + l(S∗)

Proof. According to the definition of π, we have that π0(∅) = 0 and
πk(S) = f1(S) + g1(S) + l(S)

Applying Lemma 4 from Liu et al. [2022], we have

πj+1(Sj+1)− πj(Sj)

= πj(sj+1|Sj) +
1

k

(
1− 1

k

)k−(j+1)

f1(Sj)

≥ 1

k

(
1− 1

k

)k−(j+1)

f1(S
∗) +

1

k
l(S∗)− rj+1

Above, we applied Lemma 6 to obtain the inequality. Now, we have that

f1(S) + g1(S) + l(S) =

k−1∑
j=0

πj+1(Sj+1)− πj(Sj)

≥
k−1∑
j=0

1

k

(
1− 1

k

)k−(j+1)

f1(S
∗) +

1

k
l(S∗)− rj+1

≥
(
1− 1

e

)
f1(S

∗) + l(S∗)−
k∑

j=1

rj

G DISCUSSION AND PROOFS FROM SECTION 4

G.1 REMARKS ON HYPERPARAMETERS (η, b)

Note that b refers to our budget fraction variable as it serves to limit the final size of Gt, while η is an accuracy-computation
tradeoff variable that tends to produce larger Gt’s. While η and b are somewhat related (and are partially redundant) we
utilize the “budget” and “accuracy” notion as originally defined in Zenati et al. [2022] to be consistent with that work

G.2 REMARKS ON STEP SIZE βt

From on the analysis found in Zenati et al. [2022], we set

βt =
√
λB +

√
4 log(T) + log

(
e+

et

λ

)
deff (27)

which enables our regret bounds to hold where e = exp(1), λ is a hyperparameter, and B is our RKHS norm bound.

In our empirical simulations, however, we found it much more effective to set βt to a constant which is then tuned as a
hyperparameter. In fact, Zenati et al. [2022] found this to be the case in their simulations as well.

G.3 REMARK ON ROLE OF KERNEL PARAMETERS ON deff

Consider the RBF kernel k(x, x′) = exp(−b∥x− x′∥2). If the parameter b is very large, then the kernel function will be
very close to zero for all x ̸= x′. Hence, the kernel matrix KT will be close to the identity matrix, and the eigenvalues will
decay very slowly. Hence the effective dimension deff is likely to be large. Our current regret bound does not capture this,
because we wanted to focus on the scaling of regret with T . However, there is a constant in front that scales as b, which
effectively changes the base of the log(T) in the regret bound [Seeger et al., 2008, Section 4.B]. In Figure 3, we see that if
the horizon T is quite small, this effect can dominate and make the T -scaling appear almost linear. On the other hand, if we
make b very small, then the quantity B would increase; this is because k(x, x′) being large is not very informative about the
function values at x and x′. Hence, some care is required to tune the kernel parameters correctly. This applies to other kernel
functions as well. This effect is present in prior works [Srinivas et al., 2010, Krause and Ong, 2011, Zenati et al., 2022] as
well, but these do not address it explicitly which is why we wanted to offer some clarity about this point.

0 50 100 150 200 250 300
t

0

20

40

60

80

100

120

140

E
ffe

ct
iv

e
D

im
en

si
on

b = 50.0
b = 1.0
b = 0.9
b = 0.5
b = 0.1
b = 0.05
b = 0.01
b = 0.005

Figure 3: The dependence of effective dimension deff as on the parameter b in the RBF kernel.

G.4 PROOF OF THEOREM 1(B)

The proof follows the same LP construction of Conforti and Cornu’ejols [1984] as Theorem 1. The main contribution lies
showing Lemma 5; this shows that the offline counterpart, Lemma 1 from Bian et al. [2019], holds in the online setting as
well.

Proof. Define rt and Rt as in the proof of Theorem 1. From Lemma 2 applied to each hq , it follows that

RWS(T) ≤
m∑

k=1

T∑
t=1

I(ut = k)rt = RT

As in the proof of Theorem 1, combining Theorem 4.1 of Zenati et al. [2022] with the above inequality, our argument is
complete.

H DISCUSSION AND PROOFS FROM SECTION 5

H.1 REMARKS ON Liu et al. [2022]

Comparison of α for greedy vs weighted Greedy. In Figure 4, we compare the α of the greedy optimization of the BP
function in Bai and Bilmes [2018] with the distorted greedy variant in Equation (12). In the left panel, we see that the α in
Equation (12) is everywhere greater.

Error in Liu et al. [2022] and proposed fix. In Liu et al. [2022] on the bottom of Pg.188, the authors use the inequality:∑
e∈OPT

g1(e|St) ≥ (1− κg)(g1(OPT)− g1(St))

Consider the following counterexample with |V | = 3 and k = 2 as the cardinality constraint. Define g(S) = |S|2, which
is a concave over modular function, so it is supermodular. We can verify from definitions that κg = 0.8 and the modular
lower bound l2(S) = |S|, so that g1(S) = |S|2 − |S|. For simplicity, consider the case where t = 0, so that St = ∅. Then,
plugging into the equation, we see that the LHS is 0, whereas the RHS is 0.2× 4 = 0.8 > 0. Hence, this is a contradiction.
This example can be easily generalized to any concave over modular function, larger ground set sizes or different t.

We rectify this by swapping this inequality with
g1(e|St) ≥ (1− κg1)(g1(OPT)− g1(St)) = 0

The equality above holds because κg1 = 1 by construction. Hence, the g1 term disappears from the analysis. In the analysis
below, we make this fix and propagate the consequences; the modified algorithm, analysis and result applies to the offline
setting of Liu et al. [2022] as well.

κf

κg

Figure 4: Contour plot of (left) F1(κf,q, κ
g
q) = min

{
1− κf,q

e , 1− κg
q

}
− 1

κq,f

[
1− e−(1−κg

q)κq,f

]
and (right)

F2(κf,q, κ
g
q) = min

{
1− 1

e , 1− κg
q

}
− 1

κq,f

[
1− e−(1−κg

q)κq,f

]
. (Left) compares the α from Theorem 2 with that from

Theorem 1, and (right) compares α from Proposition 2 with that from Theorem 1.

H.2 PROOF OF SEPARATE FEEDBACK GUARANTEE

Proof of Theorem 2. First, we define some notation.

lq,1(S) =
∑
j∈S

fq(j|V \{j})

fq,1(S) = fq(S)− lq,1(S)

lq,2(S) =
∑
j∈S

gq(j|∅)

gq,1(S) = gq(S)− lq,2(S)

lq(S) = lq,1(S) + lq,2(S)

We restrict attention to the q-th function hq . Recall that Sj,q refers to the first j elements chosen for hq .

Let the distorted objective for user q when selecting the j-th item in the set be:

πj,q(S) =

(
1− 1

Tq

)Tq−j

fq,1(S) + gq,1(S) + lq(S)

Additionally, define

Λj,q(x,A) =

(
1− 1

Tq

)Tq−(j+1)

fq,1(x|A) + gq,1(x|A) + lq(x)

As previously, we define the instantaneous regret at round t as the difference between the maximum possible utility that is
achievable in the round and the actual received utility. However, this time, rt is defined in terms of the distorted objective.
This is a key difference from the earlier arguments that is crucial to the current proof.

rt = sup
v∈V

Λq,tut
(v, Sut,t−1)− Λq,tut

(vt, Sut,t−1)

Define the accumulated instantaneous regret until round t as

Rt =

t∑
j=1

rj

Recognize that Rt is different than Rt. From Lemma 3 applied to each hq , it follows that

RT ≤
m∑
q=1

T∑
t=1

I(ut = q)rt = RT (28)

Now, we can model the problem of the present work as a contextual bandit problem in the vein of Zenati et al. [2022]. Here,
the context in the t-th round is zt = (ϕut , Stut ,ut). Now we invoke Theorem 4.1 in Zenati et al. [2022], Thus, we have that

E[RT] ≤ O
(√

T
(
B
√
λdeff + deff

))
Combining this with Inequality (28), our argument is complete.

H.3 ANALYSIS WITHOUT Assumption (3a)

In certain applications, Assumption (3a) on lq,1 may not be reasonable. For these cases, we may modify the algorithm
slightly, and provide an alternative bound, that is slightly weaker. Consider a modified version of Algorithm 4, where line 3
is substituted with:

Set yt = (1− 1/Tut
)
Tut−(tut+1)

yf,t + yg,t (29)
Recognize that this Algorithm does not require Assumption (3a).

Define

RBP, 3(T) :=

m∑
q=1

min

{
1− 1

e
, 1− κg

q

}
hq(S

∗
q)− hq(Sq). (30)

Observe from the right panel of Figure 4 that the α in the definition above is still better than that of Bai and Bilmes [2018]
for most choices of κf,q, κ

g
q . Now, we can state our modified result. The proof follows similarly to Theorem 2.

Proposition 2. Let Assumption 1 and 2 and Assumption (3b) hold. Additionally, let the conditions on ϵt hold as in Theorem 2.
Then Algorithm 4 with the modification above yields E[RBP, 3(T)] ≤ O

(√
T
(
B
√

λdeff + deff
))

Proof of Proposition 2. For the modified version of the algorithm described in equation (29), the analysis is almost identical.
Repeating the analysis of Lemma 7 and Lemma 6, we obtain:

fq(Sq) + gq,1(Sq) + lq,2(Sq) +

Tq∑
j=1

rmj
≥
(
1− 1

e

)
fq(S

∗
q) + lq,2(S

∗
q)

Then, we can follow the same arguments as in Lemma 3 to conclude:

fq(S) + gq(S) ≥ min

{
1− 1

e
, 1− κg

q

}
hq(S

∗
q)−

Tq∑
j=1

rmj
.

H.4 REMARKS ON GUESS-AND-DOUBLE TECHNIQUE TO REPLACE Assumption (3b)

In this section, we provide a heuristic argument for why we expect that guess-and-double techniques should not affect the
overall regret scaling in Theorem 2.

In the traditional multi-armed bandit, when the time horizon T is unknown, the proposed method of dealing with this is to
start with an initial guess T̂ = 1 and then double each time the current time step crosses our latest guess. Any parameters in
the algorithm that depend on T (step size for e.g) are set based on T̂ instead. This divides the entire horizon into phases, one
for each guess T̂ . Then, for each phase, the regret must be sublinear because this is equivalent to playing a shorter game with
known horizon. Since the regret is the accumulation of the regrets of each phase, the overall regret must be sublinear as well.

However, in our case, the situation is more intricate because the overall regret is not expressible as the summation of regret
over phases. Hence, the original style of argument does not apply. What we do then, is to keep track of the change in regret
due to setting the distortion co-efficient in terms of T̂q instead of Tq . We choose T̂q = min{2j : j > t}.

When Tq is known, the distortion Dt =
(
1− 1

Tut

)Tut−tut−1

increases monotonically from
(
1− 1

Tut

)Tut−1

to 1 with tut

i.e as more elements are added. This monotonicity is used in the original argument to obtain the sublinear regret guarantee.

However, when the guess-and-double technique is used, the distortion is no longer monotonic in tut . Within each phase,

Dt increases from
(
1− 1

T̂ut

)T̂ut−1

to 1 but then reduces once T̂ut
is updated at the end of the phase. It turns out that the

regret actually decreases within the phase (compared to the situation where we know Tq) due to the increased distortion, but
increases in the transitions between the phases. Below, we characterize the changes in regret in the two cases.

Define

Λ̂j,q(x,A) =

(
1− 1

T̂q

)T̂q−(j+1)

fq,1(x|A) + gq,1(x|A) + lq(x)

Analogously, we can define

π̂j,q(S) =

(
1− 1

T̂q

)T̂q−j

fq,1(S) + gq,1(S) + lq(S)

Case 1: Within phase Previously Lemma 4 from Liu et al. [2022], we had
πj+1,q(Sj+1,q)− πj,q(Sj,q)

= Λj,q(sj , Sj,q) +
1

Tq

(
1− 1

Tq

)Tq−(j+1)

fq,1(Sj,q)

Now, we can replace this conclusion with
π̂j+1,q(Sj+1,q)− π̂j,q(Sj,q)

= Λ̂j,q(sj , Sj,q) +
1

T̂q

(
1− 1

T̂q

)T̂q−(j+1)

fq,1(Sj,q)

= Λ̂j,q(sj , Sj,q) +
1

T̂q

(
1− 1

T̂q

)T̂q−(j+1)

fq,1(Sj,q) +

(
1

T̂q

− 1

Tq

)(
1− 1

T̂q

)T̂q−(j+1)

f1(Sj,q)︸ ︷︷ ︸
Nwithin,j

The term Nwithin,j is a new term. The remainder of the proof goes through as expected, while these additional terms propagate
through the proof.

Case 2: Between phase Note that if step j is in a different phase than step j + 1, it follows that the distortion at step j is(
1− 1

T̂q

)T̂q−T̂q

= 1.

Since step t + 1 is the first time step in a phase, it follows that the guess for T̂q just doubled, and is T̂q = 2i. Then, the
distortion for step j + 1 is (

1− 1

2i

)t−1

As in the Case 1, we can track the extra term from Lemma 4, which in this case is

Nbetween,j = −

(
1−

(
1− 1

2i

)t−1
)
f1(Sj,q)

As before, this new term propagates through the proof.

Putting it together Accounting for the new terms, our modified final statement of Lemma 3

hq(Sq) ≥ min
{
1− κf,q

e
, 1− κg

q

}
hq(S

∗
q)−

Tq∑
j=1

rmj
+
∑

j:change

Nbetween,j +
∑

j:no change

Nwithin,j

Above the indices (j : change) include the log(Tq) time steps, which are the first time step in a phase i.e the first time step
after our guess T̂q was recently updated; the indices (j : no change) include all other time steps. Hence, the new term

N =
∑

j:change

Nbetween,j +
∑

j:no change

Nwithin,j

gets subtracted from the regret. We observe that each of the Nbetween,j terms are positive and there are many of these:
Tq − log(Tq) to be precise. However, the Nwithin,j terms are negative and increase the regret; however, there are only log(Tq)
of these. While it is difficult to quantify the terms exactly, there is no strong reason to believe that the few negative terms
greatly outweigh the positive terms. From preliminary simulations, we find that the regret remains roughly the same with the
doubling trick; we leave an extensive experimental investigation of this to future work.

I DETAILS ON EXPERIMENTS

Details for Table 4, Table 3 The chosen toy ground set of 23 elements is detailed in Table 4. The submodular function
is the facility location function; we chose this function because it is used in prior work Chen et al. [2017] for the task
of movie recommendation. The supermodular part is the sum-sum-dispersion function, and the weights that capture the
complementarity between movies are specified in the python notebook code/table-1.ipynb in the attached code.

From Table 3, we notice that with the submodular objective, the greedy algorithm chooses the first two movies in the
Godfather series but does not choose the third. Similarly, it chooses the first Harry Potter but not the subsequent ones. In
contrast, with the BP function, the greedy algorithm chooses all elements from the series in both cases. This behavior cannot
be encoded using solely a submodular function, but it is very easy to do so with a BP function.

Setup for movie recommendation in Figure 1 From MovieLens and using the matrix-completion approach in Cai et al.
[2010], we obtain a ratings matrix M ∈ R900×1600, where Mi,j is the rating of the ith user for the jth movie; for density of
data, we consider the most active users and most popular movies.

We cluster the users into m = 10 groups using the k-means algorithm and design a BP objective for each user-group. The
objective for the qth group is decomposed as hq(A) =

∑
v∈A mq(v) + λ1fq(A) + λ2gq(A), where the modular part mq(v)

is the average rating for movie v amongst all users in group k.

Let the set L refer to the collection of all genres in the ground set. The concave-over-modular submodular part encourages
the recommender to maintain a balance across genres in chosen suggestions: fq(A) =

∑
g∈L

√
1 + uq,g(A). The set L is

the collection of all genres. We now specify what uq,g(·) is. For each element v ∈ V , define a vector r(v) ∈ {0, 1}|L|. Here,
each entry corresponds to a genre and is 1 if the genre is associated with the movie v. Then let Nv = r(v)⊤1 denote the
number of genres for movie v. In fq(·), we specify

uq,g(A) =
∑
v∈A

1(mq(v) > τ)
1(v has genre g)

Nv

Above, 1 is the indicator function.

The supermodular function, in contrast is designed to encourage the optimizer to exploit complementarities within genres
gq(A) =

∑
g∈L (1 + ũq,g(A))

2
, where we define

ũq,g(A) =
∑
v∈A

1(v has genre g(mk(v) > τ))
mq(v)

Nv

We want the complementarities to be amplified when the movies have higher ratings, so notice that each term in ũq,g is
scaled by mq(v) relative to each term of uq,g. The constants λ1, λ2 were chosen such that the supermodular part slightly
dominates the submodular part, since previous works already study functions that are primarily submodular. The code is
contained in notebook “Figure 2.”

Kernel Estimation for Figure 1 For Algorithm 1, we choose the RBF kernel for movies, the linear kernel for users and
the Jaccard kernel for a history of recommendations. The composite kernel k((u, v,A), (u′, v′, A′)) = κ1kuser(u, u

′) +
κ2kmovie(v, v

′) + κ3khistory(A,A′) for κ1, κ2, κ3 > 0. For Algorithm 4, we choose the RBF kernel for ot.

Active Learning. This corresponds to Vignette 2 with m = 1 tasks. We apply the Naive-Bayes formulation of active
learning in Equation (5) of Wei et al. [2015] and set the submodular part as f(A) = fNB(A). The supermodular part is
the sum-sum-dispersion function as above g(A) =

∑
vt∈A

∑
vj∈A:vj ̸=vt

Bt,j . Here Bt,j = 0 if (vt, vj) are from the same

code/table-1.ipynb

class, and Bt,j = 1/dist(vt, vj) if (vt, vj) are from the opposite class; this encourages the selection of proximal points from
different classes.

Here, we elaborate on the choice of submodular function. Assume our features are discrete - each point v ∈ V has features
xv ∈X (where X is some finite set) and binary label yv ∈ {0, 1}, denoted by the orange and blue colors in Figure 2. Then,
for any (x ∈X, y ∈ {0, 1}) and for any subset of training points S ⊆ V , we can define

mx,y(S) =
∑
v∈S

1(xv = x ∧ yv = y)

as the empirical count of the joint occurrence of (x, y) in S. Then, inspired by the construction in Wei et al., we define the
submodular part f as

f(S) =
∑
x∈X

∑
y∈{0,1}

√
mx,y(V) log(mx,y(S))

To obtain the finite set X, we discretize our 2-dimensional features into 56 boxes. The square-root in the expression
above does not occur in the original paper and was introduced by us due to better empirical performance. The intuition for
constructing f(·) in this way is that the feature x should appear alongside label y in the chosen subset with roughly the same
frequency as in the ground training set.

	Introduction
	Problem Formulation
	Offline Algorithm Robustness
	Greedy Selection Robustness
	Distorted BP Greedy Robustness

	No-Regret Single Feedback
	MNN-UCB Algorithm
	Theoretical guarantee

	No-Regret Separate Feedback
	Algorithm and Theoretical Guarantee

	Numerical Experiments
	Discussion
	Table of Notation
	Background on Submodularity, Supermodularity and Curvatures
	Other Related work
	Applications and Role of MNN functions
	Active Learning
	Recommendation Systems

	A simple approach to guarantee low regret: Why it is too weak
	Proofs from Section 3
	Approximate Greedy on BP Functions
	Approximate Greedy on WS Functions
	Approximate Weighted Greedy on BP Functions

	Discussion and Proofs from Section 4
	Remarks on hyperparameters eta, b
	Remarks on step size beta t
	Remark on role of kernel parameters on deff
	Proof of Theorem 1(b)

	Discussion and proofs from Section 5
	Remarks on distorted greedy
	Proof of Separate Feedback Guarantee
	Analysis without Assumption (3a)
	Remarks on Guess-and-double technique to replace Assumption (3b)

	Details on Experiments

