
Published as a conference paper at ICLR 2021

THE TRAVELING OBSERVER MODEL: MULTI-TASK
LEARNING THROUGH SPATIAL VARIABLE EMBEDDINGS

Elliot Meyerson
Cognizant AI Labs
elliot.meyerson@cognizant.com

Risto Miikkulainen
UT Austin & Cognizant AI Labs
risto@cs.utexas.edu

ABSTRACT

This paper frames a general prediction system as an observer traveling around a
continuous space, measuring values at some locations, and predicting them at oth-
ers. The observer is completely agnostic about any particular task being solved; it
cares only about measurement locations and their values. This perspective leads to
a machine learning framework in which seemingly unrelated tasks can be solved
by a single model, by embedding their input and output variables into a shared
space. An implementation of the framework is developed in which these variable
embeddings are learned jointly with internal model parameters. In experiments,
the approach is shown to (1) recover intuitive locations of variables in space and
time, (2) exploit regularities across related datasets with completely disjoint input
and output spaces, and (3) exploit regularities across seemingly unrelated tasks,
outperforming task-specific single-task models and multi-task learning alterna-
tives. The results suggest that even seemingly unrelated tasks may originate from
similar underlying processes, a fact that the traveling observer model can use to
make better predictions.

1 INTRODUCTION

Natural organisms benefit from the fact that their sensory inputs and action outputs are all organized
in the same space, that is, the physical universe. This consistency makes it easy to apply the same
predictive functions across diverse settings. Deep multi-task learning (Deep MTL) has shown a
similar ability to adapt knowledge across tasks whose observed variables are embedded in a shared
space. Examples include vision, where the input for all tasks (photograph, drawing, or otherwise) is
pixels arranged in a 2D plane (Zhang et al., 2014; Misra et al., 2016; Rebuffi et al., 2017); natural
language (Collobert & Weston, 2008; Luong et al., 2016; Hashimoto et al., 2017), speech processing
(Seltzer & Droppo, 2013; Huang et al., 2015), and genomics (Alipanahi et al., 2015), which exploit
the 1D structure of text, waveforms, and nucleotide sequences; and video game-playing (Jaderberg
et al., 2017; Teh et al., 2017), where interactions are organized across space and time. Yet, many
real-world prediction tasks have no such spatial organization; their input and output variables are
simply labeled values, e.g., the height of a tree, the cost of a haircut, or the score on a standardized
test. To make matters worse, these sets of variables are often disjoint across a set of tasks. These
challenges have led the MTL community to avoid such tasks, despite the fact that general knowledge
about how to make good predictions can arise from solving seemingly “unrelated” tasks (Mahmud
& Ray, 2008; Mahmud, 2009; Meyerson & Miikkulainen, 2019).

This paper proposes a solution: Learn all variable locations in a shared space, while simultaneously
training the prediction model itself (Figure 1). To illustrate this idea, Figure 1a gives an example
of four tasks whose variable values are measured at different locations in the same underlying 2D
embedding space. The shape of each marker (i.e., ◦,�,4, ?) denotes the task to which that variable
belongs; white markers denote input variable, black markers denote output variables, and the back-
ground coloring indicates the variable values in the entire embedding space when the current sample
is drawn. As a concrete example, the color could indicate the air temperature at each point in a ge-
ographical region at a given moment in time, and each marker the location of a temperature sensor
(however, note that the embedding space is generally more abstract). Figure 1b-c shows a model
that can be applied to any task in this universe, using the ◦ task as an example: (b) The function f
encodes the value of each observed variable xi given its 2D location zi ∈ R2, and these encodings

1

Published as a conference paper at ICLR 2021

f

f

f

⨁

g

g

g

V

(a)

(b) (c)

Figure 1: The Traveling Observer Model. (a) Tasks with disjoint input and output variable sets are
measured in the same underlying 2D universe. The shape of each marker (i.e., ◦,�,4, ?) denotes
the task to which that variable belongs; white markers denote input variables, black markers denote
output variables, and the background color shows the state of the entire universe when the current
sample is drawn. (b) The function f encodes the value of each observed variable xi given its 2D
location zi ∈ R2, and these encodings are aggregated by elementwise addition

⊕
; (c) The function

g decodes the aggregated encoding to a prediction for yj at its location zj . In general, the embedded
locations z are not known a priori, but they can be learned alongside f and g by gradient descent.

are aggregated by elementwise addition
⊕

; (c) The function g decodes the aggregated encoding to
a prediction for yj at its location zj . Such a predictor can be viewed as a traveling observer model
(TOM): It traverses the space of variables, taking a measurement at the location of each input. Given
these observations, the model can make a prediction for the value at the location of an output. In
general, the embedded locations z are not known a priori (i.e., when input and output variables do
not have obvious physical locations), but they can be learned alongside f and g by gradient descent.

The input and output spaces of a prediction problem can be standardized so that the measured value
of each input and output variable is a scalar. The prediction model can then be completely agnostic
about the particular task for which it is making a prediction. By learning variable embeddings (VEs),
i.e., the z’s, the model can capture variable relationships explicitly and supports joint training of a
single architecture across seemingly unrelated tasks with disjoint input and output spaces. TOM
thus establishes a new lower bound on the commonalities shared across real-world machine learning
problems: They are all drawn from the same space of variables that humans can and do measure.

This paper develops a first implementation of TOM, using an encoder-decoder architecture, with
variable embeddings incorporated using FiLM (Perez et al., 2018). In the experiments, the imple-
mentation is shown to (1) recover the intuitive locations of variables in space and time, (2) exploit
regularities across related datasets with disjoint input and output spaces, and (3) exploit regulari-
ties across seemingly unrelated tasks to outperform single-tasks models tuned to each tasks, as well
as current Deep MTL alternatives. The results confirm that TOM is a promising framework for
representing and exploiting the underlying processes of seemingly unrelated tasks.

2 BACKGROUND: MULTI-TASK ENCODER-DECODER DECOMPOSITIONS

This section reviews Deep MTL methods from the perspective of decomposition into encoders and
decoders (Table 1). In MTL, there are T tasks {(xt,yt)}Tt=1 that can, in general, be drawn from
different domains and have varying input and output dimensionality. The tth task has nt input
variables [xt1, . . . , xtnt

] = xt ∈ Rnt and mt output variables [yt1, . . . , ytmt
] = yt ∈ Rmt . Two

tasks (xt,yt) and (xt′ ,yt′) are disjoint if their input and output variables are non-overlapping, i.e.,(
{xti}nt

i=1∪{ytj}
mt
j=1

)
∩
(
{xt′i}nt′

i=1∪{yt′j}
mt′
j=1

)
= ∅. The goal is to exploit regularities across task

models xt 7→ ŷt by jointly training them with overlapping parameters.

The standard intra-domain approach is for all task models to share their encoder f , and each to have
its own task-specific decoder gt (Table 1a). This setup was used in the original introduction of MTL

2

Published as a conference paper at ICLR 2021

(a) Intra-domain (b) Task Embeddings (c) Cross-domain (d) Variable Embeddings (TOM)

ŷt = gt(f(xt)) ŷt = g(f(xt, zt))) ŷt = gt(ft(xt)) ŷj = g
(∑

i f(xi, zi), zj
)

Table 1: MTL approaches decomposed into encoders f∗ and decoders g∗: (a) Standard MTL takes
advantage of the shared spatialization of tasks within a domain by sharing a single encoder across
all tasks t; (b) Task embeddings allow tasks within a domain to share their decoder as well; (c)
Applying standard MTL across domains requires task-specific encoders, and finding some other
method of sharing parameters across tasks; (d) TOM allows a single encoder and decoder to be used
even in the cross-domain setting, by embedding all input and output variables into a shared space.

(Caruana, 1998), has been broadly explored in the linear regime (Argyriou et al., 2008; Kang et al.,
2011; Kumar & Daumé, 2012), and is the most common approach in Deep MTL (Huang et al., 2013;
Zhang et al., 2014; Dong et al., 2015; Liu et al., 2015; Ranjan et al., 2016; Jaderberg et al., 2017).
The main limitation of this approach is that it is limited to sets of tasks that are all drawn from the
same domain. It also has the risk of the separate decoders doing so much of the learning that there
is not much left to be shared, which is why the decoders are usually single affine layers.

To address the issue of limited sharing, the task embeddings approach trains a single encoder f and
single decoder g, with all task-specific parameters learned in embedding vectors zt that semantically
characterize each task, and which are fed into the model as additional input (Yang & Hospedales,
2014; Bilen & Vedaldi, 2017; Zintgraf et al., 2019) (Table 1b). Such methods require that all tasks
have the same input and output space, but are flexible in how the embeddings can be used to adapt
the model to each task. As a result, they can learn tighter connections between tasks than separate
decoders, and these relationships can be analyzed by looking at the learned embeddings.

To exploit regularities across tasks from diverse and disjoint domains, cross-domain methods have
been introduced. Existing methods address the challenge of disjoint output and input spaces by us-
ing separate decoders and encoders for each domain (Table 1c), and thus they require some other
method of sharing model parameters across tasks, such as sharing some of their layers (Kaiser et al.,
2017; Meyerson & Miikkulainen, 2018) or drawing their parameters from a shared pool (Meyerson
& Miikkulainen, 2019). For many datasets, the separate encoder and decoder absorbs too much
functionality to share optimally, and their complexity makes it difficult to analyze the relationships
between tasks. Earlier work prior to deep learning showed that, from an algorithmic learning theory
perspective, sharing knowledge across tasks should always be useful (Mahmud & Ray, 2008; Mah-
mud, 2009), but the accompanying experiments were limited to learning biases in a decision tree
generation process, i.e., the learned models themselves were not shared across tasks.

TOM extends the notion of task embeddings to variable embeddings in order to apply the idea in
the cross-domain setting (Table 1d). The method is described in the next section.

3 THE TRAVELING OBSERVER MODEL

Consider the set of all scalar random variables that could possibly be measured {v1, v2, ...} = V .
Each vi ∈ V could be an input or output variable for some prediction task. To characterize each
vi semantically, associate with it a vector zi ∈ RC that encodes the meaning of vi, e.g., “height of
left ear of human adult in inches”, “answer to survey question 9 on a scale of 1 to 5”, “severity of
heart disease”, “brightness of top-left pixel of photograph”, etc. This vector zi is called the variable
embedding (VE) of vi. Variable embeddings could be handcoded, e.g., based on some featurization
of the space of variables, but such a handcoding is usually unavailable, and would likely miss some
of the underlying semantic regularities across variables. An alternative approach is to learn variable
embeddings based on their utility in solving prediction problems of interest.

A prediction task (x,y) = ([x1, . . . , xn], [y1, . . . , ym]) is defined by its set of observed variables
{xi}ni=1 ⊆ V and its set of target variables {yj}mj=1 ⊆ V whose values are unknown. The goal
is to find a prediction function Ω that can be applied across any prediction task of interest, so that
it can learn to exploit regularities across such problems. Let zi and zj be the variable embeddings
corresponding to xi and yj , respectively. Then, this universal prediction model is of the form

E[yj | x] = Ω(x, {zi}ni=1, zj). (1)

3

Published as a conference paper at ICLR 2021

xi

zi
FC FiLM FRB

x N

CRB

x N

FRB

x N

FiLM FC yj

zj

Encoder Core Decoder

DropDrop

z

ReLU FC FiLM

FiLMResBlock (FRB)

Drop 𝛼 ReLU FC

CoreResBlock (CRB)

Drop 𝛼

Figure 2: Diagram of the TOM implementation used in the experiments. Encoder, Core, and
Decoder correspond to f , g1, and g2 in Eq. 4, resp. The Encoder and Decoder are conditioned on
input and output VEs z via FiLM layers. A CRB is simply an FRB without conditioning. Dropout
and trainable scalars α implement SkipInit as a substitute for BatchNorm. This residual structure
allows the architecture to learn tasks of varying complexity in a flexible manner.

Importantly, for any two tasks (xt,yt), (xt′ ,yt′), their prediction functions (Eq. 1) differ only in
their z’s, which enforces the constraint that functionality is otherwise completely shared across the
models. One can view Ω as a traveling observer, who visits several locations in the C-dimensional
variable space, takes measurements at those locations, and uses this information to make predictions
of values at other locations.

To make Ω concrete, it must be a function that can be applied to any number of variables, can fit any
set of prediction problems, and is invariant to variable ordering, since we cannot in general assume
that a meaningful order exists. These requirements lead to the following decomposition:

E[yj | x] = Ω(x, {zi}ni=1, zj) = g
(n∑

i=1

f(xi, zi), zj

)
, (2)

where f and g are functions called the encoder and decoder, with trainable parameters θf and θg ,
respectively. The variable embeddings z tell f and g which variables they are observing, and these
z can be learned by gradient descent alongside θf and θg . A depiction of the model is shown in
Figure 1. For some integer M , f : RC+1 → RM and g : RM+C → R. In principle, f and g
could be any sufficiently expressive functions of this form. A natural choice is to implement them as
neural networks. They are called the encoder and decoder because they map variables to and from a
latent space of sizeM . This model can then be trained end-to-end with gradient descent. A batch for
gradient descent is constructed by sampling a prediction problem, e.g., a task, from the distribution
of problems of interest, and then sampling a batch of data from the data set for that problem. Notice
that, in addition to supervised training, in this framework it is natural to autoencode, i.e., predict
input variables, and subsample inputs to simulate multiple tasks drawn from the same universe.

The question remains: How can f and g be designed so that they can sufficiently capture a broad
range of prediction behavior, and be effectively conditioned by variable embeddings? The next
section introduces an experimental architecture that satisfies these requirements.

4 INSTANTIATION

The experiments in this paper implement TOM using a generic architecture built from standard
components (Figure 2). The encoder and decoder are conditioned on VEs via FiLM layers (Perez
et al., 2018), which provide a flexible yet inexpensive way to adapt functionality to each variable,
and have been previously used to incorporate task embeddings (Vuorio et al., 2019; Zintgraf et al.,
2019). For simplicity, the FiLM layers are based on affine transformations of VEs. Specifically, the
`th FiLM layer F` is parameterized by affine layers W ∗

` and W+
` , and, given a variable embedding

z, the hidden state h is modulated by
F`(h) = W ∗

` (z)� h +W+
` (z), (3)

where � is the Hadamard product. A FiLM layer is located alongside each fully-connected layer in
the encoder and decoder, both of which consist primarily of residual blocks. To avoid deleterious be-
havior of batch norm across diverse tasks and small datasets/batches, the recently proposed SkipInit

4

Published as a conference paper at ICLR 2021

Iteration 0 Iteration 1000 Iteration 5000 Iteration 10000

Iteration 50000 Iteration 100000 Iteration 300000 Oracle

Figure 3: Variable embeddings learned for CIFAR unfold over iterations until they resemble Oracle
expectations (best viewed in color). The VE for each variable, i.e., pixel, is colored uniquely. TOM
peels the border of the CIFAR images (the upper loop of VEs at iteration 300K) away from their
center (the lower grid). This makes sense, since CIFAR images all feature a central object, which
semantically splits the image into foreground (the object itself) and background (the remaining ring
of pixels around the object). See https://youtu.be/R_z-2SR2KpY for videos of VEs being learned.

(De & Smith, 2020) is used as a replacement to stabilize training. SkipInit adds a trainable scalar
α initialized to 0 at the end of each residual block, and uses dropout for regularization. Finally, for
computational efficiency, the decoder is redecomposed into the Core, or g1, which is independent
of output variable, and the Decoder proper, or g2, which is conditioned on the output variable. That
way, generic transformations of the summed Encoder output can be learned by the Core and run in
a single forward and backward pass each iteration. With this decomposition, Eq. 2 is rewritten as

E[yj | x] = g2

(
g1

(n∑
i=1

f(xi, zi)
)
, zj

)
. (4)

The complete architecture is depicted in Figure 2. In the following sections, all models are im-
plemented in pytorch (Paske et al., 2017), use Adam for optimization (Kingma & Ba, 2014), and
have hidden layer size of 128 for all layers. Variable embeddings for TOM are initialized from
N (0, 10−3). See Appendix C for additional details of this implementation.

5 EXPERIMENTS

This section presents a suite of experiments that evaluate the behavior of the implementation intro-
duced in Section 4. See Appendix for additional experimental details.

5.1 VALIDATING LEARNED VARIABLE EMBEDDINGS: DISCOVERING SPACE AND TIME

The experiments in this section test TOM’s ability to learn variable embeddings that reflect our a
priori intuition about the domain, in particular, the organization of space and time.

CIFAR. The first experiment is based on the CIFAR dataset (Krizhevsky, 2009). The pixels of the
32 × 32 images are converted to grayscale values in [0, 1], yielding 1024 variables. The goal is to
predict all variable values, given only a subset of them as input. The model is trained to minimize
the binary cross-entropy of each output, and it uses 2D VEs. The a priori, or Oracle, expectation is
that the VEs form a 32× 32 grid corresponding to how pixels are spatially laid out in an image.

Daily Temperature. The second experiment is based on the Melbourne minimum daily temperature
dataset (Brownlee, 2016), a subset of a larger database for tracking climate change (Della-Marta
et al., 2004). As above, the goal is to predict the daily temperature of the previous 10 days, given
only some subset of them, by minimizing the MSE of each variable. The a priori, Oracle, expectation
is that the VEs are laid out linearly in a single temporal dimension. The goal is to see whether TOM
will also learn VEs (in a 2D space) that follow a clear 1D manifold that can be interpreted as time.

5

https://youtu.be/R_z-2SR2KpY

Published as a conference paper at ICLR 2021

Variable Embeddings Zero Random Learned Oracle

CIFAR (Binary Cross-entropy) 0.662 ±0.0000 0.660 ±0.0007 0.591 ±0.0002 0.590 ±0.0001
Daily Temperature (RMSE) 4.29 ±0.002 4.27 ±0.011 3.32 ±0.011 3.37 ±0.005

Table 2: Quantitative results for space and time prediction. This table compares test errors (± std.
err.) of learned VEs to fixed-VE alternatives in TOM. The results show that learned VEs outperform
Zero and Random VEs, reaching performance on par with the Oracle. That is, TOM not only learns
meaningful VEs (Figures 3 and 4), but also uses these VEs to achieve superior peformance.

t 0

t 1t 2

t 3

t 4

t 5

t 6t 7

t 8

t 9

Iteration 0

t 0 t 1

t 2

t 3
t 4

t 5

t 6
t 7

t 8

t 9
Iteration 1000

t 0

t 1

t 2

t 3

t 4

t 5t 6t 7 t 8

t 9
Iteration 5000

t 0

t 1t 2t 3

t 4t 5

t 6

t 7
t 8t 9

Iteration 10000

t 0

t 1t 2t 3
t 4

t 5

t 6

t 7t 8

t 9

Iteration 20000

t 0
t 1

t 2

t 3 t 4

t 5

t 6

t 7

t 8
t 9

Iteration 30000

t 0

t 1

t 2
t 3 t 4

t 5

t 6

t 7

t 8t 9
Iteration 50000

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Oracle

Figure 4: Variable embeddings learned for daily temperature variables untangle over iterations
and converge on a 1D manifold ordered by time, as one would expect (neighboring time-steps are
connected to illustrate the order). TOM has embedded this 1D structure as a ring in 2D, which is
well-suited to the nonlinear encoder and decoder, since it mirrors an isotropic Gaussian distribution.

For both experiments, a subset of the input variables is randomly sampled at each training iteration,
which simulates drawing tasks from a limited universe. The resulting learning process for the VEs is
illustrated in Figures 3 and 4. The VEs for CIFAR pull apart and unfold, until they reflect the oracle
embeddings (Figure 3). The remaining difference is that TOM peels the border of the CIFAR images
(the upper loop of VEs at iteration 300K) away from their center (the lower grid). This makes sense,
since CIFAR images all feature a central object, which semantically splits the image into foreground
(the object itself) and background (the remaining ring of pixels around the object). Similarly, the
VEs for daily temperature pull apart until they form a perfect 1D manifold representing the time
dimension (Figure 4). The main difference is that TOM has embedded this 1D structure as a ring in
2D, which is well-suited to the nonlinear encoder and decoder, since it mirrors an isotropic Gaussian
distribution. Note that unlike visualization methods like SOM (Kohonen, 1990), PCA (Pearson,
1901), or t-SNE (van der Maaten & Hinton, 2008), TOM learns locations for each variable not each
sample. Furthermore, TOM has no explicit motivation to visualize; learned VEs are simply the
locations found to be useful by using gradient descent when solving the prediction problem.

To get an idea of how learning VEs affects prediction performance, comparisons were run with
three cases of fixed VEs: (1) all VEs set to zero, to address the question of whether differentiating
variables with VEs is needed at all in the model; (2) random VEs, to address the question of whether
simply having any unique label for variables is sufficient; and (3) oracle VEs, which reflect the
human a priori expectation of how the variables should be arranged. The results show that the
learned embeddings outperform zero and random embeddings, achieving performance on par with
the Oracle (Table 2). The conclusion is that learned VEs in TOM are not only meaningful, but can
help make superior predictions, without a priori knowledge of variable meaning. The next section
shows how such VEs can be used to exploit regularities across tasks in an MTL setting.

5.2 EXPLOITING REGULARITIES ACROSS DISJOINT TASKS

This section considers two synthetic multi-task problems that contain underlying regularities across
tasks. These regularities are not known to the model a priori; it can only exploit them via its VEs.
The first problem evaluates TOM in a regression setting where input and output variables are drawn
from the same continuous space; the second problem evaluates TOM in a classification setting. For
classification tasks, each class defines a distinct output variable.

6

Published as a conference paper at ICLR 2021

(a)

x1 y1
Variable Location z

2

0

2

Va
lu

e

Task 1

x2x3 x4y2 y3
Variable Location z

1

0

1

2

Va
lu

e

Task 2

(b)

x1
fz1

...

g zn+1
y1

...
x2

fz2

xn
fzn

g zn+2
y2

g zn+m
ym

... ...
Figure 5: (a) Tasks with disjoint input and output variable sets, whose variables are nonetheless
measured in the same underlying space (dotted lines are samples). These tasks are drawn from the
Transposed Gaussian Process problem in Section 5.2; (b) TOM can be applied to any task in this
space: It predicts values at output locations, given values at input locations.

Method Transposed GP (MSE) Concentric Hyperspheres (Accuracy)

DR-STL 0.373 ±0.030 42.56 ±1.69
TOM-STL 0.552 ±0.027 64.52 ±1.83
DR-MTL 0.397 ±0.032 54.42 ±1.92
SLO 0.568 ±0.028 53.26 ±1.91
TOM 0.346 ±0.031 92.90 ±1.49

Oracle 0.342 ±0.026 99.96 ±0.02

Table 3: Quantitative Results in syn-
thetic disjoint MTL scenarios. TOM
learns variable embeddings that en-
able it to outperform alternative ap-
proaches, and achieve performance on
par with the Oracle.

Transposed Gaussian Process. In the first problem, the universe is defined by a Gaussian process
(GP). The GP is 1D, is zero-mean, and has an RBF kernel with length-scale 1. One task is generated
for each (# inputs, # outputs) pair in {1, . . . , 10} × {1, . . . , 10}, for a total of 100 tasks. The “true”
location of each variable lies in the single dimension of the GP, and is sampled uniformly from
[0, 5]. Samples for the task are generated by sampling from the GP, and measuring the value at each
variable location. The dataset for each task contains 10 training samples, 10 validation samples, and
100 test samples. Samples are generated independently for each task. The goal is to minimize MSE
of the outputs. Figure 5 gives two examples of tasks drawn from this universe. This testbed is ideal
for TOM, because, by the definition of the GP, it explicitly captures the idea that variables whose
VEs are nearby are closely related, and every variable has some effect on all others.

Concentric Hyperspheres. In the second problem, each task is defined by a set of concentric hy-
perspheres. Many areas of human knowledge have been organized abstractly as such hyperspheres,
e.g., planets around a star, electrons around an atom, social relationships around an individual, or
suburbs around Washington D.C.; the idea is that a model that discovers this common organization
could then share general knowledge across such areas more effectively. To test this hypothesis, one
task is generated for each (# features n, # classes m) pair in {1, . . . , 10}×{2, . . . , 10}, for a total of
90 tasks. For each task, its origin ot is drawn from N (0, In). Then, for each class c ∈ {1, . . . ,m},
samples are drawn from Rn uniformly at distance c from ot, i.e., each class is defined by a (hyper)
annulus. The dataset for each task contains five training samples, five validation samples, and 100
test samples per class. The model has no a priori knowledge that the classes are structured in annuli,
or which annulus corresponds to which class, but it is possible to achieve high accuracy by making
analogies of annuli across tasks, i.e., discovering the underlying structure of this universe.

In these experiments, TOM is compared to five alternative methods: (1) TOM-STL, i.e. TOM trained
on each task independently; (2) DR-MTL (Deep Residual MTL), the standard cross-domain (Ta-
ble 1c) version of TOM, where instead of FiLM layers, each task has its own linear encoder and
decoder layers, and all residual blocks are CoreResBlocks; (3) DR-STL, which is like DR-MTL
except it is trained on each task independently; (4) SLO (Soft Layer Ordering; Meyerson & Miikku-
lainen, 2018), which uses a separate encoder and decoder for each task, and which is (as far as we
know) the only prior Deep MTL approach that has been applied across disjoint tabular datasets; and
(5) Oracle, i.e. TOM with VEs fixed to intuitively correct values. The Oracle is included to give an
upper bound on how well the TOM architecture in Section 4 could possibly perform. The oracle VE
for each Transposed GP task variable is the location where it is measured in the GP; for Concentric
Hyperspheres, the oracle VE for each class c is c/10, and for the ith feature is oti.

TOM outperforms the competing methods and achieves performance on par with the Oracle (Ta-
ble 3). Note that the improvement of TOM over TOM-STL is much greater than that of DR-MTL
over DR-STL, indicating that TOM is particularly well-suited to exploiting structure across disjoint

7

Published as a conference paper at ICLR 2021

(a)

2

0

2

Or
ig

in
 C

oo
rd

in
at

e
ot i

(b)

000000000000000000
0
00000000

0
00000000000000000000000000 00

0000000
00

0000000
000000000 000000000

111
111111111111111

1

11111111
1
111111111

1111111111111111
1

1
1

111111111
1 111111

1
11111111

1

11111111

222222
22 22222222 22222222222222222222222222222222

2

22222222

2

222222222222222222
2222

3333333 3333333 3333333 3333333 333333333333333333333
3

33333333333333333333

444444444
444 444444 444444 444444 444444444444444444444444444444

55
555 55555 5555555555 55555 555555555555

555 55
555

55555

6
666

6
666
6

666
666

6 6666 666666666666
6

6666 666

7

77
7

77777
7

77
7
77

7
7777777

7
777777

8

8

8

88
8
8

8
8

8
8

8

888
88
888

9
9

9
99

9
99

9
9 (c)

features
classes

0.2

0.4

0.6

0.8

Cl
as

s P
ro

po
rti

on

Figure 6: Learned VEs capture underlying structure across tasks. (a) VEs of features for concentric
hyperspheres encode the origin location, and (b) for classes encode the index of their annuli (less
precisely for the more distant annuli, since they occur in fewer tasks); (c) VEs for UCI-121 (shown
in 2D via t-SNE) neatly carve the space into features, common classes, and uncommon classes.

data sets (learned VEs are shown in Figure 6a-b). Now that this suitability has been confirmed, the
next section evaluates TOM across a suite of disjoint, and seemingly unrelated, real-world problems.

5.3 MULTI-TASK LEARNING ACROSS SEEMINGLY UNRELATED REAL-WORLD DATASETS

This section evaluates TOM in the setting for which it was designed: learning a single shared model
across seemingly unrelated real-world datasets. The set of tasks used is UCI-121 (Lichman, 2013;
Fernández-Delgado et al., 2014), a set of 121 classification tasks that has been previously used to
evaluate the overall performance of a variety of deep NN methods (Klambauer et al., 2017). The
tasks come from diverse areas such as medicine, geology, engineering, botany, sociology, politics,
and game-playing. Prior work has tuned each model to each task individually in the single-task
regime; no prior work has undertaken learning of all 121 tasks in a single joint model. The datasets
are highly diverse. Each simply defines a classification task that a machine learning practitioner was
interested in solving. The number of features for a task range from 3 to 262, the number of classes
from 2 to 100, and the number of samples from 10 to 130,064. To avoid underfitting to the larger
tasks, C = 128, and after joint training all model parameters (θf , θg1 , θg2 , and z’s) are finetuned on
each task with at least 5K samples. Note that it is not expected that training any two tasks jointly will
improve performance in both tasks, but that training all 121 tasks jointly will improve performance
overall, as the model learns general knowledge about how to make good predictions.

Results across a suite of metrics are shown in Table 4. Mean Accuracy is the test accuracy averaged
across all tasks. Normalized Accuracy scales the accuracy within each task before averaging across
tasks, with 0 and 100 corresponding to the lowest and highest accuracies. Mean Rank averages the
method’s rank across tasks, where the best method gets a rank of 0. Best % is the percentage of tasks
for which the method achieves the top accuracy (with possible ties). Win % is the percentage of tasks
for which the method achieves accuracy strictly greater than all other methods. TOM outperforms
the alternative approaches across all metrics, showing its ability to learn many seemingly unrelated
tasks successfully in a single model (see Figure 6c for a high-level visualization of learned VEs). In
other words, TOM can both learn meaningful VEs and use them to improve prediction performance.

6 DISCUSSION AND FUTURE WORK

Sections 2 and 3 developed the foundations for the TOM approach; Sections 4 and 5 illustrated its
capabilities, demonstrating its value as a general multitask learning system. This section discusses
four key areas of future work for increasing the understanding and applicability of the approach.

First, there is an opportunity to develop a theoretical framework for understanding when TOM will
work best. It is straightforward to extend universal approximation results from approximation of
single functions (Cybenko, 1989; Lu et al., 2017; Kidger & Lyons, 2020) to approximation of a set
of functions each with any input and output dimensionality via Eq. 2. It is also straightforward to
extend convergence bounds for certain model classes, such as PAC bounds (Bartlett & Mendelson,
2002; Neyshabur et al., 2018), to TOM architectures implemented with these classes, if the “true”
variable embeddings are fixed a priori, so they can simply be treated as features. However, a more

8

Published as a conference paper at ICLR 2021

(a)

Method Win % Best % Mean Rank Norm. Acc. Mean Acc.

ResNet 3.31 ±1.63 12.40 ±3.03 3.89 ±0.19 50.07 ±3.15 79.24 ±1.59
MS 4.96 ±1.98 14.88 ±3.28 3.35 ±0.19 60.11 ±3.00 80.11 ±1.48
BN 5.79 ±2.13 13.22 ±3.11 4.20 ±0.20 42.15 ±3.24 77.01 ±1.83
WN 7.44 ±2.40 10.74 ±2.84 4.05 ±0.20 45.87 ±3.11 77.43 ±1.74
HW 8.26 ±2.51 15.70 ±3.35 3.61 ±0.21 53.00 ±3.20 78.68 ±1.61
LN 9.92 ±2.73 16.53 ±3.40 3.45 ±0.20 56.73 ±3.03 79.85 ±1.53
SNN 13.22 ±3.09 21.49 ±3.78 2.78 ±0.19 65.29 ±2.84 81.39 ±1.35
TOM 28.93 ±4.14 34.71 ±4.36 2.60 ±0.22 70.72 ±3.02 81.53 ±1.44

(b)

DR-STL 10.74 ±2.82 19.01 ±3.60 2.31 ±0.12 54.72 ±3.51 76.48 ±1.68
TOM-STL 7.44 ±2.40 16.53 ±3.40 2.72 ±0.13 35.21 ±3.72 68.18 ±2.26
DR-MTL 9.09 ±2.62 28.10 ±4.12 2.02 ±0.12 56.47 ±3.68 78.40 ±1.47
SLO 16.53 ±3.39 30.06 ±4.22 1.62 ±0.10 73.88 ±2.93 80.31 ±1.38
TOM 32.23 ±4.27 47.10 ±4.58 1.34 ±0.13 76.70 ±3.08 81.53 ±1.44

Table 4: UCI-121 Results. (a) Comparisons to external results of deep STL models tuned to each task
(see “Experiments” in Klambauer et al. (2017) for more details); (b) Comparisons across methods
evaluated in this paper. Metrics are aggregated over all 121 tasks (± std. err.). TOM achieves high
performance across seemingly unrelated tasks, outperforming the comparisons across all metrics.

intriguing direction involves understanding how the true locations of variables affects TOM’s ability
to learn and exploit them, i.e., what are desirable theoretical properties of the space of variables?

Second, in this paper, TOM was evaluated only in the case when the data for all tasks is always
available, and the model is trained simultaneously across all tasks. However, it would also be natural
to apply TOM in a meta-learning regime (Finn et al., 2017; Zintgraf et al., 2019), in which the model
is trained explicitly to generalize to future tasks, and to lifelong learning (Thrun & Pratt, 2012;
Brunskill & Li, 2014; Abel et al., 2018), where the model must learn new tasks as they appear over
time. Simply freezing the learned parameters of TOM results in a parametric class of ML models
with C parameters per variable that can be applied to new tasks. However, in practice, it should be
possible to improve upon this approach by taking advantage of more sophisticated fine-tuning and
parameter adaptation. For example, in low-data settings, methods can be adapted from meta-learning
approaches that modulate model weights in a single forward pass instead of performing supervised
backpropagation (Garnelo et al., 2018; Vuorio et al., 2019). Interestingly, although they are designed
to address issues quite different from those motivating TOM, the architectures of such approaches
have a functional decomposition that is similar to that of TOM at a high level (see e.g. Conditional
Neural Processes, or CNPs; Garnelo et al., 2018). In essence, replacing the VEs in Eq. 2 with input
samples and the variables with output samples yields a function that generates a prediction model
given a dataset. This analogy suggests that it should be possible to extend the benefits of CNPs to
TOM, including rich uncertainty information.

Third, to make the foundational case for TOM, this paper focused on the setting where VEs are a pri-
ori unknown, but when such knowledge is available, it could be useful to integrate with learned VEs.
Such an approach could eliminate the cost of relearning VEs, and suggest how to take advantage of
spatially-customized architectures. E.g., convolution or attention layers could be used instead of
dense layers as architectural primitives, as in vision and language tasks. Such specialization could
be instrumental in making TOM more broadly applicable and more powerful in practice.

Finally, one interpretation of Fig. 6c is that the learned VEs of classes encode a task-agnostic concept
of “normal” vs. “abnormal” system states. TOM could be used to analyze the emergence of such
general concepts and as an analogy engine: to describe states of one task in the language of another.

7 CONCLUSION

This paper introduced the traveling observer model (TOM), which enables a single model to be
trained across diverse tasks by embedding all task variables into a shared space. The framework was
shown to discover intuitive notions of space and time and use them to learn variable embeddings that
exploit knowledge across tasks, outperforming single- and multi-task alternatives. Thus, learning a
single function that cares only about variable locations and their values is a promising approach to
integrating knowledge across data sets that have no a priori connection. The TOM approach thus
extends the benefits of multi-task learning to broader sets of tasks.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGEMENTS

Thank you to Babak Hodjat and others in the Evolutionary AI research group for helpful discus-
sions and technical feedback. Thank you also to the reviewers, particularly for their suggestions for
improving the organizational structure and clarity of the paper.

REFERENCES

D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforcement
learning. In Proc. of ICML, pp. 10–19, 2018.

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of
dna-and rna-binding proteins by deep learning. Nature Biotechnology, 33(8):831, 2015.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

H. Bilen and A. Vedaldi. Universal representations: The missing link between faces, text, planktons,
and cat breeds. CoRR, abs/1701.07275, 2017.

J. Brownlee. 7 time series datasets for machine learning. machinelearningmastery.com/
time-series-datasets-for-machine-learning/, 2016. Accessed: 2020-01-10.

E. Brunskill and L. Li. Pac-inspired option discovery in lifelong reinforcement learning. In Proc. of
ICML, pp. 316–324, 2014.

R. Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer US, 1998.

R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proc. of ICML, pp. 160–167, 2008.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

S. De and S. L. Smith. Batch normalization biases deep residual networks towards shallow paths.
arXiv preprint arXiv:2002.10444, 2020.

P. Della-Marta, D. Collins, and K. Braganza. Updating australia’s high-quality annual temperature
dataset. Australian Meteorological Magazine, 53(2):75, 2004.

D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task learning for multiple language translation.
In Proc. of ACL, pp. 1723–1732, 2015.

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of classifiers
to solve real world classification problems? Journal of Machine Learning Research, 15(1):3133–
3181, 2014.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In Proc. of ICML, pp. 1126–1135, 2017.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713, 2018.

K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task model: Growing a neural
network for multiple NLP tasks. In Proc. EMNLP, pp. 1923–1933, 2017.

J. T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language knowledge transfer using mul-
tilingual deep neural network with shared hidden layers. In Proc. of ICASSP, pp. 7304–7308,
2013.

10

machinelearningmastery.com/time-series-datasets-for-machine-learning/
machinelearningmastery.com/time-series-datasets-for-machine-learning/

Published as a conference paper at ICLR 2021

Z. Huang, J. Li, S. M. Siniscalchi, et al. Rapid adaptation for deep neural networks through multi-
task learning. In Proc. of Interspeech, pp. 3625–3629, 2015.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. In Proc. of ICLR, 2017.

K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in classification.
CoRR, abs/1702.05659, 2017.

L. Kaiser, A. N. Gomez, N. Shazeer, Ashish Vaswani, N. Parmar, L. Jones, and J. Uszkoreit. One
model to learn them all. CoRR, abs/1706.05137, 2017.

Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In
Proc. of ICML, pp. 521–528, 2011.

P. Kidger and T. Lyons. Universal approximation with deep narrow networks. In Proc. of COLT,
pp. 2306–2327, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In
Proc. of NeurIPS, pp. 971–980, 2017.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

A. Kumar and H. Daumé, III. Learning task grouping and overlap in multi-task learning. In Proc.
of ICML, pp. 1723–1730, 2012.

M. Lichman. UCI machine learning repository, 2013.

X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y. Y. Wang. Representation learning using multi-task
deep neural networks for semantic classification and information retrieval. In Proc. of NAACL,
pp. 912–921, 2015.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from
the width. In Proc. of NeurIPS, pp. 6231–6239, 2017.

M. T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser. Multi-task sequence to sequence
learning. In Proc. of ICLR, 2016.

M. M. Mahmud and S. Ray. Transfer learning using Kolmogorov complexity: Basic theory and
empirical evaluations. In Proc. of NeurIPS, pp. 985–992. 2008.

M. M. H. Mahmud. On universal transfer learning. Theoretical Computer Science, 410(19):1826 –
1846, 2009.

E. Meyerson and R. Miikkulainen. Beyond shared hierarchies: Deep multitask learning through soft
layer ordering. In Proc. of ICLR, 2018.

E. Meyerson and R. Miikkulainen. Modular universal reparameterization: Deep multi-task learning
across diverse domains. In Proc. of NeurIPS, pp. 7903–7914, 2019.

I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for multi-task learning. In
Proc. of CVPR, 2016.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A pac-bayesian approach to spectrally-normalized
margin bounds for neural networks. In Proc. of ICLR, 2018.

A. Paske et al. Automatic differentiation in pytorch. 2017.

K. Pearson. LIII. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

11

Published as a conference paper at ICLR 2021

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

E. Perez, F. Strub, H. de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual reasoning
with a general conditioning layer. In Proc. of AAAI, 2018.

R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep multi-task learning framework
for face detection, landmark localization, pose estimation, and gender recognition. CoRR,
abs/1603.01249, 2016.

S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters.
In NeurIPS, pp. 506–516. 2017.

M. L. Seltzer and J. Droppo. Multi-task learning in deep neural networks for improved phoneme
recognition. In Proc. of ICASSP, pp. 6965–6969, 2013.

Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and R. Pascanu.
Distral: Robust multitask reinforcement learning. In Proc. of NeurIPS, pp. 4499–4509. 2017.

S. Thrun and L. Pratt. Learning to Learn. 2012.

L. van der Maaten and G. Hinton. Visualing data using t-sne. Journal of Machine Learning Research,
9:2579–2605, Nov 2008.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. In Advances in Neural Information Processing Systems, pp.
1–12, 2019.

Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and multi-task learning. In
Proc. of ICLR, 2014.

Z. Zhang, L. Ping, L. C. Chen, and T. Xiaoou. Facial landmark detection by deep multi-task learning.
In Proc. of ECCV, pp. 94–108, 2014.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-
learning. In Proc. of ICML, pp. 7693–7702, 2019.

A ADDITIONAL EXPERIMENT ON THE EMBEDDING SIZE C

In the experiments in Section 5.1 and 5.2, the VE dimensionality C for TOM was set to 2 in order to
most clearly visualize the VEs that were learned. In the experiment in Section 5.3, C was increased
in order to accommodate the scale-up to a large number of highly diverse real world tasks. In that
experiment C was set to 128 in order to match the number of task-specific parameters of the other
Deep MTL methods compared in Table 4.

To evaluate the sensitivity of TOM to the setting of C, additional experiments were run for TOM on
UCI-121 with C = 64 and C = 256. The results are shown in Table 5. Metrics for all settings of
C are computed w.r.t. the external comparison methods, i.e., those in Table 4a. TOM with C = 64
produces performance comparable to C = 128, suggesting that optimizing C could be a useful lever
for balancing performance and VE interpretability.

C Win % Best % Mean Rank Norm. Acc. Mean Acc.

256 21.49 24.79 2.96 65.24 80.68
128 28.93 34.71 2.60 70.72 81.53
64 25.62 32.23 2.50 71.28 81.97

Table 5: Results for TOM on UCI-121 with varying VE dimensionality C.

12

Published as a conference paper at ICLR 2021

B PYTORCH CODE

To give a detailed picture of how the TOM architecture in this paper was implemented, the code
for the forward pass of the model implemented in pytorch (Paske et al., 2017) is given in Figure 7.
For efficiency, TOM is implemented with Conv1D layers with kernel size 1 instead of Dense layers.

Figure 7: Pytorch code for the forward pass of the TOM implementation.

This approach enables the model to run the encoder and decoder on all variables in parallel. The
fact that Conv layers are so highly optimized in pytorch makes the implementation substantially
more efficient than with Dense layers. In this code, input batch has shape (batch size, input
variables), input contexts has shape (1, VE dim, # input variables), and output contexts
has shape (1, VE dim, # output variables). Code for TOM will be available at https://github.
com/leaf-ai/tom-release.

C ADDITIONAL EXPERIMENTAL DETAILS

A sigmoid layer is applied at the end of the decoder for the CIFAR experiments, to squash the output
between 0 and 1.

For the CIFAR and Daily Temperature experiments, a subset of the variables is sampled each itera-
tion to be used as input. This subset is sampled in the following way: (1) Sample the size k of the
subset uniformly from [1, nt], where nt is the number of variables in the experiment; (2) Sample
a subset of variables of size k uniformly from all subsets of size k. This sampling method ensures
that every subset size has an equal chance of getting selected, so that the universe is not biased to-
wards tasks of a particular size. E.g., if instead the subset were created by sampling each variable
independently with probability p, then the subset size would concentrate tightly around pnt.

For classification tasks, each class defines a distinct output variable, i.e., a K-class classification
task has K output variables. The squared hinge loss was used for classification tasks (Janocha &

13

https://github.com/leaf-ai/tom-release
https://github.com/leaf-ai/tom-release

Published as a conference paper at ICLR 2021

Czarnecki, 2017). It is preferable to categorical cross-entropy loss in this setting, because it does
not require taking a softmax across output variables, so the outputs are kept separate. Also, the
loss becomes exactly zero once a sample is learned strongly, so that the model does not continue to
overfit as remaining samples and tasks are learned.

The number of blocks in the encoder, core, and decoder is N = 3 for all problems except UCI-121,
for which it is N = 10. All experiments use a hidden size of 128 for all dense layers aside from the
final decoder layer that maps to the output space.

The batch size was 32 for CIFAR and Daily Temperature, and max(200, # train samples) for all
other tasks. At each step, To tasks are uniformly sampled from the set of all tasks, and gradients are
summed over a batch for each task in the sample. To = 1 in all experiments except UCI-121, for
which To = 32.

To allow for multi-task training with datasets of varying numbers of samples, we say the model has
completed one epoch each time it is evaluated on the validation set. An epoch is 1000 steps for
CIFAR, 100 steps for Daily Temperature, 1K steps for Transposed Gaussian Process, 1K steps for
Concentric Hyperspheres, and 10K steps for UCI-121.

For CIFAR, the official training and test splits are used for training and testing. No validation
set is needed for CIFAR, because none of the models can overfit to the training set. For Daily
Temperature, the second-to-last year of data is withheld for validation, and the final year is withheld
for testing. The UCI-121 experiments use the preprocessed versions of the official train-val-test
splits (https://github.com/bioinf-jku/SNNs/tree/master/UCI).

Adam is used for all experiments, with all parameters initialized to their default values. In all
experiments except UCI-121, the learning rate is kept constant at 0.001 throughout training. In
UCI-121, the learning rate is decreased by a factor of two when the mean validation accuracy has not
increased in 20 epochs; it is decreased five times; model training stops when it would be decreased
a sixth time. Models are trained for 500K steps for CIFAR, 100K steps for Daily Temperature,
and 250K for Transposed Gaussian Process and Concentric Hyperspheres. The test performance for
each task is its performance on the test set after the epoch of its best validation performance.

Weights are initialized using the default pytorch initialization (aside from the SkipInit α scalars,
which are initialized to zero (De & Smith, 2020)). The experiments in Section 5.1 use no weight
decay; in Section 5.2 use weight decay of 10−4; and in Section 5.3 use weight decay of 10−5.
Dropout is set to 0.0 for CIFAR, Daily Temperature, and Concentric Hyperspheres; and 0.5 for
Transposed Gaussian Process and UCI-121.

In UCI-121, fully-trained MTL models are finetuned to tasks with more than 5,000 samples, us-
ing the same optimizer configuration as for joint training, except the steps-per-epoch is set to
d# train samples/batch sizee, the learning rate is initialized to 0.0001, the patience for early stopping is set
to 100, and the validation performance is smoothed over every 10 epochs (simple moving average),
following the protocol used to train single-task models in prior work (Klambauer et al., 2017).

TOM uses a VE size of C = 2 for all experiments, except for UCI-121, where C = 128 in order
to accommodate the complexity of such a large and diverse set of tasks. For Figure 6c, t-SNE
(van der Maaten & Hinton, 2008) was used to reduce the dimensionality to two. t-SNE was run for
10K iterations with default parameters in the scikit-learn implementation (Pedregosa et al., 2011),
after first reducing the dimensionality from 128 to 32 via PCA. Independent runs of t-SNE yielded
qualitatively similar results.

Autoencoding (i.e., predicting the input variables as well as unseen variables) was used for CIFAR,
Daily Temperature, and Transposed Guassian Process; it was not used for Concentric Hyperspheres
or UCI-121.

The Soft Layer Ordering architecture follows the original implementation (Meyerson & Miikku-
lainen, 2018). There are four shared ReLU layers, each of size 128, with dropout after each to ease
sharing across different soft combinations of layers.

In Tables 2 and 3 means and standard error for each method are computed over ten runs.

The Daily Temperature dataset was downloaded from https://raw.githubusercontent.
com/jbrownlee/Datasets/master/daily-min-temperatures.csv.

14

https://github.com/bioinf-jku/SNNs/tree/master/UCI
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv

Published as a conference paper at ICLR 2021

D ADDITIONAL DETAILED RESULTS FOR UCI-121 EXPERIMENT

Table 6 contains test accuracies for each UCI-121 task for all methods run in the experiments in
Section 5.3.

Table 6: Accuracies for each UCI-121 task.

Method DR-STL TOM-STL DR-MTL SLO TOM

abalone 65.421 64.464 64.847 66.667 65.230
acute-inflammation 100.000 46.667 100.000 100.000 100.000
acute-nephritis 100.000 96.667 100.000 100.000 100.000
adult 84.890 84.319 84.411 85.216 85.763
annealing 73.000 54.000 76.000 75.000 31.000
arrhythmia 68.142 58.407 69.027 58.407 65.487
audiology-std 36.000 0.000 76.000 80.000 68.000
balance-scale 89.744 46.154 91.667 96.154 94.872
balloons 75.000 75.000 50.000 75.000 100.000
bank 90.177 90.177 89.469 90.265 88.496
blood 76.471 75.936 74.332 77.005 72.727
breast-cancer 69.014 70.423 66.197 66.197 71.831
breast-cancer-wisc 97.714 97.143 97.714 97.714 97.143
breast-cancer-wisc-diag 97.183 98.592 98.592 98.592 97.887
breast-cancer-wisc-prog 75.510 77.551 81.633 73.469 73.469
breast-tissue 53.846 30.769 65.385 69.231 76.923
car 97.454 91.898 87.731 99.074 99.306
cardiotocography-10clases 81.168 79.661 76.083 82.863 84.557
cardiotocography-3clases 90.584 90.207 88.701 93.409 93.974
chess-krvk 35.358 71.842 35.729 68.848 66.382
chess-krvkp 98.874 99.875 98.373 99.625 99.625
congressional-voting 55.046 61.468 62.385 61.468 61.468
conn-bench-sonar-mines-rocks 86.538 78.846 78.846 80.769 84.615
conn-bench-vowel-deterding 65.801 12.338 74.675 98.701 98.485
connect-4 79.271 91.456 76.790 87.122 87.157
contrac 57.880 53.804 55.707 58.967 55.435
credit-approval 80.814 81.977 82.558 83.721 81.977
cylinder-bands 69.531 63.281 72.656 72.656 75.781
dermatology 93.407 39.560 97.802 96.703 97.802
echocardiogram 75.758 69.697 87.879 75.758 87.879
ecoli 88.095 48.810 85.714 82.143 86.905
energy-y1 80.208 80.729 83.854 95.833 96.354
energy-y2 82.292 81.250 85.938 90.625 92.188
fertility 92.000 88.000 84.000 88.000 88.000
flags 47.917 33.333 41.667 47.917 41.667
glass 50.943 37.736 66.038 67.925 66.038
haberman-survival 72.368 73.684 73.684 73.684 72.368
hayes-roth 25.000 60.714 50.000 53.571 85.714
heart-cleveland 60.526 56.579 60.526 61.842 63.158
heart-hungarian 78.082 79.452 80.822 78.082 80.822
heart-switzerland 32.258 54.839 35.484 45.161 58.065
heart-va 26.000 20.000 32.000 30.000 36.000
hepatitis 69.231 79.487 71.795 84.615 84.615
hill-valley 50.000 50.165 67.492 63.861 58.251
horse-colic 86.765 69.118 83.824 80.882 79.412
ilpd-indian-liver 71.918 71.918 60.959 74.658 66.438
image-segmentation 58.524 14.238 88.952 89.333 92.381
ionosphere 86.364 90.909 90.909 93.182 88.636
iris 89.189 62.162 97.297 97.297 97.297

Continued on next page.

15

Published as a conference paper at ICLR 2021

Method DR-STL TOM-STL DR-MTL SLO TOM

led-display 75.600 27.200 79.600 73.600 74.000
lenses 83.333 66.667 50.000 50.000 50.000
letter 95.980 97.480 87.220 94.580 94.780
libras 43.333 11.111 78.889 76.667 80.000
low-res-spect 81.955 56.391 83.459 82.707 90.977
lung-cancer 50.000 25.000 62.500 50.000 62.500
lymphography 86.486 56.757 94.595 86.486 86.486
magic 86.982 86.898 81.325 86.877 87.024
mammographic 81.250 82.500 80.833 82.083 83.750
miniboone 92.782 94.630 93.345 94.338 93.532
molec-biol-promoter 88.462 50.000 69.231 61.538 92.308
molec-biol-splice 85.696 92.723 86.324 85.822 93.350
monks-1 65.509 50.000 71.991 86.574 80.787
monks-2 40.509 67.130 62.731 64.583 62.500
monks-3 74.306 52.778 66.898 68.981 58.102
mushroom 99.655 100.000 99.803 100.000 100.000
musk-1 83.193 57.143 92.437 90.756 91.597
musk-2 98.666 98.848 98.787 99.272 99.636
nursery 99.568 99.877 95.926 99.753 99.630
oocytes merluccius nucleus 4d 83.922 70.588 77.647 83.529 85.098
oocytes merluccius states 2f 89.412 92.549 94.510 92.157 95.294
oocytes trisopterus nucleus 2f 73.684 75.877 75.439 78.509 78.947
oocytes trisopterus states 5b 94.298 92.544 93.421 94.737 92.982
optical 95.993 95.326 94.658 94.380 95.938
ozone 97.161 97.161 97.161 97.161 97.161
page-blocks 95.468 96.199 94.371 96.272 96.345
parkinsons 89.796 75.510 83.673 87.755 83.673
pendigits 96.855 97.055 97.055 96.884 96.627
pima 71.875 71.875 73.438 75.521 76.562
pittsburg-bridges-MATERIAL 73.077 76.923 88.462 84.615 92.308
pittsburg-bridges-REL-L 69.231 65.385 65.385 73.077 61.538
pittsburg-bridges-SPAN 52.174 56.522 65.217 65.217 60.870
pittsburg-bridges-T-OR-D 84.000 88.000 84.000 84.000 88.000
pittsburg-bridges-TYPE 38.462 50.000 61.538 65.385 53.846
planning 64.444 71.111 71.111 68.889 71.111
plant-margin 76.750 6.750 71.250 69.500 74.000
plant-shape 39.000 20.750 31.500 65.750 70.500
plant-texture 74.250 4.000 69.750 69.000 77.250
post-operative 72.727 72.727 77.273 72.727 72.727
primary-tumor 45.122 30.488 47.561 47.561 51.220
ringnorm 95.027 98.108 84.324 96.054 98.324
seeds 80.769 80.769 86.538 94.231 92.308
semeion 95.729 92.462 94.724 88.693 94.472
soybean 65.426 18.617 89.628 82.979 83.777
spambase 93.826 92.609 92.609 93.478 93.913
spect 61.828 56.989 67.204 65.054 68.280
spectf 49.733 91.979 60.963 60.428 91.979
statlog-australian-credit 66.860 68.023 68.023 63.372 62.209
statlog-german-credit 73.600 76.000 74.400 76.800 74.800
statlog-heart 89.552 79.104 89.552 82.090 83.582
statlog-image 96.360 95.841 90.988 97.054 97.747
statlog-landsat 89.900 91.250 83.450 88.950 90.600
statlog-shuttle 98.621 99.945 98.021 99.910 99.945
statlog-vehicle 73.934 48.341 78.199 79.621 74.882
steel-plates 74.845 64.536 68.041 76.495 77.526
synthetic-control 73.333 69.333 97.333 96.667 99.333

Continued on next page.

16

Published as a conference paper at ICLR 2021

Method DR-STL TOM-STL DR-MTL SLO TOM

teaching 60.526 36.842 55.263 52.632 47.368
thyroid 98.308 98.775 96.820 97.841 98.804
tic-tac-toe 97.071 97.071 97.071 97.071 96.653
titanic 77.636 77.091 78.364 78.364 78.364
trains 100.000 50.000 100.000 100.000 100.000
twonorm 98.270 98.108 98.162 98.108 98.054
vertebral-column-2clases 83.117 67.532 87.013 87.013 85.714
vertebral-column-3clases 70.130 59.740 84.416 68.831 85.714
wall-following 86.437 98.827 72.507 90.396 97.434
waveform 87.520 87.360 87.760 86.800 87.760
waveform-noise 85.920 85.360 85.360 84.720 85.840
wine 100.000 70.455 100.000 100.000 100.000
wine-quality-red 59.000 57.500 57.750 63.750 61.000
wine-quality-white 56.863 53.758 53.513 57.761 56.944
yeast 60.108 53.908 60.377 59.838 59.838
zoo 96.000 48.000 96.000 96.000 92.000

Continued from previous page.

17

	Introduction
	Background: Multi-task Encoder-Decoder Decompositions
	The Traveling Observer Model
	Instantiation
	Experiments
	Validating learned variable embeddings: discovering space and time
	Exploiting regularities across disjoint tasks
	Multi-task learning across seemingly unrelated real-world datasets

	Discussion and Future Work
	Conclusion
	Additional experiment on the embedding size C
	Pytorch Code
	Additional experimental details
	Additional detailed results for UCI-121 experiment

