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VIVIDCAM: LEARNING UNCONVENTIONAL CAMERA
MOTIONS FROM VIRTUAL SYNTHETIC VIDEOS

Anonymous authors
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Camera: The camera pans around, searching  (①, ②) for a static colorful birdhouse. Upon finding it, the camera locks focus 
and pushes in (③) on the hand-painted designs. Content: A birdhouse hangs from a low branch, surrounded by greenery.

Camera:  The camera first tracks a running dog (①). Then, the camera switches focus (②) to a static bicycle (③) leaning against 
a tree. Content: … runs through a grassy field, tongue lolling out, while the bike rests on a tree surrounded by fallen leaves.

Training Videos

Camera:  The camera pushes forward with intermittent explosive tremors (①), focusing on a worn-out teddy bear lying on 
ground.  Content: A car explodes in a fiery blast, sending debris and dust into the air.

Camera:  The camera rotates 180 degrees in place.  Content: An astronaut in a white spacesuit slowly spins weightlessly in the 
silence of outer space in the spaceship.

Figure 1: VIVIDCAM learns diverse unconventional camera motions from synthetic videos. The
training data (1st row) are simple low-poly 3D scenes rendered in Unity in about 5 seconds per video.
In contrast, the generated results show high visual quality with meaning-driven motions that convey
intention (2nd–3rd rows) and more dramatic, unusual motions for artistic effect (4th–5th rows).

ABSTRACT

Although recent text-to-video generative models are getting more capable of fol-
lowing external camera controls, imposed by either text descriptions or camera tra-
jectories, they still struggle to generalize to unconventional camera motions, which
is crucial in creating truly original and artistic videos. The challenge lies in the diffi-
culty of finding sufficient training videos with the intended uncommon camera mo-
tions. To address this challenge, we propose VIVIDCAM, a training paradigm that
enables diffusion models to learn complex camera motions from synthetic videos,
releasing the reliance on collecting realistic training videos. VIVIDCAM incorpo-
rates multiple disentanglement strategies that isolate camera motion learning from
synthetic appearance artifacts, ensuring more robust motion representation and mit-
igating domain shift. We show that our design synthesizes a wide range of precisely
controlled camera motions using surprisingly simple synthetic data. Notably, this
synthetic data often consists of basic geometries within a low-poly 3D scene and
can be efficiently rendered by engines like Unity. Our video results can be found in
https://anonymoususers196.github.io/VividCamDemo/.
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1 INTRODUCTION

In creative video generation, camera motion is pivotal for conveying intent, enhancing expressivity,
and adding artistic value. As a result, recent work in video generation has focused heavily on
equipping text-to-video models with camera control. Camera control in video generation is commonly
approached via two paradigms: text-based control, where motion is described directly in the input
prompt (Liu et al., 2024; ArtistT2V.; Google, 2025), and trajectory-based control, where explicit 3D
motion trajectories are provided as additional conditioning (He et al., 2024; Bahmani et al., 2025;
Wang et al., 2025). With sufficient training data labeled with camera motion, both paradigms can
effectively reproduce similar motion patterns in generated videos.

However, truly creative video generation demands more than just replicating conventional camera
techniques like panning or dollying. It requires inventing stylized, intricate motions (as exemplified by
the dramatic impact of the Dolly Zoom in Hitchcock’s Vertigo), or crafting scene-specific movements
tailored to expressive content (e.g., tracking an unconventional car race). In such cases, collecting
enough training data that embodies these avant-garde or bespoke camera motions is infeasible.

Figure 2: State-of-the-art method (Bahmani et al., 2025) fails to gener-
ate unconventional camera motions. More examples are in Appendix D.

Unfortunately, without enough
training data support, neither the
text-based nor trajectory-based
camera control can generalize
well to unseen camera motions.
For example, Figure 2 illustrates
results from state-of-the-art base-
line method (Bahmani et al.,
2025): while it can reproduce con-
ventional motions such as a for-
ward push (1st row), it fails on
more complex, expressive ones (2nd row). In this case, the intended motion was the camera pans
left and right, seeking a sunflower in a glass vase, then locking focus and pushing in upon finding
it (full video: https://anonymoususers196.github.io/VividCamDemo/). As shown,
the generated videos fail to follow the delicate control of the camera panning left/right process,
resulting in videos with large perturbations and losing focus.

In short, there is a fundamental paradox between the data-intensive nature of training generative
AI models and the creative nature of camera control. So our question is: Can we enable learning
out-of-distribution camera motions without real training data?

In this paper, we explore an alternative solution: instead of collecting real videos with uncommon
camera motions, we generate synthetic videos with the intended motions as training data for generative
models. However, while synthetic videos can cover arbitrary motions, they often exhibit virtual styles
that diverge significantly from realistic ones. Directly training models on such videos would seriously
degrade generation quality. Of course, such drawbacks could potentially be alleviated by generating
super-high-quality, real-like synthetic videos (Shuai et al., 2025), but this would incur tremendous
manual efforts and professional expertise to prepare these videos.

Essentially, the problem boils down to a disentanglement problem, i.e., separating appearance and
camera motion information in synthetic videos and guiding models to learn only the latter. To this
end, we present VIVIDCAM, which uses synthetic Virtual Videos to fine-tune models for producing
correct Camera motions. VIVIDCAM focuses on disentanglement mechanisms. First, inspired
by AnimateDiff (Guo et al., 2023), we adopt a dual-adaptation training scheme: we first learn the
appearance of synthetic videos through a LoRA and then learn the camera motion; at inference, the
appearance LoRA is discarded so the outputs no longer carry undesirable virtual styles. However,
this technique has only been used to bridge minor appearance gaps, and is insufficient to resolve
the drastic appearance differences between realistic and virtual videos. To further mitigate virtual
appearance, VIVIDCAM employs a training recipe with two complementary components: (i) Data:
we synthesize two sets of videos for training, one without camera motions (to train the appearance
LoRA) and one with motions (to train the motion module); and (ii) Training signals: we introduce
an optical-flow based loss for the motion module, providing appearance-invariant supervision that
stabilizes motion learning and strengthens disentanglement. Finally, we use special text prompts to
anchor virtual appearance, enabling the model to better distinguish virtual from realistic styles.

2
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We find that even when the generated videos are of very low visual quality, comprising only basic
geometries rendered in low-poly 3D scenes (top row in Fig. 1), VIVIDCAM can still effectively
disentangle the synthetic appearance from motion and generate realistic videos with the camera
motion learned from the virtual videos (bottom four rows in Fig. 1). Our experiments demonstrate that
models trained with VIVIDCAM can handle a wide variety of complex, compound camera motions
while maintaining realistic visual quality comparable to models trained on real footage.

In summary, our main contributions are as follows:

1. We introduce VIVIDCAM, a novel framework for generating realistic videos with diverse
camera motions by leveraging synthetic data efficiently rendered from engines like Unity.

2. Despite the significant domain gap, VIVIDCAM effectively mitigates artifacts present in
low-quality synthetic videos and focuses on learning their complex camera motions.

3. We demonstrate that our framework can synthesize a wide range of camera motions with
precise, consistent control and high visual quality.

2 RELATED WORK

2.1 VIDEO GENERATIVE MODELS

Early explorations in video generation tasks focused on GANs (Saito et al., 2017; Tulyakov et al.,
2018). Recently, leveraging advancements in diffusion models (Ho et al., 2020; Song et al., 2020;
Peebles & Xie, 2023; Ma et al., 2024a), video generative models have rapidly evolved. Early
diffusion-based video generative models originated from adapting existing image generative models
by incorporating additional motion modules (Guo et al., 2023; Blattmann et al., 2023b; Gu et al.,
2023; Singer et al., 2022; Wu et al., 2023). More recently, many end-to-end video generation models
have achieved superior results in terms of video quality, resolution, and duration (Blattmann et al.,
2023a; Hong et al., 2022; Yang et al., 2024b; Ma et al., 2024b). For conditional video generation,
various works have explored using text or images to guide the content in generated videos. Rapid
progress in video generation has led to several groundbreaking works (OpenAI, 2024; Wang et al.,
2024a; Kuaishou, 2025; Google, 2025).

2.2 CAMERA CONTROL IN VIDEO GENERATION

Recently, a line of research has focused on enhancing the controllability of video generative mod-
els (Sun et al., 2024; Zhou et al., 2025; Peng et al., 2024). An important aspect is managing camera
motion (Zhang et al., 2024; Xu et al., 2024a; Hou et al., 2024; Ling et al., 2024). Early works learned
simple, fixed movements (e.g., zooming, panning) from reference videos (Guo et al., 2023; Blattmann
et al., 2023a), while later methods conditioned generation on input trajectories (Xu et al., 2024b;
Yang et al., 2024a), representing cameras through camera matrices (Wang et al., 2024c) or Plücker
embedding (He et al., 2024; Bahmani et al., 2025). These approaches, however, depend on large
annotated datasets, which are scarce and offer only limited motion diversity. Recent works (He et al.,
2025; Yu et al., 2025; Wang et al., 2025) have devoted significant effort to constructing and curating
large-scale realistic video datasets with camera trajectory annotations.

2.3 IMPROVING VIDEO GENERATION MODELS USING SYNTHETIC DATA

Training on realistic video datasets often faces limitations, such as the absence of camera motion
annotations and the limited diversity of motion patterns (He et al., 2024; Wang et al., 2024c). As such,
several studies turned to synthetic datasets, many of which focus on multi-view generation (Bai et al.,
2024) and human animation (Black et al., 2023; Wang et al., 2024b; Yang et al., 2023). For camera
motion editing, recent work has synthesized new training videos by modifying camera trajectories in
existing sequences (Bai et al., 2025), though these efforts are generally restricted to simple motions.
For camera control in video generation, recent approaches generate training videos with explicit
camera trajectories in virtual scenes rendered by 3D engines (Fu et al., 2024; Shuai et al., 2025).
However, these methods typically demand substantial manual effort to generate complex and diverse
scenes and objects. In contrast, our work leverages simple, low-poly 3D environments, enabling
diverse camera motions without reliance on large-scale annotation or labor-intensive scene design.
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Figure 3: VIVIDCAM. We first render initial scene using publicly available assets. Then, we render
videos with and without camera motion. These videos are used to train the camera and appearance
modules, generating videos with desired camera motions. Details of training are in Sec. 4.3.

3 PRELIMINARIES

We first provide a brief overview of text-to-video diffusion models, which serve as the base model of
our work. To train a diffusion model, we first generate a set of corrupted videos, denoted as X1:T , by
adding progressively increasing Gaussian noises ϵ1:T , to the clean video, X0. The diffusion model
then learns to predict the additive noise and denoise noisy videos into cleaner videos. We focus on
two types of diffusion models with slightly different training objectives.

Text-Based Control Only. Standard text-to-video diffusion models condition the denoising process
only on a text input, denoted as c. The training loss can be written as

L(θd) = EX0,t,ϵt [ϵt − ϵ̂θd(Xt, c, t)], (1)

where θd denotes the parameters of the noise predictor. During inference, clean videos are progres-
sively denoised from pure-noise videos using the trained noise predictor conditional on text c. We
denote the generation process as gθd(c).

Trajectory-Based Control. Recent works control camera poses using trajectories represented as
Plücker embeddings p, which are encoded via Eθe(p) with parameters θe. The training loss becomes

L(θd,θe) = EX0,t,ϵt [ϵt − ϵ̂θd(Xt, c, Eθe(p), t)]. (2)

The inference generation process becomes gθd(c, Eθe(p)).

4 VIVIDCAM

In this section, we first formulate the research problem of synthesizing unconventional camera
motions. Then, we introduce VIVIDCAM, a framework to generate them leveraging completely
virtual synthetic videos. The overall pipeline is shown in Fig. 3.

4.1 PROBLEM FORMULATION

We aim to fine-tune pre-trained text-to-video diffusion models to follow certain camera motions,
which can be unconventional so the pre-trained models do not generalize well on them.

Specifically, we consider two camera control paradigms. For text-based control, the camera motion
instructions are specified as additional input prompts, denoted as cm, such as ‘The camera pans
around, searching for a bird.’ We fine-tune a text-only diffusion model, parameterized as θd, to
integrate the additional camera instructions, so the generation process becomes gθd+∆θcd(cm ⊕ c),
where ⊕ denotes text concatenation, and ∆θcd denotes the fine-tuning weight difference.

For trajectory-based control, the camera motions are in the form of out-of-distribution camera
trajectories p. We fine-tune only the trajectory encoder of a text-to-video diffusion model, since
the encoder already provides basic camera control abilities (Bahmani et al., 2025). The adapted
generation process becomes gθd(c, Eθe+∆θce(p)), where ∆θce are fine-tuning weight difference (only
the trajectory encoder weights are updated; the diffusion model weights are kept frozen).

Since the camera motions are unconventional, realistic video datasets often lack sufficient examples
for training. We propose to leverage synthetic videos rendered by a physics engine, which allows for
arbitrary and diverse camera trajectories. As such, we consider two research questions:

4
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• What types of synthetic videos are most effective for enhancing camera motion learning?
• How to ensure the model learns camera motion independently of the virtual video’s appearance?

To answer these questions, we first detail the process for rendering training videos in Sec. 4.2. Then,
wepresent our pipeline for disentangling camera motion from artificial appearances in Sec. 4.3.

4.2 RENDER TRAINING VIDEOS

Our first step is to prepare synthetic videos for camera motion training. Leveraging the rendering
engine, we are able to generate arbitrary camera motions within a virtual scene. Note that while it is
possible to include a variety of synthetic objects in the scene, we focus on constructing the scene
with minimal numbers and categories of objects to reduce human efforts. Below, we describe the key
details of the rendering process. More details can be found in Appendix A.

The rendered scene. All synthetic videos are rendered in a low-poly 3D scene using Unity. The
scene consists of a background, floor, and objects. Examples of these elements are shown in Fig. 3.
Notably, these elements are created using basic geometries. When preparing to synthesize videos,
we first randomly sample a background, floor texture, and arbitrarily determine the positions of the
objects. Fig. 3 also illustrates an example of the initial settings of the scene.

Videos with camera motions. Next, we define the camera motion for the videos. Unity allows users
to specify camera movement through code, enabling the simulation of arbitrary camera motions in
the scene with just a few lines of code. We consider diverse simple and complex motions listed in
Table 1. We denote these synthetic videos with camera motions as Xc (c stands for ‘camera’).

Videos without camera motions. VIVIDCAM also requires a set of videos without camera motions
to aid the disentanglement between appearance and camera motion. For this purpose, as shown in
Fig. 3, we synthesize another set of training videos, denoted as Xa (a stands for ‘appearance’), which
consist of identical appearance styles but with a static camera.

4.3 DUAL ADAPTATION TRAINING SCHEME

Next, we introduce the pipeline to learn camera motions without introducing synthetic side effects by
leveraging the rendered data Xc and Xa. Prior work suggests that a LoRA module trained specifically
to capture the appearance of videos can help mitigate the domain gap in realistic video training
datasets (Guo et al., 2023). Motivated by this insight, we investigate whether similar techniques can
be applied to absorb synthetic artifacts in fully virtual-style videos. Our training involves two steps.

• Step 1: Appearance Adaptation. We first train a LoRA, called the appearance LoRA, to model the
visual characteristics of synthetic scenes without entangling motion, using the static videos Xa that
contain no camera movement. The training objective is thus formulated as

Text-Based Control: L1(∆θa) = EX0∼Xa,t,ϵt [ϵt − ϵ̂θd+∆θa(Xt, c, t)],

Trajectory-Based Control: L1(∆θa) = EX0∼Xa,t,ϵt [ϵt − ϵ̂θd+∆θa(Xt, c, Eθe(p0), t)],
(3)

where the ∆θa denote the appearance LoRA parameters, c only contains scene descriptions (and no
camera motion descriptions), and p0 denotes a static camera trajectory.

• Step 2: Camera Control Learning. We then further fine-tune the models on the new camera motion,
in the presence of the trained appearance LoRA (which is kept frozen), using the dataset Xc. The
training objective consists of two components. The first is the standard diffusion loss:

Text-Based Control: L2(∆θcd) = EX0∼Xc,t,ϵt [ϵt − ϵ̂θd+∆θa+∆θcd(Xt, cm ⊕ c, t)],

Trajectory-Based Control: L2(∆θce) = EX0∼Xc,t,ϵt [ϵt − ϵ̂θd+∆θa(Xt, c, Eθe+∆θce(p), t)],
(4)

where cm is the camera motion description. ∆θcd is a LoRA module only used for text-based model.
For trajectory-based control, instead of LoRA fine-tuning, we perform full fine-tuning on the camera
encoder, denoted by ∆θce.

In addition, we introduce an optical-flow-based loss to encourage camera motion learning by aligning
frame-to-frame differences between predictions and ground truth:

Lflow =
1

K − 1

K−1∑
k=1

∥∥(X̂(k+1)
0 − X̂

(k)
0

)
−

(
X

(k+1)
0 −X

(k)
0

)∥∥
1
, (5)
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Table 1: Summary of camera motion categories. We classify them into three categories based on their
complexity. These motions are derived from realistic applications in everyday videos and filmmaking.

Category Examples Videos/Filmmaking Applications

Simple Push in, Tilt up ❒ Emphasize an object

Composed Push in → Truck left ❒ Emphasize, then reveal surroundings

Complex

Expressive

Seek object (pan/tilt search) ❒ Simulate searching for a target
Switch focus between objects ❒ Highlight relational dynamics
Orbit shot ❒ Showcase all sides of objects
Handheld shake ❒ Simulate instability or realism

Stylized
Dolly zoom ❒ Create dramatic perspective shift
Explosive shake ❒ Convey impact or chaos
Camera rotation (90/180°) ❒ Disorient viewer, mark transition

where X̂0 is the predicted video reconstructed from the noisy input Xt; (k) denotes the frame index.
The final training loss in step 2 is therefore L = L2 + λLflow, where λ > 0 balances two losses.

It is important to note that the camera control adaptation is performed on different model components
for text- and trajectory-based methods. For text-based control, the camera LoRA is performed on the
diffusion model weights, superimposed on top of the appearance LoRA. For trajectory-based control,
the adaptation is performed on the trajectory encoder, which is separated from the appearance LoRA
on the diffusion model, because the former is responsible for processing the trajectory information.

The fundamental idea behind dual adaptation is that since the appearance LoRA already learns
the virtual appearance information, the camera control learning no longer needs to learn the same
information, and can focus on what the appearance LoRA does not learn – camera motion.

• Inference. After the training, we only deploy camera modules ∆θcd and ∆θce during inference,
while the appearance LoRA ∆θa is discarded. This would largely remove the undesirable synthetic
appearance acquired during training. Specifically, given an input text prompt c with camera instruction
cm or camera pose p, the video can be synthesized using gθd+∆θcd(cm ⊕ c) for text-based model
or gθd(c, Eθe+∆θce(p)) for trajectory-based model, respectively. A more detailed description and
examples of the training and inference prompts can be found in Appendix B.

Style-aligned Prompt. While the appearance LoRA helps address domain gaps, we observe that
relying on it alone still introduces synthetic artifacts (see Sec. 5.4). To further disentangle the
appearance and camera motion learning, during both training stages, which are trained on virtual
videos, we append a virtual indicator to the input text prompt, c, in the form of ‘In this low-poly
<VIRTUAL> scene.’ This would help the model differentiate the virtual style. During inference, this
virtual indicator is dropped, which further removes the virtual appearance quality.

5 EXPERIMENTS

In this section, we evaluate VIVIDCAM under various camera motions and compare it with state-
of-the-art methods. We focus on the following questions: ❶ What types of camera motions can
VIVIDCAM generate? ❷ Can VIVIDCAM provide precise camera control? ❸ Despite being trained
exclusively on low-poly synthetic videos, can VIVIDCAM synthesize high-quality realistic videos?

5.1 EXPERIMENT SETTINGS

Implementation. For all experiments, we use CogVideoX-5B (Yang et al., 2024b) as the base
model. For text-based control, the LoRA rank is 128 and 512 for appearance and camera learning,
respectively. Notably, different camera motion types are trained using a single camera LoRA module.
For trajectory-based control, we fine-tune the AC3D model built on CogVideoX-5B. Similarly, a
single trajectory encoder is trained to handle multiple motion types. More details are in Appendix C.

Camera Motions. As shown in Table 1, we systematically consider three broad categories of camera
motions: simple, composed, and complex movements. Simple camera movements refer to basic
motions in six different directions. Composed movements combine two simple motions. Specifically,

6
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Table 2: Camera pose precision measurements. The best TransErr and RotErr values are in bold, and
the second-best are underlined.

Simple Motion Composed Motion Complex Motion
TransErr ↓ RotErr ↓ FVD ↓ TransErr ↓ RotErr ↓ FVD ↓ TransErr ↓ RotErr ↓ FVD ↓

CAMERACTRL (He et al., 2024) 0.3578 0.1358 2577.35 0.3835 0.1989 2000.37 0.5753 0.7042 1503.76
COGVIDEOX (Yang et al., 2024b) 0.3113 0.0297 1781.90 0.5107 0.1338 2168.99 0.4327 0.5067 1488.36
AC3D (Bahmani et al., 2025) 0.2639 0.0973 1996.32 0.4389 0.1958 2241.88 0.4271 0.5864 1719.82
VIVIDCAM -COG 0.1704 0.0407 1808.30 0.2208 0.1593 2162.60 0.4011 0.5013 1866.40
VIVIDCAM -AC3D 0.2502 0.1162 2007.15 0.1908 0.1968 2280.71 0.3376 0.3619 1721.45

Table 3: Human study results. The best scores are shown in bold, and the second-best are underlined.

Simple Motion Composed Motion Complex Motion
Action Correctness ↑ Realism ↑ Action Correctness ↑ Realism ↑ Action Correctness ↑ Realism ↑

CAMERACTRL (He et al., 2024) 0.79 0.68 0.90 0.74 0.62 0.60
COGVIDEOX (Yang et al., 2024b) 0.80 0.74 0.53 0.65 0.61 0.68
AC3D (Bahmani et al., 2025) 0.74 0.72 0.75 0.66 0.68 0.65
VIVIDCAM -COG 0.86 0.77 0.93 0.74 0.77 0.68
VIVIDCAM -AC3D 0.74 0.78 0.90 0.78 0.81 0.65

when motion 1 is combined with motion 2, the first half of the video follows motion 1, and the second
half motion 2. We consider combinations of {push in, pull out} × {truck left, truck right}, resulting
in four combinations. Beyond these, complex camera motions include more unconventional practices,
divided into expressive motions that convey semantic meaning (e.g., seeking objects, handheld shake)
and stylized motions that create dramatic visual effects (e.g., explosive shake, camera rotation). All
of these camera motions are motivated by realistic applications in everyday videos and filmmaking.

5.2 QUALITATIVE RESULTS

We present qualitative results of text-based control in Fig. 4. Please see Appendix D for trajectory-
based methods and comparisons with existing methods. We highlight the following three features:

• Stable camera motion. We observe that the generated videos exhibit stable camera motion. For
example, in the first row, the camera steadily pushes forward at a constant speed, as evidenced by the
predictable changes in the sizes and positions of objects, such as the stone annotated in the frames.

• Ability to handle dynamic objects. VIVIDCAM can generate precise camera motions for both
static and dynamic objects. For example, in rows 1, 2, 5, and 6, we demonstrate that VIVIDCAM can
synthesize high-quality moving objects, such as children, birds, and fire effects.

• Mastery in unconventional camera motions. VIVIDCAM can synthesize unconventional camera
motions, many of which semantically depict story-like camera shots. For example, in row 4, VIVID-
CAM simulates a common scenario where a person looks around for bread and locks focus once
they find it. This capability suggests broad applications beyond simple camera movement controls.
Additionally, we note that some delicate motions, like shaking in row 6, are difficult to convey through
static images. To illustrate this, we annotate the shaking frames to highlight the blur and camera
motion. We encourage readers to explore our vivid video results on our anonymous web page.

5.3 QUANTITATIVE EVALUATIONS

In this section, we quantitatively compare our framework with existing models and methods. We
compare our work with the following representative baselines:

• CAMERACTRL (He et al., 2024) enables trajectory-based camera control for U-Net diffusion
models via Plücker embedding. In experiments, we provide both prompts and camera poses as inputs.

• COGVIDEOX (Yang et al., 2024b) demonstrates text-based camera motion control, likely due
to exposure to relative motion data during pre-training. In experiments, we provide prompts that
combine both camera motion instructions and content descriptions as inputs.

• AC3D (Bahmani et al., 2025) achieves trajectory-based camera control using ControlNet (Zhang
et al., 2023) on DiT (Peebles & Xie, 2023) based models. Similar to CAMERACTRL, we provide the
same trajectory and prompt description as input.
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Camera: The camera pushes forward, highlighting a toddler blowing bubbles. Then, the camera trucks right.  
Content: A toddler giggles as bubbles float away in a sunny backyard, with toys and a garden visible in the background.

Camera: The camera pushes forward, focusing on a roaring campfire.  
 Content: The campfire is surrounded by logs and stones, with a forest backdrop.

Camera: The camera pans around, searching for a static steaming loaf of bread. Upon finding it, the camera locks focus and 
pushes in on the golden crust. Content: A loaf of bread cools on a wooden cutting board, with a knife and a small dish of butter.

Camera:  The camera orbits the static snow globe.  
Content: A snow globe featuring a tiny winter village sits on a mantelpiece, surrounded by festive decorations.

Camera: The camera pushes forward with intermittent explosive tremors, focusing on a typewriter covered in ash.  
Content: Nearby a typewriter, a wall of flame roars as a gas line explodes, shaking the entire area.

Camera:  The camera first tracks a flying sparrow. Then, the camera switches focus to a black-feathered crow.  
Content: The sparrow darts swiftly through the air, settling on a branch dotted with pink blossoms.

Camera:  The camera rotates 180 degrees in place.   
Content: An astronaut in a white spacesuit slowly spins weightlessly in the silence of outer space in the spaceship.

Figure 4: Qualitative results of diverse camera motions. From top to down: ❶ Push forward; ❷
Push forward, then truck right; ❸ Orbit shot; ❹ Pan around, then focus on one object; ❺ Switch
focus between objects; ❻ Camera shaking; ❼ Camera rotating. The three panels correspond to
simple, composed, and complex camera motions. Note that some complex camera motions are
difficult to demonstrate through images; please refer to the videos on our anonymous webpage
https://anonymoususers196.github.io/VividCamDemo/ for better visual results.

For all methods, we use the official implementations and checkpoints from their repositories. We
conduct experiments across three levels of motion: simple, composed, and complex. Each category
consists of 100 input prompts. Details of the prompts can be found in Appendix B.

Evaluation Metrics. Following prior work (Cheong et al., 2024; He et al., 2024), we use FVD (Un-
terthiner et al., 2019) to assess visual quality, and report TransErr and RotErr to evaluate camera
action accuracy. However, in the text-based control setting, the model does not have access to the
ground-truth trajectory, making these metrics potentially unfair. To address this, we conduct a human
study to evaluate both the correctness of camera actions and the realism of the generated videos. We
report Action Correctness and Realism scores from 88 participants (see Appendix E for details).

Automated Evaluation Results. We present the automated metric results in Table 2. Our text-
based and trajectory-based methods are denoted as VIVIDCAM-COG and VIVIDCAM-AC3D,
respectively. As shown, our method demonstrates strong camera motion precision across diverse
motion categories, as indicated by the low TransErr and RotErr values. Additionally, we highlight that
our method preserves video quality, as evidenced by the small FVD difference compared to the vanilla
COGVIDEOX and AC3D. Notably, the original CogVideoX achieves good RotErr performance for
simple and composed motions. We find this is because such motions involve minimal camera rotation,
whereas vanilla CogVideoX typically produces videos with imprecise camera translation (high
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TransErr) and lacks camera rotation altogether. The following human evaluation further highlights its
limitations, and we provide additional discussion of this phenomenon in Appendix D.

Human study results. We present human study results in Table 3. We observe that VIVIDCAM-COG
consistently generates more precise camera motion compared to the baselines across all categories of
camera motion, and VIVIDCAM-AC3D shows advantages on more complex motions. Additionally,
VIVIDCAM produces high-quality, realistic-style videos, as evidenced by the comparable realism
scores given by participants.

5.4 ABLATION STUDY

In this section, We conduct ablation studies to examine two key design choices: ❶ Algorithm side:
Is it necessary to incorporate appearance LoRA and style-aligned prompts? ❷ Data side: Does
including realistic videos in the training data improve performance?

The role of appearance adaptation and style-aligned prompts. We first examine how appearance
LoRA and style-aligned prompt design help mitigate the negative effects of synthetic appearance.
For ablation, we train one model without the appearance adaptation step. In parallel, we train another
model in which the style-aligned prompt is omitted from the input text during training.

w/o Appearance LoRA

w/o Style-aligned Prompts

VividCam

Figure 5: Visual examples illustrating the effects
of appearance LoRA and style-aligned prompts.

We conduct a human evaluation and show results in
Table 4. Overall, we find the absence of appearance
adaptation and style-aligned prompts leads to a clear
decline in the model’s ability to synthesize realistic
videos. As shown in Figure 5, without appearance
adaptation and style-aligned prompts, the generated
appearance closely resembles the synthetic data, re-
sulting in significantly degraded video quality (e.g.,
synthesized texture in 1st row and distorted glasses
in the 2nd row). In contrast, our full model config-
uration effectively mitigates these visual artifacts,
producing clean, realistic videos with the desired
camera motion.

Add realistic videos in training data. Second, we
examine whether adding realistic videos improves
training. We use the RealEstate10K (Zhou et al.,
2018) dataset, which provides annotated camera tra-
jectories. Thus, experiments are conducted in the
trajectory-based camera control setting. The training
set includes 500 synthetic and 500 realistic videos.
Results in Table 5 indicate that using only virtual
training data performs comparably to mixing in real-
istic videos. We hypothesize that realistic data offers
little benefit due to the limited diversity of camera
motions in RealEstate10K. Given the extra human
effort required to collect large-scale realistic data,
VIVIDCAM offers a cost-efficient training paradigm.

Table 4: Effects of appearance LoRA (A-LoRA)
and style-aligned prompts (S-Prompt).

Action Correctness Realism

w/o A-LoRA 0.75 0.60
w/o S-Prompt 0.93 0.65
VIVIDCAM 0.93 0.74

Table 5: Effects of realistic data in training.

Action Correctness Realism

Mixed data 0.88 0.75
Virtual data 0.91 0.72

6 CONCLUSION

In this paper, we propose VIVIDCAM, which uses synthetic Virtual Videos to fine-tune video
generation models to generate correct Camera motions. Notably, we show that synthetic videos do
not need to be realistic at all. In fact, VIVIDCAM shows that video diffusion models can effectively
learn camera motion from surprisingly simple synthetic data, often comprising basic geometries
rendered in low-poly scenes. Experiments show that models trained with VIVIDCAM can master
various compound and complex camera motions, while maintaining a level of realism comparable to
baselines trained on real footage. Ultimately, our work offers an efficient approach to synthesizing
realistic videos with precise camera motion control, especially for unconventional motions.
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Reproducibility Statement. For reproducibility, we detail the processes of synthetic data creation,
algorithm implementation, and experimental setup. Specifically, we describe the process of rendering
training videos in Sec. 4.2 and Appendix A; the implementation of algorithms and hyperparameter
settings in Sec. 5.1 and Appendix C; and the experimental setup in Sec. 5.
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A RENDERING TRAINING VIDEOS USING UNITY

In this work, all training videos are synthesized using Unity. As introduced in Sec. 4.2, for each
camera motion synthesis, we first prepare the scene and then render the video with and without
camera motion.

Scene creation. Each scene consists of a background, a floor texture, and objects. These elements are
randomly determined during scene creation. Specifically, we first randomly select the categories of
the background and floor texture. The background options include {“sky”, “far mountains”, “closer
mountains”, “both mountains”}. The “sky” refers to the default background in Unity. The “far
mountains” and “closer mountains” are publicly available background assets that depict mountains at
different distances, respectively. The “both mountains” option includes both of the previous mountain
backgrounds. The floor texture options include “brick and stone floor”, “black sand ground”, “green
grassland”, “brown ground”, “yellow grassland”, “light green grassland”. These textures are also
publicly available assets in Unity. For the objects, we randomly place both static and moving objects
in the scene. The static objects include “tree”, “bush”, “grass”, while the moving objects include
“sphere”, “cube”, “polygon”, “cylinder”. Notably, all objects are created using basic geometric shapes
and do not require specific human effort for design. Please refer to the example training videos on our
anonymous website https://anonymoususers196.github.io/VividCamDemo/ for a
better understanding of their visual appearance.

Video rendering. After creating the scene, we render the videos both with and without camera
motion. The videos without camera motion are generated by randomly determining the camera’s
coordinates and pose, then fixing the camera in place while recording the video. For the videos with
camera motion, we first define the camera movements using a short script (typically no more than 10
lines of code). Based on this script, the rendered video incorporates the specified camera motions.
We note that the camera motion script can be effectively written by GPT given natural language
instructions (e.g., “I want to write a Unity C# code depicting a camera first push forward, then truck
left.”)

B DETAILS OF TEXT PROMPTS

Our training and inference processes rely on different categories of text prompts. In this section,
we provide a detailed discussion of the prompts used. Generally, two categories of prompts are
employed: (1) scene-only prompts c, used for appearance LoRA learning, and (2) composite prompts
(cm ⊕ c), which combine camera instructions with scene descriptions for learning camera control in
the text-based setting. Additionally, we provide examples of prompts used during inference.

Scene-Only Prompts for Appearance LoRA Training. During appearance LoRA training, we
constrain the LoRA to learn only the appearance style. Therefore, the training prompt at this
stage includes only a description of the rendered scene, specifying objects and environmental
details. For example: “Content: There are small plants and geometries on the light green grassland.”
Additionally, as described in Sec. 4.3, we incorporate a style-aligned prompt to help bridge domain
gaps during appearance LoRA training. This prompt acts as a virtual indicator of the target style.
With this addition, the complete training prompt c becomes, for example: “Content: In this low-poly
3D <VIRTUAL> scene, there are small plants and geometries on the light green grassland.”

Composite Prompts for Text-Based Camera Control. For text-based camera control, we freeze
the appearance LoRA and train a separate camera LoRA. At this stage, the training prompt includes
both camera movement instructions cm and scene descriptions c. The camera component guides the
camera LoRA to learn appropriate motion patterns, while the scene description ensures consistent
content generation. For example: “Camera: The camera pushes forward, focusing on a moving
sphere. Then the camera trucks left. | Content: In this low-poly 3D <VIRTUAL> scene, there is a
moving sphere. There are also small plants and geometries on the black sand ground.” It is worth
noting that for trajectory-based camera control, we use only the scene description c, rather than
composite prompts (cm ⊕ c), since the camera condition is provided directly by the trajectory input p.

Prompts at Inference Time. During inference, we use prompts similar to those employed during
camera control training, with the exception that the virtual style indicator is omitted. Below are
example prompts for both text-based and trajectory-based control: Text-based: “Camera: The
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Value

Appearance LoRA

Learning rate 1e-4
Rank 128
Scheduler Cosine with Restarts
Warm up steps 400
Optimizer adamw
β1 0.9
β2 0.95

Camera LoRA

Learning rate 3e-4
Rank 512
Scheduler Cosine with Restarts
Warm up steps 400
Optimizer adamw
β1 0.9
β2 0.95

Trajectory Encoder

Learning rate 1e-4
Scheduler Cosine with Restarts
Warm up steps 250
Optimizer adamw
β1 0.9
β2 0.95

Table 6: Hyperparameter settings.

camera pushes forward, focusing on a static steaming coffee cup. Then the camera trucks right. |
Content: A steaming coffee cup rests on a wooden table beside a stack of books and a pair of glasses.”
Trajectory-based: “Content: A steaming coffee cup rests on a wooden table beside a stack of books
and a pair of glasses.”

C IMPLEMENTATION DETAILS

For all experiments, we use CogVideoX-5B (Yang et al., 2024b) as the base model. The base
model remains frozen throughout all experiments, and we adopt its default hyperparameters (e.g.,
noise sampling schedule, conditional guidance scale). Each generated video is 5 seconds long,
consisting of 49 frames at a resolution of 720 × 480. For text-based control, the learning rate for
LoRA optimization is set to 1e-4 for appearance learning and 3e-4 for camera motion learning, with
the LoRA rank fixed at 128. We use one camera LoRA for different motion types, each using 500
synthetic training videos. For trajectory-based control, we fine-tune from the pre-trained AC3D
model using a learning rate of 1e-4. We train one encoder for different motion types, using the same
set of synthetic training videos as in text-based control.

To help reproduce our results, we report the detailed hyperparameter settings in Table 6.

D QUALITATIVE COMPARISON AND ANALYSIS

Section 5.2 presents the qualitative results of the text-based methods (VIVIDCAM-COG). In this
section, we first present the qualitative results of the trajectory-based methods (VIVIDCAM-AC3D),
followed by a comparison with the baseline methods and corresponding analyses.

Qualitative results of trajectory-based methods. We present the qualitative results of VIVIDCAM-
AC3D in Figure 6. As shown, similar to the text-based method, our trajectory-based method can
generate videos with precise camera control and high visual quality across a range of camera motions,
from simple and composed to complex ones.

Qualitative comparison with baselines. We present qualitative comparisons in Figure 7 and
Figure 8. Our observations indicate that state-of-the-art methods struggle to accurately synthesize
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Camera: The camera pushes forward, focusing on a static microscope. Then, the camera trucks left.  
Content: A laboratory microscope sits on a counter, flanked by glass slides, test tubes, and an open science book.

Camera:  The camera pulls back, moving away from a static steaming coffee cup. Then the camera trucks left. 
 Content: A steaming coffee cup rests on a glass table beside a plate of croissants and an open newspaper.

Camera: The camera tilts down, revealing a snow globe. 
 Content: A snow globe depicting a small town is surrounded by holiday decorations.

Camera: The camera pans around, searching for a glowing lantern. Upon finding it, the camera locks focus and pushes in on 
the warm light inside. Content: A lantern glows on a cobblestone path at dusk, surrounded by fallen leaves and a faint mist.

Camera:  The camera pans around, searching for a static bouquet of wildflowers. Upon finding it, the camera locks focus and 
pushes in on the petals. Content: A bouquet of wildflowers rests in a jar on a picnic table, with a red-checkered cloth beside it.

Camera: The camera orbits the static globe.  
Content: A classic globe with detailed continents rests on a wooden stand, surrounded by history books.

Camera:  The camera pulls out from a moss-covered rock. Then, the camera zooms in, shifting focus to a stone pathway. 
Content: The rock rests under the shade of tall trees, while the pathway winds through the forest, its stones carefully placed.

Figure 6: Qualitative results of diverse camera motions using VIVIDCAM-AC3D. Note that some
complex camera motions are difficult to demonstrate through images; please refer to the videos on
our anonymous webpage https://anonymoususers196.github.io/VividCamDemo/
for better visual results.
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Camera:  The camera pans around, searching for a sunflower in a glass vase. Upon finding it, the camera locks focus and 
pushes in on the vibrant yellow petals. Content: A sunflower sits in a glass vase on a windowsill, with sunlight streaming in and 

casting soft shadows on the sill.
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Camera:  The camera pushes forward with intermittent explosive tremors, focusing on a worn-out teddy bear lying on ground.  
Content: A car explodes in a fiery blast, sending debris and dust into the air.
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Figure 7: Qualitative results comparison. We observe that camera motions such as “panning around
to search for an object, then pushing in to focus on the object” are particularly challenging for
state-of-the-art models. Even when provided with exact trajectories, these methods often degrade
into simpler camera motions—such as a rightward truck in CAMERACTRL or a turbulent push-in
in AC3D. In contrast, our method faithfully produces the intended camera motions. Additionally,
we note that certain effects, such as explosive camera motions, are difficult to convey through static
images. Please refer to the videos on our anonymous webpage https://anonymoususers196.
github.io/VividCamDemo/ for better visual results.
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Camera:  The camera pulls out from a moss-covered rock. Then, the camera zooms in, shifting focus to a stone pathway. 
Content: The rock rests under the shade of tall trees, while the pathway winds through the forest, its stones carefully placed.
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Camera:  The camera orbits the static candle holder. 
Content: A rustic candle holder with a flickering candle rests on a wooden table, accompanied by dried flowers and a brass bell.
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Figure 8: Qualitative results comparison. We observe that camera motions such as “pulling out
from an object, then zooming in to shift focus to another object” are particularly challenging for
state-of-the-art models. Even when provided with exact trajectories, these methods often fail to
accurately reproduce the desired camera motions. For example, while AC3D attempts to depict a
focus shift from a rock to a stone, it does not successfully demonstrate the pull-out from the rock
followed by the push-in toward the road. In contrast, our method faithfully captures and reproduces
the intended camera motions. Additionally, we note that such unconventional camera movements are
difficult to fully appreciate through static images alone. Please refer to the videos on our anonymous
webpage https://anonymoususers196.github.io/VividCamDemo/ for better visual
results.
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Figure 9: The example interface of Amazon Mechinical Turk in our human study.

unconventional camera motions. For instance, in the upper panel of Figure 7, even when provided with
exact trajectories, these methods often simplify the intended motion—resulting in a pan to the right
in CAMERACTRL or a turbulent push-in in AC3D. Similarly, in the upper panel of Figure 8, while
AC3D attempts to depict a focus shift from a rock to a stone, it fails to effectively illustrate the pull-out
from the rock followed by a push-in toward the road. In contrast, our method faithfully captures and
reproduces the intended camera motions. Additionally, we note that such unconventional motions are
difficult to fully appreciate through static images alone. We encourage readers to refer to the videos on
our anonymous webpage https://anonymoususers196.github.io/VividCamDemo/
for better visual results.

E DETAILS OF HUMAN STUDY

Our human study is conducted on Amazon Mechanical Turk. We consider three levels of camera
motion: simple, composed, and complex. Please refer to Table 1 for the specific camera motions
covered in each category. For each category, we sample 25 prompts and input them into our model
and baseline models for evaluation. Each of the 25 prompts is tested twice, resulting in 50 videos
per camera motion category and a total of 150 videos. Each question is awarded $0.03. In total, 88
unique workers participate in the study. For each question, we present the tested videos along with
the input text prompt and ask participants to answer two types of questions: ❶ (Action Correctness)
How consistent is the camera motion in the video with the text description? ❷ (Realism) How is the
visual quality of the video? Participants rate each question on a scale from 0 to 2. To ensure precise
evaluation, we provide detailed explanations, a scoring rubric, and examples.

Figure 9 shows an example of the interface that participants will see during the human study.

F CLIP SIMILARITY
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Simple Composed Complex

CAMERACTRL 0.3254 0.3306 0.3006
COGVIDEOX 0.3272 0.3215 0.3070
AC3D 0.3397 0.3437 0.3153
VIVIDCAM-COG 0.3327 0.3362 0.3230
VIVIDCAM-AC3D 0.3352 0.3341 0.3134

Table 7: Results on CLIP similarity.

We present the CLIP similarity results in Table 7.
Overall, all methods achieve comparable CLIP
similarity scores. Specifically, both VIVIDCAM-
COG and VIVIDCAM-AC3D exhibit less than a
0.01 difference in CLIP score compared to their
vanilla counterparts, COGVIDEOX and AC3D,
respectively. This indicates that our methods
maintain the same level of alignment with the desired content described in the text prompts. We also
observe that COGVIDEOX performs worse in scenarios involving complex camera motions, possibly
due to quality degradation when generating motion patterns that are likely underrepresented in the
training dataset, as shown in Sec. D.

19


	Introduction
	Related Work
	Video Generative Models
	Camera Control in Video Generation
	Improving Video Generation Models Using Synthetic Data

	Preliminaries
	ViVidCam
	Problem Formulation
	Render Training Videos
	Dual Adaptation Training Scheme

	Experiments
	Experiment Settings
	Qualitative Results
	Quantitative Evaluations
	Ablation Study

	Conclusion
	Rendering Training Videos Using Unity
	Details of Text Prompts
	Implementation Details
	Qualitative Comparison and Analysis
	Details of Human Study
	CLIP similarity

