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Abstract

Despite their recent progress, Multimodal Large Language Models (MLLMs) often
struggle in knowledge-intensive tasks due to the limited and outdated parametric
knowledge acquired during training. Multimodal Retrieval Augmented Generation
addresses this issue by retrieving contextual knowledge from external databases,
thereby enhancing MLLMs with expanded knowledge sources. However, exist-
ing MLLMs often fail to fully leverage the retrieved contextual knowledge for
response generation. We examine representative MLLMs and identify two major
causes, namely, attention bias toward different tokens and knowledge conflicts
between parametric and contextual knowledge. To this end, we design Adap-
tive Logits Fusion and Attention Reallocation (ALFAR), a training-free and plug-
and-play approach that improves MLLM responses by maximizing the utility of
the retrieved knowledge. Specifically, ALFAR tackles the challenges from two
perspectives. First, it alleviates attention bias by adaptively shifting attention
from visual tokens to relevant context tokens according to query-context rele-
vance. Second, it decouples and weights parametric and contextual knowledge
at output logits, mitigating conflicts between the two types of knowledge. As
a plug-and-play method, ALFAR achieves superior performance across diverse
datasets without requiring additional training or external tools. Extensive exper-
iments over multiple MLLMs and benchmarks show that ALFAR consistently
outperforms the state-of-the-art by large margins. Our code and data are available
at https://github.com/Lackel/ALFAR.

1 Introduction

Building upon powerful Large Language Models (LLMs) [1, 2, 3, 4, 5, 6, 7, 8], Multimodal Large
Language Models (MLLMs) [9, 10, 11, 12, 13, 14, 15, 16, 17] have achieved impressive performance
over a wide range of vision-centric tasks such as image captioning [18, 19, 20], visual question
answering [21, 22], etc. Nevertheless, MLLMs often struggle to handle knowledge-intensive vision-
language tasks [23, 24], primarily due to the limited and outdated parametric knowledge acquired
during training [25, 26]. Multimodal Retrieval Augmented Generation (MRAG) [27, 28, 29], a
prevalent approach that attempts to resolve this issue, retrieves contextual knowledge from external

*Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Lackel/ALFAR


data to empower MLLMs for accurate response generation. However, the way of exploiting the
contextual knowledge remains under-explored, undermining the effectiveness of MRAG.

We examined representative MLLMs with MRAG and found that while MRAG can improve MLLM
performance when high-quality contextual knowledge is retrieved (as shown in Fig. 1), MLLMs often
fail to make full use of the retrieved knowledge, even when ground-truth knowledge is available. We
identify two primary causes, namely, attention bias among visual and context tokens and conflicts
between MLLMs’ parametric knowledge and retrieved contextual knowledge. For the attention bias,
MLLMs tend to allocate more attention to image tokens over context tokens, especially in shallow
layers that are critical for knowledge extraction and exchange [30]. Since images often do not provide
sufficient information for knowledge-intensive questions [23, 31], the attention bias hinders the
effective utilization of contextual knowledge and leads to inaccurate MLLM responses. In addition,
MLLMs allocate attention uniformly across context tokens without prioritization, which dilutes the
contributions of query-relevant knowledge and tends to introduce inaccurate MLLM responses.
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Figure 1: VQA accuracy of LLaVA-
1.5 [14] on the multi-choice InfoSeek
dataset [32] with respect to the quality
of contextual knowledge. ALFAR fully
exploits the retrieved knowledge, consis-
tently improving MRAG performance re-
gardless of knowledge quality.

Knowledge conflicts typically arise from the discrep-
ancy between contextual and parametric knowledge. We
observe that MLLMs tend to rely excessively on their
parametric knowledge even when accurate contextual
knowledge is present, leading to under-utilization of con-
textual knowledge and counterfactual responses. Such
a phenomenon is well aligned with observations in pre-
vious LLM studies [33, 34] and findings in psychology
research [35, 36], both underscoring a clear preference
toward intrinsic instead of retrieved knowledge. On
the other end, the preference for the parametric knowl-
edge does help when the contextual knowledge is unreli-
able [28, 37, 38]. This can be observed in Fig. 1, where
low-quality contextual knowledge significantly degrades
performance. Therefore, striking a balance between
parametric and contextual knowledge while leveraging
their complementary strengths is critical for generating
accurate responses.

In this work, we propose Adaptive Logits Fusion and Attention Reallocation (ALFAR), a training-
free and plug-and-play approach that enables effective utilization of MRAG-retrieved contextual
knowledge for accurate MLLM responses. ALFAR addresses attention bias and knowledge conflicts
by dynamically adjusting attention allocation and balancing the parametric and contextual knowledge,
respectively. Specifically, ALFAR adaptively shifts attention from image tokens to relevant context
tokens based on retrieval scores and query-context relevance, enabling MLLMs to focus on more
pertinent information. In addition, ALFAR decouples parametric and contextual knowledge at output
logits and weights them according to the attention distribution, enabling a balanced and synergistic
integration of the two types of knowledge. Extensive experiments across multiple representative
MLLMs and benchmarks demonstrate ALFAR’s superior and broad applicability without involving
additional training or external tools.

The contributions of this work can be summarized in three major aspects. First, we dive deeply into
knowledge utilization in MLLMs, identifying attention bias and knowledge conflicts as two key factors
that impede the effective utilization of the retrieved knowledge. These findings provide valuable
insights for advancing knowledge utilization in MLLMs. Second, we design ALFAR, a training-
free and plug-and-play approach that reallocates attention and balances parametric and contextual
knowledge effectively. Third, Extensive experiments over multiple generative and discriminative
benchmarks validate ALFAR’s effectiveness and versatility, demonstrating its superior performance
and broad applicability across various multimodal tasks.

2 Related Work

2.1 Multimodal Large Language Models

The rapid advancements in Large Language Models (LLMs) [1, 2, 3, 4, 5, 6, 7, 8, 39] have greatly
propelled the development of Multimodal Large Language Models (MLLMs) [9, 10, 11, 13, 14, 15,
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16, 40]. To align visual and textual modalities, prior studies explore different approaches such as visual
encoders with linear projectors [14, 41, 40], Q-former [18, 10], and Perceivers [42], which transform
image patches into visual tokens that are compatible with LLMs. Most MLLMs conduct training in
two stages, namely, pre-training for feature alignment and instruction-based fine-tuning [14, 43, 10],
enabling impressive performance across diverse multimodal tasks [44, 45, 46, 47]. Despite these
advancements, MLLMs often face challenges in knowledge-intensive tasks [23, 31], due to the
limitations of their parametric knowledge acquired during training.

2.2 Multimodal Retrieval Augmented Generation

Inspired by the concept of Retrieval Augmented Generation (RAG) for LLMs [48, 49], Multimodal
Retrieval Augmented Generation (MRAG) has been widely explored for enhancing MLLMs with
more comprehensive and up-to-date knowledge [27, 28, 29, 50]. MRAG retrieves relevant knowledge
from a multimodal database and incorporates the retrieved knowledge as the context of the input.
For instance, Wiki-LLaVA [27] broadens the knowledge scope of LLaVA [14] by incorporating the
retrieved Wikipedia articles in training. EchoSight [29] leverages a fine-tuned Q-Former [18] to
filter retrieved knowledge and enhance retrieval recall. ReflectiVA [28] and MR2AG [50] introduce
a trainable reflection mechanism to assess the necessity of retrieval and the relevance of retrieved
knowledge. In the LLM domain, several training-free methods have been proposed to better utilize
the retrieved knowledge to enhance generation quality. For instance, CAD [26] employs contrastive
decoding [51] to increase the faithfulness of generation. Moreover, AdaCAD [52], Entropy [53], and
COIECD [54] extend CAD [26] by introducing JS divergence, entropy, and information constraints,
respectively. Despite the improved faithfulness toward the retrieved context, these methods struggle
to balance parametric and contextual knowledge [55], resulting in sub-optimal performance when the
contextual knowledge is noisy.

3 Preliminary and Motivation

3.1 Multimodal Retrieval Augmented Generation

Given a textual query q and a query image I , an MLLM Mθ parameterized by θ is expected to gener-
ate a reliable answer y. To enrich MLLMs with external knowledge, MRAG employs a multimodal
retriever Rϕ to fetch relevant knowledge from a multimodal knowledge base C = {(Ĩi, ci)}Mi=1,
where Ĩi and ci represent an image and its corresponding textual knowledge, respectively. The
retriever Rϕ measures the similarity between the query pair (q, I) and a multimodal knowledge pair
(Ĩ , c) based on the cosine similarity between their image embeddings:

α =
Rϕ(I) · Rϕ(Ĩ)

||Rϕ(I)|| · ||Rϕ(Ĩ)||
(1)

The textual knowledge c with the highest retrieval similarity α is selected as the input context for
MLLMs. Consequently, the output distributions of the MLLM with MRAG at the time step t are:

p(yt) ∼ softmax(Mθ(yt|q, I, c, y<t)) (2)
where y<t represents the sequence of generated tokens before the time step t.

3.2 Self-attention Mechanism in MLLMs
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Figure 2: Proportions of attention weights that are
assigned to image and context tokens at different
shallow layers of LLaVA-1.5 [14].

MLLMs generate responses auto-regressively
using Transformer blocks [56]. Specifically,
the input image, query, and context tokens are
concatenated and projected into three distinct
vectors: the query vector Q, the key vector K,
and the value vector V, through three linear
layers, Wq, Wk, and Wv. The self-attention
mechanism computes the relevance of each
token to other tokens as follows:

A =
Q ·K⊤
√
d

+M (3)
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where A ∈ Rn×n is the attention weight matrix, M is a causal mask, d is the feature dimension, and
n is the number of input tokens. The output O can then be calculated by:

O = softmax(A) ·V (4)

The attention weight matrix A reflects the importance of different input tokens in generating new
tokens. This property makes it a valuable tool to analyze the contribution of different types of tokens
to the generated responses.

3.3 Attention Bias in MRAG

To generate the response token yn+1, MLLMs perform self-attention over all input tokens which
correspond to the n-th row of the attention weight matrix A. We analyze the contributions of the input
image and context using an importance score, defined as the total attention weights assigned to these
tokens. For the input image, the importance score at layer i is calculated by: Si(I) =

∑
j∈I A

i
nj

1.
Similarly, for the input context, the importance score at layer i is determined by: Si(c) =

∑
j∈c A

i
nj .

As illustrated in Fig. 2, MLLMs tend to allocate more attention to image tokens than context
tokens, particularly in shallow layers that are pivotal for extracting and exchanging information from
distinct tokens [30]. This issue affects the effective utilization of contextual knowledge since images
often do not capture sufficient information for knowledge-intensive questions [23, 31]. Moreover,
MLLMs assign attention uniformly across different parts of the context without highlighting query-
relevant segments. Such indiscriminate distribution increases the distraction of irrelevant knowledge,
ultimately leading to inaccurate or misleading responses for MLLMs.

3.4 Knowledge Conflicts in MRAG Table 1: Experiments with LLaVA-1.5 [14]. Conflict Ratio:
Ratio of discrepancy between parametric and contextual
knowledge. Performance drop: Accuracy decline due to
knowledge conflicts. Details of the two metrics are pro-
vided in Appendix A3.

Infoseek ViQuAE

Conflict Ratio 60.85% 48.94%

Performance Drop 28.87% 27.02%

After knowledge retrieval, MLLMs in-
tegrate the retrieved contextual knowl-
edge with their internal parametric
knowledge to generate responses. How-
ever, similar to LLMs [33, 34, 52],
MLLMs often encounter knowledge
conflicts due to the discrepancy between
the two types of knowledge, affecting
the effectiveness of the model in various
practical tasks. Worse still, MLLMs tend to prioritize their parametric knowledge even when perfect
contextual knowledge is provided, leading to under-utilization of contextual knowledge and factually
inconsistent answers. By assuming the accessibility of the ground-truth contextual knowledge, we
evaluate the conflict rate of the two types of knowledge and the resultant performance degradation on
the multi-choice InfoSeek [32] and ViQuAE [24, 32] datasets with LLaVA-1.5 [14]. As shown in
Tab. 1, around half of the samples exhibit knowledge conflicts, which lead to an up to 30% perfor-
mance drop, highlighting the necessity of mitigating such conflicts to enhance MLLM performance
on knowledge-intensive tasks.

4 Method

The proposed framework consists of two branches for effective handling of parametric and contextual
knowledge as illustrated in Fig. 4. Within the contextual branch, we design an attention reallocation
mechanism that tackles the attention bias and improves the utilization of contextual knowledge by
adaptively adjusting model attention toward relevant context tokens based on query-context relevance
(Sec. 4.1). In addition, the network fuses the parametric and contextual knowledge adaptively in
the output logits, mitigating knowledge conflicts under the guidance of the model attention that
dynamically captures the relative importance of the two types of knowledge (Sec. 4.2).

4.1 Attention Reallocation

As analyzed in Sec. 3.3, the attention bias results from two major factors, namely, attention preference
toward image tokens and uniform attention to context tokens. We address the attention preference

1We average all attention heads and omit the notation for simplicity.
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Figure 4: The overview of Adaptive Logits Fusion and Attention Reallocation (ALFAR).

by adaptively adjusting model attention as illustrated in Fig. 3, based on the retrieval similarity α in
Eq. 1 that reflects the reliability of the retrieved context. Specifically, less attention is allocated to
image tokens if the context is more reliable with a high retrieval similarity. The attention reallocation
can be formulated as follows:

Âni = (1− β) ·Ani, s.t. i ∈ SI (5)

where β = k · α is the scaled retrieval similarity with a scaling factor k. Â is the modified attention
weight matrix, n is the number of all input tokens and SI is the index set of image tokens. Ani

corresponds to the attention weight in the n-th row and i-th column of A.

☉
element-wise 
multiplication

sum up sum up

reallocation
coefficient

original
weight

reallocated
weight

Attention Weight Matrix Attention Reallocation

Image
attention
weight

Query
attention
weight

Context
attention
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Scaled retrieval similarity Logits fusion weightsScaled query-context relevance

Causal
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Decrease
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Figure 3: Attention reallocation by adjusting the last row
of the attention weight matrix (i.e., An).

In addition, we introduce a query-context
relevance score to mitigate the uniform
attention to all context tokens and allow
MLLMs to focus more on query-relevant
context. We derive the relevance score
from attention weights assigned to query
tokens by j-th context token as follows:

ωj =

∑
k∈Sq

Ajk∑
l∈Sc

∑
k∈Sq

Alk
, s.t. j ∈ Sc (6)

where Sq and Sc are index sets of query
and context tokens, respectively. With the
relevance scores, we adaptively increase
MLLMs’ attention to context tokens:

Ânj = (1 + γj) ·Anj , s.t. j ∈ Sc (7)

where γj = k · ωj is the scaled query-context relevance with a scaling factor k. After attention
reallocation, we apply softmax to redistribute the attention as in Eq. 4 to compute the output hidden
states. This repeats auto-regressively for each subsequent token prediction.

4.2 Adaptive Knowledge Fusion

As analyzed in Sec. 3.4, parametric knowledge could hinder the utilization of contextual knowledge,
leading to inaccurate responses. However, parametric knowledge brings benefits when the retrieved
context is unreliable. Therefore, striking a balance between parametric and contextual knowledge
based on their reliability is essential for generating accurate and reliable responses for MLLMs.
Nevertheless, parametric knowledge is implicitly embedded and the two types of knowledge are
entangled during inference, making it hard to explicitly represent and utilize them separately. We
address this issue by disentangling the two types of knowledge and fuse them at output logits.
Specifically, we represent parametric knowledge at step t by using the output logits that have only
query and image as inputs:

logitp = Mθ(yt|q, I, y<t) (8)
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Table 2: VQA Accuracy comparison on generative freeform VQA datasets over three runs. Regular
and Parametric denote that MLLMs generate answers with and without retrieved knowledge, respec-
tively. The best performance is marked in bold.

Model Decoding
Human [23] Validation [23]

Unseen
Question

Unseen
Entity

Overall
Unseen

Question
Unseen
Entity

Overall

LLaVA-1.5

Regular [14] 7.59(±0.08) 7.90(±0.05) 7.74(±0.01) 19.98(±0.02) 19.59(±0.01) 19.78(±0.01)

Parametric [14] 6.27(±0.05) 6.26(±0.19) 6.26(±0.09) 7.14(±0.03) 6.28(±0.01) 6.68(±0.00)

CD [51] 7.39(±0.21) 7.31(±0.06) 7.35(±0.09) 20.32(±0.01) 19.90(±0.00) 20.11(±0.01)

AdaCAD [52] 7.81(±0.02) 8.07(±0.03) 7.94(±0.01) 21.23(±0.03) 20.91(±0.02) 21.07(±0.03)

Entropy [53] 7.98(±0.09) 8.34(±0.02) 8.15(±0.03) 21.97(±0.02) 21.85(±0.01) 21.91(±0.03)

CAD [26] 8.02(±0.05) 8.15(±0.03) 8.08(±0.02) 21.68(±0.01) 20.93(±0.02) 21.30(±0.02)

COIECD [54] 8.78(±0.04) 8.65(±0.01) 8.71(±0.01) 22.43(±0.05) 21.73(±0.05) 22.07(±0.05)

AGLA [57] 8.74(±0.28) 9.18(±0.00) 8.94(±0.08) 22.34(±0.02) 21.88(±0.01) 22.11(±0.02)

VCD [58] 9.22(±0.00) 9.26(±0.00) 9.24(±0.02) 22.30(±0.03) 22.38(±0.03) 22.23(±0.03)

ALFAR (ours) 12.80(±0.09) 11.24(±0.00) 11.96(±0.02) 23.82(±0.00) 23.75(±0.01) 23.78(±0.01)

InstructBLIP

Regular [10] 4.20(±0.00) 3.86(±0.03) 4.02(±0.01) 3.60(±0.01) 3.82(±0.00) 3.71(±0.00)

Parametric [10] 4.06(±0.01) 3.65(±0.01) 3.84(±0.01) 2.36(±0.01) 1.92(±0.00) 2.12(±0.00)

CD [51] 4.52(±0.03) 3.55(±0.01) 3.98(±0.01) 3.59(±0.01) 4.00(±0.00) 3.79(±0.00)

AdaCAD [52] 4.57(±0.05) 3.70(±0.10) 4.09(±0.08) 3.71(±0.02) 4.35(±0.01) 4.01(±0.01)

Entropy [53] 4.56(±0.05) 4.14(±0.01) 4.34(±0.02) 3.81(±0.01) 4.39(±0.00) 4.08(±0.00)

CAD [26] 4.52(±0.03) 3.55(±0.01) 3.98(±0.01) 3.77(±0.03) 4.43(±0.02) 4.08(±0.02)

COIECD [54] 4.64(±0.10) 4.08(±0.02) 4.33(±0.01) 4.07(±0.00) 4.54(±0.00) 4.30(±0.00)

AGLA [57] 4.80(±0.05) 4.28(±0.09) 4.52(±0.05) 3.74(±0.01) 4.10(±0.01) 3.91(±0.01)

VCD [58] 4.70(±0.01) 4.14(±0.01) 4.40(±0.00) 3.62(±0.01) 4.12(±0.00) 3.85(±0.00)

ALFAR (ours) 5.98(±0.00) 5.67(±0.00) 5.82(±0.00) 4.55(±0.00) 5.68(±0.00) 5.05(±0.00)

Shikra

Regular [40] 6.71(±0.03) 6.31(±0.01) 6.50(±0.02) 11.93(±0.01) 11.78(±0.01) 11.85(±0.01)

Parametric [40] 5.76(±0.10) 6.10(±0.07) 5.92(±0.05) 7.61(±0.01) 6.25(±0.01) 6.86(±0.01)

CD [51] 8.21(±0.00) 7.15(±0.01) 7.64(±0.01) 12.41(±0.00) 11.89(±0.00) 12.14(±0.00)

AdaCAD [52] 8.30(±0.00) 7.11(±0.00) 7.66(±0.00) 12.87(±0.03) 12.53(±0.02) 12.70(±0.02)

Entropy [53] 8.32(±0.03) 7.73(±0.11) 8.01(±0.05) 13.78(±0.02) 13.33(±0.01) 13.55(±0.02)

CAD [26] 8.16(±0.06) 7.16(±0.02) 7.62(±0.00) 12.99(±0.03) 12.51(±0.02) 12.75(±0.03)

COIECD [54] 8.32(±0.02) 7.73(±0.08) 8.01(±0.03) 14.46(±0.02) 14.21(±0.03) 14.33(±0.02)

AGLA [57] 8.24(±0.01) 7.56(±0.05) 7.88(±0.01) 14.29(±0.02) 13.91(±0.01) 14.08(±0.01)

VCD [58] 8.13(±0.05) 7.41(±0.03) 7.75(±0.04) 13.71(±0.03) 13.81(±0.03) 13.76(±0.03)

ALFAR (ours) 8.61(±0.01) 8.04(±0.01) 8.31(±0.01) 15.25(±0.00) 15.11(±0.01) 15.18(±0.01)

MiniGPT4

Regular [16] 4.38(±0.07) 3.00(±0.02) 3.56(±0.02) 12.69(±0.02) 12.38(±0.02) 12.53(±0.02)

Parametric [16] 2.34(±0.01) 2.10(±0.01) 2.21(±0.00) 4.72(±0.01) 3.93(±0.01) 4.29(±0.01)

CD [51] 4.28(±0.00) 2.59(±0.00) 3.22(±0.00) 14.49(±0.01) 14.43(±0.00) 14.46(±0.01)

AdaCAD [52] 4.78(±0.00) 3.43(±0.01) 3.99(±0.00) 14.82(±0.02) 14.96(±0.02) 14.89(±0.02)

Entropy [53] 4.80(±0.07) 2.91(±0.00) 3.62(±0.00) 14.66(±0.02) 14.66(±0.01) 14.66(±0.02)

CAD [26] 4.97(±0.01) 3.44(±0.01) 4.07(±0.01) 14.83(±0.01) 14.94(±0.00) 14.88(±0.01)

COIECD [54] 4.57(±0.03) 3.40(±0.01) 3.90(±0.00) 14.87(±0.01) 14.67(±0.02) 14.77(±0.02)

AGLA [57] 4.67(±0.02) 3.63(±0.02) 4.09(±0.01) 14.31(±0.02) 13.92(±0.01) 14.11(±0.01)

VCD [58] 4.52(±0.03) 3.43(±0.01) 3.90(±0.01) 14.46(±0.01) 14.30(±0.02) 14.38(±0.02)

ALFAR (ours) 5.05(±0.02) 3.87(±0.01) 4.38(±0.00) 15.16(±0.01) 15.27(±0.01) 15.05(±0.01)

Similarly, we represent contextual knowledge by using the output logits that have context as additional
inputs and perform attention reallocation to better utilize the context:

logitc = M̂θ(yt|q, I, c, y<t) (9)

where M̂θ is the MLLM with attention reallocation. The reliability of the parametric and contextual
knowledge can thus be measured by the attention weights that are assigned to the image and context
tokens capturing the correlation among tokens [59, 60, 61]:

λt
v =

∑
i∈SI

Ati , λt
c =

∑
j∈Sc

Atj (10)

6



Table 3: VQA Accuracy comparison on discriminative multi-choice VQA datasets over three runs.

Model Decoding InfoSeek ViQuAE Model Decoding InfoSeek ViQuAE

LLaVA-1.5

Regular [14] 51.97(±0.42) 53.32(±0.20)

InstructBLIP

Regular [10] 23.44(±0.89) 19.82(±0.12)

Parametric [14] 39.15(±0.02) 51.06(±0.16) Parametric [10] 8.73(±0.23) 6.53(±0.35)

CD [51] 49.95(±0.20) 52.56(±0.03) CD [51] 22.95(±0.63) 21.76(±0.51)

CAD [26] 52.08(±0.16) 52.99(±0.23) CAD [26] 26.56(±0.56) 23.18(±0.30)

AdaCAD [52] 52.30(±0.04) 52.99(±0.30) AdaCAD [52] 27.07(±0.05) 23.64(±0.08)

Entropy [53] 53.33(±0.07) 54.26(±0.05) Entropy [53] 27.50(±0.07) 23.19(±0.39)

COIECD [54] 52.08(±0.21) 52.99(±0.23) COIECD [54] 25.65(±0.05) 20.84(±0.05)

VCD [58] 53.87(±0.07) 55.13(±0.09) VCD [58] 23.31(±0.07) 20.28(±0.53)

AGLA [57] 53.53(±0.50) 54.24(±0.21) AGLA [57] 21.24(±0.55) 16.77(±0.30)

ALFAR (ours) 58.35(±0.21) 55.91(±0.13) ALFAR (ours) 35.65(±0.09) 24.11(±0.07)

Shikra

Regular [40] 19.41(±0.12) 17.73(±0.01)

MiniGPT-4

Regular [16] 25.83(±1.42) 24.06(±0.46)

Parametric [40] 9.65(±0.14) 10.90(±0.04) Parametric [16] 19.73(±0.57) 20.42(±1.22)

CD [51] 24.83(±0.20) 21.38(±0.03) CD [51] 26.55(±0.31) 20.46(±0.76)

CAD [26] 24.51(±0.06) 21.68(±0.15) CAD [26] 27.58(±0.43) 23.39(±0.07)

AdaCAD [52] 23.95(±0.18) 21.51(±0.01) AdaCAD [52] 28.01(±0.17) 23.05(±0.61)

Entropy [53] 24.12(±0.03) 21.99(±0.08) Entropy [53] 28.84(±0.68) 22.59(±0.07)

COIECD [54] 24.18(±0.13) 21.68(±0.15) COIECD [54] 29.44(±0.01) 25.94(±0.18)

VCD [58] 25.76(±0.14) 23.11(±0.72) VCD [58] 28.74(±0.10) 25.45(±0.05)

AGLA [57] 26.26(±0.29) 22.72(±0.15) AGLA [57] 29.28(±0.87) 27.87(±0.08)

ALFAR (ours) 28.11(±0.01) 23.42(±0.29) ALFAR (ours) 30.88(±0.12) 32.28(±0.02)

LLaVA-Next

Regular [62] 53.90(±0.26) 55.44(±0.12)

Qwen2.5-VL

Regular [63] 53.00(±0.18) 53.84(±0.01)

Parametric [62] 42.50(±0.12) 53.94(±0.11) Parametric [63] 45.96(±0.32) 53.28(±0.15)

CD [51] 51.43(±0.23) 51.38(±0.01) CD [51] 56.23(±0.23) 59.33(±0.15)

CAD [26] 53.83(±0.13) 52.84(±0.27) CAD [26] 58.67(±0.25) 60.92(±0.20)

AdaCAD [52] 55.60(±0.34) 54.87(±0.13) AdaCAD [52] 57.87(±0.05) 60.89(±0.28)

Entropy [53] 54.43(±0.20) 55.60(±0.15) Entropy [53] 58.67(±0.13) 60.66(±0.19)

COIECD [54] 53.93(±0.11) 54.17(±0.33) COIECD [54] 59.23(±0.10) 60.59(±0.02)

VCD [58] 53.27(±0.27) 54.32(±0.03) VCD [58] 58.56(±0.32) 60.12(±0.33)

AGLA [57] 54.03(±0.25) 54.65(±0.34) AGLA [57] 59.13(±0.25) 61.08(±0.13)

ALFAR (ours) 58.47(±0.21) 59.29(±0.21) ALFAR (ours) 61.57(±0.18) 63.22(±0.08)

Finally, based on the adaptive weights, the two types of knowledge are fused dynamically at each
decoding step t:

p(yt) ∼ softmax

[
(1 +

λt
c

λt
v

) logitc −(1− λt
v

λt
c

) logitp

]
(11)

5 Experiment

5.1 Experimental Settings

Datasets. We conduct experiments over three types of knowledge-intensive datasets: (1) Free-
form generative datasets including Human [23], a high-quality info-seeking dataset curated and
verified by experts, and INFOSEEKwiki [23] which encompasses diverse entities from Wikidata. For
INFOSEEKwiki, we adopt its Validation set for evaluations to be aligned with prior studies [27, 28].
(2) Multi-choice discriminative datasets including Infoseek [23, 32] and ViQuAE [24, 32] which
are both multi-choice knowledge-intensive datasets that are collected for assessing cross-modality
knowledge conflicts as described in [32]. (3) Knowledge-based datasets including OK-VQA [64],
AOK-VQA [65] and Encyclopedic VQA (E-VQA) [31], which are widely adopted for evaluations
of tasks that require commonsense knowledge. Additional details about the datasets and knowledge
bases are listed in the Appendix A5.

MLLM baselines and SOTA methods. We perform evaluations by using four representative MLLMs
as backbones: LLaVA-1.5 (7B and 13B) [14], InstructBLIP (7B and 13B) [10], Shikra (7B) [40],
MiniGPT-4 (7B) [16], LLaVA-Next (7B) [62], and Qwen2.5-VL (3B) [63]. For benchmarking, we
select several SOTA training-free decoding methods that aim to mitigate knowledge conflicts in LLMs:
Contrastive Decoding (CD) [51], Adaptive Context-Aware Decoding (AdaCAD) [52], Entropy-based
decoding (Entropy) [53], Context-Aware Decoding (CAD) [26] and COntextual Information-Entropy
Constraint Decoding (COIECD) [54]. In addition, we also benchmark with two representative
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hallucination mitigation methods, including Visual Contrastive Decoding (VCD) [58] and Assembly
of Global and Local Attention (AGLA) [57].

Implementation details. For knowledge retrieval, we employ the vision encoder of CLIP-ViT-L/14-
336 [66] as the retriever and append the first retrieved knowledge to the prompt as context. The scaled
factor k is set to 0.4 to avoid excessive adjustment. For the knowledge base, we use Wikipedia dumps
provided by [23] and select items with associated images for retrieval. Multinomial sampling serves
as the decoding strategy. We denote MLLM inference with retrieved knowledge as Regular and
without retrieved knowledge as Parametric. We follow prior studies [26, 53, 58] and adopt adaptive
plausibility constraints [51] for fair comparisons. All experiments are conducted on four NVIDIA
RTX 3090 GPUs. All compared methods are reproduced by us according to their released codes or
original papers.

5.2 Experimental Results

Experiments on free-form datasets. Tab. 2 shows experimental results of four representative
MLLMs [14, 10, 40, 16] over two free-form generative knowledge-intensive datasets [23]. We can
see that the proposed ALFAR consistently outperforms the Regular decoding strategy by substantial
margins (averaged around 2.5% in overall accuracy) across all MLLMs and datasets. Additionally,
ALFAR surpasses state-of-the-art decoding methods as well, demonstrating its effectiveness in the
better utilization of contextual knowledge.

Experiments on multi-choice datasets. Tab. 3 presents experimental results of six MLLMs [14, 10,
40, 16, 62, 63] over two multi-choice discriminative datasets [32, 24]. Notably, ALFAR achieves
an average improvement of 6.6% over Regular decoding and consistently surpasses state-of-the-art
decoding strategies by substantial margins, underscoring its effectiveness in diverse tasks. Moreover,
we observe that LLaVA-1.5 [14] demonstrates a stronger instruction-following capability compared
to other models, enabling it to produce more correctly formatted outputs.

Table 4: VQA Accuracy comparison on the knowledge-based
VQA datasets with LLaVA-1.5 [14] over three runs.

Model OK-VQA AOK-VQA E-VQA

Regular [14] 46.17(±0.12) 44.13(±0.00) 19.14(±2.83)

Parametric [14] 45.13(±0.40) 43.23(±1.02) 5.34(±0.01)

CD [51] 55.00(±0.03) 51.67(±0.44) 28.62(±0.68)

CAD [26] 56.43(±0.46) 53.93(±0.56) 28.62(±0.76)

AdaCAD [52] 57.10(±0.04) 54.40(±0.48) 28.33(±0.42)

Entropy [53] 56.27(±0.05) 53.93(±0.26) 29.24(±0.11)

COIECD [54] 56.43(±0.46) 53.93(±0.56) 28.24(±0.74)

VCD [58] 57.80(±0.13) 57.40(±0.12) 27.71(±0.33)

AGLA [57] 57.53(±0.05) 55.40(±0.63) 28.29(±0.56)

ALFAR (ours) 60.83(±0.01) 59.93(±0.02) 29.57(±0.08)

Experiments on knowledge-based
datasets. In addition to entity
knowledge-based datasets [32, 24],
we conduct experiments on common-
sense knowledge-based datasets, OK-
VQA [64], AOK-VQA [65] and En-
cyclopedic VQA (E-VQA) [31] with
LLaVA-1.5 [14]. As shown in Tab. 4,
ALFAR surpasses Regular decoding
by 15.2% and consistently outper-
forms state-of-the-art decoding strate-
gies, underscoring its effectiveness
in addressing a broader range of
knowledge-intensive tasks.

6 Discussion

6.1 Ablation study

Table 5: Experimental results of ablation study
with different model variants.

Variants InfoSeek AOK-VQA

Regular [14] 51.97 44.13
+ Attention Reallocation 53.42 46.30
+ Logits Fusion 55.83 55.90
+ Adaptive Weights 58.35 59.93

We conduct ablation studies on both multi-choice
and commonsense knowledge-based datasets [32,
65] to assess the effectiveness of each design in
the proposed ALFAR model with LLaVA-1.5 [14].
As shown in Tab. 5, the Attention Reallocation
enables MLLMs to better utilize retrieved knowl-
edge, thereby enhancing overall performance. The
Logits Fusion mitigates knowledge conflicts, al-
lowing MLLMs to integrate retrieved knowledge
and improve overall performance effectively. Moreover, applying Adaptive Weights during logits
fusion helps MLLMs better leverage both parametric and contextual knowledge while reducing the
impact of noise from the retrieved context, further contributing to performance gains.
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6.2 Effect of different retrievers Table 6: Experimental results with different CLIP retrievers.
‘-T’ means using the input query for knowledge retrieval.

Retriever Recall LLaVA Ours

CLIP-B/16 [66] 38.27 45.93 51.60
CLIP-L/14 [66] 56.53 51.23 57.60
CLIP-L/14-336 [66] 58.37 51.97 58.35

CLIP-B/16-T [66] 5.56 32.97 35.43
CLIP-L/14-T [66] 6.00 33.40 36.23
CLIP-L/14-336-T [66] 5.73 33.37 36.63

We investigate the impact of differ-
ent retrievers and retrieval strategies
on recall and model performance on
the InfoSeek dataset [32]. As shown
in Tab. 6, our model consistently en-
hances performance across all con-
figurations, demonstrating its robust-
ness to retrieval noise. Additionally,
retrieving knowledge based on the in-
put query yields low recall due to its
limited information about entities in the image. Despite this limitation, our model achieves consistent
performance improvements even under low retrieval recall, owing to its adaptive fusion strategy that
balances parametric and contextual knowledge.

6.3 Inference Efficiency

Table 7: Inference time of different methods over
one sample with LLaVA-1.5 [14].

Variants InfoSeek Human

Regular [14] 0.46s (1.00x) 0.50s (1.00x)
CD [51] 0.62s (1.35x) 0.72s (1.44x)
CAD [26] 0.62s (1.34x) 0.72s (1.44x)
AdaCAD [52] 0.62s (1.35x) 0.73s (1.45x)
Entropy [53] 0.63s (1.37x) 0.73s (1.46x)
COIECD [54] 0.62s (1.35x) 0.73s (1.45x)
VCD [58] 0.63s (1.38x) 0.74s (1.47x)
AGLA [57] 0.83s (1.81x) 1.02s (2.04x)
ALFAR (ours) 0.62s (1.35x) 0.73s (1.46x)

In this section, we conduct a detailed analysis of
the inference efficiency of the proposed model in
comparison with representative baseline methods.
Specifically, we examine how the incorporation
of parametric knowledge modeling affects the in-
ference time under both discriminative and gener-
ative tasks. Compared with the baseline MRAG,
our model introduces only a modest computational
overhead, which mainly arises from the additional
operations required to encode and integrate para-
metric knowledge. Nevertheless, this extra cost
remains limited, as the parametric knowledge com-
ponent without contextual input is relatively con-
cise. Moreover, all compared methods except the
baseline also require modeling of both contextual
and parametric knowledge. Consequently, the overall inference cost of our model is comparable
to that of these methods. We evaluate all models on both the discriminative multi-choice dataset
Infoseek [32] and the free-form generative dataset Human [23] using a single input sample. The
results summarized in Tab. 7 demonstrate that our method achieves similar inference times.

6.4 Qualitative Examples

Fig. 6 shows a qualitative comparison of four decoding approaches. It can be observed that Vanilla
LLaVA [14] without context produces a false response due to the lack of knowledge about the entity
in the image. LLaVA with MRAG [27] incorporates the contextual knowledge but still produces
the same incorrect response as Vanilla LLaVA [14], primarily due to knowledge conflicts that cause
MLLMs to favor their parametric knowledge. LLaVA with CAD [26] can mitigate knowledge
conflicts effectively by reducing the influence of parametric knowledge. However, it produces a false
response as well, mainly due to attention bias with excessive focus on images and uniform attention
toward context. In contrast, ALFAR introduces attention reallocation and adaptive logits fusion,
enabling MLLMs to prioritize query-relevant contextual knowledge and produce accurate responses.

6.5 ALFAR on MLLM Scalability Table 8: Experiments with larger MLLMs.

Decoding LLaVA-13B InstructBLIP-13B

Parametric 44.40 8.93
Regular 55.83 18.70
ALFAR (ours) 59.63 27.63

Tab. 8 presents experimental results of
the 13B variants of LLaVA-1.5 [14]
and InstructBLIP [10] over the InfoS-
eek dataset [32]. Notably, ALFAR con-
sistently improves performance across
both models, demonstrating its supe-
rior scalability with respect to the model size. Interestingly, we observe a performance decline in
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Figure 6: Illustration of generated responses and corresponding attention distributions across different
decoding methods, using LLaVA-1.5 [14] as the backbone model.

InstructBLIP 13B compared to the 7B variant, which may be attributed to the model’s increased
reliance on parametric knowledge.

6.6 Effect of Different Decoding Strategies
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Figure 5: Experimental results with different decod-
ing strategies for response generation.

Beyond the multinomial sampling strategy dis-
cussed in this paper, we further investigate the
robustness of the proposed ALFAR framework
under diverse decoding settings. To this end,
we conduct experiments using LLaVA-1.5 [14]
on the multi-choice InfoSeek dataset [32], and
evaluate six additional decoding strategies com-
monly adopted in MLLM generation. These
strategies include Top-P sampling [67] with
p = 0.7, Top-K sampling [68] with k =
50, greedy decoding [69], temperature sam-
pling [70] with t = 0.5, Top-P sampling with
temperature (p = 0.7, t = 0.5), and Top-K sampling with temperature (k = 50, t = 0.5). As
illustrated in Fig. 5, ALFAR consistently enhances model performance across all decoding strategies.
This consistent gain highlights the generalizability of ALFAR’s learning principle and suggests that it
effectively complements various decoding schemes. Moreover, the results indicate that ALFAR can
serve as a robust and plug-and-play enhancement to existing MLLMs, ensuring stable performance
regardless of decoding configuration.

7 Conclusion

In this paper, we examine representative MLLMs and find that they often struggle to fully utilize
retrieved knowledge for knowledge-intensive tasks. We attribute this limitation to two key factors:
attention bias toward different tokens and knowledge conflicts between parametric and contextual
knowledge. To address these challenges, we introduce Adaptive Logits Fusion and Attention Reallo-
cation (ALFAR), a training-free and plug-and-play approach that enhances MLLM performance by
dynamically reallocating attention and harmonizing parametric and contextual knowledge. Specif-
ically, ALFAR mitigates attention bias by adaptively shifting focus from visual tokens to context
tokens based on query-context relevance. Furthermore, it decouples and balances parametric and
contextual knowledge at the output logits, effectively resolving conflicts. Experiments across multi-
ple MLLMs and benchmarks show that ALFAR consistently surpasses state-of-the-art methods by
substantial margins without requiring additional training or external tools, highlighting its versatility
and effectiveness for various knowledge-intensive tasks.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately pinpoint the contributions and scope of this paper in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the Section Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16



Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the main experiments for
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer: [Yes]
Justification: We will provide open access to the data and code to reproduce the main
experiments in our paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and testing details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and variance of results over three runs for the main
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources needed to repro-
duce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in Section Broader Impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A1 Limitation and Future Work

Despite its strong performance in enhancing knowledge utilization for MLLMs through adaptive
logits fusion and attention reallocation, our approach has certain limitations. First, our framework
requires access to MLLM parameters, making it inapplicable to black-box API-based models such
as GPT-4 [71]. Extending our framework to black-box MLLMs represents a promising direction
for future research. Additionally, we observe that MLLMs struggle to effectively extract relevant
information from long contexts. Addressing this limitation by improving MLLMs’ ability to leverage
extended contexts will be another focus of future work.

A2 Broader Impacts

The proposed model for enhancing knowledge utilization in MLLMs carries significant broader
impacts. First, by addressing the critical issue of MRAG, our method enhances the reliability and
trustworthiness of MLLMs. This improvement is essential for deploying these models in sensitive and
high-stakes applications such as autonomous driving, medical diagnostics, and surveillance systems.
Second, the insights and methods introduced in this paper contribute to the broader field of MLLMs,
particularly in understanding and improving the knowledge utilization mechanisms within MLLMs.
This advancement can spur further research and innovation in integrating visual and textual data,
leading to more robust and versatile AI models.

A3 Conflict Rate and Performance Drop

To quantify the conflict between parametric and contextual knowledge and its impact on model
performance, we introduce two metrics: Conflict Rate and Performance Drop.

Conflict Rate measures the proportion of instances where parametric and contextual knowledge
provide different information, and Performance Drop quantifies the decline in model performance
due to knowledge conflict. Since parametric knowledge is implicitly embedded in model parameters
and is not directly observable, we approximate its correctness by evaluating the model’s outputs.
Specifically, if the model (without external context) produces the correct answer, we assume its
parametric knowledge is correct; otherwise, it is considered incorrect. Given access to ground-truth
contextual knowledge, the Conflict Rate can be defined as the error rate of parametric knowledge, i.e.,
the proportion of incorrect responses generated by the vanilla model without input context:

Conflict Rate = Err(Mθ(y|q, I), ŷ) (A1)

where Err is a function that calculates the error rate of the output, Mθ(y|q, I) is the output with
only images and questions as inputs, and ŷ is the ground-truth answer.

When correct contextual knowledge is available, the ideal model should achieve 100% accuracy in
the absence of knowledge conflicts. However, influenced by knowledge conflicts, the model cannot
achieve 100% accuracy, then we can define Performance Drop as the error rate of outputs when both
parametric and contextual knowledge are used:

Performance Drop = Err(Mθ(y|q, I, c), ŷ) (A2)

where Mθ(y|q, I, c) is the output with ground-truth context as additional inputs.

A4 Retrieval Recall

To investigate the retrieval recall from different retrieval rankings, we present the recall with Ground-
Truth knowledge and knowledge from various retrieval rankings on the multi-choice InfoSeek
dataset [23, 32] in Tab. A1. The low recall negatively impacts performance on knowledge-intensive
VQA tasks, highlighting the necessity of developing a more effective retriever.

A5 Dataset

We present statistics of different datasets and the corresponding knowledge bases in Tab. A2. Specifi-
cally, for Validation [23] and InfoSeek [32], we follow previous works [27] and adopt a knowledge
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Table A1: Retrieval recall with Ground-Truth knowledge (GT) and knowledge from different retrieval
rankings on the multi-choice InfoSeek dataset [23, 32].

Index GT 1 2 3 4

Recall 100 58.37 10.57 5.07 3.07

Table A2: Statistics of the datasets and details of the knowledge bases used.

Dataset # VQA pairs Knowledge Base

Validation [23] 73,620 Wikipedia [23]
Human [23] 8,931 Wikipedia [23]

InfoSeek [32] 3,000 Wikipedia [23]
ViQuAE [32] 3,000 Wikipedia [23]

OK-VQA [64] 5,046 GPT-3.5 [21]
AOK-VQA [65] 1,145 GPT-3.5 [21]
E-VQA [31] 700 Encyclopedia [31]

base containing 1.7K entities derived from the original Wikipedia knowledge base [23]. For Hu-
man [23] and ViQuAE [24], we use the original Wikipedia knowledge base [23], selecting 73.6K
entities accompanied by images for knowledge retrieval. For OK-VQA [64] and AOK-VQA [65],
we utilize the knowledge base provided by [21], which was generated using GPT-3.5 [72]. For
E-VQA [31], we select templated questions with images from the iNaturalist dataset [73] and use the
corresponding ground-truth knowledge for inference. All evaluations are conducted using the official
scripts.

A6 Adaptive Plausibility Constraints

We follow prior studies [26, 53, 58] and adopt adaptive plausibility constraints [51] for fair com-
parisons. Specifically, calibrating the entire output distribution may penalize valid outputs from the
original distribution and promote implausible outputs from the modified distribution. To mitigate this
issue, we selectively consider tokens with high original probabilities and truncate other tokens as
follows:

Vtoken (y<i) = {yi ∈ V : pθ (yi) ≥ βmax
w

pθ (w)}

p (yi) = 0, if yi /∈ Vtoken (y<i)
(A3)

where Vtoken is the set of selected tokens and V is the output vocabulary. We select β = 0.7 to retain
only high-probability tokens.

A7 Effect of Intervention Layers

We investigate the impact of attention reallocation at different MLLM layers on the InfoSeek
dataset [23] using LLaVA-1.5 [14], as summarized in Tab. A4. The results show that reallocating
attention in shallow layers (layers 1-16) enhances model performance by mitigating attention bias
toward image tokens, thereby improving the extraction of low-level features [30]. In contrast, applying
attention reallocation in middle layers (layers 17-24) yields smaller gains, as these layers primarily
handle multimodal alignment and feature aggregation [74], where attention bias is less severe. Notably,
reallocating attention in late layers (layers 25-32) leads to the most substantial performance gains, as
these layers are responsible for reasoning and directly affect output generation [74]. Furthermore,
leveraging attention reallocation in both shallow (layers 1–8) and deep (layer 32) layers yields the
best performance.
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Table A4: An ablation study with different layers for attention reallocation.

Intervention Layers VQA Accuracy

None 56.70
[1− 8] 58.08
[9− 16] 58.17
[17− 24] 57.57
[25− 32] 58.10
[1− 8] ∪ [32] 58.67

A8 Effect of different numbers of knowledge

Table A3: Experimental results with different num-
bers of knowledge using LLaVA-1.5 [14].

#Knowledge Recall LLaVA [14] Ours

1 58.37 51.97 58.35
2 68.93 49.90 58.70
3 74.00 50.13 58.57
4 76.77 50.23 58.20

We examine the effect of varying the amount
of knowledge provided to MLLMs on retrieval
recall and model performance on the InfoSeek
dataset [23]. As shown in Tab. A3, appending
additional knowledge to the prompt improves
retrieval recall but has limited impact on model
performance, as MLLMs often struggle to ef-
fectively utilize information from lengthy input
contexts [75]. Our model addresses this limita-
tion by guiding MLLMs based on query-context
relevance. However, the modest performance gains underscore the need for future research on
enhancing MLLMs’ ability to process and leverage extended contexts.
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