

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA PROVENANCE FOR IMAGE AUTO-REGRESSIVE GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Image autoregressive models (IARs) have recently demonstrated remarkable ca-
012 pabilities in visual content generation, achieving photorealistic quality and rapid
013 synthesis through the next-token prediction paradigm adapted from large language
014 models. As these models become widely accessible, robust data provenance is re-
015 quired to reliably trace IAR-generated images to the source model that synthesized
016 them. This is critical to prevent the spread of misinformation, detect fraud, and at-
017 tribute harmful content. We find that although IAR-generated images often appear
018 visually identical to real images, their generation process introduces characteristic
019 patterns in their outputs, which serves as a reliable provenance signal for the gen-
020 erated images. Leveraging this, we present a post-hoc framework that enables the
021 robust detection of such patterns for provenance tracing. Notably, our framework
022 does not require modifications of the generative process or outputs. Thereby, it
023 is applicable in contexts where prior watermarking methods cannot be used, such
024 as for generated content that is already published without additional marks and
025 for models that do not integrate watermarking. We demonstrate the effectiveness
026 of our approach across a wide range of IARs, highlighting its high potential for
027 robust data provenance tracing in autoregressive image generation.

028 1 INTRODUCTION

030 Recent progress in image autoregressive models (IARs) has led to significant advancements in image
031 generation. Driven by advances in language modeling, these models produce high-quality images
032 at rapid pace using the next-token prediction paradigm (Tian et al., 2024; Han et al., 2025). As
033 IAR-generated images become visually indistinguishable from natural content, several challenges,
034 including the spread of misinformation, fraud, and harmful content dissemination, arise. Addition-
035 ally, as generated data “pollutes” the data ecosystem, it is increasingly used to train new generative
036 models, which degrade model performance (called *model collapse* (Alemohammad et al., 2024; Shu-
037 mailov et al., 2024)) and amplify existing biases (Wyllie et al., 2024). Therefore, data provenance,
038 *i.e.*, identifying and attributing generated images to their generators, is highly important.

039 Several provenance methods have been developed for generative vision models, including both wa-
040 termarking (Fernandez et al., 2023; Liu et al., 2023; Wen et al., 2023; Zhao et al., 2023; Gunn
041 et al., 2024; Kerner et al., 2025; Jovanović et al., 2024; Tong et al., 2025; Wang et al., 2025b) and
042 fingerprinting (Kim et al., 2024; Yu et al., 2021; Nie et al., 2023). Yet, these methods require the
043 integration of additional signals into the models or into the images either during or after generation.
044 This introduces perceptible or statistical changes, is not applicable to trace provenance for content
045 that has already been published without marks, and often results in a trade-off between robustness,
046 imperceptibility, and applicability.

047 In this work, we propose the first post-hoc provenance framework for IAR-generated images that
048 does not require *any* modification of the generation process, is model-agnostic, and applicable to
049 previously published, and unmarked content. Our proposed framework builds on our intriguing
050 observation that because IARs encode images as sequences of discrete tokens from a fixed codebook,
051 *i.e.*, their “vocabulary”, they introduce a quantization step that leaves model-specific artifacts in the
052 generated images as shown in Figure 1. Specifically, token representations of generated images
053 are consistently closer to the codebook entries than those of natural images. We refer to this as
QuantLoss and show that it can be used to trace IAR-generated images back to their generators.

We further enhance the reliability of our framework by amplifying existing signals and integrating additional, carefully designed ones. First, we train a model to approximate the *inverse of the IAR’s decoder* and use it to encode images whose provenance we want to test. Since the inverted decoder leads to a higher fidelity mapping from images to the tokens that the image was potentially generated from, it strengthens our provenance signals based on QuantLoss. Additionally, we introduce a novel token-search algorithm for the next-scale prediction paradigm, enabling more accurate tracking of generated images’ initial tokens and enabling a more meaningful comparison to the codebook tokens. Beyond QuantLoss, we also identify a complementary signal, *EncLoss*, which captures the deviation observed when encoding an image to the latent space with the inverse decoder and then decoding it back to the image space with the original decoder. For generated images, this process yields low loss due to feature consistency, while for natural images, greater information loss typically occurs. All these signals can eventually be combined to robustly trace the provenance of IAR-generated images.

We evaluate our method on state-of-the-art IARs, including VAR (Tian et al., 2024), RAR (Yu et al., 2024b), LlamaGen (Sun et al., 2024), Taming (Esser et al., 2021), and Infinity (Han et al., 2025), as well as a vector-quantized diffusion model (VQ-Diffusion) (Gu et al., 2022). We are able to detect the images generated from these models with almost 100% success rate, which contributes to a reliable provenance tracing of generated content in IARs. We note that the post-hoc finetuning of the encoder has relatively small overhead compared to IAR training, especially for the newly developed IARs with increasing model scale and training data. We also analyze the robustness of our method to conventional image post-processing techniques and show that our method can still detect most of the generated content, significantly outperforming the existing methods.

In summary, we make the following contributions:

1. We introduce the first post-hoc data provenance method for IARs that leverages generation-specific artifacts to reliably determine whether, and by which model, an image was generated. Our framework does not require any modifications to the model’s training or generation process, is model-agnostic, and applicable to already published generated content.
2. We show that combining carefully designed provenance signals derived from the generation-specific artifacts enables near-perfect detection of generated images and accurate attribution to their source model, consistently achieving nearly 100% TPR@1%FPR across a diverse set of IARs and outperforming all baselines.
3. We provide a thorough empirical evaluation of our framework on diverse models and with diverse datasets, assessing its robustness to image perturbations. Our results highlight that our framework can provide effective provenance tracing under real-world scenarios with non-perfect data, highlighting its practical applicability.

2 BACKGROUND AND RELATED WORK

Image Autoregressive Models (IARs). IARs have recently gained traction as a new architecture for image generation, following the success of generative adversarial networks (Karras et al., 2020; Choi et al., 2020; Karras et al., 2021) and diffusion models (Rombach et al., 2022; Saharia et al., 2022; Podell et al., 2023). IARs inherit the *next-token prediction* paradigm from large language models (LLMs) by treating images (or their patches) as sequences of discrete tokens which enables them to generate images both quickly and with high quality. Building on the advances from LLMs also allows IARs to follow their clear power-law scaling (Tian et al., 2024). In the last years, the progress in autoregressive image generation has moved from early pixel-space raster-scan autoregression (Chen et al., 2020; Van den Oord et al., 2016) to pioneering efforts with the next scale or resolution prediction (VAR) (Tian et al., 2024; Han et al., 2025). Recent proposals opt for next-token

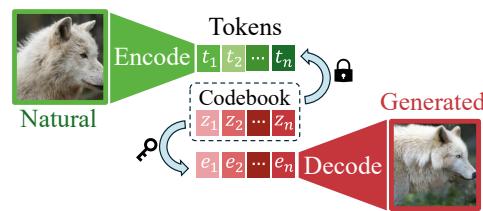


Figure 1: **Data Provenance: Token Space.** Since the generated tokens of a given IAR are sampled from the codebook entries, the codebook acts as a key to distinguish the token representations of generated images from those of real images.

108 prediction of randomized inputs permuted into different factorization orders with annealing probability (RAR) (Yu et al., 2024b), and to even vanilla autoregressive models that apply the exactly 109 same *next-token prediction* as LLMs and feature an image tokenizer with high-quality reconstruction 110 and high-utilization of the codebook (LlamaGen) (Sun et al., 2024), along with many other recent 111 contributions advancing the state-of-the-art in autoregressive image generation (Ren et al., 2025; Li 112 et al., 2024; Team, 2024; Yu et al., 2024a; Shao et al., 2025; Deng et al., 2025; Tang et al., 2025). 113 Most contemporary IARs (Sun et al., 2024; Tian et al., 2024; Yu et al., 2024b; Han et al., 2025) are 114 composed of an autoencoder and an autoregressive model. The autoencoders, also known as image 115 tokenizers, function as a mapping between the pixel and the token space, which are usually built on 116 the VQGAN architecture introduced in Taming (Esser et al., 2021). In our work, we leverage the 117 pixel-token mapping to reliably trace generated images. 118

119 **Image Provenance.** The goal of image provenance is to attribute the entity (e.g., model or 120 content creator) that generated a given image. Existing methods can be grouped into watermark-based 121 (Kerner et al., 2025; Jovanović et al., 2025; Tong et al., 2025), fingerprint-based (Kim et al., 2024; 122 Yu et al., 2021; Nie et al., 2023), and reconstruction-based approaches (Wang et al., 2023; 2024; 123 2025a). **Watermark-based** and **fingerprint-based methods** embed model-specific information 124 into the generation process or training pipeline to enable source identification (Zhao et al., 2025; 125 Mahara & Rishe, 2025). Since these approaches require interventions either in the training or inference 126 stage, they degrade the quality of the generated image and cannot be performed retroactively 127 after the models or their non-marked generations are released. On the contrary, **reconstruction-based** 128 **methods** leverage the innate features of the generative models for image attribution, which 129 do not introduce any perturbations to the generated images. For example, RONAN (Wang et al., 130 2023) is proposed to attribute the image generated by variational autoencoders (VAE), GANs, and 131 diffusion models by reverse-engineering the generative process back to its input space. RONAN is 132 not directly applicable to IARs as it is only effective for deterministic generation, while IARs rely on 133 a random sampling process during each of their next-token predictions. LatentTracer (Wang et al., 134 2024) is proposed specifically for diffusion models to trace generated images by optimizing in the 135 latent space of a decoder. Although LatentTracer can be applied to IARs, it demonstrates suboptimal 136 performance and proves computationally expensive for many images, as it requires gradient descent 137 optimization for each individual image. Recently, Wang et al. (2025a) proposed to calibrate the re- 138 construction loss by double reconstruction to improve attribution performance for diffusion models. 139 Specifically, they reconstruct a given image twice, and leverage the second reconstruction loss as a 140 normalizing factor. However, we show that this method has insufficient performance for IARs. In 141 contrast, our method is effective and allows for reliable provenance of IAR-generated images. 142

143 **Membership Inference Attack.** While our work focuses on data provenance, it is important to 144 distinguish it from membership inference attacks (MIA), which address a fundamentally different 145 attribution problem. MIA aims to determine whether a given data point was part of a model’s training 146 set (Shokri et al., 2017; Salem et al., 2019), primarily for auditing privacy leakage during the 147 training process. In contrast, data provenance seeks to identify whether a given image was *generated* 148 by a model, which is critical for tracing synthetic content and preventing model collapse 149 caused by training on generated data (Alemohammad et al., 2024; Shumailov et al., 2024). Importantly, 150 existing MIA methods for IARs require access to class labels or text prompts in addition to 151 images (Kowalcuk et al., 2025; Yu et al., 2025), which are generally unavailable for generated 152 images found in the wild. Our post-hoc provenance framework operates solely on images themselves, 153 making it applicable to real-world scenarios where auxiliary information is absent and where content 154 has already been published without metadata. 155

3 METHOD

156 We begin by outlining the necessary preliminaries and notation for vector-quantized representations. 157 Next, we formalize the problem of provenance tracing in IARs. Finally, we introduce our data 158 provenance framework, presenting both the QuantLoss-based and EncLoss-based signals that we 159 develop for effective post-hoc provenance detection. 160

3.1 PRELIMINARIES ON VECTOR-QUANTIZED REPRESENTATIONS

161 IARs tokenizers consist of three main components:

162 1. **Encoder E :** A convolutional neural network (CNN)-based feature extractor with down-sampling
 163 ratio p that projects input pixels $x \in \mathbb{R}^{H \times W \times 3}$ to a latent feature map $f \in \mathbb{R}^{\frac{H}{p} \times \frac{W}{p} \times C}$, where
 164 $H \times W$ are spatial dimensions and C denotes the channels. We denote the encoding as $x \xrightarrow{E} f$.
 165
 166 2. **Quantizer Q :** The main part of the quantizer is a codebook $Z \in \mathbb{R}^{N \times C}$ containing N learnable
 167 prototype vectors, each with the channel dimension C . The index of each prototype vector serves
 168 as a discrete *token* for quantization. Every spatial feature $f^{(i,j)}$ is mapped to its nearest entry
 169 z_n ($n \in [N]$) in codebook Z to obtain the integer indices $t_Z^{(i,j)}$. We denote the quantization as
 170 $f \xrightarrow{Q} t_Z$ and the dequantization (mapping from the tokens t_Z to the quantized feature map f_Z)
 171 as $t_Z \xrightarrow{Q^{-1}} f_Z$, and define them as follows:
 172

$$Q : t_Z^{(i,j)} = \arg \min_{n \in [N]} \|f^{(i,j)} - z_n\|_2, \quad Q^{-1} : f_Z^{(i,j)} = Z[t_Z^{(i,j)}]. \quad (1)$$

173 3. **Decoder D :** A CNN symmetric to the encoder that decodes the quantized feature map f_Z to the
 174 image x_Z . We denote the decoding as $f_Z \xrightarrow{D} x_Z$.
 175

176 Together, the stages in the above framework can be expressed as:
 177

$$x \xrightarrow{E} f \xrightarrow{Q} t_Z \xrightarrow{Q^{-1}} f_Z \xrightarrow{D} x_Z. \quad (2)$$

182 The training of a IAR model is performed in two stages: (1) the encoder and decoder pair, including
 183 the quantizer with its codebook, are pre-trained, followed by the (2) training of the *autoregressive*
 184 *transformer* (AR) to predict the next tokens during generation. The encoder and quantizer are only
 185 used for mapping images from pixels to tokens during training, while the decoder is used for map-
 186 ping AR-generated tokens to image pixels during both training and inference (generation).

187 3.2 PROBLEM FORMULATION

189 Given a suspect image x and a IAR model M , our goal is to develop a framework that attributes the
 190 image x to the given IAR, or identifies x 's provenance as not generated by M . x can be *any* image,
 191 including a natural one or an image generated by a generative model. For M , we assume white-box
 192 access to its encoder E , decoder D , and quantizer Q , which represents a realistic setup as many of
 193 the state-of-the-art IARs are open-source. Most importantly, we only assume post-hoc provenance,
 194 *i.e.*, M and x are already given and it is not possible to modify the training or generation process.
 195

196 3.3 A FRAMEWORK FOR DATA PROVENANCE IN IARS

198 We introduce two **complementary** signals specifically designed for IAR provenance detection:
 199 QuantLoss (Section 3.3.1) and EncLoss (Section 3.3.2). Finally, we describe how we combine
 200 these two into a joint provenance signal for our framework presented in Figure 2.

201 3.3.1 QUANTLOSS: PROVENANCE SIGNAL BASED ON CODEBOOK DISTANCE

203 We design our QuantLoss provenance signals based on our observation that the token representations
 204 differ significantly between natural and IAR-generated images. Intuitively, the representations of
 205 generated images are consistently closer to the codebook entries than those of natural images (see
 206 Figure 1). We first formalize this **observation**, then describe how we leverage it as a provenance
 207 feature, and finally introduce the feature's two core building blocks, namely the **decoder inversion**
 208 and the **quantization**.

209 **Formalizing our Observation on Proximity to Codebook Tokens.** The *generation* of an image
 210 x_Z by a IAR with codebook Z is formalized in Equation (3). The generated image x_Z is initially
 211 sampled as discrete tokens t_Z from the token sample space T_Z by the IAR. This sample space for
 212 generated image consists of the possible combinations of tokens from the codebook Z . In contrast,
 213 natural images are drawn from natural (real-world) data distributions, and therefore have a much
 214 larger and more diverse space. In addition, different IARs have distinct codebooks corresponding
 215 to distinct sample spaces. Thus, the codebooks of different IARs naturally serve as a provenance
 signal for the synthetic images. In essence, IAR-generated images leave a “fingerprint” in token

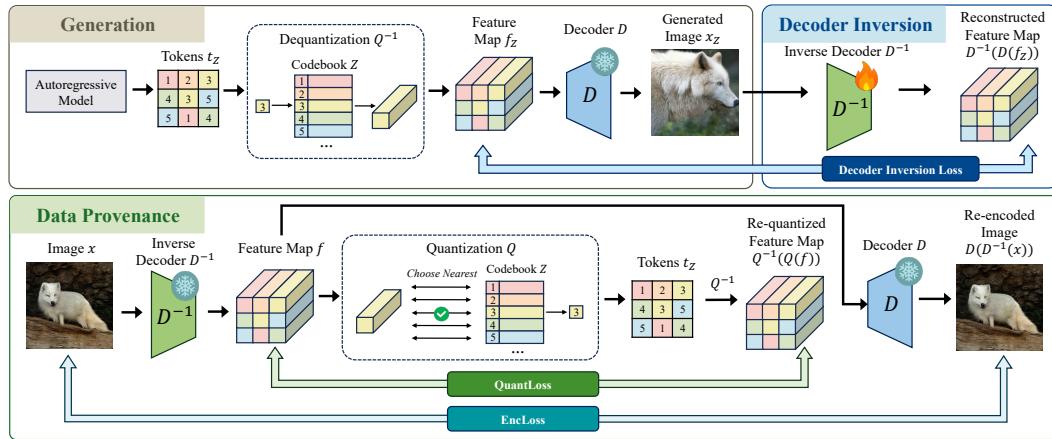


Figure 2: **Overview of our data provenance framework for IARs.** (1) During **Generation**, the tokens are generated by the autoregressive model, dequantized to a feature map, and decoded to a generated image. (2) Our **Decoder Inversion** aims at creating an inverse decoder that recovers the generated feature map from the generated image. (3) We propose two signals for our **Data Provenance**: *QuantLoss* between the feature map recovered by the inverse decoder and its re-quantized version, and *EncLoss* between the image and its reencoded version.

space because they were originally constructed from specific codebook entries. This observation leads to our key insight: generated images, when *inverted* back through the decoder and correctly quantized, will have feature representations that align closely with codebook entries, while natural images or images generated by other IARs will exhibit larger quantization errors.

$$\begin{aligned} \text{Generation: } T_Z &\xrightarrow{AR} t_Z \xrightarrow{Q^{-1}} f_Z \xrightarrow{D} x_Z \\ \text{Inversion: } t_Z &\xleftarrow{Q} f_Z \xleftarrow{D^{-1}} x_Z \end{aligned} \quad (3)$$

Designing a Provenance Signal Based on our Observation. From this insight, we design a signal to detect if an image was sampled from a codebook Z . We transform a given image x to its continuous feature map f and then to its codebook-based quantized feature map f_Z . The process can be expressed as follows:

$$x \xrightarrow{D^{-1}} f \xrightarrow{Q} t \xrightarrow{Q^{-1}} f_Z. \quad (4)$$

Specifically, we first transform the image x to the latent space with an inverted decoder D^{-1} . If x was generated by the target IAR from T_Z , then with an ideal inverse decoder D^{-1} , the recovered feature map f should already be quantized (i.e., each feature vector should exactly match a codebook entry). Therefore, the quantization step $f \xrightarrow{Q} t \xrightarrow{Q^{-1}} f_Z$ would introduce minimal error, making $f \approx f_Z$. Conversely, if x is a natural image or from a different IAR, f will not align with the codebook entries, resulting in significant quantization error and $f \neq f_Z$. We compute the QuantLoss $\mathcal{L}_{\text{Quant}}$ between the feature map f and its quantized version f_Z as follows:

$$\mathcal{L}_{\text{Quant}}(x) = \|f - f_Z\|_2 = \|f - Q^{-1}(Q(f))\|_2, \quad (5)$$

Decoder Inversion: Obtaining D^{-1} . We aim at inverting an image x to the quantized feature map f_Z . Intuitively, if x was generated by the given IAR, the feature map f_Z is close to the codebook entries of Z . This requires first inverting the decoder D . A naïve solution would be to apply the IARs original encoder E . However, we observe that E is not a close inversion of D for generated images for most IARs (what we show in Table 4). We attribute this behavior to the fact that E is trained on natural images. To obtain a closer approximation of the inversion D^{-1} of the decoder, we instead train an inversion model. Concretely, we initialize this model’s weights with the original encoder weights and finetune this inverse decoder on images generated by the given IAR (see Equation (2)). During finetuning, the codebook Z and the decoder D are frozen, and we use the following loss to optimize D^{-1} :

$$\mathcal{L}_{\text{inv}} = \|f_Z - D^{-1}(D(f_Z))\|_2. \quad (6)$$

270 Notably, this step is performed post-hoc after release of the IAR and the data point x . It does
 271 not interfere with the models training or the generation of data points. Given that the finetuning
 272 exclusively relies on images produced by the target IAR, it does not require the costly curation of
 273 additional training data. Finally, we can improve robustness to data augmentations by applying them
 274 to the finetuning data and training D^{-1} to generate consistent quantized feature maps for both the
 275 original and augmented images. As shown in Section 4.3, this approach makes our framework less
 276 sensitive to common data perturbations and significantly enhances our method’s reliability.

277 **Quantization Q .** While inverting the decoder traces the image to the latent space, we need to further
 278 invert the feature map to the token space, as the token space is where generated images are initially
 279 sampled from. To this end, we perform quantization for both single-scale and multi-scale IARs to
 280 invert a feature map f_Z to tokens t_Z .

281 *Single-scale* IARs, such as RAR (Yu et al., 2024b), which generate an image through next-token
 282 prediction, tokenize images as a single feature map, where each feature corresponds to only one
 283 token and one entry in the codebook. During generation, each token is mapped to one of the spatial
 284 features in the feature map by querying the codebook ($f_Z = Q^{-1}(t_Z) = Z[t_Z]$). This process can
 285 simply be inverted by the corresponding quantization Q , defined in Equation (1).

286 *Multi-scale* IARs, such as VAR (Tian et al., 2024), redefine the autoregressive image generation
 287 as next-scale prediction. They generate an image starting from tokens responsible for low-level
 288 features in an image, and then generate the tokens for high-level details based on tokens in the
 289 previous scales. After generating tokens in all scales, the tokens are mapped to codebook entries,
 290 upsampled, and summed up to obtain the feature map. This process can be formalized as:

$$\{t_Z^{(k,i,j)}\}_{k=1}^K \xrightarrow{\text{Codebook } Z} \{f_Z^{(k,i,j)}\}_{k=1}^K \xrightarrow{\text{Upsample and Sum}} f_Z^{(i,j)}, \quad (7)$$

293 where K is the number of scales. When quantizing the feature map to scalewise tokens, multi-scale
 294 IARs apply a scalewise greedy search: for each scale, the nearest codebook entry of a given feature
 295 is selected as the token. [The detailed algorithm for the original quantization of VAR is presented](#)
 296 [in Algorithm 2](#). However, as tokens from *all* scales contribute to each spatial feature, inverting the
 297 feature map to the tokens with this greedy search quantization cannot invert the feature map to the
 298 original tokens.

299 We define the problem of searching for the token sequence in multi-scale IAR as an optimization
 300 problem. Given a target feature map $f \in \mathbb{R}^{H_K \times W_K \times C}$, we seek the optimal multi-scale token
 301 combination $\{t_k\}_{k=1}^K$ that minimizes the reconstruction error:

$$\min_{\{t_k\}_{k=1}^K} \left\| f - \hat{f}(\{t_k\}_{k=1}^K) \right\|_2^2, \quad (8)$$

305 where $\hat{f}(\{t_k\}_{k=1}^K)$ denotes the reconstructed feature map obtained by dequantizing and aggregating
 306 tokens across all scales as defined in Equation (7). To solve this problem, we propose an **optimized**
 307 **quantization** algorithm to search for a token combination across all scales that can best represent a
 308 given feature map. For each element in the token map, we initialize N logits corresponding to N
 309 entries in the codebook. An estimated feature map is then calculated according to the logits. Then
 310 we employ the gradient descent algorithm to minimize the distance between the estimated and target
 311 feature map. The intuition to detect images generated by VAR is the following: for a feature map
 312 generated by VAR, our algorithm enables the originally generated tokens to gradually have higher
 313 logit values with more iterations, and finally reduces the QuantLoss significantly. Any feature map
 314 not generated by VAR cannot be easily represented by tokens from the codebook, so the QuantLoss
 315 remains high even after optimization. We present the detailed algorithm in Appendix A.

316 Overall, once D^{-1} and optimized Q are obtained, the resulting QuantLoss serves as a powerful
 317 distinguishing signal: images generated by a IAR M consistently exhibit significantly lower loss
 318 than those not originating from the model, enabling highly reliable provenance attribution.

319

320 3.3.2 ENCLOSS: PROVENANCE SIGNAL BASED ON DECODER INVERSION LOSS

321

322 As a second [complementary](#) provenance signal, we propose a feature we call *EncLoss*, which can
 323 be combined with the QuantLoss to provide more reliable data provenance. This feature is based
 324 on our observation that the decoding during generation ($f_Z \xrightarrow{D} x_Z$) maps f_Z which lies in a low-

324 dimensional latent space to x_Z which lies in a high-dimensional pixel space. Therefore, if we compress a generated image x_Z back to f_Z with an ideal inverse decoder D^{-1} , there is no information loss in this process. In contrast, if a natural image or an image generated by another model is projected from pixel space to latent space with D^{-1} , there is a non-negligible loss due to information compression. Using this observation, we apply inverse decoding and decoding to a given image to capture this signal, and quantify the EncLoss as \mathcal{L}_{Enc} as

$$\mathcal{L}_{\text{Enc}} = \| \text{Rec}(x) - x \|_2, \quad (9)$$

332 where $\text{Rec}(x) := D(D^{-1}(x))$. However, we note that this loss is not only related to the data
 333 source, but also to the *complexity* of the image. Specifically, a natural image with low complexity
 334 contains low information density, and thus also has low EncLoss when encoded into the latent space.
 335 To address the potential false positive cases caused by the low-complexity images, we calculate a
 336 calibration factor for the EncLoss inspired by AEDR (Wang et al., 2025a). Concretely, we invert the
 337 image twice, where the second EncLoss serves as an estimation of the inherent image complexity.
 338 The calibrated EncLoss can be formalized as follows:

$$\mathcal{L}_{\text{Enc}}^{\text{Cal}} = \frac{\| \text{Rec}(x) - x \|_2}{\| \text{Rec}(\text{Rec}(x)) - \text{Rec}(x) \|_2}. \quad (10)$$

341 **Our Final Combined Provenance Signals.** Finally, we combine the QuantLoss $\mathcal{L}_{\text{Quant}}$ and the
 342 calibrated EncLoss $\mathcal{L}_{\text{Enc}}^{\text{Cal}}$ to obtain a stronger signal for provenance. Since $\mathcal{L}_{\text{Enc}}^{\text{Cal}}$ is a ratio of errors,
 343 we design the combined loss $\mathcal{L}_{\text{Comb}}$ as a product of $\mathcal{L}_{\text{Quant}}$ and $\mathcal{L}_{\text{Enc}}^{\text{Cal}}$:

$$\mathcal{L}_{\text{Comb}} = \mathcal{L}_{\text{Quant}} \times \mathcal{L}_{\text{Enc}}^{\text{Cal}}. \quad (11)$$

347 4 EMPIRICAL EVALUATION

349 4.1 EXPERIMENTAL SETUP

351 **Models.** We evaluate our method on a diverse set of state-of-the-art IAR models for image
 352 generation. This includes **next-token prediction models**, such as LlamaGen (Sun et al., 2024) and
 353 Taming (Esser et al., 2021); a **random-order prediction model**, RAR (Yu et al., 2024b); and **next-
 354 scale prediction models**, such as VAR (Tian et al., 2024) and Infinity (Han et al., 2025), the latter
 355 of which is bit-wise and supports high-resolution generation. To further demonstrate the general-
 356 ity of our approach beyond autoregressive models, we also report results on the **vector-quantized
 357 diffusion model** VQ-Diffusion (Tang et al., 2023).

358 **Datasets.** We construct several evaluation datasets, which consist of real or generated images. Real
 359 images are obtained from the validation sets of standard benchmarks (1,000 images each), namely
 360 ImageNet (Deng et al., 2009), LAION (Schuhmann et al., 2022), and MS-COCO (Lin et al., 2014).
 361 The generated images are obtained by generating 1,000 images using each of the previously men-
 362 tioned models. For finetuning, we use a distinct dataset generated for each tested model. For more
 363 details on finetuning, please refer to Appendix C.

364 **Metrics.** We report the true positive rate at 1% false positive rate (TPR@1%FPR) as our primary
 365 evaluation metric. We aim to minimize false accusations, avoiding wrongly attributing images to a
 366 model that did not generate them, while still measuring detection performance effectively.

367 **Baselines.** We compare against several baselines: a **naïve reconstruction-loss baseline** where
 368 images with lower autoencoder reconstruction losses are detected as belonging images, **Latent-
 369 Tracer** (Wang et al., 2024), and **AEDR** (Wang et al., 2025a). For more details on our baselines
 370 setup, please refer to Appendix D.

372 4.2 EFFECTIVENESS OF OUR DATA PROVENANCE FOR IARs

374 Table 1 and the extended versions Table A4 and Table A5 summarize the effectiveness of our method
 375 over all models and datasets. For a given target model denoted in the first column, each column in the
 376 table represents a different task, where 1,000 images generated by the target model (belonging set)
 377 are distinguished from 1,000 images from a single non-belonging source. Evaluated non-belonging
 sources cover both three natural image datasets and five image datasets generated by other models.

378
 379
 380
 381
Table 1: TPR@1%FPR (%) of our method and the baselines. The first column indicates the
 382 original model that has generated the belonging images, the heading of the other columns specifies
 383 the natural datasets or generators from which the non-belonging images are obtained. Our method
 384 is instantiated with the best-performing set of signals from Section 3.3 for each original model.

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Model	Method	Natural			Generated					
			ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	LlamaGen	Reconstruction	33.6	34.0	44.3	-	39.7	4.3	45.7	70.0	63.0
		LatentTracer	93.5	89.2	97.9	-	96.3	80.7	96.9	99.0	98.7
		AEDR	50.9	55.3	50.5	-	59.5	57.7	67.0	70.7	68.1
		Ours	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	RAR	Reconstruction	3.8	4.1	7.4	0.8	-	0.1	5.7	18.1	18.8
		LatentTracer	6.0	6.1	15.2	0.4	-	0.0	9.3	24.6	26.9
		AEDR	29.5	16.6	36.6	10.6	-	2.3	35.9	49.9	27.6
		Ours	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Taming	Reconstruction	27.5	21.5	27.6	10.1	18.9	-	27.7	39.0	46.1
		LatentTracer	73.0	61.0	75.9	36.4	66.8	-	76.0	85.4	87.4
		AEDR	80.4	82.5	81.9	70.7	80.7	-	78.1	91.9	87.5
		Ours	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	VAR	Reconstruction	1.4	1.4	3.6	0.1	1.6	0.0	-	5.9	5.9
		LatentTracer	3.9	1.3	12.0	0.2	5.6	0.1	-	15.4	15.3
		AEDR	29.1	15.7	50.6	14.7	28.3	14.0	-	37.5	50.8
		Ours	100.0	99.2	100.0	99.2	100.0	100.0	-	100.0	100.0
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Infinity	Reconstruction	0.0	0.2	0.8	0.0	0.0	0.0	0.2	-	0.3
		LatentTracer	0.0	0.0	10.9	31.7	0.2	0.0	5.8	-	5.3
		AEDR	1.6	18.9	56.2	1.4	3.0	1.5	12.8	-	8.4
		Ours	99.4	85.6	99.4	99.2	99.5	99.1	99.4	-	99.4
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	VQDiff	Reconstruction	17.2	8.8	24.3	6.3	21.8	1.6	21.2	43.0	-
		LatentTracer	97.7	93.8	98.4	97.3	97.9	93.6	98.5	98.6	-
		AEDR	89.7	51.4	90.0	79.8	93.6	77.2	87.5	83.6	-
		Ours	100.0	99.4	100.0	99.9	100.0	99.9	100.0	100.0	-

404
Table 2: Robustness against common image post-processing methods on RAR. Non-belonging
 405 images are from the ImageNet dataset, and we use QuantLoss to instantiate our method.

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Method	Attacks						
		Noise (0.05)	Kernel (9)	JPEG (60)	Brightness (1.6)	Contrast (2.0)	Saturation (2.0)	Resize (0.5)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	LatentTracer	3.4	4.7	4.8	2.3	3.0	3.6	2.2
	Reconstruction	2.3	3.0	3.6	1.4	1.6	3.1	1.0
	AEDR	7.3	11.4	8.9	1.9	1.4	9.5	0.2
	Ours (w/o Aug)	60.4	74.9	91.7	67.9	45.7	97.4	88.5
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Ours (w/ Aug)	87.8	80.5	96.1	92.3	91.1	99.2	98.4

414 We first observe that the naïve reconstruction baseline is not effective in detecting which model
 415 a given image was generated by. Although LatentTracer can obtain relatively good performance
 416 on LlamaGen and VQ Diffusion when compared with other baseline methods, it fails for RAR,
 417 VAR, and Infinity. While AEDR yields slightly better results than LatentTracer on those models, its
 418 overall performance over the diverse set of models falls short. In contrast, our method yields perfect
 419 or near-perfect results, *i.e.*, around 100% TPR over all models and datasets, highlighting its strength
 420 for practical data provenance tracing.

421 Additionally, our method only requires one-time finetuning to obtain the inverse decoder, which
 422 can be used to evaluate provenance on an unlimited number of images. Notably, our QuantLoss
 423 operates in the latent space of the autoencoder and does not require decoding into the full image,
 424 which allows for efficient provenance nearly 2 × faster than the reconstruction baseline and nearly 4
 425 × faster than the AEDR. We show in Table A3, that for most IARs, our method achieves the fastest
 426 data provenance, with a running time of less than 10 milliseconds.

427 4.3 ROBUSTNESS EVALUATION AGAINST IMAGE POST-PROCESSING

428 In practical provenance tracing applications, the original images might be modified through JPEG
 429 compression, resizing, or other post-processing operations, which can reduce provenance signals
 430 and make reliable tracing more challenging. We analyze the robustness of our proposed framework

432 **Table 3: Contribution of the components in our method.** We present TPR@1%FPR of different
 433 signals on different models. We denote the optimized quantization as *QuanLoss Opt*. The best
 434 instantiations of our framework for each model are highlighted in green, which corresponds to the
 435 results shown for our method in Table 1.

437 Model	438 Method	Natural			Generated					
		439 ImageNet	440 LAION	441 MS-COCO	442 LlamaGen	443 RAR	444 Taming	445 VAR	446 Infinity	447 VQDiff
439 LlamaGen	Ours (<i>QuantLoss</i>)	100.0	99.8	100.0	-	100.0	100.0	100.0	100.0	100.0
	Ours (<i>EncLoss</i>)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
	Ours (<i>QuantLoss</i> \times <i>EncLoss</i>)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
441 RAR	Ours (<i>QuantLoss</i>)	99.9	99.8	99.9	99.8	-	99.2	100.0	100.0	99.8
	Ours (<i>EncLoss</i>)	98.2	98.0	98.9	93.5	-	91.9	96.6	99.5	99.7
	Ours (<i>QuantLoss</i> \times <i>EncLoss</i>)	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
443 Taming	Ours (<i>QuantLoss</i>)	99.6	88.8	99.6	96.2	99.6	-	99.5	99.8	99.5
	Ours (<i>EncLoss</i>)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
	Ours (<i>QuantLoss</i> \times <i>EncLoss</i>)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
445 VAR	Ours (<i>QuantLoss</i>)	0.4	0.0	10.0	0.0	4.5	0.0	-	13.4	1.6
	Ours (<i>QuantLoss Opt</i>)	95.0	92.9	94.4	89.8	94.5	88.4	-	95.7	95.2
	Ours (<i>EncLoss</i>)	100.0	96.8	100.0	98.1	100.0	99.7	-	100.0	100.0
447 Infinity	Ours (<i>QuantLoss</i>)	99.4	85.6	99.4	99.2	99.5	99.1	99.4	-	99.4
	Ours (<i>EncLoss</i>)	0.0	94.9	98.9	1.4	0.6	0.4	11.8	-	35.1
	Ours (<i>QuantLoss</i> \times <i>EncLoss</i>)	0.0	98.2	100.0	9.1	3.4	1.1	57.3	-	76.6
450 VQDiff	Ours (<i>QuantLoss</i>)	92.1	43.3	99.1	96.8	97.6	85.8	95.7	99.1	-
	Ours (<i>EncLoss</i>)	100.0	100.0	100.0	99.7	100.0	100.0	100.0	100.0	-
	Ours (<i>QuantLoss</i> \times <i>EncLoss</i>)	100.0	99.4	100.0	99.9	100.0	99.9	100.0	100.0	-

452 **Table 4: Effectiveness of decoder inversion with or without finetuning the encoder.** We use the
 453 the best instantiation of our framework following Table 1. We show TPR@1%FPR across different
 454 datasets and models.

456 Model	457 Method	Natural			Generated					
		458 ImageNet	459 LAION	460 MS-COCO	461 LlamaGen	462 RAR	463 Taming	464 VAR	465 Infinity	466 VQDiff
459 LlamaGen	Ours (<i>Original Encoder</i>)	99.9	99.6	99.9	-	99.9	99.6	99.9	99.9	100.0
	Ours (<i>Inverse Decoder</i>)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
460 RAR	Ours (<i>Original Encoder</i>)	6.2	9.1	10.0	1.7	-	0.5	3.1	13.4	21.8
	Ours (<i>Inverse Decoder</i>)	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
462 Taming	Ours (<i>Original Encoder</i>)	15.3	15.7	15.3	7.8	8.8	-	12.5	13.7	19.2
	Ours (<i>Inverse Decoder</i>)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
464 VAR	Ours (<i>Original Encoder</i>)	2.7	3.5	5.4	8.4	3.2	6.3	-	8.4	7.8
	Ours (<i>Inverse Decoder</i>)	100.0	99.2	100.0	99.2	100.0	100.0	-	100.0	100.0
466 Infinity	Ours (<i>Original Encoder</i>)	0.0	0.0	16.6	0.0	1.3	0.0	2.8	-	0.0
	Ours (<i>Inverse Decoder</i>)	99.4	85.6	99.4	99.2	99.5	99.1	99.4	-	99.4
468 VQDiff	Ours (<i>Original Encoder</i>)	86.1	33.2	82.9	78.8	95.7	65.8	83.3	86.1	-
	Ours (<i>Inverse Decoder</i>)	100.0	99.4	100.0	99.9	100.0	99.9	100.0	100.0	-

469 against common image post-processing methods. We analyze the robustness of RAR in Table 2 and
 470 provide a more extensive evaluation for robustness on additional models in Appendix H. We detail
 471 the analyzed attacks in Appendix C and provide the respective strengths in brackets in Table 2. We
 472 find that the baselines quickly break against common image post-processing transformations, while
 473 our QuantLoss allows for reliable attribution. Our framework also enables finetuning the inversion
 474 D^{-1} with augmentations to further improve the robustness of attribution against the image post-
 475 processing operations. We note that for the setting where common image processing exists, the best
 476 instantiation of our method is QuantLoss. In Appendix H, we show the reason why our QuantLoss
 477 allows for more robust provenance than EncLoss, specifically when trained with augmentations.

478 4.4 ABLATION STUDIES

480 **Effectiveness of the Framework Components.** While, for the results in Table 1, we instantiate our
 481 framework with the best per-model combination of signals from Section 3.3, in Table 3, we ablate the
 482 impact of the individual signals. Concretely, we study the following three combinations: *QuantLoss*
 483 only uses the QuantLoss from Equation (5), *EncLoss* relies on the EncLoss from Equation (10),
 484 and *QuantLoss* \times *EncLoss* uses the combined loss from Equation (11). For VAR, we additionally
 485 integrate the optimization step from Algorithm 3. Our results show that, for most model and dataset
 pairs, combining both signals yields perfect or near-perfect results, *i.e.*, 100% TPR at practical

486 Table 5: **Effectiveness of EncLoss calibration.** We show TPR@1%FPR for attributing belonging
 487 images v.s. non-belonging images from different real datasets or generative models.

Model	Method	Natural			Generated					
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
LlamaGen	EncLoss (w/o Calibration)	19.0	23.8	34.3	-	26.4	2.8	32.8	63.4	54.9
	EncLoss (w/ Calibration)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
RAR	EncLoss (w/o Calibration)	22.6	21.2	27.3	5.1	-	2.5	26.0	47.9	44.0
	EncLoss (w/ Calibration)	98.2	98.0	98.9	93.5	-	91.9	96.6	99.5	99.7
Taming	EncLoss (w/o Calibration)	53.7	39.1	49.8	29.5	43.9	-	52.2	65.2	70.9
	EncLoss (w/ Calibration)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
VAR	EncLoss (w/o Calibration)	17.0	15.8	31.8	6.1	21.7	1.4	-	41.4	41.5
	EncLoss (w/ Calibration)	100.0	96.8	100.0	98.1	100.0	99.7	-	100.0	100.0
Infinity	EncLoss (w/o Calibration)	0.3	2.5	4.5	0.1	0.2	0.0	0.8	-	1.3
	EncLoss (w/ Calibration)	0.0	94.9	98.9	1.4	0.6	0.4	11.8	-	35.1
VQDiff	EncLoss (w/o Calibration)	15.7	5.4	24.6	15.5	14.8	3.5	21.9	34.3	-
	EncLoss (w/ Calibration)	100.0	100.0	100.0	99.7	100.0	100.0	100.0	100.0	-

500 Table 6: **Hyperparameter analysis for optimized token search (Algorithm 3).** We evaluate
 501 on VAR model, using VAR-generated images as the belonging image, and ImageNet as the non-
 502 belonging image. The evaluated metric is TPR@1%FPR (%). *Init w/ Orig. Quant.* denotes whether
 503 our algorithm is initialized with the original quantization in VAR. Default parameters in **Bold**.
 504

Baseline	Number of Iterations						Learning Rate				Init w/ Orig. Quant.	
	100	400	1000	1200	1400	1600	0.01	0.05	0.1	0.2	0.5	No
	0.4	87.5	91.0	95.4	95.0	93.8	92.2	43.0	95.2	95.0	94.2	92.8
	0.4	87.5	91.0	95.4	95.0	93.8	92.2	43.0	95.2	95.0	94.2	92.8
	0.4	87.5	91.0	95.4	95.0	93.8	92.2	43.0	95.2	95.0	94.2	92.8
	0.4	87.5	91.0	95.4	95.0	93.8	92.2	43.0	95.2	95.0	94.2	92.8

509 detection thresholds. We observe that for VAR, including the additional optimization step boosts the
 510 combined signal by, on average, roughly 10% and achieves perfect detection.

511 **Decoder Inversion.** We also ablate the role of relying on the inverted decoder instead of the IARs'
 512 original encoders for provenance tracing in Table 4. Our results highlight the importance of de-
 513 coder inversion: while *e.g.*, for RAR, **the combined loss can initially only partly attribute belonging**
 514 images, after finetuning we achieve close to 100% TPR@1%FPR.

516 **EncLoss Calibration.** We evaluate the impact of our calibration strategy for the EncLoss signal
 517 in Table 5, comparing the uncalibrated reconstruction loss (Equation (9)) against our calibrated
 518 version (Equation (10)). Without calibration, performance is moderate because low-complexity
 519 natural images exhibit reconstruction loss similar to generated images. The calibration normalizes
 520 by image complexity, achieving near-perfect detection for most models.

521 **Hyperparameter Analysis for Optimized Quantization.** Table 6 analyzes hyperparameters for
 522 our optimized token search on VAR. Optimal performance (95.0-95.4% TPR@1%FPR) occurs with
 523 1,000-1,400 iterations and learning rate 0.1. Notably, our method still achieves 87.5%TPR @1%
 524 FPR with only 100 iterations, which can reduce the runtime from 8.24s/image to 0.57s/image. In
 525 addition, initializing with VAR's original quantization provides a modest boost (95.0% vs. 94.3%).

5 CONCLUSIONS

530 We introduced the first model-agnostic, post-hoc framework for robust provenance tracing of IAR-
 531 generated images. Our approach exploits the unique quantization artifacts left by the tokenization
 532 process in IARs, distinguishing generated content even in the absence of visible differences or ex-
 533 plicitly added watermarks. To strengthen the evidence that a given image was generated by a par-
 534 ticular IAR, we design additional provenance features that increase the signals from quantization-
 535 artifacts and leverage additional signals from the encoding process. We show that our framework
 536 achieves near-perfect detection across a wide range of state-of-the-art IARs. Notably, it operates
 537 without requiring any architectural changes or access to the generation process, making it broadly
 538 applicable to existing, previously published, and unmarked content. Our results provide a practical
 539 and scalable solution for responsible deployment and post-hoc auditing of autoregressive generative
 540 models in real-world scenarios.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
This work addresses critical societal challenges posed by increasingly realistic AI-generated im-
agery, including misinformation, fraud, and harmful content dissemination. Our post-hoc prove-
nance method serves as a defensive technology that enhances transparency and accountability in
AI-generated content without compromising the quality or utility of generative models. Since our
method achieves nearly 100%TPR at only 1%FPR, it has a very low risk of making false accusa-
tions. We believe the benefits of enabling reliable source attribution for combating synthetic media
misuse outweigh the potential risks.550
551
REPRODUCIBILITY STATEMENT552
553
554
555
556
557
558
559
560
We provide comprehensive implementation details together with open-sourced code to ensure repro-
ducibility of our results. All experimental configurations, including hyperparameters for finetuning
the inverse decoder across six different open-source models (LlamaGen, RAR, Taming, VAR, Infin-
ity, VQ-Diffusion), are detailed in Appendix C with specific learning rates, batch sizes, and training
schedules. Our evaluation also includes three well-known image datasets (ImageNet, LAION, MS-
COCO validation sets) that are also open-source. The optimized quantization algorithm for multi-
scale models is provided in detail in Algorithm 3, and robustness evaluation protocols with specific
attack parameters are also documented in Appendix C. All experiments were conducted on standard
hardware (NVIDIA A40 GPUs) with specified software versions.561
562
REFERENCES563
564
565
566
Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming generative mod-
els go MAD. In *The Twelfth International Conference on Learning Representations*, 2024.567
568
569
Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In *International conference on machine learning*, pp. 1691–
1703. PMLR, 2020.570
571
572
573
Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition*, pp. 8188–8197, 2020.574
575
576
Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
In *The Thirteenth International Conference on Learning Representations*, 2025.577
578
579
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In *2009 IEEE conference on computer vision and pattern recogni-
tion*, pp. 248–255. Ieee, 2009.581
582
583
Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion*, pp. 12873–12883, 2021.585
586
587
Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The sta-
ble signature: Rooting watermarks in latent diffusion models. In *Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV)*, pp. 22466–22477, October 2023.588
589
Frank Ephraim Grubbs. *Sample criteria for testing outlying observations*. University of Michigan,
1949.591
592
593
Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10696–10706,
June 2022.

594 Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
 595 models. *arXiv preprint arXiv:2410.07369*, 2024.
 596

597 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 598 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *Pro-
 599 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 600 2025.

601 Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
 602 In *International Conference on Machine Learning*, pp. 22570–22593. PMLR, 2024.
 603

604 Nikola Jovanović, Ismail Labiad, Tomáš Souček, Martin Vechev, and Pierre Fernandez. Watermark-
 605 ing autoregressive image generation. *arXiv preprint arXiv:2506.16349*, 2025.

606 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 607 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 608 recognition*, pp. 4401–4410, 2019.

609

610 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
 611 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on
 612 computer vision and pattern recognition*, pp. 8110–8119, 2020.

613

614 Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
 615 Timo Aila. Alias-free generative adversarial networks. *Advances in neural information processing
 616 systems*, 34:852–863, 2021.

617 Louis Kerner, Michel Meintz, Bihe Zhao, Franziska Boenisch, and Adam Dziedzic. Bitmark
 618 for infinity: Watermarking bitwise autoregressive image generative models. *arXiv preprint
 619 arXiv:2506.21209*, 2025.

620

621 Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, and Yezhou Yang. Wouaf: Weight
 622 modulation for user attribution and fingerprinting in text-to-image diffusion models. In *2024
 623 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8974–8983,
 624 2024. doi: 10.1109/CVPR52733.2024.00857.

625

626 Antoni Kowalcuk, Jan Dubiński, Franziska Boenisch, and Adam Dziedzic. Privacy attacks on
 627 image autoregressive models. In *Forty-second International Conference on Machine Learning*,
 628 2025.

629

630 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 631 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 56424–56445, 2024.

632

633 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 634 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
 635 vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-
 636 ceedings, part v 13*, pp. 740–755. Springer, 2014.

637

638 Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models
 639 for constrained and watermarked generation. In *Thirty-seventh Conference on Neural Information
 Processing Systems*, 2023.

640

641 Arpan Mahara and Naphtali Rishe. Methods and trends in detecting generated images: A com-
 642 pre-
 643 hensive review, 2025.

644

645 Michel Meintz, Jan Dubiński, Franziska Boenisch, and Adam Dziedzic. Radioactive watermarks in
 646 diffusion and autoregressive image generative models. 2025.

647

648 Guangyu Nie, Changhoon Kim, Yezhou Yang, and Yi Ren. Attributing image generative models us-
 649 ing latent fingerprints. In *Proceedings of the 40th International Conference on Machine Learning,
 650 ICML’23*. JMLR.org, 2023.

648 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 649 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 650 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

651

652 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
 653 token: Next-x prediction for autoregressive visual generation. *arXiv preprint arXiv:2502.20388*,
 654 2025.

655

656 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 657 resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer
 658 Vision and Pattern Recognition*, 2022.

659

660 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 661 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 662 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 663 tion processing systems*, 35:36479–36494, 2022.

664

665 Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
 666 MI-leaks: Model and data independent membership inference attacks and defenses on machine
 667 learning models. In *Network and Distributed System Security Symposium (NDSS)*, 2019.

668

669 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 670 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 671 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 672 formation processing systems*, 35:25278–25294, 2022.

673

674 Chenze Shao, Fandong Meng, and Jie Zhou. Continuous visual autoregressive generation via score
 675 maximization. In *Forty-second International Conference on Machine Learning*, 2025.

676

677 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 678 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 679 pp. 3–18. IEEE, 2017.

680

681 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 682 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 683 2024.

684

685 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 686 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 687 arXiv:2406.06525*, 2024.

688

689 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 690 Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with hybrid autoregressive
 691 transformer. In *The Thirteenth International Conference on Learning Representations*, 2025.

692

693 Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
 694 diffusion models, 2023.

695

696 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 697 arXiv:2405.09818*, 2024.

698

699 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 700 Scalable image generation via next-scale prediction. *Advances in neural information processing
 701 systems*, 37:84839–84865, 2024.

702

703 Yu Tong, Zihao Pan, Shuai Yang, and Kaiyang Zhou. Training-free watermarking for autoregressive
 704 image generation. *arXiv preprint arXiv:2505.14673*, 2025.

705

706 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 707 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 708 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

702 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 703 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 704 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

705 Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
 706 ditional image generation with pixelcnn decoders. *Advances in neural information processing*
 707 *systems*, 29, 2016.

708 Chao Wang, Kejiang Chen, Zijin Yang, Yaofei Wang, and Weiming Zhang. Aedr: Training-
 709 free ai-generated image attribution via autoencoder double-reconstruction. *arXiv preprint*
 710 *arXiv:2507.18988*, 2025a.

712 Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, and Shiqing Ma. Where did i come from?
 713 origin attribution of ai-generated images. *Advances in neural information processing systems*, 36:
 714 74478–74500, 2023.

715 Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, and Shiqing Ma.
 716 How to trace latent generative model generated images without artificial watermark? In *ICML*,
 717 2024.

719 Ziyi Wang, Songbai Tan, Gang Xu, Xuerui Qiu, Hongbin Xu, Xin Meng, Ming Li, and Fei Richard
 720 Yu. Safe-var: Safe visual autoregressive model for text-to-image generative watermarking. *arXiv*
 721 *preprint arXiv:2503.11324*, 2025b.

722 Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings watermarks: Invisi-
 723 ble fingerprints for diffusion images. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
 724 and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 58047–
 725 58063. Curran Associates, Inc., 2023.

727 Sierra Wyllie, Ilia Shumailov, and Nicolas Papernot. Fairness feedback loops: training on synthetic
 728 data amplifies bias. In *Proceedings of the 2024 ACM Conference on Fairness, Accountability, and*
 729 *Transparency*, pp. 2113–2147, 2024.

730 Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
 731 check for AI-generated image detection. In *The Thirteenth International Conference on Learning*
 732 *Representations*, 2025.

733 Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao
 734 Wu, and Shu-Tao Xia. Icas: Detecting training data from autoregressive image generative models.
 735 In *Proceedings of the 33rd ACM International Conference on Multimedia*, pp. 11209–11217,
 736 2025.

737 Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
 738 Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan
 739 Yang, Irfan Essa, David A Ross, and Lu Jiang. Language model beats diffusion - tokenizer is
 740 key to visual generation. In *The Twelfth International Conference on Learning Representations*,
 741 2024a.

743 Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. Artificial fingerprinting for gen-
 744 erative models: Rooting deepfake attribution in training data. In *2021 IEEE/CVF International*
 745 *Conference on Computer Vision (ICCV)*, pp. 14428–14437, 2021. doi: 10.1109/ICCV48922.
 746 2021.01418.

747 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
 748 sive visual generation, 2024b. URL <https://arxiv.org/abs/2411.00776>.

749 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 750 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 751 *computer vision and pattern recognition*, pp. 586–595, 2018.

753 Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, and Jiwen
 754 Lu. D3qe: Learning discrete distribution discrepancy-aware quantization error for autoregressive-
 755 generated image detection. In *Proceedings of the IEEE/CVF International Conference on Com-*
puter Vision, pp. 16292–16301, 2025.

756 Xuandong Zhao, Sam Gunn, Miranda Christ, Jaiden Fairoze, Andres Fabrega, Nicholas Carlini,
757 Sanjam Garg, Sanghyun Hong, Milad Nasr, Florian Tramer, Somesh Jha, Lei Li, Yu-Xiang Wang,
758 and Dawn Song. Sok: Watermarking for ai-generated content, 2025.
759
760 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, and Min Lin. A recipe for
761 watermarking diffusion models, 2023.
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A DETAILED ALGORITHM OF OPTIMIZED TOKEN SEARCH
811

812 We present the original quantization algorithm for VAR in Algorithm 2, the original dequantization
813 algorithm for VAR in Algorithm 1, and the detailed algorithm of the optimized token search for VAR
814 in Algorithm 3. The part introducing errors due to scalewise structure for VAR quantization in Al-
815 gorithm 2 is marked in red. The common procedures for original VAR dequantization (Algorithm 1)
816 and our approach (Algorithm 3) are marked in blue.

817 We observe that in the dequantization process in VAR (Algorithm 1), the representations in all
818 scales are upscaled and added to the final feature map (row 5-6). However, during the quantization
819 process (Algorithm 2), the feature map is considered as a whole during the codebook lookup (row 6).
820 Therefore, if we quantize a feature map of a generated image on scale k , all the token representations
821 from scales $> k$ are also part of the feature map during this lookup process, which leads to an error
822 of the current-scale quantization.

823 As shown by Algorithm 3, the goal of our algorithm is to search for a scalewise token combination
824 from the codebook that has a minimal distance to a given feature map by backpropagation. For each
825 element in the token map, we initialize N logits corresponding to N entries in the codebook (row 2).
826 An estimated feature map is then calculated according to the logits (row 4-11). Then we employ the
827 gradient descent algorithm to minimize the distance between the estimated and target feature map
828 (row 12-13). The intuition to detect images generated by VAR is the following: For a feature map
829 generated by VAR, our algorithm enables the originally generated tokens to gradually have higher
830 logit values with more iterations, and finally reduces the QuantLoss largely. Any feature map not
831 generated by VAR cannot be easily represented by tokens from the codebook, so the QuantLoss
832 remains high even after this optimization.

833
834 **Algorithm 1** Original Dequantization for VAR

835 **Inputs:** multi-scale token maps t , codebook Z

836 **Hyperparameters:** number of scales K , resolutions $\{(h_k, w_k)\}_{k=1}^K$

```
837 1:  $\hat{f} \leftarrow 0$                                 ▷ Initialize reconstructed feature map
838 2: for  $k \leftarrow 1$  to  $K$  do                  ▷ Iterate through all scales
839   3:    $t_k \leftarrow \text{QUEUE\_POP}(t)$           ▷ Obtain tokens from a given scale
840   4:    $z_k \leftarrow \text{LOOKUP}(Z, t_k)$           ▷ Look up codebook vectors for tokens
841   5:    $z_k \leftarrow \text{INTERPOLATE}(z_k, h_K, w_K)$  ▷ Upscale to full resolution
842   6:    $\hat{f} \leftarrow \hat{f} + \phi_k(z_k)$            ▷ Add processed features to reconstruction
843 7: return  $\hat{f}$                                 ▷ Return reconstructed image
```

845
846 **Algorithm 2** Original Quantization for VAR

847 **Inputs:** image x , encoder E , quantizer Q , codebook Z

848 **Hyperparameters:** number of scales K , resolutions $\{(h_k, w_k)\}_{k=1}^K$

```
849 1:  $f \leftarrow E(x)$                                 ▷ Encode image to get the feature map
850 2:  $t \leftarrow []$                                  ▷ Initialize empty queue for multi-scale tokens
851 3: for  $k \leftarrow 1$  to  $K$  do                  ▷ Iterate through all scales
852   4:    $r_k \leftarrow Q(\text{INTERPOLATE}(f, h_k, w_k))$  ▷ Quantize interpolated features to current scale
853   5:    $t \leftarrow \text{QUEUE\_PUSH}(t, r_k)$           ▷ Add tokens to the token map
854   6:    $z_k \leftarrow \text{LOOKUP}(Z, r_k)$           ▷ Look up codebook vectors for tokens
855   7:    $z_k \leftarrow \text{INTERPOLATE}(z_k, h_K, w_K)$  ▷ Upscale to full resolution
856   8:    $f \leftarrow f - \phi_k(z_k)$            ▷ Subtract processed features from residual
857 9: return  $t$                                 ▷ Return multi-scale tokens
```

858
859 B ADDITIONAL RELATED WORK
860

862 **LlamaGen** (Sun et al., 2024) demonstrated that vanilla autoregressive models, without inductive
863 biases on visual signals, can achieve state-of-the-art image generation performance if scaling prop-
erly. There are three keys to its success. (1) A well-designed image compressor, which balances

864 **Algorithm 3** Optimized Quantization for VAR

865
866 **Inputs:** image x , encoder E , codebook $Z = \{z_1, \dots, z_N\}$ with a size of N , gradient descent algo-
867 rithm $\text{GD}(\cdot)$
868 **Hyperparameters:** number of scales K , resolutions $\{(h_k, w_k)\}_{k=1}^K$, number of iterations N_{iters}
869 1: $f \leftarrow E(x)$ ▷ Encode image to get the feature map
870 2: $L \leftarrow \{l_k\}_{k=1}^K$ ▷ Initialize the token maps logits. l_k has a shape of (h_k, w_k, N)
871 3: $\hat{f} \leftarrow 0$ ▷ Initialize the estimated feature map
872 4: **for** $n_{iters} \leftarrow 1$ to N_{iters} **do** ▷ Optimization iterations
873 5: **for** $k \leftarrow 1$ to K **do** ▷ Iterate through all scales to calculate features on each scale
874 6: **for** $i \leftarrow 1$ to h_k **do** ▷ Iterate through features in the current scale
875 7: **for** $j \leftarrow 1$ to w_k **do**
876 8: $p \leftarrow \text{SOFTMAX}(l[k][i][j])$ ▷ Calculate the probabilities of all codebook entries
877 9: $z[k][i][j] \leftarrow \sum_{t=1}^N p_t \cdot z_t$ ▷ Calculate the feature averaged on the probabilities
878 10: $z[k] \leftarrow \text{INTERPOLATE}(z[k], h_K, w_K)$ ▷ Upscale the feature map to full resolution
879 11: $\hat{f} \leftarrow \hat{f} + \phi_k(z[k])$ ▷ Process with convolution and add to the estimated feature map
880 12: $E = \frac{1}{h_K w_K} \sum_{i=1}^{h_K} \sum_{j=1}^{w_K} (\hat{f}[i][j] - f[i][j])^2$
881 13: $L \leftarrow \text{GD}(L, E)$ ▷ Perform gradient descent on the logits L to minimize E
882 14: $t \leftarrow \{\{\arg \max_n l[k][i][j]\}_{j=1}^{w_k}\}_{i=1}^{h_k}\}_{k=1}^K$ ▷ Calculate the final tokens by taking highest logits
883 15: **return** t

884
885
886 the trade-off between image quality and codebook utilization by opting for the down-sample ratio of
887 $p = 16$. (2) A scalable image generation model developed based on the Llama architecture (Touvron
888 et al., 2023a;b) used for LLMs, and (3) high-quality training data, especially with the finetuning on
889 10 M high aesthetics quality images.

890 **Token Mismatch.** The first papers on watermarking already observed a mismatch between the
891 generated tokens for a given image and the image's re-encoded tokens (Meintz et al., 2025; Kerner
892 et al., 2025; Jovanović et al., 2025; Tong et al., 2025). The problem stems primary from the decoder-
893 encoder pairs which are not trained to optimize for the token match (see the training optimization
894 with the compound loss, for example, in VAR by Tian et al. (2024), Equation 5). The standard
895 training only ensures small loss between the original and generated images as well as between the
896 latent representations after encoding and before the decoding. An additional term is the recon-
897 structed image quality, which is measured, for example, with the LPIPS (Zhang et al., 2018) or
898 StyleGAN's discriminator loss (Karras et al., 2019). Despite the mismatch, the token-based water-
899 marks from Meintz et al. (2025) and bit-wise watermark proposed by Kerner et al. (2025), were
900 able to still provide a highly-robust detection of the generated content. The other line of work
901 by Jovanović et al. (2025) and Tong et al. (2025) further propose to finetune the encoder-decoder
902 or encoder-only, respectively, to compensate for the token-index reconstruction errors. We leverage
903 the inherent property of IARs with their discrete codebook and the encoding errors by showing that
904 the significantly higher errors for the natural images allow us to distinguish them from the generated
905 images.

906 **Vector Quantization in IARs.** The token-based image generation in IARs has the underlying prin-
907 ciple inherited from LLMs, where each next predicted token is represented as an index of one of the
908 entries in the codebook. The codebook stores a collection of relatively small dimensional repres-
909 entation vectors which constitute building blocks of an image. The generated tokens are decoded to a
910 full-dimensional image. Any image can be encoded to the token latent space. The encoder performs
911 feature extraction through a multi-layer convolutional layers with down-sampling to the latent space,
912 which results in a collection of encoded small dimensional representation vectors. These vectors are
913 compared with the entries in the codebook to obtain the integer indices of the tokens.

914 **C IMPLEMENTATION DETAILS**

915
916 **Finetuning.** Our finetuning of D^{-1} follows the pipeline in Figure 2, where we first generate tokens
917 with the corresponding AR model, embed them to the original feature map f_Z and use the frozen

decoder D to generate images x_Z . We detail the finetuning hyperparameters, such as the number of images, the batch size and learning rate for every model in Table A1. All experiments were conducted on a single NVIDIA A40 GPU with 48GB of memory.

Table A1: Finetuning details for different models.

Method	Number of Finetuning Data	Epoch	Batch Size	Optimizer	Learning Rate	Scheduler	Scheduler Configuration
LlamaGen	50000	25	8	Adam	1×10^{-5}	StepLR	Gamma=0.9, Step=2
Taming	50000	50	8	Adam	5×10^{-4}	StepLR	Gamma=0.9, Step=2
RAR	50000	50	8	Adam	5×10^{-4}	StepLR	Gamma=0.9, Step=2
VAR	50000	10	16	Adam	5×10^{-5}	StepLR	Gamma=0.9, Step=2
Infinity	10000	10	2	Adam	1×10^{-5}	StepLR	Gamma=0.9, Step=2
VQ Diffusion	10000	50	16	Adam	5×10^{-5}	StepLR	Gamma=0.9, Step=2

Augmentations. For the robustness evaluation in Table 2, we apply augmentations during the finetuning of RAR and Taming to improve the robustness against image post-processing methods. We progressively apply weak to strong augmentations during 50 epochs of finetuning, where a more detailed recipe can be found in Table A2.

Table A2: Augmentation hyperparameters during finetuning.

Strength	Epochs	JPEG-Compression (Final Quality)	Gaussian Blur (Kernel Size)	Gaussian Noise (Standard Deviation)	Brightness (Factor)	Saturation (Factor)	Resize (Ratio)	Contrast (Factor)
None	1-5	-	-	-	-	-	-	-
Weak	6-10	[90, 85, 80]	[1, 3]	[0.005, 0.01, 0.02]	[1.0, 1.1, 1.2]	[1.0, 1.2, 1.5]	[0.9, 0.85, 0.8]	[1.0, 1.2, 1.5]
Medium	11-30	[80, 75, 70, 65]	[3, 5]	[0.02, 0.03, 0.04]	[1.3, 1.4, 1.5]	[1.5, 1.7, 2.0]	[0.8, 0.75, 0.7]	[1.5, 1.7, 2.0]
Strong	31-50	[60, 55, 50]	[5, 7, 9]	[0.03, 0.04, 0.05]	[1.5, 1.7, 2.0]	[2.0, 2.2, 2.5]	[0.7, 0.6, 0.5]	[2.0, 2.2, 2.4]

Hyperparameters for Optimized Quantization. For the optimized quantization of VAR, we use 1200 iterations with a learning rate of 0.1, batch size of 8, and the Adam optimizer. We use the original quantization in VAR (Algorithm 2) as initialization. We perform an analysis of the hyperparameters in Table 6.

Robustness. In Table 2 we evaluate the following methods: 1) **Noise**: Adds Gaussian noise with a std of 0.05 to the image, 2) **Kernel**: Application of a Gaussian Blur with kernel size of 9, 3) **JPEG**: 60% JPEG compression, 4) **Brightness**: Increasing the brightness to 1.6, 5) **Contrast**: Changing the contrast to 2.0, 6) **Saturation**: Increasing the Saturation to 2.0, 7) **Resizing**: Decreasing the resolution of the image to 50% of its original resolution. An extended analysis of the impact of the strength of each attack can be found in Appendix H.

D IMPLEMENTATION DETAILS FOR BASELINE METHODS

Reconstruction. For this naïve baseline, we compute the loss $\mathcal{L}_{\text{rec}} = \|x - x_1\|_2$ between the original image x and its first reconstruction $x_1 = D(Q(Q^{-1}(D^{-1}(x)))$ and use it to decide whether the image was generated by the model or not.

LatentTracer. (Wang et al., 2024) We optimize for 100 iterations with the Adam optimizer. The learning rate is 0.01, which decays by 50% after 50 iterations. The feature map is initialized as the quantized feature map encoded by the encoder.

AEDR. We follow the method proposed by Wang et al. (2025a) and calculate the calibrated loss $\mathcal{L}_{\text{cal}} = \frac{\mathcal{L}_{\text{rec}_1}}{\mathcal{L}_{\text{rec}_2}}$ between a first image reconstruction $x_1 = D(Q(Q^{-1}(D^{-1}(x)))$ with the first reconstruction loss $\mathcal{L}_{\text{rec}_1} = \|x - x_1\|_2$ and the second image reconstruction $x_2 = D(Q(Q^{-1}(D^{-1}(x_1)))$ with the second reconstruction loss $\mathcal{L}_{\text{rec}_2} = \|x_1 - x_2\|_2$.

E EXPERIMENTAL ENVIRONMENT

Hardware. Our experiments are performed on Ubuntu 22.04, with Intel(R) Xeon(R) Gold 6330 CPU and NVIDIA A40 Graphics Card with 48 GB of memory.

972 **Software.** To run our experiments we used CUDA Version 12.5 and Python 3.12.4 with PyTorch
 973 2.7.0.
 974

975 F THE DISTRIBUTIONS OF DIFFERENT METHODS 976

977 We analyze the distributions of the best-performing signals from Table 1 in Figure A1. We compute
 978 the loss for **all** non-belonging datasets, *i.e.*, the generated and natural datasets and compare it to
 979 the loss of the belonging dataset. The different distributions are calculated for both the original
 980 encoder and our finetuned Inverse Decoder D^{-1} . Figure A1 clearly shows, that the Inverse Decoder
 981 is necessary to reduce the overlap between the belonging and non-belonging loss distributions. This
 982 results in our method achieving near 100% TPR@1%FPR for data provenance.
 983

984 The Combined Loss distributions for most models show an increase of the non-belonging data loss,
 985 while it decreases slightly for the belonging data. This behavior is related to the EncLoss, which is
 986 based on the ratio between the first and second reconstruction, as we formulate in Equation (10). The
 987 ratio converges to 1 for belonging images, as the difference between the first reconstruction loss and
 988 second reconstruction loss decreases. Similar for non-belonging images the second reconstruction
 989 loss decreases. However the first reconstruction loss stays consistent, as the image does not originate
 990 from the models codebook. This leads to an overall higher loss ratio and a higher Combined Loss.
 991

992 G RUNNING TIME COMPARISON 993

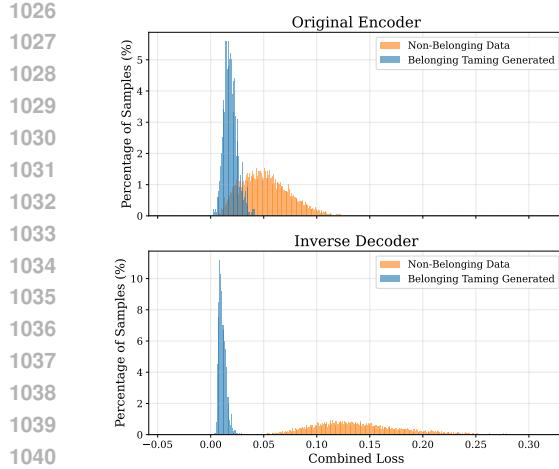
994 **Running Time.** We compare the running time to determine our QuantLoss with the given baselines.
 995 As shown in table A3, after finetuning, our method is by far the fastest, followed by Reconstruction,
 996 then AEDR and finally LatentTracer, which with a running time of multiple seconds is the slowest
 997 method. **We also estimate the pre-training time of different models. Notably, our inverse decoder**
 998 **finetuning is a relatively small overhead compared to the model pre-training stage. For example, the**
 999 **finetuning time is less than 0.05% compared to the pre-training time for LlamaGen.**

1000 Table A3: **Running time comparison.** We instantiate our method as only using QuantLoss for
 1001 LlamaGen, RAR, Taming, VQ-Diffusion and Infinity, while using QuantLoss Opt for VAR. **We also**
 1002 **include an estimation of model pre-training time for each IAR.**

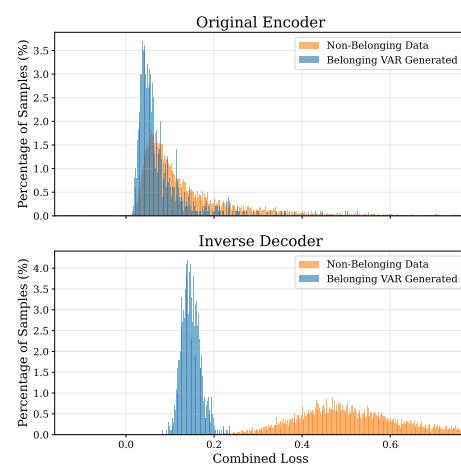
Model	Stage	LatentTracer	Reconstruction	AEDR	Ours (<i>QuantLoss</i>)
LlamaGen	Model Pre-training (hours)	>18000	>18000	>18000	>18000
	D^{-1} Finetuning (hours)	-	-	-	8.6
	Attribution (second/sample)	5.305	0.015	0.030	0.009
RAR	Model Pre-training (hours)	>20000	>20000	>20000	>20000
	D^{-1} Finetuning (hours)	-	-	-	31.9
	Attribution (second/sample)	2.359	0.014	0.028	0.009
Taming	Model Pre-training (hours)	>20000	>20000	>20000	>20000
	Pre-training (hours)	-	-	-	42.1
	Attribution (second/sample)	3.674	0.013	0.024	0.006
VQ-Diffusion	Model Pre-training (hours)	>10000	>10000	>10000	>10000
	D^{-1} Finetuning (hours)	-	-	-	4.9
	Attribution (second/sample)	3.112	0.022	0.043	0.008
Infinity	Model Pre-training (hours)	>50000	>50000	>50000	>50000
	D^{-1} Finetuning (hours)	-	-	-	14.9
	Attribution (second/sample)	84.897	0.202	0.776	0.197
VAR	Model Pre-training (hours)	>20000	>20000	>20000	>20000
	D^{-1} Finetuning (hours)	-	-	-	10.8
	Attribution (second/sample)	4.653	0.016	0.031	8.249

1022 H EXTENDED ROBUSTNESS EVALUATION 1023

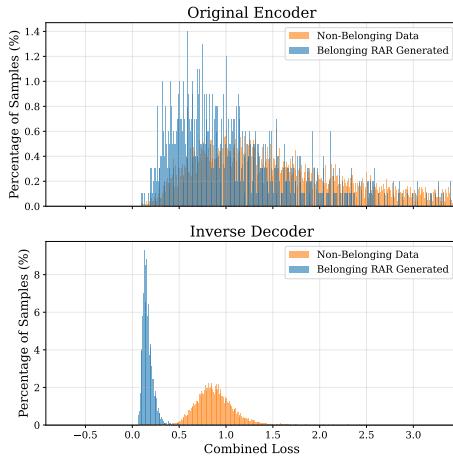
1024 We further analyze the robustness of our framework against different attack strengths in Figure A2
 1025 (RAR) and Figure A3 (Taming). The results show that our proposed attribution with QuantLoss



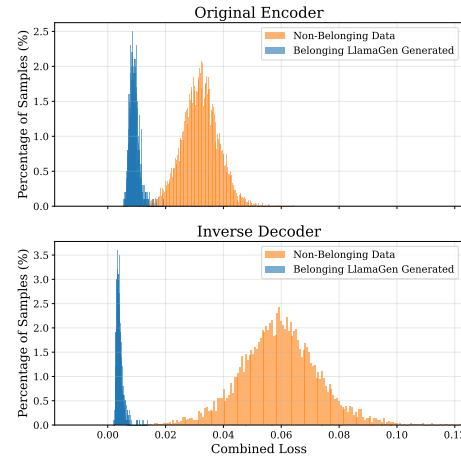
(a) Combined Loss distribution for Taming.



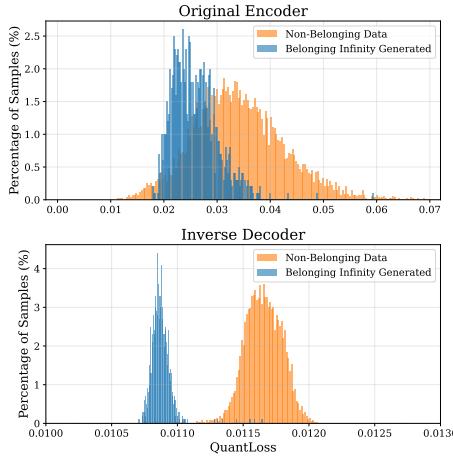
(b) Combined Loss distribution for VAR.



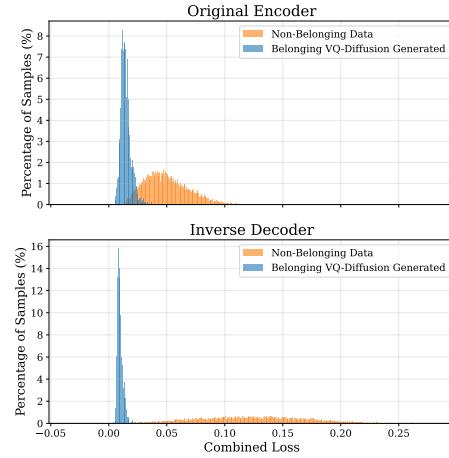
(c) Combined Loss distribution for RAR.



(d) Combined Loss distribution for LlamaGen.



(e) QuantLoss distribution for Infinity.



(f) Combined Loss distribution for VQ-Diffusion.

Figure A1: Distribution for Combined Loss for different models for the original encoder and the finetuned Inverse Decoder.

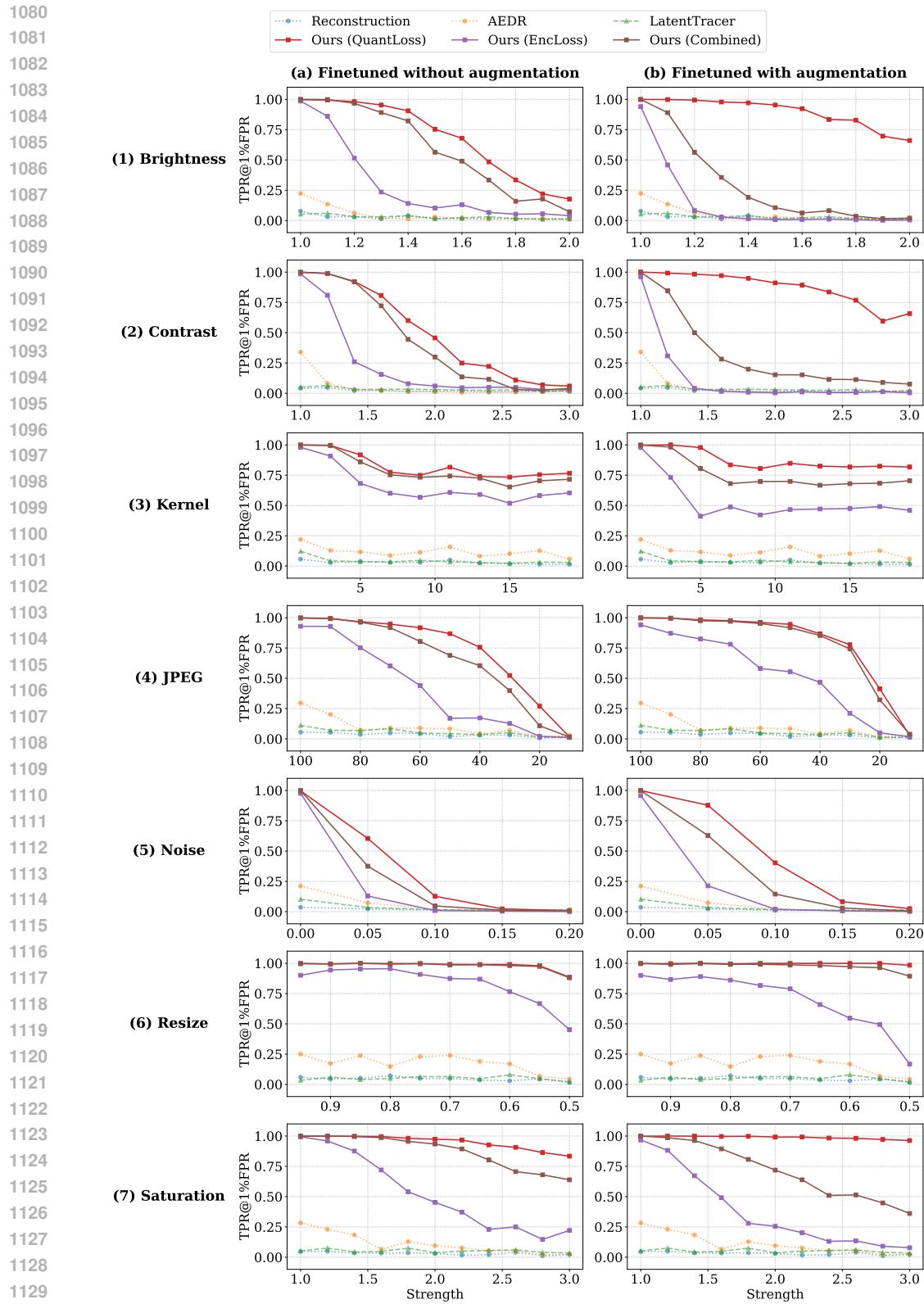


Figure A2: Robustness Test for RAR on 7 common image post-processing techniques.

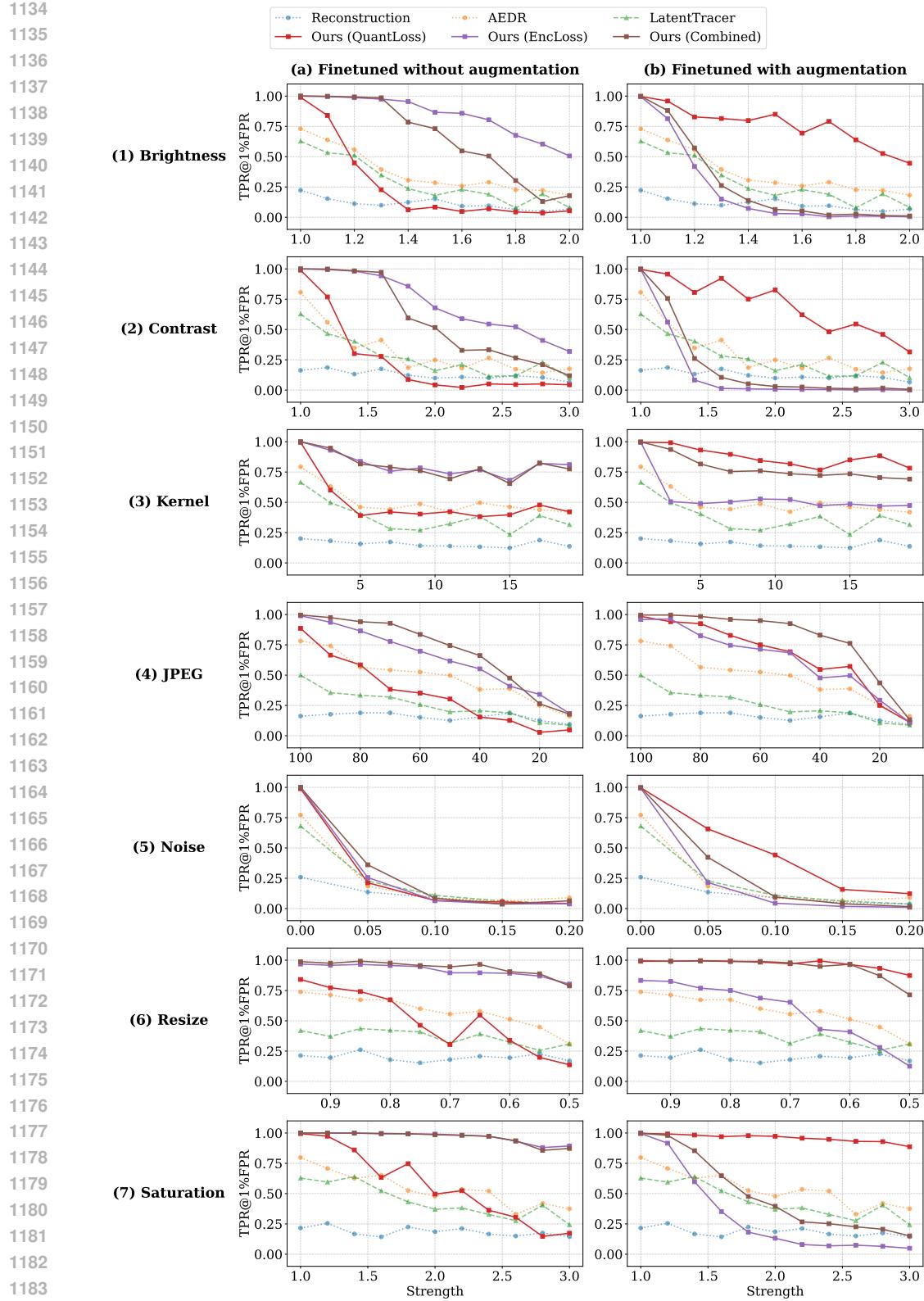


Figure A3: Robustness Test for Taming on 7 common image post-processing techniques.

achieves a high TPR@1%FPR for most attacks, outperforming the three baseline methods by a large margin, especially after finetuning with augmentations. Meanwhile, we also observe an interesting fact that our attribution by EncLoss performs worse after the augmentation. Here, we provide an intuition on why finetuning with augmentations works better for QuantLoss but worse for EncLoss.

The improved performance of QuantLoss after finetuning with augmentation can be attributed to the loss \mathcal{L}_{inv} in Equation (6), where we optimize D^{-1} to reconstruct the original feature map. On the finetuning setting **without** augmentations, the loss can be rewritten as:

$$\mathcal{L}_{\text{inv}} = \|f_Z - D^{-1}(\text{img})\|_2, \quad (12)$$

where img is the initial image reconstruction $D(f_Z)$. When training **with** augmentations, the augmentations are applied to img , which leads to an augmented version of our loss function:

$$\mathcal{L}_{\text{inv}} = \|f_Z - D^{-1}(\text{Aug}(\text{img}))\|_2. \quad (13)$$

Here, we want to invert an augmented, generated image to the feature map f_Z . Therefore, the tokens can still be well reconstructed for belonging images even after augmentation, which leads to the better performance of our QuantLoss.

However, the target feature map f_Z is the original **un-augmented** feature map. When we optimize D^{-1} to reconstruct f_Z , the $D(D^{-1}(\text{Aug}(\text{img})))$ becomes closer to the **un-augmented** image img . As a result, we actually train D^{-1} to "remove" the augmentation and increase the loss for the EncLoss, as the loss for belonging images is now the loss of the augmentation:

$$\mathcal{L}_{\text{Enc}} = \|\text{Aug}(\text{img}) - \text{img}\|_2.$$

The EncLoss distributions of belonging and non-belonging images are now more overlapping, leading to lower TPR@1%FPR. Due to our construction of $\mathcal{L}_{\text{Comb}}$, the overlapping distributions of the EncLoss have a negative impact on the combined provenance signal. Therefore in settings, where robustness is critical, the QuantLoss provides a reliable provenance signal.

I AE ATTRIBUTION OR AR ATTRIBUTION

In this work, we choose to attribute images to the autoencoder (AE) instead of the autoregressive (AR) model. We think AE attribution is more important than AR attribution for IAR data provenance for the following reason: if different AR models are based on the same AE model and training data, they are essentially trained on the same token sequence. Those AE models are trained to fit the same token distribution, so they have similar probabilities of a generated image. Therefore, we find it more significant to detect that an image is from the autoencoder of a given IAR.

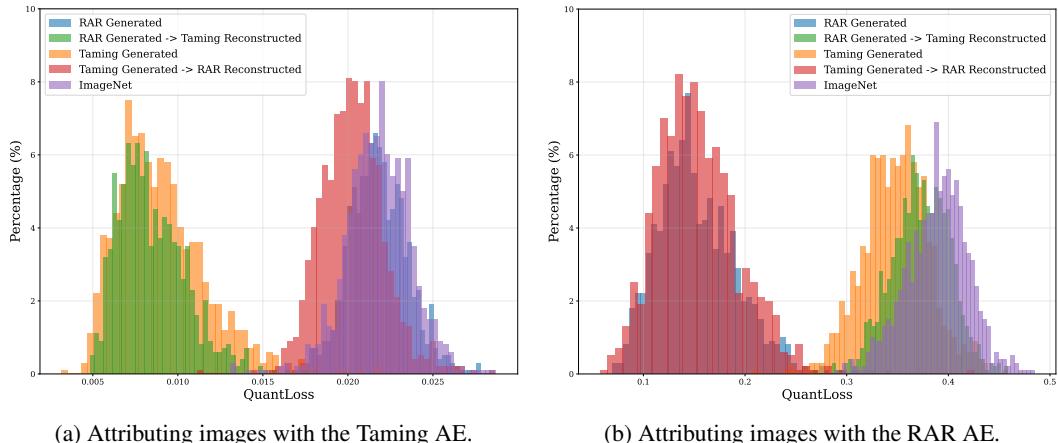


Figure A4: **Only the final AE decoding is significant for AE attribution.** We analyze the setting of 1. Taming Generated \rightarrow 2. RAR Encoded + Generated and vice versa.

We analyze the AE attribution in Figure A4 and observe that only the final AE generation is significant for attribution. Specifically, we generate 1,000 token maps with the underlying AR model (e.g.,

RAR). These are decoded with the RAR decoder yielding the blue distribution in Figure A4b with a low QuantLoss. However, we can observe that the setting of Generated by RAR → then Encoded + Generated by the Taming AE, there is a clear distribution shift (green) such that the images are no longer attributed as belonging to RAR but to Taming.

This occurs due to the different codebook Z and latent space of different AEs, where the original signal by the first AE (e.g., RAR) is overwritten by the signal of the second AE (e.g., Taming). The image originally constructed of the first codebook is now reconstructed by the second codebook removing the traces of the first.

J EXTENDED RESULTS WITH MORE CONFIGURATIONS

We show an extended version of our main results in Table A5 for all single-scale models and in Table A4 for all multi-scale models. We use different colors for the baselines; Reconstruction, AEDR and LatentTracer, our EncLoss and QuantLoss and our Combined Loss.

Table A4: **TPR@1%FPR (%) for multi-scale IARs under different settings.** Here, the belonging images are generated by the model specified in the first column, and the non-belonging images are from 3 natural image datasets or generated by the other IARs. "Double Ratio" denotes the ratio between the losses of the first and second reconstruction. "FT" denotes using the finetuned decoder inversion.

Model	Method	FT	Double Ratio	Natural			Generated					
				ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
LatentTracer		-	-	3.9	1.3	12.0	0.2	5.6	0.1	-	15.4	15.3
Reconstruction Loss		✗	✗	1.4	1.4	3.6	0.1	1.6	0.0	-	5.9	5.9
		✓	✓	29.1	15.7	50.6	14.7	28.3	14.0	-	37.5	50.8
		✓	✗	2.3	2.9	6.6	0.3	2.7	0.0	-	10.5	10.4
EncLoss		✓	✓	32.7	12.2	47.5	3.8	15.0	3.8	-	36.5	33.5
		✗	✗	2.5	0.8	6.0	0.2	2.1	0.0	-	6.9	6.5
		✓	✓	1.5	2.2	5.0	10.1	2.3	8.3	-	5.9	5.0
VAR		✓	✗	17.0	15.8	31.8	6.1	21.7	1.4	-	41.4	41.5
		✓	✓	100.0	96.8	100.0	98.1	100.0	99.7	-	100.0	100.0
		✗	✗	0.4	0.0	2.0	0.0	0.5	0.0	-	4.5	2.1
QuantLoss		✓	✓	14.1	37.7	37.0	0.0	20.0	0.0	-	97.4	96.0
		✓	✗	0.4	0.0	10.0	0.0	4.5	0.0	-	13.4	1.6
		✓	✓	0.3	0.0	5.6	0.0	7.1	0.0	-	5.5	4.0
QuantLoss +Opt		✗	✗	3.5	3.1	6.8	1.0	4.9	0.6	-	9.5	6.8
		✓	✓	3.2	5.4	2.3	2.1	6.6	2.3	-	5.2	6.1
		✓	✗	95.0	92.9	94.4	89.8	94.5	88.4	-	95.7	95.2
Combined Loss		✓	✓	10.3	2.0	14.1	1.0	15.0	3.3	-	8.6	6.3
		✗	-	2.7	3.5	5.4	8.4	3.2	6.3	-	8.4	7.8
		✓	-	100.0	99.2	100.0	99.2	100.0	100.0	-	100.0	100.0
LatentTracer		-	-	0.0	0.0	10.9	31.7	0.2	0.0	5.8	-	5.3
		✗	✗	0.0	0.0	16.6	0.0	1.3	0.0	2.8	-	0.0
		✓	✓	0.4	0.1	0.1	0.1	51.6	0.4	17.5	-	4.5
Reconstruction Loss		✓	✗	0.2	0.3	1.6	0.0	0.1	0.0	0.2	-	0.5
		✓	✓	0.3	97.2	99.2	2.2	1.9	1.1	42.5	-	27.0
		✗	✗	0.0	0.2	0.8	0.0	0.0	0.0	0.2	-	0.3
Infinity		✗	✓	0.9	11.3	12.3	0.1	1.0	0.1	2.1	-	4.2
		✓	✗	0.3	2.5	4.5	0.1	0.2	0.0	0.8	-	1.3
		✓	✓	0.0	94.9	98.9	1.4	0.6	0.4	11.8	-	35.1
EncLoss		✗	✗	0.0	0.0	16.6	0.0	1.3	0.0	2.8	-	0.0
		✓	✓	0.4	0.1	0.1	0.1	51.6	0.4	17.5	-	4.5
		✓	✗	99.4	85.6	99.4	99.2	99.5	99.1	99.4	-	99.4
QuantLoss		✓	✓	0.1	0.0	0.1	0.1	0.7	0.1	0.1	-	0.1
		✓	✗	0.1	0.0	0.1	0.1	0.7	0.1	0.1	-	0.1
		✗	-	0.1	0.0	29.6	0.0	2.5	0.0	5.4	-	0.9
Combined Loss		✓	✓	0.0	98.2	100.0	9.1	3.4	1.1	57.3	-	76.6
		✗	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0

1296 Table A5: **TPR@1%FPR (%) for single-scale models under different settings.** Here, the belonging-
 1297 images are generated by the model specified in the first column, and the non-belonging images
 1298 are from 3 natural image datasets or generated by the other IARs. "Double Ratio" denotes the ratio
 1299 between the losses of the first and second reconstruction. "FT" denotes using the finetuned encoder.
 1300

1301 Model	1302 Method	1303 FT	1304 Double 1305 Ratio	1306 Natural			1307 Generated								
				1308 ImageNet	1309 LAION	1310 MS-COCO	1311 LlamaGen	1312 RAR	1313 Taming	1314 VAR	1315 Infinity	1316 VQDiff			
1303 LatentTracer	1304 Reconstruction Loss	1305 LlamaGen	1306 EncLoss	-	-	93.5	89.2	97.9	-	96.3	80.7	96.9	99.0	98.7	
				✗	✗	33.6	34.0	44.3	-	39.7	4.3	45.7	70.0	63.0	
				✓	✓	50.9	55.3	50.5	-	59.5	57.7	67.0	70.7	68.1	
				✓	✗	98.0	98.3	98.3	-	98.3	90.0	98.5	99.3	99.2	
				✓	✓	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	
				✗	✗	5.4	4.5	9.6	-	8.1	0.6	9.9	27.9	22.5	
				✗	✓	99.7	83.5	99.6	-	99.6	94.2	99.6	99.8	99.8	
				✓	✗	19.0	23.8	34.3	-	26.4	2.8	32.8	63.4	54.9	
				✓	✓	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0	
1309 QuantLoss	1310 Combined Loss	1311 RAR	1312 EncLoss	✗	✗	98.9	78.2	99.9	-	99.9	98.4	98.2	100.0	97.5	
				✓	✓	93.5	66.3	99.2	-	98.1	97.3	99.3	99.4	97.5	
				✓	✗	100.0	99.8	100.0	-	100.0	100.0	100.0	100.0	100.0	
				✓	✓	100.0	99.4	100.0	-	100.0	100.0	100.0	100.0	100.0	
				✗	-	99.9	99.6	99.9	-	99.9	99.6	99.9	99.9	100.0	
				✓	-	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0	
				LatentTracer	-	6.0	6.1	15.2	0.4	-	0.0	9.3	24.6	26.9	
				Reconstruction Loss	✗	✗	3.8	4.1	7.4	0.8	-	0.1	5.7	18.1	18.8
1314 QuantLoss	1315 Combined Loss	1316 Taming	1317 EncLoss	✓	✓	29.5	16.6	36.6	10.6	-	2.3	35.9	49.9	27.6	
				✓	✗	47.9	44.2	60.1	26.7	-	12.2	48.0	77.2	70.4	
				✓	✓	63.7	36.5	63.5	39.8	-	33.4	63.6	70.2	68.1	
				✗	✗	2.0	3.5	4.4	0.4	-	0.2	2.8	11.1	19.6	
				✗	✓	1.9	6.4	6.4	1.0	-	0.7	1.1	7.4	12.2	
				✓	✗	22.6	21.2	27.3	5.1	-	2.5	26.0	47.9	44.0	
				✓	✓	98.2	98.0	98.9	93.5	-	91.9	96.6	99.5	99.7	
				✗	✗	12.8	13.0	14.4	2.7	-	1.7	10.2	14.1	22.1	
1320 QuantLoss	1321 Combined Loss	1322 Taming	1323 EncLoss	✓	✓	30.4	26.4	67.1	30.4	-	12.1	52.7	72.3	76.1	
				✓	✗	99.9	99.8	99.9	99.8	-	99.2	100.0	100.0	99.8	
				✓	✓	99.7	85.9	100.0	95.6	-	96.2	100.0	100.0	100.0	
				✗	-	6.2	9.1	10.0	1.7	-	0.5	3.1	13.4	21.8	
				✓	-	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0	
				LatentTracer	-	73.0	61.0	75.9	36.4	66.8	-	76.0	85.4	87.4	
				Reconstruction Loss	✗	✗	27.5	21.5	27.6	10.1	18.9	-	27.7	39.0	46.1
				✓	✓	80.4	82.5	81.9	70.7	80.7	-	78.1	91.9	87.5	
1325 QuantLoss	1326 Combined Loss	1327 Taming	1328 EncLoss	✓	✗	77.3	70.7	74.9	63.9	76.0	-	77.3	86.0	88.0	
				✓	✓	87.6	84.1	89.9	81.9	90.7	-	89.9	90.4	89.3	
				✗	✗	20.5	14.3	22.1	7.2	14.5	-	21.5	34.6	38.8	
				✗	✓	4.0	2.8	2.2	1.7	1.7	-	1.8	1.5	2.6	
				✓	✗	53.7	39.1	49.8	29.5	43.9	-	52.2	65.2	70.9	
				✓	✓	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	
				✗	✗	38.0	4.2	52.1	2.1	36.5	-	46.4	81.2	71.5	
				✓	✓	39.3	39.4	65.2	34.3	48.9	-	45.8	84.6	75.7	
1331 QuantLoss	1332 Combined Loss	1333 Taming	1334 EncLoss	✓	✗	99.6	88.8	99.6	96.2	99.6	-	99.5	99.8	99.5	
				✓	✓	99.9	98.3	100.0	99.8	100.0	-	100.0	100.0	99.9	
				✗	-	15.3	15.7	15.3	7.8	8.8	-	12.5	13.7	19.2	
				✓	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	
				LatentTracer	-	97.7	93.8	98.4	97.3	97.9	93.6	98.5	98.6	-	
				Reconstruction Loss	✗	✗	17.2	8.8	24.3	6.3	21.8	1.6	21.2	43.0	-
				✓	✓	89.7	51.4	90.0	79.8	93.6	77.2	87.5	83.6	-	
				✓	✗	67.6	62.2	71.3	71.5	71.0	55.2	78.3	82.0	-	
1339 VQ-Diffusion	1340 Combined Loss	1341 Taming	1342 EncLoss	✓	✓	72.4	51.2	89.7	68.4	87.7	61.9	72.4	92.2	-	
				✗	✗	0.6	0.3	5.3	0.6	1.0	0.1	2.6	13.0	-	
				✓	✓	87.8	36.6	50.9	90.8	95.6	93.7	83.6	63.6	-	
				✓	✗	15.7	5.4	24.6	15.5	14.8	3.5	21.9	34.3	-	
				✓	✓	100.0	100.0	100.0	99.7	100.0	100.0	100.0	100.0	-	
				✗	-	17.4	1.6	40.7	17.0	30.5	7.1	19.9	63.1	-	
				✓	✗	99.9	100.0	100.0	99.6	100.0	93.3	100.0	100.0	-	
				✓	✓	92.1	43.3	99.1	96.8	97.6	85.8	95.7	99.1	-	
1344 1345	1345 Combined Loss	1346 Taming	1347 EncLoss	✗	-	86.1	33.2	82.9	78.8	95.7	65.8	83.3	86.1	-	
				✓	-	100.0	99.4	100.0	99.9	100.0	99.9	100.0	100.0	-	
				✗	✗	86.1	33.2	82.9	78.8	95.7	65.8	83.3	86.1	-	

1350 **K MAIN OBSERVATION**
13511352 Our initial observation was that the token representations differ significantly between natural and
1353 IAR-generated images. Intuitively, the token representations of generated images are consistently
1354 closer to the codebook entries than those of natural images (shown in Figure 1). We compute the
1355 token representations for the natural and generated images and compare their distances to the closest
1356 token representations in the codebook. We present the results in the table below.
13571358 **Table A6: Distances between token representations and codebook entries for generated vs natural**
1359 **images.** We use the MS-COCO dataset as natural images (denoted *Natural*) and the images
1360 generated by a given model (represented as *Generated*). We compute the distances in the ℓ_2 norm.
1361

Model	Natural	Generated
LlamaGen	0.0108 (± 0.000)	0.0033 (± 0.001)
RAR	0.3942 (± 0.030)	0.1538 (± 0.037)
Taming	0.0225 (± 0.002)	0.0094 (± 0.003)
VQ-Diffusion	0.0216 (± 0.003)	0.0086 (± 0.002)
Infinity	0.0116 (± 0.000)	0.0109 (± 0.000)
VAR	0.1381 (± 0.006)	0.1075 (± 0.011)

1370 **L ROBUSTNESS ON MORE DATASETS**
13711372 In addition to the robustness evaluation in Table 2, we show an extended version of robustness
1373 evaluation across more datasets in Table A7. We show that our method outperforms the baselines by
1374 a very large margin after image post-processing, validating the universal robustness of our approach.
13751377 **M COMPREHENSIVE ANALYSIS ON MORE METRICS**
13781379 Additionally to our TPR@1%FPR, we report the TPR for the baseline methods and our methods
1380 at stricter FPR values (0.5%FPR in Table A8 and 0.1%FPR in Table A9) as well as the AUC in
1381 Table A10. ROC plots for RAR compared to the baselines are illustrated in Figure A5. When
1382 evaluated under more strict settings in Table A8 and Table A9, baseline methods have a very limited
1383 performance in most cases, while our methods perform consistently well. The AUC and ROC results
1384 in Table A9 and Figure A5 show that our method strictly outperform all of the baselines for all
1385 models and non-belonging datasets.
13861387 **N GENERALIZATION ACROSS HYPERPARAMETERS AND DATA SPLITS**
13881389 To demonstrate the generalization of our method, we provided further experiments where the
1390 conditional guidance scales and sampling temperatures are different during generating fine-tuning and
1391 evaluation sets. We use CFG=4 and temperature=1.0 for generating the fine-tuning set. The
1392 results in Table A11 show that our method achieves high performance across different CFG (3,4,5)
1393 and temperatures (0.8, 1.0, 1.2). In addition, we performed an experiment for class split, where
1394 we separated the data used to fine-tune the inverse decoder according to the classes. Specifically,
1395 we use the first 500 classes for the model to generate the fine-tuning set and use the remaining 500
1396 classes for evaluation, ensuring that the model can not overfit on the distribution. In Table A12,
1397 we denote this as Ours (class split) and our standard fine-tuning as Ours (random split). We report
1398 the TPR@1%FPR of belonging vs non-belonging data. The results show that our method performs
1399 consistently well across the two settings and outperforms the baseline methods significantly.
14001401 **O EVALUATION OF DIFFERENT CODEBOOK DISTANCE METRICS**
14021403 For QuantLoss, we use the L2 norm following the original quantization algorithms in IARs. We
show in Table A13 that using cosine similarity yields similar results as the L2 norm. Our key
1404

1404
 1405 **Table A7: TPR@1%FPR (%) under different post-processing image transforms and on different**
 1406 **datasets.** The first column indicates the evaluated transform and the strength of the transform.
 1407 The second column indicates the evaluated method. The model is RAR, the belonging data is gen-
 1408 erated by RAR, and the non-belonging data is denoted in the table heading.

Transform	Method	Natural			Generated				
		ImageNet	LAION	MS-COCO	LlamaGen	Taming	VAR	Infinity	VQDiff
Noise=0.05	Reconstruction	2.3	0.8	2.1	0.0	0.0	1.3	13.3	6.6
	LatentTracer	3.4	0.7	3.8	0.0	0.1	1.4	10.7	7.2
	AEDR	7.3	4.7	6.2	4.4	0.5	4.6	13.7	5.5
	Ours	87.8	82.3	94.6	75.2	65.4	90.3	95.9	93.1
Kernel=9	Reconstruction	3.0	2.1	3.3	0.4	0.1	2.8	9.5	5.9
	LatentTracer	4.7	2.1	3.4	0.4	0.1	3.1	12.4	7.5
	AEDR	11.4	5.0	13.8	2.5	0.5	9.9	18.9	12.0
	Ours	80.5	74.1	82.3	69.7	63.9	78.3	83.4	82.6
JPEG=60	Reconstruction	3.6	2.3	4.8	0.5	0.0	2.1	11.4	12.1
	LatentTracer	4.8	3.5	6.9	0.1	0.0	2.8	15.9	15.4
	AEDR	8.9	5.4	18.5	2.4	0.3	6.8	29.1	11.9
	Ours	96.1	94.1	98.8	90.3	83.3	98.3	98.9	98.5
Brightness=1.6	Reconstruction	1.4	0.5	2.3	0.1	0.0	1.2	4.6	3.2
	LatentTracer	2.3	1.0	2.7	0.0	0.0	1.7	5.8	3.7
	AEDR	1.9	0.5	2.0	0.5	0.4	1.1	3.1	2.0
	Ours	92.3	75.6	95.1	78.6	60.4	94.0	97.3	96.1
Contrast=2.0	Reconstruction	1.6	2.2	2.8	0.0	0.0	1.6	5.5	7.7
	LatentTracer	3.0	1.8	6.3	0.1	0.0	2.2	7.7	9.4
	AEDR	1.4	0.8	2.4	0.9	0.3	2.4	3.9	3.2
	Ours	91.1	83.7	95.1	74.3	65.7	92.3	95.1	94.6
Saturation=2.0	Reconstruction	3.1	2.2	3.8	0.4	0.1	1.3	9.8	10.2
	LatentTracer	3.6	3.7	8.2	0.2	0.0	3.4	14.5	14.5
	AEDR	9.5	4.2	8.7	1.7	0.4	5.5	18.4	10.1
	Ours	99.2	99.7	99.8	99.5	98.8	99.8	99.9	99.8
Resize=0.5	Reconstruction	1.0	1.9	4.5	0.9	0.0	2.4	9.9	10.0
	LatentTracer	2.2	2.2	4.8	0.5	0.0	2.6	12.8	8.6
	AEDR	0.2	1.5	9.7	0.8	0.3	9.1	10.8	11.6
	Ours	98.4	98.6	99.5	96.9	93.3	99.3	99.7	99.4

1434
 1435 finding is that belonging images are closer to the codebook entries compared to non-belonging
 1436 images, where two distance metrics can both capture the distance difference.

1438 P COMBINING STRATEGIES FOR QUANTLOSS AND ENCLOSS

1440 Since our EncLoss L_{Enc}^{Cal} is a ratio, a multiplicative combination treats it as a scaling factor. We
 1441 provide an ablation study comparing additive versus multiplicative combinations, as well as the use
 1442 of learned weights in Table A14. For both addition and multiplication, we combine the two losses
 1443 with the respective arithmetic operation. In the weighted scenarios, we determine optimal weights
 1444 for EncLoss by keeping the weight for the QuantLoss fixed. For *Addition Weighted* we determine
 1445 the optimal weight w_{Enc} for EncLoss via grid search by leveraging ImageNet as a calibration set:
 1446 we search 1,000 evenly spaced values between 0.001 and 1, and another 1,000 values between 1 and
 1447 1,000. For *Multiplication Power*, the weight is used as an exponent, and we apply a grid search over
 1448 1,000 values between 0.01 and 10.

1450 Q ADDITIONAL BASELINE OF GENERAL AI DETECTION

1452 To provide additional baseline methods, we evaluate a state-of-the-art AI-generated image detection
 1453 methods, specifically AIDE (Yan et al., 2025) and a detection method carefully crafted for IARs
 1454 called D³QE (Zhang et al., 2025). We leverage the provided pre-trained weights for each method
 1455 and report the results of AIDE in Table A15 and D³QE in Table A16. We use 1,000 images as
 1456 belonging and 1,000 images as non-belonging datasets. We note that AIDE has a very limited
 1457 performance for detecting IAR-generated images, and both approaches have an even worse performance
 to distinguish data generated by different models.

Table A8: **TPR@0.5%FPR our method and the baselines.** The first column indicates the original model that has generated the belonging images, the heading of the other columns specifies the natural datasets or generators from which the non-belonging images are obtained. Our method is instantiated with the best-performing set of signals from Section 3.3 for each original model.

Model	Method	Natural			Generated					VQDiff
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	
LlamaGen	Reconstruction	23.4	25.0	30.6	-	30.4	2.1	31.4	61.8	60.4
	LatentTracer	89.7	82.7	93.6	-	94.6	72.5	95.1	98.8	98.0
	AEDR	41.1	49.9	38.1	-	55.2	50.0	57.4	66.4	59.8
	Ours	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
RAR	Reconstruction	2.7	3.1	5.8	0.2	-	0.0	2.5	10.4	14.6
	LatentTracer	2.2	1.0	2.2	0.2	-	0.0	2.1	7.7	5.3
	AEDR	13.6	15.1	30.0	4.0	-	0.8	22.5	42.4	17.2
	Ours	99.9	100.0	100.0	99.9	-	98.9	99.9	100.0	100.0
Taming	Reconstruction	17.3	18.7	22.2	6.5	18.4	-	25.2	39.5	45.0
	LatentTracer	64.8	52.2	70.6	32.2	69.8	-	72.6	82.9	100.0
	AEDR	75.8	61.7	88.7	51.8	79.8	-	73.3	88.6	80.0
	Ours	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0
VAR	Reconstruction	0.5	0.5	2.1	0.1	1.4	0.0	-	5.4	4.0
	LatentTracer	2.8	0.1	8.4	0.1	4.2	0.0	-	12.8	10.1
	AEDR	9.8	10.9	45.3	4.1	22.6	3.9	-	33.1	40.4
	Ours	100.0	97.1	100.0	96.8	100.0	99.6	-	100.0	100.0
Infinity	Reconstruction	0.0	0.2	0.3	0.0	0.0	0.0	0.2	-	0.2
	LatentTracer	0.0	6.5	25.8	0.0	0.0	0.0	1.6	-	3.6
	AEDR	1.1	7.1	36.3	0.6	2.7	0.3	8.2	-	6.1
	Ours	99.2	15.5	99.4	99.1	99.5	99.1	99.4	-	99.2
VQ-Diffusion	Reconstruction	4.5	6.0	12.9	4.5	16.6	0.6	16.7	33.6	-
	LatentTracer	95.0	90.9	97.4	96.1	97.7	88.9	98.2	98.4	-
	AEDR	82.7	43.1	87.3	71.0	91.7	60.0	80.2	79.8	-
	Ours	100.0	98.7	100.0	93.3	100.0	99.6	100.0	100.0	-

Table A9: **TPR@0.1%FPR our method and the baselines.** The first column indicates the original model that has generated the belonging images, the heading of the other columns specifies the natural datasets or generators from which the non-belonging images are obtained. Our method is instantiated with the best-performing set of signals from Section 3.3 for each original model.

Model	Method	Natural			Generated					VQDiff
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	
LlamaGen	Reconstruction	13.2	15.4	18.5	-	17.2	0.3	21.9	47.3	17.9
	LatentTracer	79.7	75.1	85.9	-	90.0	63.5	89.3	95.4	91.8
	AEDR	22.4	23.7	17.7	-	31.1	38.0	45.4	57.7	46.3
	Ours	100.0	100.0	100.0	-	100.0	99.9	100.0	100.0	100.0
RAR	Reconstruction	1.8	1.8	1.4	0.1	-	0.0	1.6	7.4	3.9
	LatentTracer	0.4	0.2	0.9	0.0	-	0.0	0.7	4.1	0.4
	AEDR	1.4	1.4	9.1	0.0	-	0.0	16.6	6.7	2.6
	Ours	99.9	99.9	100.0	96.9	-	54.1	99.9	100.0	100.0
Taming	Reconstruction	11.8	11.0	12.9	3.0	12.7	-	19.1	30.7	16.4
	LatentTracer	36.8	33.1	54.7	24.4	51.3	-	66.3	71.1	100.0
	AEDR	58.3	35.6	68.1	30.9	75.5	-	55.2	77.7	76.3
	Ours	100.0	92.6	100.0	100.0	100.0	-	100.0	100.0	100.0
VAR	Reconstruction	0.3	0.2	0.4	0.0	0.5	0.0	-	1.9	0.3
	LatentTracer	0.2	0.0	3.4	0.0	1.8	0.0	-	3.4	2.4
	AEDR	0.0	1.6	29.5	0.6	3.8	1.2	-	16.8	25.4
	Ours	99.6	86.3	99.8	95.8	100.0	98.9	-	100.0	100.0
Infinity	Reconstruction	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-	0.0
	LatentTracer	0.0	0.1	7.1	0.0	0.0	0.0	0.9	-	0.5
	AEDR	0.0	0.0	4.7	0.0	1.9	0.0	3.5	-	3.0
	Ours	98.3	0.0	99.4	0.0	99.4	31.2	99.1	-	99.1
VQ-Diffusion	Reconstruction	2.0	3.3	2.7	1.3	6.2	0.1	10.8	15.1	-
	LatentTracer	91.8	86.3	95.0	92.5	96.0	78.4	97.2	96.9	-
	AEDR	54.9	20.7	59.1	32.2	76.9	48.0	57.6	57.5	-
	Ours	99.9	55.6	100.0	84.8	100.0	99.0	99.5	100.0	-

1512 **Table A10: AUC our method and the baselines.** The first column indicates the original model that
 1513 has generated the belonging images, the heading of the other columns specifies the natural datasets
 1514 or generators from which the non-belonging images are obtained. Our method is instantiated with
 1515 the best-performing set of signals from Section 3.3 for each original model.

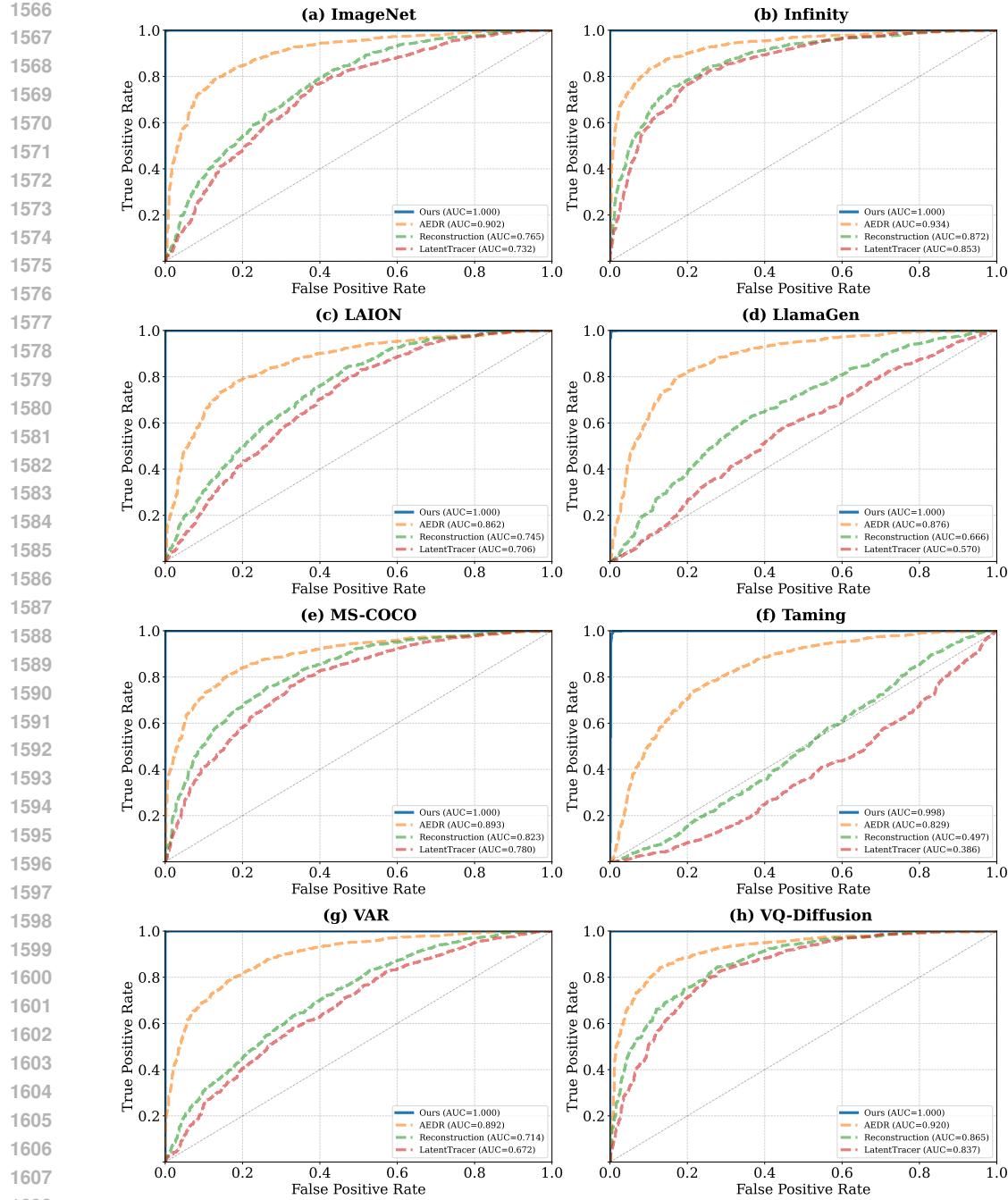
Model	Method	Natural			Generated				
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity
LlamaGen	Reconstruction	93.9	93.1	96.5	-	92.6	81.1	94.6	97.9
	LatentTracer	99.7	99.6	99.9	-	99.8	98.8	99.8	99.9
	AEDR	94.7	94.1	94.7	-	95.7	95.2	95.2	96.1
	Ours	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0
RAR	Reconstruction	76.5	74.5	82.3	66.6	-	49.7	71.4	87.2
	LatentTracer	73.2	70.6	78.0	57.0	-	38.6	67.2	85.3
	AEDR	90.2	86.2	89.3	87.6	-	82.9	89.2	93.4
	Ours	100.0	100.0	100.0	100.0	-	99.8	100.0	100.0
Taming	Reconstruction	86.8	82.9	88.3	80.5	84.6	-	87.1	89.9
	LatentTracer	98.2	97.0	98.8	95.6	98.1	-	98.6	99.1
	AEDR	98.7	98.5	99.1	97.2	99.0	-	98.8	99.5
	Ours	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0
VAR	Reconstruction	64.1	58.1	69.0	50.3	58.9	40.4	-	69.5
	LatentTracer	80.6	72.6	84.9	68.3	77.5	61.5	-	82.2
	AEDR	95.8	92.9	96.8	92.3	94.7	92.8	-	96.5
	Ours	100.0	99.9	100.0	100.0	100.0	-	100.0	100.0
Infinity	Reconstruction	30.4	61.4	64.9	20.2	19.1	23.0	24.8	-
	LatentTracer	62.7	91.6	94.6	53.0	50.6	54.2	62.5	-
	AEDR	86.2	97.2	98.9	81.5	82.7	85.5	91.4	-
	Ours	99.8	98.8	99.7	99.6	100.0	99.7	99.9	-
VQ-Diffusion	Reconstruction	90.7	84.3	91.9	88.9	88.5	79.2	91.4	92.4
	LatentTracer	99.9	99.8	99.9	99.9	99.9	99.6	100.0	100.0
	AEDR	99.5	98.5	99.6	99.2	99.8	99.2	99.4	99.5
	Ours	100.0	99.8	100.0	99.9	100.0	100.0	100.0	-

1539 **Table A11: TPR@1%FPR (%) with different conditional guidance scales and sampling tem-
 1540 peratures.** The evaluated model is RAR (Combined), and the inverse decoder finetuning data is
 1541 generated with CFG=4 and temperature=1.0.

CFG	Temperature	Natural			Generated				
		ImageNet	LAION	MS-COCO	LlamaGen	Taming	VAR	Infinity	VQDiff
3	0.8	99.7	99.8	99.7	99.6	99.4	100.0	99.8	100.0
	1.0	100.0	100.0	100.0	99.5	99.4	100.0	100.0	100.0
	1.2	99.9	99.9	100.0	99.8	99.8	99.9	100.0	100.0
4	0.8	99.5	99.8	99.8	99.3	99.4	99.5	99.8	99.9
	1.0	100.0	100.0	100.0	99.9	99.9	100.0	100.0	100.0
	1.2	100.0	99.6	100.0	99.5	98.8	100.0	100.0	100.0
5	0.8	100.0	99.6	100.0	99.5	98.8	100.0	100.0	100.0
	1.0	99.9	99.0	100.0	98.4	98.9	100.0	100.0	100.0
	1.2	99.7	99.4	100.0	99.4	99.3	99.5	100.0	99.8

1555 To further evaluate against AIDE, we re-train their model for 5 epochs on 50k images. Import-
 1556 antly, AIDE’s training set includes both generated (belonging) and real images, giving it access
 1557 to additional natural image data that our method does not use. Despite these advantages, the re-
 1558 sults shown in Table A17 demonstrate that our method still substantially outperforms AIDE. While
 1559 AIDE achieves relatively strong performance in the natural vs. generated setting, it fails in the more
 1560 critical setting of attributing a generated image to a specific model. For instance, for RAR, AIDE
 1561 achieves only 25.9-73.2% TPR@1%FPR in distinguishing images from other IAR models, whereas
 1562 our method achieves near-perfect 99.9%-100% TPR@1%FPR across all model pairs.

1563 We note that general AI detection methods consider general distinctions between generated and real
 1564 images, but do not leverage specific artifacts in different IARs and thus fail to attribute an image to
 1565 a specific model family. However, we utilize the codebook of IARs as the inherent “fingerprint” of
 the model. Therefore, our method outperforms the general AI detection method significantly.

Figure A5: **ROC comparison for RAR attribution of our method and the baselines.**

R ADAPTIVE ATTACK

Our method is primarily designed for the benign setting, where model owners leverage our framework to prevent model collapse and ensure responsible deployment of their trained models. However, to assess the robustness of our approach, we also consider a more challenging adversarial scenario where a malicious model owner intentionally attempts to evade our detection mechanism.

Threat Model. In this adaptive attack scenario, we assume the adversary has knowledge of our methodology. The adversary's goal is to craft adversarial perturbations that increase the distance

1620
 1621
 1622
 1623
 1624
 1625
 Table A12: **TPR@1%FPR (%) of our method evaluated with two types of data split**. The first
 1626 column indicates the original model that has generated the belonging images, the heading of the
 1627 other columns specifies the natural datasets or generators from which the non-belonging images are
 1628 obtained. We denote two splits for Ours, *random split*, where we create training and validation data
 1629 from the same classes and *class split*, where we create training data using the first 0-499 classes and
 1630 validation data using the final 500-999 classes.

Model	Method	Natural			Generated					
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
RAR	Reconstruction	3.8	4.1	7.4	0.8	-	0.1	5.7	18.1	18.8
	LatentTracer	6.0	6.1	15.2	0.4	-	0.0	9.3	24.6	26.9
	AEDR	29.5	16.6	36.6	10.6	-	2.3	35.9	49.9	27.6
	Ours (random split)	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
	Ours (class split)	99.8	99.9	100.0	99.4	-	99.7	99.7	100.0	100.0
Taming	Reconstruction	27.5	21.5	27.6	10.1	18.9	-	27.7	39.0	46.1
	LatentTracer	73.0	61.0	75.9	36.4	66.8	-	76.0	85.4	87.4
	AEDR	80.4	82.5	81.9	70.7	80.7	-	78.1	91.9	87.5
	Ours (random split)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
	Ours (class split)	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
VAR	Reconstruction	1.4	1.4	3.6	0.1	1.6	0.0	-	5.9	5.9
	LatentTracer	3.9	1.3	12.0	0.2	5.6	0.1	-	15.4	15.3
	AEDR	29.1	15.7	50.6	14.7	28.3	14.0	-	37.5	50.8
	Ours (random split)	100.0	99.2	100.0	99.2	100.0	100.0	-	100.0	100.0
	Ours (class split)	99.9	98.9	100.0	99.4	100.0	99.1	-	100.0	99.9

1640
 1641 Table A13: **TPR@1%FPR (%) comparison when using different distance metrics**. The evaluated
 1642 model is RAR.

Distance Metric	Natural			Generated				
	ImageNet	LAION	MS-COCO	LlamaGen	Taming	VAR	Infinity	VQDiff
Cosine Distance	100.0	100.0	100.0	100.0	99.9	100.0	100.0	100.0
L2 Norm	100.0	100.0	100.0	99.9	99.9	100.0	100.0	100.0

1643
 1644 between the feature map of a generated image and its corresponding codebook entries, thereby
 1645 causing belonging images to be misclassified as non-belonging images.

1646
 1647 **Attack Formulation.** Specifically, the adversarial model owner finetunes an inverse decoder and
 1648 performs an adversarial attack on a belonging image x by minimizing the following adversarial loss:

$$\mathcal{L}_{\text{adv}}(x, \delta, D^{-1}) = -\|D^{-1}(x) - Q^{-1}(Q(D^{-1}(x)))\|_2 + \lambda\|\delta\|_2, \quad (14)$$

1649
 1650 where δ denotes the adversarial perturbation and λ controls the trade-off between attack effectiveness
 1651 and perturbation magnitude. The adversarial sample is constructed as $x_{\text{adv}} = x + \delta$. This loss
 1652 function aims to maximize the QuantLoss while constraining the perturbation to remain imperceptible.

1653
 1654 **Results and Analysis.** The results are presented in Table A18. We evaluate our method under
 1655 two attack strengths: $\epsilon = 1/255$ and $\epsilon = 2/255$. Several key observations emerge from these
 1656 experiments: **First**, finetuning with augmentation significantly improves robustness against adaptive
 1657 attacks. We attribute this to the fact that augmentation-based training enables the inverse decoder
 1658 to recover the original tokens robustly even under image degradations, which also generalize to
 1659 resilience against adversarial perturbations. **Second**, our method demonstrates strong robustness to
 1660 relatively small adversarial perturbations ($\epsilon = 1/255$), maintaining high TPR@1%FPR across most
 1661 datasets when finetuned with augmentations (e.g., 97.4% on ImageNet, 96.7% on LAION). **Third**,
 1662 even under stronger attacks ($\epsilon = 2/255$), our augmentation-based approach retains considerable
 1663 detection capability (e.g., 49.3% on ImageNet, 51.1% on MS-COCO), substantially outperforming
 1664 all baseline methods. Notably, the baseline methods show very limited robustness even to weak
 1665 attacks which are not even tailored to attack them. The TPR@1%FPR for baseline methods drops
 1666 below 20% in most cases for $\epsilon = 2/255$.

1667
 1668 These results demonstrate that while adaptive attacks can degrade detection performance, our frame-
 1669 work maintains significantly better robustness compared to existing methods, particularly when

1674
 1675
 1676
 1677
 1678
Table A14: TPR@1%FPR for different combination methods. The first column indicates the
 1679 original model that generated the belonging images, the second column shows the combination
 1680 method used. The heading of the other columns specifies the natural datasets or generators from
 1681 which the non-belonging images are obtained. The last column shows the optimized weight w_{Enc}
 1682 for parameterized methods.

Model	Method	Natural				Generated				w_{Enc}
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	
LlamaGen	Addition	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-
	Addition Weighted	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	0.00
	Multiplication	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-
	Multiplication Power	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	0.01
RAR	Addition	99.3	99.2	99.5	98.5	-	97.7	98.9	99.6	99.6
	Addition Weighted	100.0	99.8	100.0	99.8	-	99.3	99.8	100.0	100.0
	Multiplication	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	-
	Multiplication Power	100.0	99.8	100.0	99.8	-	99.3	99.9	100.0	100.0
Taming	Addition	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
	Addition Weighted	100.0	99.8	100.0	99.9	100.0	-	100.0	100.0	100.0
	Multiplication	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	-
	Multiplication Power	100.0	99.6	100.0	99.9	100.0	-	100.0	100.0	0.27
VAR	Addition	100.0	98.2	100.0	98.2	100.0	99.8	-	100.0	100.0
	Addition Weighted	100.0	99.3	100.0	98.9	100.0	99.5	-	100.0	100.0
	Multiplication	100.0	99.5	100.0	99.2	100.0	100.0	-	100.0	100.0
	Multiplication Power	100.0	99.3	100.0	99.2	100.0	99.5	-	100.0	100.0
Infinity	Addition	0.0	97.3	99.0	1.4	0.6	0.6	18.0	-	36.1
	Addition Weighted	98.8	98.9	99.2	98.8	99.1	98.8	99.1	-	99.1
	Multiplication	0.0	98.3	99.2	10.1	4.1	4.2	58.8	-	77.4
	Multiplication Power	99.3	97.8	99.4	99.1	99.4	99.1	99.3	-	99.2
VQ-Diffusion	Addition	100.0	100.0	100.0	98.0	100.0	100.0	100.0	-	-
	Addition Weighted	100.0	97.4	100.0	99.8	100.0	99.4	100.0	-	0.00
	Multiplication	100.0	99.5	100.0	99.9	100.0	99.9	100.0	-	-
	Multiplication Power	100.0	95.0	100.0	99.5	100.0	99.3	100.0	-	0.48

1697
 1698 **Table A15: The performance of AIDE on data provenance.** We present TPR@1%FPR across all
 1699 test datasets for each model. The first column indicates the original model that has generated the
 1700 belonging images, the heading of the other columns specifies the natural datasets or generators from
 1701 which the non-belonging images are obtained.

Model	Natural				Generated					
	ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff	
LlamaGen	18.8	16.8	23.2	-	0.5	0.9	3.3	6.0	6.5	
RAR	27.9	26.8	30.6	5.2	-	4.5	9.6	15.2	15.9	
Taming	29.4	25.8	34.3	1.4	0.2	-	4.3	8.8	9.5	
VAR	14.6	12.5	18.4	0.2	0.1	0.2	-	3.4	3.7	
Infinity	5.6	4.6	7.4	0.0	0.0	0.0	0.5	-	1.2	
VQ-Diffusion	10.3	9.2	13.1	0.0	0.0	0.0	0.2	0.7	-	

1710
 1711
 1712 trained with augmentations. The robustness to adaptive attacks makes our method a practical so-
 1713 lution even in the more challenging adversarial scenarios.

S EVALUATION ON MULTI-SOURCE DATASET

1714
 1715 To simulate a real-world scenario where images come from different sources, we design a multi-
 1716 source evaluation setting. In this setting, we mix and shuffle all the evaluated images in our exper-
 1717 imental setting, including 3 different natural datasets (ImageNet, MS-COCO, LAION) and images
 1718 generated by 6 different models (LlamaGen, RAR, Taming, VAR, Infinity, VQ-Diffusion). The re-
 1719 sults in Table A19 show that our method achieves near-perfect TPR@1%FPR on the multi-source
 1720 dataset across all the evaluated models, demonstrating the applicability of our method.

T STATISTICAL TEST OF OUR METHOD

1721
 1722 We test if a data point x significantly deviates from a given belonging distribution. Sim-
 1723 ilar to RONAN (Wang et al., 2023) and LatentTracer (Wang et al., 2024) we leverage

1728
 1729
 1730
 1731 Table A16: **TPR@1%FPR (%) of our method and D³QE**. The first column indicates the original
 1732 model that has generated the belonging images, the heading of the other columns specifies the natural
 1733 datasets or generators from which the non-belonging images are obtained.

Model	Method	Natural			Generated					
		ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
LlamaGen	D ³ QE	86.9	67.7	86.6	-	6.8	2.0	2.0	60.1	3.7
	Ours	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0
RAR	D ³ QE	78.0	49.7	77.5	0.0	-	0.2	0.2	42.2	0.4
	Ours	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
Taming	D ³ QE	78.0	49.7	77.5	0.0	-	0.2	0.2	42.2	0.4
	Ours	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0
VAR	D ³ QE	73.5	52.2	72.3	0.0	3.5	1.4	-	46.7	2.3
	Ours	100.0	99.2	100.0	99.2	100.0	100.0	-	100.0	100.0
Infinity	D ³ QE	6.3	1.5	5.9	0.0	0.1	0.0	0.0	-	0.0
	Ours	99.4	85.6	99.4	99.2	99.5	99.1	99.4	-	99.4
VQDiff	D ³ QE	49.9	31.6	49.2	0.0	2.1	0.5	0.5	27.8	-
	Ours	100.0	99.4	100.0	99.9	100.0	99.9	100.0	100.0	-

1745
 1746 Table A17: **TPR@1%FPR for AIDE (Yan et al., 2025) trained on different datasets**. The first
 1747 column indicates the model, the second column shows the finetuning set used.

Model	Method	Finetuning Set	Natural			Generated					
			ImageNet	LAION	MS-COCO	LlamaGen	RAR	Taming	VAR	Infinity	VQDiff
RAR	AIDE	RAR Generated + ImageNet	99.7	99.4	100.0	73.2	-	53.7	48.8	99.5	54.9
		RAR Generated + MS-COCO	97.7	98.6	100.0	41.7	-	25.9	30.0	100.0	68.7
	Ours	RAR (Generated)	100.0	100.0	100.0	99.9	-	99.9	100.0	100.0	100.0
Llamagen	AIDE	Llamagen (Generated) + ImageNet	99.2	99.8	100.0	-	70.4	15.5	6.2	99.8	36.1
		Llamagen Generated + MS-COCO	86.5	97.1	99.9	-	43.2	13.1	3.1	99.9	49.1
	Ours	Llamagen (Generated)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0

1755
 1756 Table A18: **Evaluation under adaptive adversarial attack**. The evaluated model is RAR and ϵ
 1757 denotes the strength of the attack.

ϵ	Method	Natural			Generated				
		ImageNet	LAION	MS-COCO	LlamaGen	Taming	VAR	Infinity	VQDiff
1/255	Reconstruction	2.5	3.0	6.9	0.2	0.0	2.3	16.5	16.0
	LatentTracer	5.6	5.9	15.1	0.1	0.0	4.6	24.6	25.4
	AEDR	18.9	13.4	30.1	7.4	1.4	22.6	42.3	22.8
	Ours (Finetuned w/o Aug)	68.7	76.3	76.6	57.3	49.0	69.2	84.6	86.9
	Ours (Finetuned w/ Aug)	97.4	96.7	97.7	90.2	73.6	96.3	99.0	98.9
2/255	Reconstruction	1.4	1.8	4.5	0.4	0.0	1.3	13.6	12.5
	LatentTracer	3.4	3.4	11.1	0.0	0.0	2.4	18.4	19.5
	AEDR	10.7	6.9	18.2	3.2	0.2	14.1	28.7	14.4
	Ours (Finetuned w/o Aug)	0.3	0.6	0.6	0.0	0.0	0.3	1.9	2.8
	Ours (Finetuned w/ Aug)	49.3	43.6	51.1	15.9	2.7	40.0	64.7	60.7

1770
 1771 Table A19: **Multi-source attribution performance across difference models**. We present
 1772 TPR@1%FPR where all non-belong datasets are mixed for a given model.

Method	LlamaGen	RAR	Taming	VAR	Infinity	VQ-Diffusion
Reconstruction	28.0	2.3	24.7	0.4	0.0	10.5
LatentTracer	92.8	1.0	69.8	1.6	0.2	97.3
AEDR	59.4	17.2	80.0	26.9	3.5	84.2
Ours	100.0	100.0	100.0	100.0	99.2	100.0

1780
 1781 Grubbs' hypothesis test (Grubbs, 1949). For this, we formulate the following hypothesis
 \mathcal{H}_0 : The test sample does not belong to the given model. leveraging Grubbs's hypothesis test which

1782 Table A20: **Grubbs' Hypothesis Testing Results.** We report the TP, FP, TN, FN, TPR and FPR
 1783 for model attribution. We test 1,000 belonging images and 1,000 non-belonging images randomly
 1784 sampled across all datasets with $\alpha = 0.01$.

Model	TP	FP	TN	FN	TPR (%)	FPR (%)
LlamaGen	995	0	1000	5	99.5	0.0
RAR	999	0	1000	1	99.9	0.0
Taming	1000	1	999	0	100.0	0.1
VAR	1000	0	1000	0	100.0	0.0
Infinity	993	0	1000	7	99.3	0.0
VQ-Diffusion	999	0	1000	1	99.9	0.0

1793 Table A21: **Acceleration options of the optimized quantization (Algorithm 3).** The non-
 1794 belonging data is from ImageNet. We report the TPR@1%FPR and seconds required per image.

Setting	Iterations	TPR@1%FPR (%)	Time
Default	1200	95.0	8.24s
Less Iterations	100	87.5	0.57s
Accelerated with Torch	1200	94.8	7.79s

1803 rejects \mathcal{H}_0 if the following inequality holds:

$$\frac{x - \mu}{\sigma} < \frac{N - 1}{\sqrt{N}} \sqrt{\frac{(t_{\alpha/2, N-2})^2}{N - 2 + (t_{\alpha/2, N-2})^2}} \quad (15)$$

1804 Whereby μ and σ are the mean and the standard deviation of a given belonging dataset, x is the
 1805 queried data sample and N the number of samples of the belonging dataset. In Table A20 we report
 1806 the result of applying Grubbs' hypothesis test on 1,000 belonging and 1,000 non-belonging samples
 1807 across all datasets for each model. We find that, for all models, we achieve a TPR over 99% by only
 1808 a single false positive for Taming.

1814 U ACCELERATION FOR OPTIMIZED QUANTIZATION

1815 We provide two acceleration options to reduce the latency of the optimized quantization has a rela-
 1816 tively and report the results in Algorithm 3. First, our algorithm benefits from using quicker engi-
 1817 neering implementations. By using the Einstein summation convention for calculating the codebook
 1818 distance and using torch.compile to optimize the calculation of the feature map. These two tech-
 1819 niques reduced the runtime of our method from 8.24s/image to 7.79s/image. The algorithm may
 1820 be further accelerated with new developments in the deep learning toolkit. Second, Our method
 1821 still maintains high detection performance and can be accelerated a lot with fewer iterations. We
 1822 show that our method still achieves 87.5%TPR@1% FPR with only 100 iterations. This reduced the
 1823 runtime from 8.24s/image to 0.57s/image. The results are shown in Table A21.

1825 V EVALUATION FOR AR ATTRIBUTION

1826 Although our approach is primarily designed for model family (autoencoder) attribution, we extend
 1827 our evaluation to AR attribution settings, where multiple AR models share the same AE. We evaluate
 1828 the following experimental settings.

1829 V.1 AR ATTRIBUTION WITH SHARED AE

1830 We first evaluate scenarios where **two ARs share the same AE**. We consider the following settings
 1831 within the LlamaGen model family:

1836 Table A22: **AR attribution with shared AE.** We evaluate two settings where different AR models
 1837 share the same autoencoder.

Task	AE	AR	Belonging Data Generated by	Non-belonging Data Generated by	TPR@1%FPR (%)
Text-to-Image	LlamaGen-AE-T2I	LlamaGen-T2I-COCO	LlamaGen-T2I-COCO	LlamaGen-T2I-Internal	100.0
	LlamaGen-AE-T2I	LlamaGen-T2I-Internal	LlamaGen-T2I-Internal	LlamaGen-T2I-COCO	100.0
Class-to-Image	LlamaGen-AE-C2I	LlamaGen-L-256	LlamaGen-L-256	LlamaGen-XL	100.0
	LlamaGen-AE-C2I	LlamaGen-XL	LlamaGen-XL	LlamaGen-L-256	100.0

1845 Table A23: **AR attribution with same AE architecture but different AE training data.** The AE
 1846 fine-tuning data and evaluation belonging data are generated by different prompts (Text-to-Image)
 1847 or different classes (Class-to-Image). Our method achieves 100% TPR@1%FPR in both settings.

AE Architecture	AE Training Data	AR	Belonging Data Generated by	Non-belonging Data Generated by	TPR@1%FPR (%)
LlamaGen-AE	COCO and Internal	LlamaGen-T2I	LlamaGen-T2I	LlamaGen-C2I	100.0
LlamaGen-AE	ImageNet	LlamaGen-C2I	LlamaGen-C2I	LlamaGen-T2I	100.0

1. **LlamaGen Text-to-Image setting:** AR_1 is trained on LAION-COCO while AR_2 is trained on a 10M internal high-aesthetics quality dataset (Sun et al., 2024). Both models use LlamaGen-AE-T2I as the autoencoder.
2. **LlamaGen Class-to-Image setting:** AR_1 is LlamaGen-L-256 and AR_2 is LlamaGen-XL. Both models use LlamaGen-AE-C2I as the autoencoder.

1861 The results in Table A22 demonstrate that our method achieves 100% TPR@1%FPR across all
 1862 evaluated settings. This shows that fine-tuning the inverse decoder on images generated by one AR
 1863 transformer can also help distinguish it from images generated by another AR using the same AE.

1865 V.2 AE WITH THE SAME ARCHITECTURE AND DIFFERENT TRAINING DATA

1867 Although our method works very well in the above evaluations, we would like to point out that many
 1868 ARs sharing exactly the same AE are less common in real-world scenarios. When model owners
 1869 adapt an AE for their own task, it is more reasonable for the model owner to first train the existing
 1870 AE on their own dataset, such that the AE performs better on their own dataset. For example,
 1871 LlamaGen needs to train different AEs for their class-to-image image generation (“AE is trained on
 1872 ImageNet”) and text-to-image generation (“AE is trained on 50M LAION-COCO and 10M internal
 1873 high aesthetic quality data”), as they use different datasets for the two tasks.

1874 We provide the following case to show that our method can perfectly distinguish an AE with the
 1875 same architecture trained on different datasets. As shown in Table A23, when the AE is trained on
 1876 different data (COCO and Internal for Text-to-Image; ImageNet for Class-to-Image), our method
 1877 maintains perfect attribution performance.

1879 V.3 AR ATTRIBUTION WITH SHARED AE AND CLASS-SPLIT EVALUATION

1880 To evaluate whether our method generalizes beyond the specific classes used during fine-tuning,
 1881 we design an experiment that combines the shared AE setting with a class-split evaluation setting.
 1882 We use the LlamaGen Class-to-Image setting where the AE is LlamaGen-AE-C2I, AR model A is
 1883 LlamaGen-L-256, and AR model B is LlamaGen-XL. We construct the following datasets:

- \mathcal{D}_{A1} : Generated by AR A using classes 0–499
- \mathcal{D}_{A2} : Generated by AR A using classes 500–999
- \mathcal{D}_{B1} : Generated by AR B using classes 0–499
- \mathcal{D}_{B2} : Generated by AR B using classes 500–999

1890 Specifically, only \mathcal{D}_{A1} is used to fine-tune the AE, while \mathcal{D}_{A2} , \mathcal{D}_{B1} , and \mathcal{D}_{B2} are reserved only for
 1891 evaluation. This setup tests whether our method can distinguish between AR models A and B on
 1892 *unseen classes*. We evaluate three different settings with the above datasets and show the results in
 1893 Table A24. The results reveal several important findings:
 1894

1895 **Table A24: AR attribution with class-split evaluation.** Settings 1 and 2 evaluate cross-class gen-
 1896 eralization for AR attribution. The AE is fine-tuned only on \mathcal{D}_{A1} (classes 0–499 from AR A), yet
 1897 achieves 100% TPR@1%FPR when distinguishing \mathcal{D}_{A2} from \mathcal{D}_{B1} and \mathcal{D}_{B2} . Setting 3 confirms
 1898 that the inverse decoder cannot distinguish images from different ARs when both are labeled as be-
 1899 longing, validating that our signal is AR-specific rather than class-specific.

Setting	AE	AE Fine-tuning Data	Labeled as Belonging Data	Non-belonging Data	TPR@1%FPR (%)
1	LlamaGen-AE-C2I	\mathcal{D}_{A1}	\mathcal{D}_{A2}	\mathcal{D}_{B1}	100.0
2	LlamaGen-AE-C2I	\mathcal{D}_{A1}	\mathcal{D}_{A2}	\mathcal{D}_{B2}	100.0
3	LlamaGen-AE-C2I	\mathcal{D}_{A1}	\mathcal{D}_{B1}	\mathcal{D}_{B2}	0.0

1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909 **Cross-class generalization (Settings 1 and 2).** Fine-tuning the AE on \mathcal{D}_{A1} enables the inverse
 1910 decoder to reliably distinguish \mathcal{D}_{A2} (AR A , classes 500–999) from \mathcal{D}_{B1} and \mathcal{D}_{B2} (AR B , any
 1911 classes), achieving 100% TPR@1%FPR. This demonstrates that an inverse decoder fine-tuned on
 1912 *certain classes* of a given AR model can successfully invert images from *other classes* generated
 1913 by the same model. Conversely, it cannot accurately invert images from a different AR model,
 1914 regardless of the class.
 1915
 1916

1917 **AR-specificity validation (Setting 3).** When we test whether \mathcal{D}_{B1} and \mathcal{D}_{B2} are distinguishable
 1918 (both generated by AR B but from different class ranges), the TPR@1%FPR drops to 0.0%. This
 1919 confirms that training on \mathcal{D}_{A1} does not improve inversion quality for either \mathcal{D}_{B1} or \mathcal{D}_{B2} , as both
 1920 originate from a different AR model. This result validates that our method captures AR-specific
 1921 rather than class-specific patterns.
 1922
 1923

1924 **Implications for model attribution.** These results support our design choice of focusing on model
 1925 family (AE) attribution while demonstrating that finer-grained AR attribution is also achievable. The
 1926 inverse decoder learns to recognize generation patterns specific to a particular AR transformer, which
 1927 generalize across different input classes. This property is desirable for practical data provenance
 1928 applications, where a model owner primarily seeks to determine whether an image was generated
 1929 by their model family, independent of the specific content or class depicted.
 1930

W COMPARISON WITH MEMBERSHIP INFERENCE BASELINES

1931
 1932
 1933 Table A25 We clarify the differences between our data provenance and membership inference at-
 1934 tacks (MIAs) in Section 2, and explain that MIAs cannot be applied to our data provenance task
 1935 because of the additional, over-strict requirements for the labels or prompts of a generated image.
 1936 In this section, we would like to further explore what could be the **upper bound** of MIAs if given
 1937 the additional information of labels for data provenance. Concretely, we provide the MIA-based
 1938 methods with the ground truth labels for both generated and real images, which are usually absent in
 1939 the real world. For the images generated by the class-to-image models, we use the conditional inputs
 1940 of the models as the labels. For the real dataset, ImageNet, we directly use the ground truth label.
 1941 Following the experimental setup in our work, we use the images generated by a given model as be-
 1942 longing images, and the other images, including the generated and natural datasets, as non-belonging
 1943 images. We evaluate two MIA-based approaches that the reviewer mentioned: CFG-Diff (Kowal-
 czuk et al., 2025) and ICAS (Yu et al., 2025). The TPR@1%FPR (%) for the two baselines and

1944 Table A25: **TPR@1%FPR (%) of our method and two baseline methods based on membership**
 1945 **inference attacks (MIAs)**. The two MIA-based approaches are CFG-Diff (Kowalcuk et al., 2025)
 1946 and ICAS (Yu et al., 2025) The first column indicates the original model that has generated the
 1947 belonging images, the heading of the other columns specifies the natural datasets or generators from
 1948 which the non-belonging images are obtained.

Model	Method	Generated			
		ImageNet	LlamaGen	RAR	Taming
RAR	CFG-Diff	30.9	96.9	-	100.0
	ICAS	95.4	99.7	-	99.9
	Ours	100.0	99.9	-	99.9
VAR	CFG-Diff	2.5	6.2	16.4	54.9
	ICAS	7.1	24.4	44.7	66.0
	Ours	100.0	99.2	100.0	100.0

1959 our method are shown as follows. The results demonstrate that our method outperforms the two
 1960 MIA-based approaches in nearly every case, without the additional need for the ground truth la-
 1961 bels. Notably, the two MIA-based approaches have a very low performance for VAR. They also
 1962 have a lower TPR@1%FPR (%) when using the real images as non-belonging data than using gen-
 1963 erated images, which means that the MIA-based approaches tend to attribute many real images to
 1964 one of the generative models. On the contrary, our method achieves low FPR, no matter what the
 1965 non-belonging data is.

X LLM USAGE DECLARATION

1969 Large language models (LLMs) were used solely to improve the clarity, grammar, spelling, and
 1970 style of the manuscript. They were not employed to generate original research content, conduct data
 1971 analysis, or modify the scientific meaning. All substantive ideas, interpretations, and conclusions
 1972 are entirely those of the authors.

1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997