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ABSTRACT

Image autoregressive models (IARs) have recently demonstrated remarkable ca-
pabilities in visual content generation, achieving photorealistic quality and rapid
synthesis through the next-token prediction paradigm adapted from large language
models. As these models become widely accessible, robust data provenance is re-
quired to reliably trace IAR-generated images to the source model that synthesized
them. This is critical to prevent the spread of misinformation, detect fraud, and at-
tribute harmful content. We find that although IAR-generated images often appear
visually identical to real images, their generation process introduces characteristic
patterns in their outputs, which serves as a reliable provenance signal for the gen-
erated images. Leveraging this, we present a post-hoc framework that enables the
robust detection of such patterns for provenance tracing. Notably, our framework
does not require modifications of the generative process or outputs. Thereby, it
is applicable in contexts where prior watermarking methods cannot be used, such
as for generated content that is already published without additional marks and
for models that do not integrate watermarking. We demonstrate the effectiveness
of our approach across a wide range of IARs, highlighting its high potential for
robust data provenance tracing in autoregressive image generation.

1 INTRODUCTION

Recent progress in image autoregressive models (IARs) has led to significant advancements in image
generation. Driven by advances in language modeling, these models produce high-quality images
at rapid pace using the next-token prediction paradigm (Tian et al., [2024; |[Han et al., [2025). As
IAR-generated images become visually indistinguishable from natural content, several challenges,
including the spread of misinformation, fraud, and harmful content dissemination, arise. Addition-
ally, as generated data “pollutes” the data ecosystem, it is increasingly used to train new generative
models, which degrade model performance (called model collapse (Alemohammad et al.,2024;|Shu-
mailov et al., [2024)) and amplify existing biases (Wyllie et al., |2024). Therefore, data provenance,
i.e., identifying and attributing generated images to their generators, is highly important.

Several provenance methods have been developed for generative vision models, including both wa-
termarking (Fernandez et al., 2023} |Liu et al., 2023; |Wen et al., 2023; [Zhao et al.| 2023} |Gunn
et al., [2024; [Kerner et al., 2025} |Jovanovic et al., [2024; Tong et al., 2025} [Wang et al.| |2025b) and
fingerprinting (Kim et al., 2024; |Yu et al., 2021} |[Nie et al., [2023)). Yet, these methods require the
integration of additional signals into the models or into the images either during or after generation.
This introduces perceptible or statistical changes, is not applicable to trace provenance for content
that has already been published without marks, and often results in a trade-off between robustness,
imperceptibility, and applicability.

In this work, we propose the first post-hoc provenance framework for IAR-generated images that
does not require any modification of the generation process, is model-agnostic, and applicable to
previously published, and unmarked content. Our proposed framework builds on our intriguing
observation that because IARs encode images as sequences of discrete tokens from a fixed codebook,
i.e., their vocabulary”, they introduce a quantization step that leaves model-specific artifacts in the
generated images as shown in Figure [T} Specifically, token representations of generated images
are consistently closer to the codebook entries than those of natural images. We refer to this as
QuantLoss and show that it can be used to trace IAR-generated images back to their generators.
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We further enhance the reliability of our framework
by amplifying existing signals and integrating ad-
ditional, carefully designed ones. First, we train a
model to approximate the inverse of the IAR’s de-
coder and use it to encode images whose prove-
nance we want to test. Since the inverted decoder
leads to a higher fidelity mapping from images to
the tokens that the image was potentially generated
from, it strengthens our provenance signals based Figure 1: Data Provenance: Token Space.
on QuantLoss. Additionally, we introduce a novel Since the generated tokens of a given IAR
token-search algorithm for the next-scale prediction are sampled from the codebook entries, the
paradigm, enabling more accurate tracking of gen- codebook acts as a key to distinguish the
erated images’ initial tokens and enabling a more token representations of generated images
meaningful comparison to the codebook tokens. Be- from those of real images.

yond QuantLoss, we also identify a complementary

signal, EncLoss, which captures the deviation observed when encoding an image to the latent space
with the inverse decoder and then decoding it back to the image space with the original decoder. For
generated images, this process yields low loss due to feature consistency, while for natural images,
greater information loss typically occurs. All these signals can eventually be combined to robustly
trace the provenance of IAR-generated images.

We evaluate our method on state-of-the-art IARs, including VAR (Tian et al.,2024), RAR (Yu et al.|
2024b), LlamaGen (Sun et al., 2024), Taming (Esser et al., 2021)), and Infinity (Han et al., [2025),
as well as a vector-quantized diffusion model (VQ-Diffusion) (Gu et al., [2022). We are able to
detect the images generated from these models with almost 100% success rate, which contributes
to a reliable provenance tracing of generated content in IARs. We note that the post-hoc finetuning
of the encoder has relatively small overhead compared to IAR training, especially for the newly
developed IARs with increasing model scale and training data. We also analyze the robustness of
our method to conventional image post-processing techniques and show that our method can still
detect most of the generated content, significantly outperforming the existing methods.

atural

In summary, we make the following contributions:

1. We introduce the first post-hoc data provenance method for IARs that leverages generation-
specific artifacts to reliably determine whether, and by which model, an image was generated.
Our framework does not require any modifications to the model’s training or generation process,
is model-agnostic, and applicable to already published generated content.

2. We show that combining carefully designed provenance signals derived from the generation-
specific artifacts enables near-perfect detection of generated images and accurate attribution to
their source model, consistently achieving nearly 100% TPR@ 1%FPR across a diverse set of
IARs and outperforming all baselines.

3. We provide a thorough empirical evaluation of our framework on diverse models and with di-
verse datasets, assessing its robustness to image perturbations. Our results highlight that our
framework can provide effective provenance tracing under real-world scenarios with non-perfect
data, highlighting its practical applicability.

2 BACKGROUND AND RELATED WORK

Image Autoregressive Models (IARs). IARs have recently gained traction as a new architecture
for image generation, following the success of generative adversarial networks (Karras et al., 2020;
Chot et al.| 2020} |[Karras et al., [2021) and diffusion models (Rombach et al.| 2022} |Saharia et al.,
2022; |Podell et al.l 2023). TARs inherit the next-token prediction paradigm from large language
models (LLMs) by treating images (or their patches) as sequences of discrete tokens which enables
them to generate images both quickly and with high quality. Building on the advances from LLMs
also allows IARs to follow their clear power-law scaling (Tian et al., 2024). In the last years, the
progress in autoregressive image generation has moved from early pixel-space raster-scan autore-
gression (Chen et al., [2020; [Van den Oord et al., 2016)) to pioneering efforts with the next scale or
resolution prediction (VAR) (Tian et al.,2024;|Han et al., | 2025)). Recent proposals opt for next-token
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prediction of randomized inputs permuted into different factorization orders with annealing prob-
ability (RAR) [2024D)), and to even vanilla autoregressive models that apply the exactly
same next-token prediction as LLMs and feature an image tokenizer with high-quality reconstruction
and high-utilization of the codebook (LlamaGen) [2024), along with many other recent
contributions advancing the state-of-the-art in autoregressive image generation (Ren et al., 2023}
et all, [2024; [Team| 2024} [Yu et al., 20244} [Shao et al. Deng et all 2025}, [Tang et al., [2025).

Most contemporary IARs (Sun et al.,[2024} [Tian et al.| [2024; [Yu et al., 2024b}; [Han et al., [2025) are
composed of an autoencoder and an autoregressive model. The autoencoders, also known as image

tokenizers, function as a mapping between the pixel and the token space, which are usually built on
the VQGAN architecture introduced in Taming (Esser et al., 2021). In our work, we leverage the
pixel-token mapping to reliably trace generated images.

Image Provenance. The goal of image provenance is to attribute the entity (e.g., model or con-
tent creator) that generated a given image. Existing methods can be grouped into watermark-based
(Kerner et al., 2025}, Jovanovi¢ et al., 2025} [Tong et al.,[2025)), fingerprint-based (Kim et al., 2024}
Yu et al.l 2021; Nie et al.l 2023), and reconstruction-based approaches (Wang et al.l 2023; 2024;
2025a). Watermark-based and fingerprint-based methods embed model-specific information
into the generation process or training pipeline to enable source identification
Mahara & Rishel [2025)). Since these approaches require interventions either in the training or infer-
ence stage, they degrade the quality of the generated image and cannot be performed retroactively
after the models or their non-marked generations are released. On the contrary, reconstruction-
based methods leverage the innate features of the generative models for image attribution, which
do not introduce any perturbations to the generated images. For example, RONAN
is proposed to attribute the image generated by variational autoencoders (VAE), GANSs, and
diffusion models by reverse-engineering the generative process back to its input space. RONAN is
not directly applicable to IARs as it is only effective for deterministic generation, while IARs rely on
a random sampling process during each of their next-token predictions. LatentTracer
is proposed specifically for diffusion models to trace generated images by optimizing in the
latent space of a decoder. Although LatentTracer can be applied to [ARs, it demonstrates suboptimal
performance and proves computationally expensive for many images, as it requires gradient descent
optimization for each individual image. Recently, Wang et al.| (2025a) proposed to calibrate the re-
construction loss by double reconstruction to improve attribution performance for diffusion models.
Specifically, they reconstruct a given image twice, and leverage the second reconstruction loss as a
normalizing factor. However, we show that this method has insufficient performance for IARs. In
contrast, our method is effective and allows for reliable provenance of IAR-generated images.

Membership Inference Attack. While our work focuses on data provenance, it is important to
distinguish it from membership inference attacks (MIA), which address a fundamentally different
attribution problem. MIA aims to determine whether a given data point was part of a model’s train-
ing set (Shokii et al.| 2017} [Salem et all 2019)), primarily for auditing privacy leakage during the
training process. In contrast, data provenance seeks to identify whether a given image was gen-
erated by a model, which is critical for tracing synthetic content and preventing model collapse
caused by training on generated data (Alemohammad et al.} 2024} [Shumailov et al} [2024). Impor-
tantly, existing MIA methods for IARs require access to class labels or text prompts in addition to
images (Kowalczuk et all},[2023} [Yu et al} [2023), which are generally unavailable for generated im-
ages found in the wild. Our post-hoc provenance framework operates solely on images themselves,
making it applicable to real-world scenarios where auxiliary information is absent and where content
has already been published without metadata.

3 METHOD

We begin by outlining the necessary preliminaries and notation for vector-quantized representations.
Next, we formalize the problem of provenance tracing in IARs. Finally, we introduce our data
provenance framework, presenting both the QuantLoss-based and EncLoss-based signals that we
develop for effective post-hoc provenance detection.

3.1 PRELIMINARIES ON VECTOR-QUANTIZED REPRESENTATIONS

IARs tokenizers consist of three main components:
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1. Encoder E: A convolutional neural network (CNN)-based feature extractor with down-sampling
ratio p that projects input pixels z € R7*W >3 to a latent feature map f € R» X7 X, where
H x W are spatial dimensions and C' denotes the channels. We denote the encoding as x — f.

2. Quantizer Q: The main part of the quantizer is a codebook Z € RV *C containing N learnable
prototype vectors, each with the channel dimension C'. The index of each prototype vector serves
as a discrete foken for quantization. Every spatial feature f(7) is mapped to its nearest entry

zn (n € [N]) in codebook Z to obtain the integer indices tg’j ). We denote the quantization as

f 9t z and the dequantization (mapping from the tokens ¢ to the quantized feature map f)

-1
asty Q—> fz, and define them as follows:

Q: tg’j) = argfl]\ll%nﬂf(i’j) — Znll2, Q71 fg’j) = Z[tg’j)]. (1)
ne

3. Decoder D: A CNN symmetric to the encoder that decodes the quantized feature map f to the
image zz. We denote the decoding as f B% Tz.

Together, the stages in the above framework can be expressed as:

—1
e B S, S, Py )

The training of a IAR model is performed in two stages: (1) the encoder and decoder pair, including
the quantizer with its codebook, are pre-trained, followed by the (2) training of the autoregressive
transformer (AR) to predict the next tokens during generation. The encoder and quantizer are only
used for mapping images from pixels to tokens during training, while the decoder is used for map-
ping AR-generated tokens to image pixels during both training and inference (generation).

3.2 PROBLEM FORMULATION

Given a suspect image « and a IAR model M, our goal is to develop a framework that attributes the
image x to the given IAR, or identifies z’s provenance as not generated by M. z can be any image,
including a natural one or an image generated by a generative model. For M, we assume white-box
access to its encoder F, decoder D, and quantizer (), which represents a realistic setup as many of
the state-of-the-art IARs are open-source. Most importantly, we only assume post-hoc provenance,
i.e., M and z are already given and it is not possible to modify the training or generation process.

3.3 A FRAMEWORK FOR DATA PROVENANCE IN TARS

We introduce two complementary signals specifically designed for IAR provenance detection:
QuantLoss (Section [3.3.1) and EncLoss (Section [3.3.2). Finally, we describe how we combine
these two into a joint provenance signal for our framework presented in Figure[2]

3.3.1 QUANTLOSS: PROVENANCE SIGNAL BASED ON CODEBOOK DISTANCE

We design our QuantLoss provenance signals based on our observation that the token representations
differ significantly between natural and IAR-generated images. Intuitively, the representations of
generated images are consistently closer to the codebook entries than those of natural images (see
Figure [T). We first formalize this observation, then describe how we leverage it as a provenance
feature, and finally introduce the feature’s two core building blocks, namely the decoder inversion
and the quantization.

Formalizing our Observation on Proximity to Codebook Tokens. The generation of an image
xz by a IAR with codebook Z is formalized in Equation (3)). The generated image x is initially
sampled as discrete tokens ¢z from the token sample space 7z by the IAR. This sample space for
generated image consists of the possible combinations of tokens from the codebook Z. In contrast,
natural images are drawn from natural (real-world) data distributions, and therefore have a much
larger and more diverse space. In addition, different IARs have distinct codebooks corresponding
to distinct sample spaces. Thus, the codebooks of different IARs naturally serve as a provenance
signal for the synthetic images. In essence, IAR-generated images leave a “fingerprint” in token
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Figure 2: Overview of our data provenance framework for IARs. (1) During Generation, the
tokens are generated by the autoregressive model, dequantized to a feature map, and decoded to a
generated image. (2) Our Decoder Inversion aims at creating an inverse decoder that recovers the
generated feature map from the generated image. (3) We propose two signals for our Data Prove-
nance: QuantLoss between the feature map recovered by the inverse decoder and its re-quantized
version, and EncLoss between the image and its reencoded version.

space because they were originally constructed from specific codebook entries. This observation

leads to our key insight: generated images, when inverted back through the decoder and correctly

quantized, will have feature representations that align closely with codebook entries, while natural

images or images generated by other IARs will exhibit larger quantization errors.
. AR, Q' D

Generation: Ty ~ ty — f; — x4 3)

. Q Dt
Inversion: tg «—— fz ¢&—— xz

Designing a Provenance Signal Based on our Observation. From this insight, we design a signal
to detect if an image was sampled from a codebook Z. We transform a given image x to its contin-
uous feature map f and then to its codebook-based quantized feature map f. The process can be
expressed as follows:

D1 Q -1
r—— f=>t—> fz. 4
Specifically, we first transform the image x to the latent space with an inverted decoder D!, If

was generated by the target IAR from 7z, then with an ideal inverse decoder D~!, the recovered
feature map f should already be quantized (i.e., each feature vector should exactly match a codebook

-1
entry). Therefore, the quantization step f NN fz would introduce minimal error, making
f = fz. Conversely, if x is a natural image or from a different IAR, f will not align with the
codebook entries, resulting in significant quantization error and f # fz. We compute the QuantLoss
Lquane between the feature map f and its quantized version f as follows:

Louan(t) = [If = fzll2 = .f = QTHQN)]l2, (5)

Decoder Inversion: Obtaining D —'. We aim at inverting an image x to the quantized feature map
fz. Intuitively, if x was generated by the given IAR, the feature map f is close to the codebook
entries of Z. This requires first inverting the decoder D. A naive solution would be to apply the IARs
original encoder E. However, we observe that E is not a close inversion of D for generated images
for most IARs (what we show in Table d). We attribute this behavior to the fact that E is trained on
natural images. To obtain a closer approximation of the inversion D! of the decoder, we instead
train an inversion model. Concretely, we initialize this model’s weights with the original encoder
weights and finetune this inverse decoder on images generated by the given IAR (see Equation (2)).
During finetuning, the codebook Z and the decoder D are frozen, and we use the following loss to
optimize D~ 1:

Liny = |fz = D7HD(f2))]l2- (6)
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Notably, this step is performed post-hoc after release of the IAR and the data point z. It does
not interfere with the models training or the generation of data points. Given that the finetuning
exclusively relies on images produced by the target IAR, it does not require the costly curation of
additional training data. Finally, we can improve robustness to data augmentations by applying them
to the finetuning data and training D~ to generate consistent quantized feature maps for both the
original and augmented images. As shown in Section[4.3] this approach makes our framework less
sensitive to common data perturbations and significantly enhances our method’s reliability.

Quantization (). While inverting the decoder traces the image to the latent space, we need to further
invert the feature map to the token space, as the token space is where generated images are initially
sampled from. To this end, we perform quantization for both single-scale and multi-scale IARs to
invert a feature map f to tokens ¢ .

Single-scale IARs, such as RAR (Yu et al 2024b)). which generate an image through next-token
prediction, tokenize images as a single feature map, where each feature corresponds to only one
token and one entry in the codebook. During generation, each token is mapped to one of the spatial
features in the feature map by querying the codebook (fz = Q~'(tz) = Z[tz]). This process can
simply be inverted by the corresponding quantization @, defined in Equation (T).

Multi-scale 1ARs, such as VAR (Tian et al., |2024), redefine the autoregressive image generation
as next-scale prediction. They generate an image starting from tokens responsible for low-level
features in an image, and then generate the tokens for high-level details based on tokens in the
previous scales. After generating tokens in all scales, the tokens are mapped to codebook entries,
upsampled, and summed up to obtain the feature map. This process can be formalized as:

(ki )\ K Codebook Z (ki) K Upsample and Sum (4,5)
{tz7" oy —— {7 e ——————— 27 (7

where K is the number of scales. When quantizing the feature map to scalewise tokens, multi-scale
IARs apply a scalewise greedy search: for each scale, the nearest codebook entry of a given feature
is selected as the token. The detailed algorithm for the original quantization of VAR is presented
in Algorithm 2] However, as tokens from all scales contribute to each spatial feature, inverting the
feature map to the tokens with this greedy search quantization cannot invert the feature map to the
original tokens.

We define the problem of searching for the token sequence in multi-scale IAR as an optimization
problem. Given a target feature map f € R7x*WkxC e seek the optimal multi-scale token
combination {¢;}%_, that minimizes the reconstruction error:

. ~ 2
min Hf - f({fk}f?:l)H ; ®)
(i}, 2

where f({ tx 1<) denotes the reconstructed feature map obtained by dequantizing and aggregating
tokens across all scales as defined in Equation (7). To solve this problem, we propose an optimized
quantization algorithm to search for a token combination across all scales that can best represent a
given feature map. For each element in the token map, we initialize IV logits corresponding to [V
entries in the codebook. An estimated feature map is then calculated according to the logits. Then
we employ the gradient descent algorithm to minimize the distance between the estimated and target
feature map. The intuition to detect images generated by VAR is the following: for a feature map
generated by VAR, our algorithm enables the originally generated tokens to gradually have higher
logit values with more iterations, and finally reduces the QuantLoss significantly. Any feature map
not generated by VAR cannot be easily represented by tokens from the codebook, so the QuantLoss
remains high even after optimization. We present the detailed algorithm in Appendix [A]

Overall, once D! and optimized ) are obtained, the resulting QuantLoss serves as a powerful
distinguishing signal: images generated by a IAR M consistently exhibit significantly lower loss
than those not originating from the model, enabling highly reliable provenance attribution.

3.3.2 ENCLOSS: PROVENANCE SIGNAL BASED ON DECODER INVERSION LOSS

As a second complementary provenance signal, we propose a feature we call EncLoss, which can
be combined with the QuantLoss to provide more reliable data provenance. This feature is based

. . . . D S
on our observation that the decoding during generation (f; — xz) maps fz which lies in a low-
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dimensional latent space to xz which lies in a high-dimensional pixel space. Therefore, if we com-
press a generated image x» back to f with an ideal inverse decoder D, there is no information
loss in this process. In contrast, if a natural image or an image generated by another model is pro-
jected from pixel space to latent space with D~1!, there is a non-negligible loss due to information
compression. Using this observation, we apply inverse decoding and decoding to a given image to
capture this signal, and quantify the EncLoss as Lgy as

Lgne = ||Rec (z) — x||2, 9)

where Rec (z) := D(D~!(x)). However, we note that this loss is not only related to the data
source, but also to the complexity of the image. Specifically, a natural image with low complexity
contains low information density, and thus also has low EncLoss when encoded into the latent space.
To address the potential false positive cases caused by the low-complexity images, we calculate a
calibration factor for the EncLoss inspired by AEDR (Wang et al.,2025a)). Concretely, we invert the
image twice, where the second EncLoss serves as an estimation of the inherent image complexity.
The calibrated EncLoss can be formalized as follows:

ca_ |Ree(s) —als
Ene ™| Rec (Rec () — Rec(z) |2

(10)

Our Final Combined Provenance Signals. Finally, we combine the QuantLoss Lquane and the
calibrated EncLoss L2 to obtain a stronger signal for provenance. Since £§% is a ratio of errors,

we design the combined loss Lcomb as a product of Loyant and £gglc:

»CComb - »CQuam X ﬁgﬂi (11)

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

Models. We evaluate our method on a diverse set of state-of-the-art IAR models for image gen-
eration. This includes next-token prediction models, such as LlamaGen (Sun et al., [2024) and
Taming (Esser et al.}2021); a random-order prediction model, RAR (Yu et al., [2024b); and next-
scale prediction models, such as VAR (Tian et al.l[2024) and Infinity (Han et al.| [2025)), the latter
of which is bit-wise and supports high-resolution generation. To further demonstrate the general-
ity of our approach beyond autoregressive models, we also report results on the vector-quantized
diffusion model VQ-Diffusion (Tang et al.,2023)).

Datasets. We construct several evaluation datasets, which consist of real or generated images. Real
images are obtained from the validation sets of standard benchmarks (1,000 images each), namely
ImageNet (Deng et al., [2009), LAION (Schuhmann et al.,2022), and MS-COCO (Lin et al., [2014).
The generated images are obtained by generating 1,000 images using each of the previously men-
tioned models. For finetuning, we use a distinct dataset generated for each tested model. For more
details on finetuning, please refer to Appendix [C|

Metrics. We report the true positive rate at 1% false positive rate (TPR@ 1%FPR) as our primary
evaluation metric. We aim to minimize false accusations, avoiding wrongly attributing images to a
model that did not generate them, while still measuring detection performance effectively.

Baselines. We compare against several baselines: a naive reconstruction-loss baseline where
images with lower autoencoder reconstruction losses are detected as belonging images, Latent-
Tracer (Wang et al.| 2024), and AEDR (Wang et al., [2025a). For more details on our baselines
setup, please refer to Appendix [D}

4.2 EFFECTIVENESS OF OUR DATA PROVENANCE FOR TARS

Table[Tland the extended versions Table[Ad]and Table[A3lsummarize the effectiveness of our method
over all models and datasets. For a given target model denoted in the first column, each column in the
table represents a different task, where 1,000 images generated by the target model (belonging set)
are distinguished from 1,000 images from a single non-belonging source. Evaluated non-belonging
sources cover both three natural image datasets and five image datasets generated by other models.
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Table 1: TPR@1%FPR (%) of our method and the baselines. The first column indicates the
original model that has generated the belonging images, the heading of the other columns specifies
the natural datasets or generators from which the non-belonging images are obtained. Our method
is instantiated with the best-performing set of signals from Section for each original model.

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
Reconstruction 33.6 34.0 443 - 39.7 43 45.7 70.0 63.0
LiamaGen LatentTracer 93.5 89.2 97.9 - 96.3 80.7 96.9 99.0 98.7
_AEDR_ 09 3 505 - 95 517 6710 707 681
Ours 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
Reconstruction 38 4.1 7.4 0.8 - 0.1 57 18.1 18.8
RAR LatentTracer 6.0 6.1 15.2 0.4 - 0.0 9.3 24.6 26.9
_AEDR_ 295 6 366 106 - 23 359 499 216
Ours 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
Reconstruction 27.5 21.5 27.6 10.1 18.9 - 277 39.0 46.1
Tamin LatentTracer 73.0 61.0 759 36.4 66.8 - 76.0 85.4 874
e _AEDR 804 &5 89 707 807 - 781 919 815
Ours 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Reconstruction 1.4 1.4 3.6 0.1 1.6 0.0 - 59 59
VAR LatentTracer 39 1.3 12.0 0.2 5.6 0.1 - 15.4 15.3
_AEDR 201 b7 506 147 283 M40 - 375 508
Ours 100.0 99.2 100.0 99.2 100.0 100.0 - 100.0 100.0
Reconstruction 0.0 0.2 0.8 0.0 0.0 0.0 0.2 - 0.3
Infinit LatentTracer 0.0 0.0 10.9 31.7 0.2 0.0 58 - 53
MY ABDR b6 189 ose2 14 30 15 128 - 84
Ours 99.4 85.6 99.4 99.2 99.5 99.1 99.4 99.4
Reconstruction 17.2 8.8 243 6.3 21.8 1.6 21.2 43.0
VQDiff LatentTracer 97.7 93.8 98.4 97.3 97.9 93.6 98.5 98.6
o AEDR. 87 _ _St4 %0 798 936 72 875 836 -
Ours 100.0 99.4 100.0 99.9 100.0 99.9 100.0 100.0

Table 2: Robustness against common image post-processing methods on RAR. Non-belonging
images are from the ImageNet dataset, and we use QuantLoss to instantiate our method.

Attacks
Method
Noise (0.05) Kernel (9) JPEG (60) Brightness (1.6)  Contrast (2.0)  Saturation (2.0)  Resize (0.5)

LatentTracer 34 4.7 4.8 2.3 3.0 3.6 22
Reconstruction 2.3 3.0 3.6 1.4 1.6 3.1 1.0
AEDR 73 114 8.9 1.9 14 9.5 0.2
Ours (w/o Aug) 60.4 74.9 91.7 67.9 45.7 97.4 88.5
Ours (w/ Aug) 87.8 80.5 96.1 92.3 91.1 99.2 98.4

We first observe that the naive reconstruction baseline is not effective in detecting which model
a given image was generated by. Although LatentTracer can obtain relatively good performance
on LlamaGen and VQ Diffusion when compared with other baseline methods, it fails for RAR,
VAR, and Infinity. While AEDR yields slightly better results than LatentTracer on those models, its
overall performance over the diverse set of models falls short. In contrast, our method yields perfect
or near-perfect results, i.e., around 100% TPR over all models and datasets, highlighting its strength
for practical data provenance tracing.

Additionally, our method only requires one-time finetuning to obtain the inverse decoder, which
can be used to evaluate provenance on an unlimited number of images. Notably, our QuantLoss
operates in the latent space of the autoencoder and does not require decoding into the full image,
which allows for efficient provenance nearly 2 x faster than the reconstruction baseline and nearly 4
x faster than the AEDR. We show in Table [AJ] that for most IARs, our method achieves the fastest
data provenance, with a running time of less than 10 milliseconds.

4.3 ROBUSTNESS EVALUATION AGAINST IMAGE POST-PROCESSING

In practical provenance tracing applications, the original images might be modified through JPEG
compression, resizing, or other post-processing operations, which can reduce provenance signals
and make reliable tracing more challenging. We analyze the robustness of our proposed framework
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Table 3: Contribution of the components in our method. We present TPR@ 1%FPR of different
signals on different models. We denote the optimized quantization as QuantLoss Opt. The best
instantiations of our framework for each model are highlighted in green, which corresponds to the
results shown for our method in Table E

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
Ours (QuantLoss) 100.0 99.8 100.0 - 100.0 100.0 100.0 100.0 100.0
LlamaGen Ours (EncLoss) 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
Ours (QuantLoss X EncLoss) 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
Ours (QuantLoss) 99.9 99.8 99.9 99.8 - 99.2 100.0 100.0 99.8
RAR Ours (EncLoss) 98.2 98.0 98.9 93.5 - 91.9 96.6 99.5 99.7
Ours (QuantLoss X EncLoss) 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
Ours (QuantLoss) 99.6 88.8 99.6 96.2 99.6 - 99.5 99.8 99.5
Taming Ours (EncLoss) 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Ours (QuantLoss X EncLoss) 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Ours (QuantLoss) 04 0.0 10.0 0.0 4.5 0.0 - 13.4 1.6
VAR Ours (QuantLoss Opt) 95.0 929 944 89.8 945 88.4 - 95.7 95.2
Ours (EncLoss) 100.0 96.8 100.0 98.1 100.0 99.7 - 100.0 100.0
Ours (QuantLoss Opt X EncLoss) 100.0 99.2 100.0 99.2 100.0 100.0 - 100.0 100.0
Ours (QuantLoss) 99.4 85.6 99.4 99.2 99.5 99.1 994 - 994
Infinity Ours (EncLoss) 0.0 949 98.9 1.4 0.6 0.4 11.8 - 35.1
Ours (QuantLoss X EncLoss) 0.0 98.2 100.0 9.1 34 1.1 57.3 - 76.6
Ours (QuantLoss) 92.1 433 99.1 96.8 97.6 85.8 95.7 99.1 -
VQDiff Ours (EncLoss) 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 -
Ours (QuantLoss X EncLoss) 100.0 99.4 100.0 99.9 100.0 99.9 100.0 100.0 -

Table 4: Effectiveness of decoder inversion with or without finetuning the encoder. We use the
the best instantiation of our framework following Table [T} We show TPR@1%FPR across different
datasets and models.

Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

Model Method

LlamaGen Ours (Original Encoder) 99.9 99.6 99.9 - 99.9 99.6 99.9 99.9 100.0
Ours (Inverse Decoder) 100.0 100.0 100.0 - 100.0 100.0 100.0  100.0 100.0
RAR Ours (Original Encoder) 6.2 9.1 10.0 1.7 - 0.5 3.1 134 21.8
Ours (Inverse Decoder) 100.0 100.0 100.0 99.9 - 99.9 100.0  100.0 100.0
Tamin Ours (Original Encoder) 15.3 15.7 15.3 7.8 8.8 - 12.5 13.7 19.2
2 Ours (Inverse Decoder) 100.0 100.0 100.0 100.0 100.0 - 100.0  100.0 100.0
VAR Ours (Original Encoder) 2.7 35 54 8.4 32 6.3 - 8.4 7.8
Ours (Inverse Decoder) 100.0 99.2 100.0 99.2 100.0 100.0 - 100.0 100.0
Infinit Ours (Original Encoder) 0.0 0.0 16.6 0.0 1.3 0.0 2.8 - 0.0
MY Ours (Inverse Decoder) 99.4 85.6 99.4 99.2 995  99.1 99.4 - 99.4
VQDiff Ours (Original Encoder) 86.1 332 829 78.8 95.7 65.8 83.3 86.1 -
Ours (Inverse Decoder) 100.0 99.4 100.0 99.9 100.0 99.9 100.0  100.0 -

against common image post-processing methods. We analyze the robustness of RAR in Table [2]and
provide a more extensive evaluation for robustness on additional models in Appendix [Hl We detail
the analyzed attacks in Appendix [C]and provide the respective strengths in brackets in Table[2] We
find that the baselines quickly break against common image post-processing transformations, while
our QuantLoss allows for reliable attribution. Our framework also enables finetuning the inversion
D~! with augmentations to further improve the robustness of attribution against the image post-
processing operations. We note that for the setting where common image processing exists, the best
instantiation of our method is QuantLoss. In Appendix [Hl we show the reason why our QuantLoss
allows for more robust provenance than EncLoss, specifically when trained with augmentations.

4.4 ABLATION STUDIES

Effectiveness of the Framework Components. While, for the results in Table|I|, we instantiate our
framework with the best per-model combination of signals from Section[3.3] in Table[3] we ablate the
impact of the individual signals. Concretely, we study the following three combinations: QuantLoss
only uses the QuantLoss from Equation (5), EncLoss relies on the EncLoss from Equation (T0),
and QuantLoss x EncLoss uses the combined loss from Equation (TI). For VAR, we additionally
integrate the optimization step from Algorithm[3] Our results show that, for most model and dataset
pairs, combining both signals yields perfect or near-perfect results, i.e., 100% TPR at practical
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Table 5: Effectiveness of EncLoss calibration. We show TPR@ 1%FPR for attributing belonging
images v.s. non-belonging images from different real datasets or generative models.

Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

Model Method

L1 G EncLoss (w/o Calibration) 19.0 23.8 343 - 264 2.8 32.8 63.4 549
amaben  pncLoss (w/ Calibration) — 100.0 100.0 100.0 - 100.0 1000 1000 1000  100.0
RAR EncLoss (w/o Calibration) 22.6 21.2 27.3 5.1 - 2.5 26.0 47.9 44.0

EncLoss (w/ Calibration) 98.2 98.0 98.9 93.5 - 91.9 96.6 99.5 99.7
Tamin EncLoss (w/o Calibration) 53.7 39.1 49.8 29.5 439 - 522 65.2 70.9
& EncLoss (w/ Calibration) 100.0 100.0 100.0 100.0 100.0 - 100.0  100.0 100.0
VAR EncLoss (w/o Calibration) 17.0 15.8 31.8 6.1 21.7 14 - 41.4 41.5
EncLoss (w/ Calibration) 100.0 96.8 100.0 98.1 100.0 99.7 - 100.0 100.0
Infinit EncLoss (w/o Calibration) 0.3 2.5 4.5 0.1 0.2 0.0 0.8 - 1.3
y EncLoss (w/ Calibration) 0.0 94.9 98.9 1.4 0.6 0.4 11.8 - 35.1
VQDiff EncLoss (w/o Calibration) 15.7 54 24.6 15.5 14.8 3.5 21.9 343
EncLoss (w/ Calibration) 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0

Table 6: Hyperparameter analysis for optimized token search (Algorithm EI) We evaluate
on VAR model, using VAR-generated images as the belonging image, and ImageNet as the non-
belonging image. The evaluated metric is TPR@ 1%FPR (%). Init w/ Orig. Quant. denotes whether
our algorithm is initialized with the original quantization in VAR. Default parameters in Bold.

Baseline Number of Iterations Learning Rate Init w/ Orig. Quant.
100 400 1000 1200 1400 1600 0.01 0.05 0.1 02 05 No Yes
0.4 875 910 954 950 938 922 430 952 950 942 928 943 95.0

detection thresholds. We observe that for VAR, including the additional optimization step boosts the
combined signal by, on average, roughly 10% and achieves perfect detection.

Decoder Inversion. We also ablate the role of relying on the inverted decoder instead of the IARs’
original encoders for provenance tracing in Table ] Our results highlight the importance of de-
coder inversion: while e.g., for RAR, the combined loss can initially only partly attribute belonging
images, after finetuning we achieve close to 100% TPR @ 1%FPR.

EncLoss Calibration. We evaluate the impact of our calibration strategy for the EncLoss signal
in Table ] comparing the uncalibrated reconstruction loss (Equation (9)) against our calibrated
version (Equation (I0)). Without calibration, performance is moderate because low-complexity
natural images exhibit reconstruction loss similar to generated images. The calibration normalizes
by image complexity, achieving near-perfect detection for most models.

Hyperparameter Analysis for Optimized Quantization. Table [f] analyzes hyperparameters for
our optimized token search on VAR. Optimal performance (95.0-95.4% TPR @ 1%FPR) occurs with
1,000-1,400 iterations and learning rate 0.1. Notably, our method still achieves 87.5%TPR @1%
FPR with only 100 iterations, which can reduce the runtime from 8.24s/image to 0.57s/image. In
addition, initializing with VAR’s original quantization provides a modest boost (95.0% vs. 94.3%).

5 CONCLUSIONS

We introduced the first model-agnostic, post-hoc framework for robust provenance tracing of IAR-
generated images. Our approach exploits the unique quantization artifacts left by the tokenization
process in IARs, distinguishing generated content even in the absence of visible differences or ex-
plicitly added watermarks. To strengthen the evidence that a given image was generated by a par-
ticular IAR, we design additional provenance features that increase the signals from quantization-
artifacts and leverage additional signals from the encoding process. We show that our framework
achieves near-perfect detection across a wide range of state-of-the-art I[ARs. Notably, it operates
without requiring any architectural changes or access to the generation process, making it broadly
applicable to existing, previously published, and unmarked content. Our results provide a practical
and scalable solution for responsible deployment and post-hoc auditing of autoregressive generative
models in real-world scenarios.
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ETHICS STATEMENT

This work addresses critical societal challenges posed by increasingly realistic Al-generated im-
agery, including misinformation, fraud, and harmful content dissemination. Our post-hoc prove-
nance method serves as a defensive technology that enhances transparency and accountability in
Al-generated content without compromising the quality or utility of generative models. Since our
method achieves nearly 100%TPR at only 1%FPR, it has a very low risk of making false accusa-
tions. We believe the benefits of enabling reliable source attribution for combating synthetic media
misuse outweigh the potential risks.

REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details together with open-sourced code to ensure repro-
ducibility of our results. All experimental configurations, including hyperparameters for finetuning
the inverse decoder across six different open-source models (LlamaGen, RAR, Taming, VAR, Infin-
ity, VQ-Diffusion), are detailed in Appendix C with specific learning rates, batch sizes, and training
schedules. Our evaluation also includes three well-known image datasets (ImageNet, LAION, MS-
COCO validation sets) that are also open-source. The optimized quantization algorithm for multi-
scale models is provided in detail in Algorithm 3, and robustness evaluation protocols with specific
attack parameters are also documented in Appendix C. All experiments were conducted on standard
hardware (NVIDIA A40 GPUs) with specified software versions.
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A DETAILED ALGORITHM OF OPTIMIZED TOKEN SEARCH

We present the original quantization algorithm for VAR in Algorithm [2] the original dequantization
algorithm for VAR in Algorithm[I] and the detailed algorithm of the optimized token search for VAR
in Algorithm 3] The part introducing errors due to scalewise structure for VAR quantization in Al-
gorithm[2]is marked in red. The common procedures for original VAR dequantization (Algorithm|T))
and our approach (Algorithm 3] are marked in blue.

We observe that in the dequantization process in VAR (Algorithm [I), the representations in all
scales are upscaled and added to the final feature map (row 5-6). However, during the quantization
process (Algorithm2)), the feature map is considered as a whole during the codebook lookup (row 6).
Therefore, if we quantize a feature map of a generated image on scale k, all the token representations
from scales > k are also part of the feature map during this lookup process, which leads to an error
of the current-scale quantization.

As shown by Algorithm 3] the goal of our algorithm is to search for a scalewise token combination
from the codebook that has a minimal distance to a given feature map by backpropagation. For each
element in the token map, we initialize N logits corresponding to IV entries in the codebook (row 2).
An estimated feature map is then calculated according to the logits (row 4-11). Then we employ the
gradient descent algorithm to minimize the distance between the estimated and target feature map
(row 12-13). The intuition to detect images generated by VAR is the following: For a feature map
generated by VAR, our algorithm enables the originally generated tokens to gradually have higher
logit values with more iterations, and finally reduces the QuantLoss largely. Any feature map not
generated by VAR cannot be easily represented by tokens from the codebook, so the QuantLoss
remains high even after this optimization.

Algorithm 1 Original Dequantization for VAR

Inputs: multi-scale token maps ¢, codebook Z
Hyperparameters: number of scales K, resolutions { (g, wi) }5_,

1. f+<0 > Initialize reconstructed feature map
2: for k < 1to K do > Iterate through all scales
3 t;, < QUEUE_POP(?) > Obtain tokens from a given scale
4 z), ¢ LOOKUP(Z, ty,) > Look up codebook vectors for tokens
5: 2 < INTERPOLATE(zg, hi, Wi ) > Upscale to full resolution
6 f — f + or(2k) > Add processed features to reconstruction
7: return f > Return reconstructed image

Algorithm 2 Original Quantization for VAR

Inputs: image x, encoder F, quantizer (), codebook Z
Hyperparameters: number of scales K, resolutions { (g, wi) }5_,

1. f+ E(x) > Encode image to get the feature map
2: t <+ [] > Initialize empty queue for multi-scale tokens
3: for k < 1to K do > Iterate through all scales
4: Ty < Q(INTERPOLATE( f, hg, wg)) > Quantize interpolated features to current scale
5: t < QUEUE_PUSH(¢, 1) > Add tokens to the token map
6: 2k < LOOKUP(Z, 1) > Look up codebook vectors for tokens
7: 2 < INTERPOLATE(zg, hi, Wi ) > Upscale to full resolution
8 f f—or(zk) B> Subtract processed features from residual
9: returnt > Return multi-scale tokens

B ADDITIONAL RELATED WORK

LlamaGen (Sun et al.| [2024) demonstrated that vanilla autoregressive models, without inductive
biases on visual signals, can achieve state-of-the-art image generation performance if scaling prop-
erly. There are three keys to its success. (1) A well-designed image compressor, which balances
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Algorithm 3 Optimized Quantization for VAR

Inputs: image z, encoder F, codebook Z = {z1, ..., 2y } with a size of N, gradient descent algo-
rithm GD(+)
Hyperparameters: number of scales K, resolutions { (A, wk)}kK:l, number of iterations Ve, s

1. f+ E(x) > Encode image to get the feature map
20 L+ {lp > Initialize the token maps logits. I3 has a shape of (hy, wg, N)
3: f+0 > Initialize the estimated feature map
4: for n;iers < 110 Njjers do > Optimization iterations
5 for k + 1to K do > Iterate through all scales to calculate features on each scale
6: for i < 1to hy do > Iterate through features in the current scale
7: for j < 1 to wy do
8: p < SOFTMAX(I[K][¢][j]) > Calculate the probabilities of all codebook entries
9 z[k][4][4] « Zi\; 1Dt - 2z > Calculate the feature averaged on the probabilities
10: z[k] <= INTERPOLATE(z[k], hx, W) > Upscale the feature map to full resolution
11: f <+ f+or(z[k]) > Process with convolution and add to the estimated feature map
h w AreTr s R
12 B =0 350 Y (F) = flll)?
13: L+ GD(L,E) > Perform gradient descent on the logits L to minimize E/

14: t + {{{argmax[k][¢][/] ;V:’Cl}f:’“l K | b Calculate the final tokens by taking highest logits

15: returnt

the trade-off between image quality and codebook utilization by opting for the down-sample ratio of
p = 16. (2) A scalable image generation model developed based on the Llama architecture (Touvron
et al.| 2023afb) used for LLMs, and (3) high-quality training data, especially with the finetuning on
10 M high aesthetics quality images.

Token Mismatch. The first papers on watermarking already observed a mismatch between the
generated tokens for a given image and the image’s re-encoded tokens (Meintz et al., [2025}; Kerner
et al.,[2025 Jovanovi€ et al.,|2025; Tong et al.,2025). The problem stems primary from the decoder-
encoder pairs which are not trained to optimize for the token match (see the training optimization
with the compound loss, for example, in VAR by [Tian et al.| (2024), Equation 5). The standard
training only ensures small loss between the original and generated images as well as between the
latent representations after encoding and before the decoding. An additional term is the recon-
structed image quality, which is measured, for example, with the LPIPS (Zhang et al) 2018) or
StyleGAN'’s discriminator loss (Karras et al.,|2019). Despite the mismatch, the token-based water-
marks from Meintz et al.| (2025) and bit-wise watermark proposed by |Kerner et al.| (2025), were
able to still provide a highly-robust detection of the generated content. The other line of work
by Jovanovi¢ et al.| (2025) and [Tong et al.[ (2025) further propose to finetune the encoder-decoder
or encoder-only, respectively, to compensate for the token-index reconstruction errors. We leverage
the inherent property of IARs with their discrete codebook and the encoding errors by showing that
the significantly higher errors for the natural images allow us to distinguish them from the generated
images.

Vector Quantization in IARs. The token-based image generation in IARs has the underlying prin-
ciple inherited from LLMs, where each next predicted token is represented as an index of one of the
entries in the codebook. The codebook stores a collection of relatively small dimensional represen-
tation vectors which constitute building blocks of an image. The generated tokens are decoded to a
full-dimensional image. Any image can be encoded to the token latent space. The encoder performs
feature extraction through a multi-layer convolutional layers with down-sampling to the latent space,
which results in a collection of encoded small dimensional representation vectors. These vectors are
compared with the entries in the codebook to obtain the integer indices of the tokens.

C IMPLEMENTATION DETAILS

Finetuning. Our finetuning of D~ follows the pipeline in Figure where we first generate tokens
with the corresponding AR model, embed them to the original feature map f» and use the frozen
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decoder D to generate images xz. We detail the finetuning hyperparameters, such as the number
of images, the batch size and learning rate for every model in Table [AT] All experiments were
conducted on a single NVIDIA A40 GPU with 48GB of memory.

Table Al: Finetuning details for different models.

Method F]g?ﬁ:}:; ODfata Epoch Bs?zceh Optimizer Les::;ng Scheduler  Scheduler Configuration
LlamaGen 50000 25 8 Adam 1x 1072 StepLR Gamma=0.9, Step=2
Taming 50000 50 8 Adam 5x 1074 StepLR Gamma=0.9, Step=2
RAR 50000 50 8 Adam 5x 1074 StepLR Gamma=0.9, Step=2
VAR 50000 10 16 Adam 5x 107° StepLR Gamma=0.9, Step=2
Infinity 10000 10 2 Adam 1x107° StepLR Gamma=0.9, Step=2
VQ Diffusion 10000 50 16 Adam 5x 107° StepLR Gamma=0.9, Step=2

Augmentations. For the robustness evaluation in Table[2] we apply augmentations during the fine-
tuning of RAR and Taming to improve the robustness against image post-processing methods. We
progressively apply weak to strong augmentations during 50 epochs of finetuning, where a more
detailed recipe can be found in Table[AZ]

Table A2: Augmentation hyperparameters during finetuning.

Strength Epochs JPEG-Compression  Gaussian Blur Gaussian Noise Brightness Saturation Resize Contrast

i (Final Quality) (Kernel Size) (Standard Deviation) (Factor) (Factor) (Ratio) (Factor)
None 1-5 - - - - - - -
Weak 6-10 [90, 85, 80] [1,3] [0.005, 0.01, 0.02] [1.0,1.1,1.2]  [1.0,12,1.5] [0.9,0.85,0.8] [1.0,1.2,1.5]
Medium 11-30 [80, 75, 70, 65]) [3,5] [0.02, 0.03, 0.04] [1.3,1.4,1.5] [1.5,1.7,20] [0.8,0.75,0.7]  [1.5,1.7,2.0]
Strong 31-50 [60, 55, 50] [5.7,9] [0.03, 0.04, 0.05] [1.5,1.7,2.0] [2.0,22,2.5] [0.7,0.6,0.5] [2.0,2.2,2.4]

Hyperparameters for Optimized Quantization. For the optimized quantization of VAR, we use
1200 iterations with a learning rate of 0.1, batch size of 8, and the Adam optimizer. We use the
original quantization in VAR (Algorithm [2) as initialization. We perform an analysis of the hyper-
parameters in Table@

Robustness. In Table 2] we evaluate the following methods: 1) Noise: Adds Gaussian noise with a
std of 0.05 to the image, 2) Kernel: Application of a Gaussian Blur with kernel size of 9, 3) JPEG:
60% JPEG compression, 4) Brightness: Increasing the brightness to 1.6, 5) Contrast: Changing
the contrast to 2.0, 6) Saturation: Increasing the Saturation to 2.0, 7) Resizing: Decreasing the
resolution of the image to 50% of its original resolution. An extended analysis of the impact of the
strength of each attack can be found in Appendix [H]

D IMPLEMENTATION DETAILS FOR BASELINE METHODS

Reconstruction. For this naive baseline, we compute the loss L. = |z — x1|]2 between the
original image x and its first reconstruction x; = D(Q(Q~1(D~!(z)))) and use it to decide wether
the image was generated by the model or not.

LatentTracer. (Wang et al.l 2024) We optimize for 100 iterations with the Adam optimizer. The
learning rate is 0.01, which decays by 50% after 50 iterations. The feature map is initialized as the
quantized feature map encoded by the encoder.

AEDR. We follow the method proposed by Wang et al.|(2025a) and calculate the calibrated loss
Lo = Z=Lbetween a first image reconstruction z; = D(Q(Q~*(D~Y(x)))) with the first recon-

L"recz
struction 10ss Lyec, = ||z — 21|2 and the second image reconstruction 2 = D(Q(Q~(D~(x1))))
with the second reconstruction 10ss Lyec, = ||21 — Z2]|2.

E EXPERIMENTAL ENVIRONMENT

Hardware. Our experiments are performed on Ubuntu 22.04, with Intel(R) Xeon(R) Gold 6330
CPU and NVIDIA A40 Graphics Card with 48 GB of memory.
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Software. To run our experiments we used CUDA Version 12.5 and Python 3.12.4 with PyTorch
2.7.0.

F THE DISTRIBUTIONS OF DIFFERENT METHODS

We analyze the distributions of the best-performing signals from Table[T]in Figure[AT] We compute
the loss for all non-belonging datasets, i.e., the generated and natural datasets and compare it to
the loss of the belonging dataset. The different distributions are calculated for both the original
encoder and our finetuned Inverse Decoder D!, Figureclearly shows, that the Inverse Decoder
is necessary to reduce the overlap between the belonging and non-belonging loss distributions. This
results in our method achieving near 100% TPR @ 1%FPR for data provenance.

The Combined Loss distributions for most models show an increase of the non-belonging data loss,
while it decreases slightly for the belonging data. This behavior is related to the EncLoss, which is
based on the ratio between the first and second reconstruction, as we formulate in Equation (@) The
ratio converges to 1 for belonging images, as the difference between the first reconstruction loss and
second reconstruction loss decreases. Similar for non-belonging images the second reconstruction
loss decreases. However the first reconstruction loss stays consistent, as the image does not originate
from the models codebook. This leads to an overall higher loss ratio and a higher Combined Loss.

G RUNNING TIME COMPARISON

Running Time. We compare the running time to determine our QuantLoss with the given baselines.
As shown in table@ after finetuning, our method is by far the fastest, followed by Reconstruction,
then AEDR and finally LatentTracer, which with a running time of multiple seconds is the slowest
method. We also estimate the pre-training time of different models. Notably, our inverse decoder
finetuning is a relatively small overhead compared to the model pre-training stage. For example, the
finetuning time is less than 0.05% compared to the pre-training time for LlamaGen.

Table A3: Running time comparison. We instantiate our method as only using QuantLoss for
LlamaGen, RAR, Taming, VQ-Diffusion and Infinity, while using QuantLoss Opt for VAR. We also
include an estimation of model pre-training time for each TAR.

Model Stage LatentTracer Reconstruction =~ AEDR  Ours (QuantLoss)
Model Pre-training (hours) >18000 >18000 >18000 >18000
LlamaGen D! Finetuning (hours) - - - 8.6
Attribution (second/sample) 5.305 0.015 0.030 0.009
Model Pre-training (hours) >20000 >20000 >20000 >20000
RAR D! Finetuning (hours) - - - 31.9
Attribution (second/sample) 2.359 0.014 0.028 0.009
Model Pre-training (hours) >20000 >20000 >20000 >20000
Taming Pre-training (hours) - - - 42.1
Attribution (second/sample) 3.674 0.013 0.024 0.006
Model Pre-training (hours) >10000 >10000 >10000 >10000
VQ-Diffusion  D~! Finetuning (hours) - - - 49
Attribution (second/sample) 3.112 0.022 0.043 0.008
Model Pre-training (hours) >50000 >50000 >50000 >50000
Infinity D! Finetuning (hours) - - - 14.9
Attribution (second/sample) 84.897 0.202 0.776 0.197
Model Pre-training (hours) >20000 >20000 >20000 >20000
VAR D! Finetuning (hours) - - - 10.8
Attribution (second/sample) 4.653 0.016 0.031 8.249

H EXTENDED ROBUSTNESS EVALUATION

We further analyze the robustness of our framework against different attack strengths in Figure [A2]
(RAR) and Figure @ (Taming). The results show that our proposed attribution with QuantLoss
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Figure A2: Robustness Test for RAR on 7 common image post-processing techniques.
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achieves a high TPR@ 1 %FPR for most attacks, outperforming the three baseline methods by a large
margin, especially after finetuning with augmentations. Meanwhile, we also observe an interesting
fact that our attribution by EncLoss performs worse after the augmentation. Here, we provide an
intuition on why finetuning with augmentations works better for QuantLoss but worse for EncLoss.

The improved performance of QuantLoss after finetuning with augmentation can be attributed to the
loss Liyy in Equation (@), where we optimize D! to reconstruct the original feature map. On the
finetuning setting without augmentations, the loss can be rewritten as:

Liny = ||fz — D™ (img) |2, (12)

where imyg is the initial image reconstruction D(fz). When training with augmentations, the aug-
mentations are applied to ¢mg, which leads to an augmented version of our loss function:

'Cinv = ”fZ — D_l(Aug(img))”2~ (13)

Here, we want to invert an augmented, generated image to the feature map fz. Therefore, the
tokens can still be well reconstructed for belonging images even after augmentation, which leads to
the better performance of our QuantLoss.

However, the target feature map f is the original un-augmented feature map. When we optimize
D~ to reconstruct f, the D(D~!(Aug(img)) becomes closer to the un-augmented image img.
As a result, we actually train D! to “remove” the augmentation and increase the loss for the
EncLoss, as the loss for belonging images is now the loss of the augmentation:

Lgne = [|Aug(img) — imgl|z.

The EncLoss distributions of belonging and non-belonging images are now more overlapping, lead-
ing to lower TPR@ 1%FPR. Due to our construction of Lcomb, the overlapping distributions of the
EncLoss have a negative impact on the combined provenance signal. Therefore in settings, where
robustness is critical, the QuantLoss provides a reliable provenance signal.

I AE ATTRIBUTION OR AR ATTRIBUTION

In this work, we choose to attribute images to the autoencoder (AE) instead of the autoregressive
(AR) model. We think AE attribution is more important than AR attribution for AR data provenance
for the following reason: if different AR models are based on the same AE model and training data,
they are essentially trained on the same token sequence. Those AE models are trained to fit the same
token distribution, so they have similar probabilities of a generated image. Therefore, we find it
more significant to detect that an image is from the autoencoder of a given IAR.

- RAR Generated I RAR Generated
RAR Generated -> Taming Reconstructed RAR Generated -> Taming Reconstructed
Taming Generated ‘Taming Generated

@ Taming Generated -> RAR Reconstructed I Taming Generated -> RAR Reconstructed

ImageNet i" 8 TmageNet

>

Percentage (%)
S
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02

0.015 03
QuantLoss QuantLoss

(a) Attributing images with the Taming AE. (b) Attributing images with the RAR AE.

Figure A4: Only the final AE decoding is significant for AE attribution. We analyze the setting
of 1. Taming Generated — 2. RAR Encoded + Generated and vice versa.

We analyze the AE attribution in Figure[A4]and observe that only the final AE generation is signifi-
cant for attribution. Specifically, we generate 1,000 token maps with the underlying AR model (e.g.,
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RAR). These are decoded with the RAR decoder yielding the blue distribution in Figure [A4b] with
a low QuantLoss. However, we can observe that the setting of Generated by RAR — then Encoded
+ Generated by the Taming AE, there is a clear distribution shift (green) such that the images are no
longer attributed as belonging to RAR but to Taming.

This occurs due to the different codebook Z and latent space of different AEs, where the original
signal by the first AE (e.g., RAR) is overwritten by the signal of the second AE (e.g., Taming). The
image originally constructed of the first codebook is now reconstructed by the second codebook
removing the traces of the first.

J EXTENDED RESULTS WITH MORE CONFIGURATIONS

We show an extended version of our main results in Table [A3] for all single-scale mod-
els and in Table [A4] for all multi-scale models. We use different colors for the
baselines; Reconstruction, AEDR and LatentTracer , our EncLoss and QuantLoss and our

Combined Loss .

Table A4: TPR@1%FPR (%) for multi-scale IARs under different settings. Here, the belonging
images are generated by the model specified in the first column, and the non-belonging images are
from 3 natural image datasets or generated by the other IARs. “Double Ratio” denotes the ratio
between the losses of the first and second reconstruction. "FT” denotes using the finetuned decoder
inversion.

Model Method FT Double Natural Generated
Ratio ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

LatentTracer - - 39 1.3 12.0 0.2 5.6 0.1 - 15.4 153

X X 1.4 1.4 3.6 0.1 1.6 0.0 - 5.9 59

. v 29.1 15.7 50.6 14.7 28.3 14.0 - 37.5 50.8

Reconstruction Loss

v X 2.3 29 6.6 0.3 27 0.0 - 10.5 10.4

4 32.7 12.2 415 3.8 15.0 38 - 36.5 335

X X 2.5 0.8 6.0 0.2 2.1 0.0 - 6.9 6.5

v 1.5 22 5.0 10.1 23 83 - 5.9 5.0

EncLoss

VAR v X 17.0 15.8 31.8 6.1 21.7 1.4 - 41.4 41.5
v 100.0 96.8 100.0 98.1 100.0 99.7 - 100.0 100.0

X X 0.4 0.0 2.0 0.0 0.5 0.0 - 45 2.1

v 14.1 37.7 37.0 0.0 20.0 0.0 - 974 96.0

QuantLoss

v X 0.4 0.0 10.0 0.0 4.5 0.0 - 13.4 1.6

v 0.3 0.0 5.6 0.0 7.1 0.0 - 55 4.0

X X 35 3.1 6.8 1.0 4.9 0.6 - 9.5 6.8

QuantLoss +Opt v 32 54 23 2.1 6.6 2.3 - 52 6.1
v X 95.0 929 94.4 89.8 94.5 88.4 - 95.7 952

v 10.3 2.0 14.1 1.0 15.0 33 - 8.6 6.3

Combined L X - 2.7 35 54 8.4 32 6.3 - 8.4 7.8
ombned Loss v 100.0 99.2 100.0 99.2 1000 100.0 - 100.0 100.0
LatentTracer - - 0.0 0.0 10.9 317 02 0.0 5.8 - 53

X X 0.0 0.0 16.6 0.0 1.3 0.0 2.8 - 0.0

. v 0.4 0.1 0.1 0.1 51.6 0.4 17.5 - 4.5

Reconstruction Loss

v X 0.2 0.3 1.6 0.0 0.1 0.0 0.2 - 0.5

L v 0.3 97.2 99.2 22 1.9 1.1 425 - 27.0

Infinity

X X 0.0 0.2 0.8 0.0 0.0 0.0 0.2 - 0.3

v 0.9 11.3 12.3 0.1 1.0 0.1 2.1 - 4.2

EncLoss

v X 0.3 25 45 0.1 0.2 0.0 0.8 - 1.3

v 0.0 949 98.9 1.4 0.6 0.4 11.8 - 35.1

X X 0.0 0.0 16.6 0.0 1.3 0.0 2.8 - 0.0

v 0.4 0.1 0.1 0.1 51.6 0.4 17.5 - 4.5

QuantLoss

v X 99.4 85.6 99.4 99.2 99.5 99.1 99.4 - 99.4

v 0.1 0.0 0.1 0.1 0.7 0.1 0.1 - 0.1

Combined Loss X - 0.1 0.0 29.6 0.0 2.5 0.0 5.4 - 0.9

v 0.0 98.2 100.0 9.1 34 1.1 57.3 - 76.6
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Table AS: TPR@1%FPR (%) for single-scale models under different settings. Here, the belong-
ing images are generated by the model specified in the first column, and the non-belonging images
are from 3 natural image datasets or generated by the other IARs. ”Double Ratio” denotes the ratio
between the losses of the first and second reconstruction. “FT”” denotes using the finetuned encoder.

Model Method FT Double Natural Generated
Ratio ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
LatentTracer - - 93.5 89.2 97.9 = 96.3 80.7 96.9 99.0 98.7
X 33.6 34.0 443 - 39.7 4.3 457 70.0 63.0
. X v 50.9 55.3 50.5 = 59.5 5717 67.0 70.7 68.1
Reconstruction Loss
v X 98.0 98.3 98.3 - 98.3 90.0 98.5 99.3 99.2
v 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0
LlamaGen
X X 54 45 9.6 - 8.1 0.6 9.9 279 225
v 99.7 83.5 99.6 - 99.6 94.2 99.6 99.8 99.8
EncLoss
v X 19.0 23.8 34.3 - 26.4 2.8 32.8 63.4 54.9
v 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
X X 98.9 78.2 99.9 - 99.9 98.4 98.2 100.0 97.5
v 93.5 66.3 99.2 - 98.1 973 99.3 99.4 97.5
QuantLoss
v X 100.0 99.8 100.0 - 100.0 100.0 100.0 100.0 100.0
v 100.0 99.4 100.0 - 100.0 100.0 100.0 100.0 100.0
Combined Loss X - 99.9 99.6 99.9 - 99.9 99.6 99.9 99.9 100.0
v - 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
LatentTracer - - 6.0 6.1 15.2 0.4 - 0.0 9.3 24.6 26.9
X X 3.8 4.1 74 0.8 = 0.1 Shy/ 18.1 18.8
. v 29.5 16.6 36.6 10.6 = 2.3 359 49.9 27.6
Reconstruction Loss
v X 479 442 60.1 26.7 - 122 48.0 772 70.4
v 63.7 36.5 63.5 39.8 - 334 63.6 70.2 68.1
RAR
X 2.0 35 4.4 0.4 - 0.2 2.8 1.1 19.6
x v 1.9 6.4 6.4 1.0 - 0.7 1.1 74 12.2
EncLoss
v X 22.6 21.2 27.3 5.1 - 2.5 26.0 479 44.0
4 98.2 98.0 98.9 93.5 = 919 96.6 99.5 99.7
X X 12.8 13.0 14.4 2.7 - 1.7 10.2 14.1 221
v 30.4 26.4 67.1 304 - 12.1 527 723 76.1
QuantLoss
v X 99.9 99.8 99.9 99.8 - 99.2 100.0 100.0 99.8
v 99.7 859 100.0 95.6 - 96.2 100.0 100.0 100.0
Combined Loss X - 6.2 9.1 10.0 1.7 - 0.5 3.1 13.4 21.8
v - 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
LatentTracer - - 73.0 61.0 759 36.4 66.8 - 76.0 85.4 87.4
X 21.5 21.5 27.6 10.1 18.9 - 217 39.0 46.1
. X v 80.4 82.5 81.9 70.7 80.7 - 78.1 91.9 87.5
Reconstruction Loss
v X 71.3 70.7 74.9 63.9 76.0 - 71.3 86.0 88.0
. 4 87.6 84.1 89.9 81.9 90.7 - 89.9 90.4 89.3
Taming
X 20.5 14.3 22.1 72 14.5 - 215 34.6 38.8
X v 4.0 2.8 22 1.7 1.7 - 1.8 1.5 2.6
EncLoss
v X 53.7 39.1 49.8 29.5 439 - 522 65.2 70.9
v 100.0 100.0 100.0 100.0 100.0 = 100.0 100.0 100.0
X X 38.0 42 52.1 2.1 36.5 - 46.4 81.2 715
v 39.3 39.4 65.2 343 489 - 45.8 84.6 75.7
QuantLoss
v X 99.6 88.8 99.6 96.2 99.6 - 99.5 99.8 99.5
v 99.9 98.3 100.0 99.8 100.0 - 100.0 100.0 99.9
Combined Loss X - 15.3 15.7 15.3 7.8 8.8 - 12.5 13.7 19.2
v - 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
LatentTracer - - 91.7 93.8 98.4 97.3 97.9 93.6 98.5 98.6 -
X X 17.2 8.8 24.3 6.3 21.8 1.6 21.2 43.0 -
. v 89.7 51.4 90.0 79.8 93.6 712 87.5 83.6 -
Reconstruction Loss
v X 67.6 62.2 71.3 71.5 71.0 552 78.3 82.0 -
o v 72.4 51.2 89.7 68.4 87.7 61.9 72.4 922 -
VQ-Diffusion
X X 0.6 0.3 53 0.6 1.0 0.1 2.6 13.0 -
v 87.8 36.6 50.9 90.8 95.6 93.7 83.6 63.6 -
EncLoss
v X 15.7 54 24.6 15.5 14.8 35 21.9 34.3 -
v 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 =
X X 174 1.6 40.7 17.0 30.5 7.1 19.9 63.1 -
v 99.9 100.0 100.0 99.6 100.0 933 100.0 100.0 -
QuantLoss
v X 92.1 433 99.1 96.8 97.6 85.8 95.7 99.1 -
v 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 -
Combined Loss X - 86.1 332 82.9 78.8 95.7 65.8 83.3 86.1 -
v - 100.0 99.4 100.0 99.9 100.0 99.9 100.0 100.0 -

25



Under review as a conference paper at ICLR 2026

K MAIN OBSERVATION

Our initial observation was that the token representations differ significantly between natural and
IAR-generated images. Intuitively, the token representations of generated images are consistently
closer to the codebook entries than those of natural images (shown in Figure [I). We compute the
token representations for the natural and generated images and compare their distances to the closest
token representations in the codebook. We present the results in the table below.

Table A6: Distances between token representations and codebook entries for generated vs nat-
ural images. We use the MS-COCO dataset as natural images (denoted Natural) and the images
generated by a given model (represented as Generated). We compute the distances in the £5 norm.

Model Natural Generated

LlamaGen 0.0108 (£0.000)  0.0033 (4+0.001)
RAR 0.3942 (+0.030)  0.1538 (4+0.037)
Taming 0.0225 (+0.002)  0.0094 (4+0.003)
VQ-Diffusion  0.0216 (£0.003) 0.0086 (£0.002)
Infinity 0.0116 (£0.000)  0.0109 (40.000)
VAR 0.1381 (+0.006)  0.1075 (+0.011)

L ROBUSTNESS ON MORE DATASETS

In addition to the robustness evaluation in Table ] we show an extended version of robustness
evaluation across more datasets in Table[A7} We show that our method outperforms the baselines by
a very large margin after image post-processing, validating the universal robustness of our approach.

M COMPREHENSIVE ANALYSIS ON MORE METRICS

Additionally to our TPR@ 1%FPR, we report the TPR for the baseline methods and our methods
at stricter FPR values (0.5%FPR in Table [A8] and 0.1%FPR in Table [A9) as well as the AUC in
Table [AT0] ROC plots for RAR compared to the baselines are illustrated in Figure [A3] When
evaluated under more strict settings in Table[A8]and Table[A9] baseline methods have a very limited
performance in most cases, while our methods perform consistently well. The AUC and ROC results
in Table [A9] and Figure [A3] show that our method strictly outperform all of the baselines for all
models and non-belonging datasets.

N GENERALIZATION ACROSS HYPERPARAMETERS AND DATA SPLITS

To demonstrate the generalization of our method, we provided further experiments where the con-
ditional guidance scales and sampling temperatures are different during generating fine-tuning and
evaluation sets. We use CFG=4 and temperature=1.0 for generating the fine-tuning set. The re-
sults in Table [ATT] show that our method achieves high performance across different CFG (3,4,5)
and temperatures (0.8, 1.0, 1.2). In addition, we performed an experiment for class split, where
we separated the data used to fine-tune the inverse decoder according to the classes. Specifically,
we use the first 500 classes for the model to generate the fine-tuning set and use the remaining 500
classes for evaluation, ensuring that the model can not overfit on the distribution. In Table @
we denote this as Ours (class split) and our standard fine-tuning as Ours (random split). We report
the TPR@ 1 %FPR of belonging vs non-belonging data. The results show that our method performs
consistently well across the two settings and outperforms the baseline methods significantly.

O EVALUATION OF DIFFERENT CODEBOOK DISTANCE METRICS

For QuantLoss, we use the L2 norm following the original quantization algorithms in TARs. We
show in Table [AT3] that using cosine similarity yields similar results as the L2 norm. Our key
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Table A7: TPR@1%FPR (%) under different post-processing image transforms and on differ-
ent datasets. The first column indicates the evaluated transform and the strength of the transform.
The second column indicates the evaluated method. The model is RAR, the belonging data is gen-
erated by RAR, and the non-belonging data is denoted in the table heading.

Transform Method Natural Generated
ImageNet LAION MS-COCO LlamaGen Taming VAR Infinity VQDiff

Reconstruction 2.3 0.8 2.1 0.0 0.0 1.3 13.3 6.6

Noise=0.05 LatentTracer 34 0.7 3.8 0.0 0.1 1.4 10.7 72
©7 _ABDR_ 73 _ A7 62 _ A4 05 46 13T 55

Ours 87.8 82.3 94.6 75.2 65.4 90.3 95.9 93.1

Reconstruction 3.0 2.1 33 0.4 0.1 2.8 9.5 59

Kernel=9 LatentTracer 4.7 2.1 3.4 0.4 0.1 3.1 12.4 75
~ _AEDR__ __ _ w4 50 B8 25 05 99 189 120

Ours 80.5 74.1 82.3 69.7 63.9 78.3 83.4 82.6

Reconstruction 3.6 2.3 4.8 0.5 0.0 2.1 114 12.1

LatentTracer 4.8 35 6.9 0.1 0.0 2.8 159 15.4
RGO AEDR_ s 54 8524 03 6821 _ 119

Ours 96.1 94.1 98.8 90.3 83.3 98.3 98.9 98.5

Reconstruction 14 0.5 23 0.1 0.0 12 4.6 32

Brightness=1.6 LatentTracer 2.3 1.0 2.7 0.0 0.0 1.7 5.8 37
BN AEDR. 19 05 _ 20 05 _ _ 04 _ _Ll__ 31 _ _20__

Ours 92.3 75.6 95.1 78.6 60.4 94.0 97.3 96.1

Reconstruction 1.6 22 2.8 0.0 0.0 1.6 55 7.7

Contrast=2.0 LatentTracer 3.0 1.8 6.3 0.1 0.0 22 7.7 9.4
T ABDR. 14 08240903 24 39 32

Ours 91.1 83.7 95.1 74.3 65.7 92.3 95.1 94.6

Reconstruction 3.1 22 3.8 0.4 0.1 13 9.8 10.2

Saturation=2.0 LatentTracer 3.6 3.7 8.2 0.2 0.0 3.4 14.5 14.5
7 _AEDR__ 95 _ 42 __ 87 __ _ 17 __ 04 __55_ 184 101 _

Ours 99.2 99.7 99.8 99.5 98.8 99.8 99.9 99.8

Reconstruction 1.0 1.9 45 0.9 0.0 24 9.9 10.0

Resize=0.5 LatentTracer 22 22 4.8 0.5 0.0 2.6 12.8 8.6
7 _ABDR_ 02 15 97 __ _ 08 03 91 108 116 _

Ours 98.4 98.6 99.5 96.9 93.3 99.3 99.7 99.4

finding is that belonging images are closer to the codebook entries compared to non-belonging
images, where two distance metrics can both capture the distance difference.

P COMBINING STRATEGIES FOR QUANTLOSS AND ENCLOSS

Since our EncLoss L% is a ratio, a multiplicative combination treats it as a scaling factor. We

provide an ablation study comparing additive versus multiplicative combinations, as well as the use
of learned weights in Table [AT4] For both addition and multiplication, we combine the two losses
with the respective arithmetic operation. In the weighted scenarios, we determine optimal weights
for EncLoss by keeping the weight for the QuantLoss fixed. For Addition Weighted we determine
the optimal weight wg,. for EncLoss via grid search by leveraging ImageNet as a calibration set:
we search 1,000 evenly spaced values between 0.001 and 1, and another 1,000 values between 1 and
1,000. For Multiplication Power, the weight is used as an exponent, and we apply a grid search over
1,000 values between 0.01 and 10.

Q ADDITIONAL BASELINE OF GENERAL Al DETECTION

To provide additional baseline methods, we evaluate a state-of-the-art Al-generated image detection
methods, specifically AIDE (Yan et al [2025) and a detection method carefully crafted for IARs
called D3QE (Zhang et al| [2025). We leverage the provided pre-trained weights for each method
and report the results of AIDE in Table @ and D3QE in Table We use 1,000 images as
belonging and 1,000 images as non-belonging datasets. We note that AIDE has a very limited per-
formance for detecting [AR-generated images, and both approaches have an even worse performance
to distinguish data generated by different models.
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Table A8: TPR@0.5%FPR our method and the baselines. The first column indicates the origi-
nal model that has generated the belonging images, the heading of the other columns specifies the
natural datasets or generators from which the non-belonging images are obtained. Our method is
instantiated with the best-performing set of signals from Section@for each original model.

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
Reconstruction 234 25.0 30.6 - 304 2.1 314 61.8 60.4
LiamaG LatentTracer 89.7 82.7 93.6 - 94.6 72.5 95.1 98.8 98.0
amabel - AEDR 4L1 499 381 - 552 500 574 664 598
Ours 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
Reconstruction 2.7 3.1 5.8 0.2 - 0.0 2.5 10.4 14.6
RAR LatentTracer 22 1.0 22 0.2 - 0.0 2.1 7.7 53
_AEDR 136 151 30 40 - 08 225 424 172
Ours 99.9 100.0 100.0 99.9 - 98.9 99.9 100.0 100.0
Reconstruction 17.3 18.7 222 6.5 18.4 - 252 39.5 45.0
Tamin. LatentTracer 64.8 522 70.6 322 69.8 - 72.6 829 100.0
®  _AEDR_ 758 o7 887 518 798 - 733 886 800
Ours 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Reconstruction 0.5 0.5 2.1 0.1 1.4 0.0 - 54 4.0
VAR LatentTracer 2.8 0.1 8.4 0.1 42 0.0 - 12.8 10.1
_AEDR 28_ __109 43 41 26 39 - _ 381 __404
Ours 100.0 97.1 100.0 96.8 100.0 99.6 - 100.0 100.0
Reconstruction 0.0 0.2 0.3 0.0 0.0 0.0 0.2 - 0.2
Infinit LatentTracer 0.0 6.5 25.8 0.0 0.0 0.0 1.6 - 3.6
YOO _AEDR_ _ M _ 71 _ 363 __ 06 _ _ 27 _ 03 82 _ - _ _6l__
Ours 99.2 155 99.4 99.1 99.5 99.1 99.4 - 99.2
Reconstruction 4.5 6.0 12.9 4.5 16.6 0.6 16.7 33.6 -
VQ-Diffusi LatentTracer 95.0 90.9 97.4 96.1 97.7 88.9 98.2 98.4 -
TR aEDR_ 27 40 83 710 9L7 600 %02 B8 -
Ours 100.0 98.7 100.0 93.3 100.0 99.6 100.0 100.0 -

Table A9: TPR@0.1%FPR our method and the baselines. The first column indicates the origi-
nal model that has generated the belonging images, the heading of the other columns specifies the
natural datasets or generators from which the non-belonging images are obtained. Our method is
instantiated with the best-performing set of signals from Section @for each original model.

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDift
Reconstruction 132 15.4 18.5 - 17.2 0.3 21.9 47.3 17.9
LlamaGen LatentTracer 79.7 75.1 859 - 90.0 63.5 89.3 95.4 91.8
_AEDR_ 24 27 11 - 3L 380 454 0 STT 463
Ours 100.0 100.0 100.0 - 100.0 99.9 100.0 100.0 100.0
Reconstruction 1.8 1.8 1.4 0.1 - 0.0 1.6 7.4 39
RAR LatentTracer 0.4 0.2 0.9 0.0 - 0.0 0.7 4.1 0.4
_AEDR 14 4 91 00 - 00 166 67 26
Ours 99.9 99.9 100.0 96.9 - 54.1 99.9 100.0 100.0
Reconstruction 11.8 11.0 12.9 3.0 12.7 - 19.1 30.7 16.4
Tami LatentTracer 36.8 33.1 54.7 244 51.3 - 66.3 71.1 100.0
T _AEDR. 83 356 681 309 755 - 52 77763
Ours 100.0 92.6 100.0 100.0 100.0 - 100.0 100.0 100.0
Reconstruction 0.3 0.2 0.4 0.0 0.5 0.0 - 1.9 0.3
VAR LatentTracer 0.2 0.0 34 0.0 1.8 0.0 - 3.4 24
_AEDR 00_ 16 25 06 38 12 - 168 = 254
Ours 99.6 86.3 99.8 95.8 100.0 98.9 - 100.0 100.0
Reconstruction 0.0 0.0 0.1 0.0 0.0 0.0 0.0 - 0.0
Infinit LatentTracer 0.0 0.1 7.1 0.0 0.0 0.0 0.9 - 0.5
Y aEDR 00 00 47 00 19 00 35 - 30
Ours 98.3 0.0 99.4 0.0 99.4 31.2 99.1 - 99.1
Reconstruction 2.0 33 2.7 1.3 6.2 0.1 10.8 15.1 -
VQ-Diffusion LatentTracer 91.8 86.3 95.0 92.5 96.0 78.4 97.2 96.9 -
SO AEDR_ 49 207 1 R2 769 480 576 515 -
Ours 99.9 55.6 100.0 84.8 100.0 99.0 99.5 100.0 -
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Table A10: AUC our method and the baselines. The first column indicates the original model that
has generated the belonging images, the heading of the other columns specifies the natural datasets
or generators from which the non-belonging images are obtained. Our method is instantiated with
the best-performing set of signals from Section@fer each original model.

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
Reconstruction 93.9 93.1 96.5 - 92.6 81.1 94.6 97.9 97.1
LlamaG LatentTracer 99.7 99.6 99.9 - 99.8 98.8 99.8 99.9 99.9
amatien AEDR 94.7 94.1 94.7 - 95.7 95.2 95.2 96.1 96.0
Ours 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
Reconstruction 76.5 74.5 823 66.6 - 49.7 71.4 87.2 86.5
RAR LatentTracer 732 70.6 78.0 57.0 - 38.6 67.2 853 83.7
_AEDR_ 02 %2 83 %6 - 829 82 984 920
Ours 100.0 100.0 100.0 100.0 - 99.8 100.0 100.0 100.0
Reconstruction 86.8 829 88.3 80.5 84.6 - 87.1 89.9 923
Tamin LatentTracer 98.2 97.0 98.8 95.6 98.1 - 98.6 99.1 100.0
ane s ABDR_ 87 _ %5 %l 92 N0 - 988 95 91
Ours 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Reconstruction 64.1 58.1 69.0 50.3 589 404 - 69.5 70.4
VAR LatentTracer 80.6 72.6 849 68.3 77.5 61.5 - 822 829
_AEDR_ ©8 929 %8 923 947 %8 - %5 __9%7T
Ours 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
Reconstruction 304 61.4 64.9 20.2 19.1 23.0 24.8 - 27.1
Infinit LatentTracer 62.7 91.6 94.6 53.0 50.6 542 62.5 - 61.6
Yoo AR 82 92 _ 989 85 &7 85  ol4 - 867
Ours 99.8 98.8 99.7 99.6 100.0 99.7 99.9 - 99.7
Reconstruction 90.7 843 91.9 88.9 88.5 79.2 91.4 92.4 -
VQ-Diffusion LatentTracer 99.9 99.8 99.9 99.9 99.9 99.6 100.0 100.0 -
_AEDR D585 %6 M2 98 92 94 95 -
Ours 100.0 99.8 100.0 99.9 100.0 100.0 100.0 100.0 -

Table Al11: TPR@1%FPR (%) with different conditional guidance scales and sampling tem-
peratures. The evaluated model is RAR (Combined), and the inverse decoder finetuning data is
generated with CFG=4 and temperature=1.0.

CFG  Temperature Natural Generated

ImageNet LAION MS-COCO LlamaGen Taming VAR Infinity VQDift

0.8 99.7 99.8 99.7 99.6 99.4 100.0 99.8 100.0
3 1.0 100.0 100.0 100.0 99.5 99.4 100.0 100.0 100.0
1.2 99.9 99.9 100.0 99.8 99.8 99.9 100.0 100.0
0.8 99.5 99.8 99.8 99.3 99.4 99.5 99.8 99.9
4 1.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0
1.2 100.0 99.6 100.0 99.5 98.8 100.0 100.0 100.0
0.8 100.0 99.6 100.0 99.5 98.8 100.0 100.0 100.0
5 1.0 99.9 99.0 100.0 98.4 98.9 100.0 100.0 100.0
1.2 99.7 99.4 100.0 99.4 99.3 99.5 100.0 99.8

To further evaluate against AIDE, we re-train their model for 5 epochs on 50k images. Impor-
tantly, AIDE’s training set includes both generated (belonging) and real images, giving it access
to additional natural image data that our method does not use. Despite these advantages, the re-
sults shown in Table [AT7]demonstrate that our method still substantially outperforms AIDE. While
AIDE achieves relatively strong performance in the natural vs. generated setting, it fails in the more
critical setting of attributing a generated image to a specific model. For instance, for RAR, AIDE
achieves only 25.9-73.2% TPR@1%FPR in distinguishing images from other IAR models, whereas
our method achieves near-perfect 99.9%-100% TPR @ 1%FPR across all model pairs.

We note that general Al detection methods consider general distinctions between generated and real
images, but do not leverage specific artifacts in different IARs and thus fail to attribute an image to
a specific model family. However, we utilize the codebook of IARs as the inherent “fingerprint” of
the model. Therefore, our method outperforms the general Al detection method significantly.
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Our method is primarily designed for the benign setting, where model owners leverage our frame-
work to prevent model collapse and ensure responsible deployment of their trained models. How-
ever, to assess the robustness of our approach, we also consider a more challenging adversarial

False Positive Rate

False Positive Rate

Figure AS: ROC comparison for RAR attribution of our method and the baselines.

ADAPTIVE ATTACK

scenario where a malicious model owner intentionally attempts to evade our detection mechanism.

Threat Model. In this adaptive attack scenario, we assume the adversary has knowledge of our
methodology. The adversary’s goal is to craft adversarial perturbations that increase the distance
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Table A12: TPR@1%FPR (%) of our method evaluated with two types of data split. The first
column indicates the original model that has generated the belonging images, the heading of the
other columns specifies the natural datasets or generators from which the non-belonging images are
obtained. We denote two splits for Ours, random split, where we create training and validation data
from the same classes and class split, where we create training data using the first 0-499 classes and
validation data using the final 500-999 classes.

Model  Method Natural Generated

ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

Reconstruction 3.8 4.1 74 0.8 - 0.1 5.7 18.1 18.8
LatentTracer 6.0 6.1 15.2 0.4 - 0.0 9.3 24.6 26.9
RAR  AEDR 295 166 366 106 - 23 359 499 276
Ours (random split) 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
Ours (class split) 99.8 99.9 100.0 99.4 - 99.7 99.7 100.0 100.0
Reconstruction 275 21.5 27.6 10.1 18.9 - 27.7 39.0 46.1
LatentTracer 73.0 61.0 75.9 36.4 66.8 - 76.0 85.4 874
Taming = AEDR 804 85 89 707 807 _ - _ _ 781 919 815
Ours (random split) 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Ours (class split) 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
Reconstruction 1.4 1.4 3.6 0.1 1.6 0.0 - 59 59
LatentTracer 39 1.3 12.0 0.2 5.6 0.1 - 15.4 15.3
VAR AEDR__ 91 _ 151 __ 506 _ M7 _ 283 _ 40 - _ _ 35 _ 508 _
Ours (random split) 100.0 99.2 100.0 99.2 100.0 100.0 - 100.0 100.0
Ours (class split) 99.9 98.9 100.0 99.4 100.0 99.1 - 100.0 99.9

Table A13: TPR@1%FPR (%) comparison when using different distance metrics. The evalu-
ated model is RAR.

. . Natural Generated
Distance Metric

ImageNet LAION MS-COCO LlamaGen Taming VAR Infinity VQDiff

Cosine Distance 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
L2 Norm 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0

between the feature map of a generated image and its corresponding codebook entries, thereby
causing belonging images to be misclassified as non-belonging images.

Attack Formulation. Specifically, the adversarial model owner finetunes an inverse decoder and
performs an adversarial attack on a belonging image = by minimizing the following adversarial loss:

Lag(2,8,D71) = = D7} (z) = QTHQ(D ™ (2)))ll2 + All3]l2, (14)

where 0 denotes the adversarial perturbation and A controls the trade-off between attack effective-
ness and perturbation magnitude. The adversarial sample is constructed as x,qy =  + J. This loss
function aims to maximize the QuantLoss while constraining the perturbation to remain impercep-
tible.

Results and Analysis. The results are presented in Table [AT8] We evaluate our method under
two attack strengths: ¢ = 1/255 and € = 2/255. Several key observations emerge from these
experiments: First, finetuning with augmentation significantly improves robustness against adaptive
attacks. We attribute this to the fact that augmentation-based training enables the inverse decoder
to recover the original tokens robustly even under image degradations, which also generalize to
resilience against adversarial perturbations. Second, our method demonstrates strong robustness to
relatively small adversarial perturbations (¢ = 1/255), maintaining high TPR @ 1%FPR across most
datasets when finetuned with augmentations (e.g., 97.4% on ImageNet, 96.7% on LAION). Third,
even under stronger attacks (¢ = 2/255), our augmentation-based approach retains considerable
detection capability (e.g., 49.3% on ImageNet, 51.1% on MS-COCO), substantially outperforming
all baseline methods. Notably, the baseline methods show very limited robustness even to weak
attacks which are not even tailored to attack them. The TPR@ 1%FPR for baseline methods drops
below 20% in most cases for € = 2/255.

These results demonstrate that while adaptive attacks can degrade detection performance, our frame-
work maintains significantly better robustness compared to existing methods, particularly when
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Table A14: TPR@1%FPR for different combination methods. The first column indicates the
original model that generated the belonging images, the second column shows the combination
method used. The heading of the other columns specifies the natural datasets or generators from
which the non-belonging images are obtained. The last column shows the optimized weight wg,.
for parameterized methods.

Model Method Natural Generated WEne

ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

Addition 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0 -
LlamaGen Additioy Weighted 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0 0.00
Multiplication 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0 -
Multiplication Power 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0 0.01
Addition 99.3 99.2 99.5 98.5 - 97.7 98.9 99.6 99.6 -
RAR Addition Weighted 100.0 99.8 100.0 99.8 - 99.3 99.8 100.0 100.0 0.00
Multiplication 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0 -
Multiplication Power 100.0 99.8 100.0 99.8 - 99.3 99.9 100.0 100.0 0.01
Addition 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0 -
Taming Addition Weighted 100.0 99.8 100.0 99.9 100.0 - 100.0 100.0 100.0 0.00
Multiplication 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0 -
Multiplication Power 100.0 99.6 100.0 99.9 100.0 - 100.0 100.0 100.0 0.27
Addition 100.0 98.2 100.0 98.2 100.0 99.8 - 100.0 100.0 -
VAR Addition Weighted 100.0 99.3 100.0 98.9 100.0 99.5 - 100.0 100.0 0.02
Multiplication 100.0 99.5 100.0 99.2 100.0 100.0 - 100.0 100.0 -
Multiplication Power 100.0 99.3 100.0 99.2 100.0 99.5 - 100.0 100.0 0.30
Addition 0.0 973 99.0 14 0.6 0.6 18.0 - 36.1 -
Infinity Addition Weighted 98.8 98.9 99.2 98.8 99.1 98.8 99.1 - 99.1 0.00
Multiplication 0.0 98.3 99.2 10.1 4.1 4.2 58.8 - 774 -
Multiplication Power 99.3 97.8 99.4 99.1 99.4 99.1 99.3 - 99.2 0.01
Addition 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0 - -
VQ-Diffusion Addition Weighted 100.0 97.4 100.0 99.8 100.0 99.4 100.0 100.0 - 0.00
Multiplication 100.0 99.5 100.0 99.9 100.0 99.9 100.0 100.0 - -
Multiplication Power 100.0 95.0 100.0 99.5 100.0 99.3 100.0 100.0 - 0.48

Table A15: The performance of AIDE on data provenance. We present TPR@ 1%FPR across all
test datasets for each model. The first column indicates the original model that has generated the
belonging images, the heading of the other columns specifies the natural datasets or generators from
which the non-belonging images are obtained.

Natural Generated
Model
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff

LlamaGen 18.8 16.8 232 - 0.5 0.9 33 6.0 6.5
RAR 27.9 26.8 30.6 52 - 4.5 9.6 152 15.9
Taming 29.4 25.8 343 14 0.2 - 43 8.8 9.5
VAR 14.6 125 18.4 0.2 0.1 0.2 - 34 3.7
Infinity 5.6 4.6 7.4 0.0 0.0 0.0 0.5 - 12
VQ-Diffusion 10.3 9.2 13.1 0.0 0.0 0.0 0.2 0.7 -

trained with augmentations. The robustness to adaptive attacks makes our method a practical so-
lution even in the more challenging adversarial scenarios.

S EVALUATION ON MULTI-SOURCE DATASET

To simulate a real-world scenario where images come from different sources, we design a multi-
source evaluation setting. In this setting, we mix and shuffle all the evaluated images in our exper-
imental setting, including 3 different natural datasets (ImageNet, MS-COCO, LAION) and images
generated by 6 different models (LlamaGen, RAR, Taming, VAR, Infinity, VQ-Diffusion). The re-
sults in Table [AT9] show that our method achieves near-perfect TPR@1%FPR on the multi-source
dataset across all the evaluated models, demonstrating the applicability of our method.

T STATISTICAL TEST OF OUR METHOD

We test if a data point x significantly deviates from a given belonging distribution. Sim-

ilar to RONAN (Wang et al] [2023) and LatentTracer (Wang et al] [2024) we leverage
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Table A16: TPR@1%FPR (%) of our method and D3QE. The first column indicates the original
model that has generated the belonging images, the heading of the other columns specifies the natural
datasets or generators from which the non-belonging images are obtained.

Model Method Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
LlamaGen D3QE 86.9 67.7 86.6 - 6.8 2.0 2.0 60.1 3.7
Ours 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0
RAR D3QE 78.0 49.7 71.5 0.0 - 0.2 0.2 422 0.4
Ours 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
Tamin D3QE 78.0 49.7 71.5 0.0 - 0.2 0.2 422 0.4
g Ours 100.0 100.0 100.0 100.0 100.0 - 100.0 100.0 100.0
VAR D3QE 735 522 72.3 0.0 35 1.4 - 46.7 23
Ours 100.0 99.2 100.0 99.2 100.0 100.0 - 100.0 100.0
Infinit D3QE 6.3 1.5 59 0.0 0.1 0.0 0.0 - 0.0
Y Ours 99.4 85.6 99.4 99.2 99.5 99.1 99.4 - 99.4
VQDiff D3QE 49.9 31.6 49.2 0.0 2.1 0.5 0.5 27.8 -
Ours 100.0 99.4 100.0 99.9 100.0 99.9 100.0 100.0 -

Table A17: TPR@1%FPR for AIDE (Yan et al) [2025) trained on different datasets. The first
column indicates the model, the second column shows the finetuning set used.

Model Method Finetuning Set Natural Generated
ImageNet LAION MS-COCO LlamaGen RAR Taming VAR Infinity VQDiff
AIDE RAR Generated + ImageNet 99.7 99.4 100.0 732 - 53.7 48.8 99.5 54.9
RAR 777 RAR Generated + MS-COCO 977 986 1000 417 - 259 300 1000 687
Ours RAR (Generated) 100.0 100.0 100.0 99.9 - 99.9 100.0 100.0 100.0
AIDE Llamagen (Generated) + ImageNet 99.2 99.8 100.0 - 70.4 15.5 6.2 99.8 36.1
Llamagen """ Llamagen Generated + MS-COCO 865 971 999 -~ 432 131 _ 31 _ 999 491 _
Ours Llamagen (Generated) 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0

Table A18: Evaluation under adaptive adversarial attack. The evaluated model is RAR and ¢
denotes the strength of the attack.

6 Method Natural Generated
ImageNet LAION MS-COCO LlamaGen Taming VAR Infinity VQDiff

Reconstruction 25 3.0 6.9 0.2 0.0 23 16.5 16.0

1255 LatentTracer 5.6 59 15.1 0.1 0.0 4.6 24.6 254
_AEDR _______ 89 __ 134 301 __ 74 14 226 L3 18

Ours (Finetuned w/o Aug) 68.7 76.3 76.6 573 49.0 69.2 84.6 86.9

Ours (Finetuned w/ Aug) 97.4 96.7 97.7 90.2 73.6 96.3 99.0 98.9

Reconstruction 1.4 1.8 45 04 0.0 13 13.6 125

21255 LatentTracer 34 3.4 11.1 0.0 0.0 2.4 18.4 19.5
_AEDR 107 69 182 32 02 141 287 144

Ours (Finetuned w/o Aug) 0.3 0.6 0.6 0.0 0.0 0.3 1.9 2.8

Ours (Finetuned w/ Aug) 49.3 43.6 51.1 15.9 2.7 40.0 64.7 60.7

Table A19: Multi-source attribution performance across difference models. We present
TPR @ 1%FPR where all non-belong datasets are mixed for a given model.

Method LlamaGen RAR Taming VAR Infinity VQ-Diffusion
Reconstruction 28.0 2.3 24.7 0.4 0.0 10.5
LatentTracer 92.8 1.0 69.8 1.6 0.2 97.3

_AEDR 94 172800 269 35 842 .
Ours 100.0 100.0 100.0 100.0 99.2 100.0

Grubbs’ hypothesis test [1949). For this, we formulate the following hypothesis
Ho : The test sample does not belong to the given model. leveraging Grubbs’s hypothesis test which
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Table A20: Grubbs’ Hypothesis Testing Results. We report the TP, FP, TN, FN, TPR and FPR
for model attribution. We test 1,000 belonging images and 1,000 non-belonging images randomly
sampled across all datasets with o = 0.01.

Model TP FP TN FEN TPR(%) FPR (%)
LlamaGen 995 0 1000 5 99.5 0.0
RAR 999 0 1000 1 99.9 0.0
Taming 1000 1 999 0 100.0 0.1
VAR 1000 0 1000 O 100.0 0.0
Infinity 993 0 1000 7 99.3 0.0
VQ-Diffusion 999 0 1000 1 99.9 0.0

Table A21: Acceleration options of the optimized quantization (Algorithm EI) The non-
belonging data is from ImageNet. We report the TPR@ 1%FPR and seconds required per image.

Setting Iterations TPR@1%FPR (%) Time
Default 1200 95.0 8.24s
Less Iterations 100 87.5 0.57s
Accelerated with Torch 1200 94.8 7.79s

rejects H if the following inequality holds:

r—pu N-—1 (ta/N.N—2)?

< 15
o VN \| N =24 (ta/n,n-2)2 (1)

Whereby o and o are the mean and the standard deviation of a given belonging dataset, x is the
queried data sample and N the number of samples of the belonging dataset. In Table [A20] we report
the result of applying Grubbs’ hypothesis test on 1,000 belonging and 1,000 non-belonging samples
across all datasets for each model. We find that, for all models, we achieve a TPR over 99% by only
a single false positive for Taming.

U ACCELERATION FOR OPTIMIZED QUANTIZATION

We provide two acceleration options to reduce the latency of the optimized quantization has a rela-
tively and report the results in Algorithm 3] First, our algorithm benefits from using quicker engi-
neering implementations. By using the Einstein summation convention for calculating the codebook
distance and using torch.compile to optimize the calculation of the feature map. These two tech-
niques reduced the runtime of our method from 8.24s/image to 7.79s/image. The algorithm may
be further accelerated with new developments in the deep learning toolkit. Second, Our method
still maintains high detection performance and can be accelerated a lot with fewer iterations. We
show that our method still achieves 87.5%TPR @ 1% FPR with only 100 iterations. This reduced the
runtime from 8.24s/image to 0.57s/image. The results are shown in Table [AZT]

V  EVALUATION FOR AR ATTRIBUTION
Although our approach is primarily designed for model family (autoencoder) attribution, we extend

our evaluation to AR attribution settings, where multiple AR models share the same AE. We evaluate
the following experimental settings.

V.1 AR ATTRIBUTION WITH SHARED AE

We first evaluate scenarios where two ARs share the same AE. We consider the following settings
within the LlamaGen model family:
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Table A22: AR attribution with shared AE. We evaluate two settings where different AR models
share the same autoencoder.

Belonging Data Non-belonging Data TPR@1%FPR
Task AE AR Generated by Generated by (%)
Text-to-Image LlamaGen-AE-T2I LlamaGen-T2I-COCO LlamaGen-T2I-COCO LlamaGen-T2I-Internal 100.0
& LlamaGen-AE-T21 LlamaGen-T2I-Internal LlamaGen-T2I-Internal LlamaGen-T2I-COCO 100.0
Class-to-Image LlamaGen-AE-C2I  LlamaGen-L-256 LlamaGen-L-256 LlamaGen-XL 100.0
& LlamaGen-AE-C2I  LlamaGen-XL LlamaGen-XL LlamaGen-L-256 100.0

Table A23: AR attribution with same AE architecture but different AE training data. The AE
fine-tuning data and evaluation belonging data are generated by different prompts (Text-to-Image)
or different classes (Class-to-Image). Our method achieves 100% TPR @ 1%FPR in both settings.

AE AE Training AR Belonging Data ~ Non-belonging Data ~ TPR@1%FPR
Architecture Data Generated by Generated by (%)
LlamaGen-AE =~ COCO and Internal ~ LlamaGen-T2I LlamaGen-T2I LlamaGen-C2I 100.0
LlamaGen-AE  ImageNet LlamaGen-C2I LlamaGen-C2I LlamaGen-T2I 100.0

1. LlamaGen Text-to-Image setting: AR is trained on LAION-COCO while ARj is trained on a
10M internal high-aesthetics quality dataset [2024). Both models use LlamaGen-AE-
T2I as the autoencoder.

2. LlamaGen Class-to-Image setting: AR; is LlamaGen-L-256 and AR5 is LlamaGen-XL. Both
models use LlamaGen-AE-C2I as the autoencoder.

The results in Table [A22] demonstrate that our method achieves 100% TPR@ 1%FPR across all
evaluated settings. This shows that fine-tuning the inverse decoder on images generated by one AR
transformer can also help distinguish it from images generated by another AR using the same AE.

V.2 AE WITH THE SAME ARCHITECTURE AND DIFFERENT TRAINING DATA

Although our method works very well in the above evaluations, we would like to point out that many
ARs sharing exactly the same AE are less common in real-world scenarios. When model owners
adapt an AE for their own task, it is more reasonable for the model owner to first train the existing
AE on their own dataset, such that the AE performs better on their own dataset. For example,
LlamaGen needs to train different AEs for their class-to-image image generation ("AE is trained on
ImageNet”) and text-to-image generation (AE is trained on 50M LAION-COCO and 10M internal
high aesthetic quality data”), as they use different datasets for the two tasks.

We provide the following case to show that our method can perfectly distinguish an AE with the
same architecture trained on different datasets. As shown in Table [A23] when the AE is trained on
different data (COCO and Internal for Text-to-Image; ImageNet for Class-to-Image), our method
maintains perfect attribution performance.

V.3 AR ATTRIBUTION WITH SHARED AE AND CLASS-SPLIT EVALUATION

To evaluate whether our method generalizes beyond the specific classes used during fine-tuning,
we design an experiment that combines the shared AE setting with a class-split evaluation setting.
We use the LlamaGen Class-to-Image setting where the AE is LlamaGen-AE-C2I, AR model A is
LlamaGen-L-256, and AR model B is LlamaGen-XL. We construct the following datasets:

e Dap: Generated by AR A using classes 0-499
¢ D 4o Generated by AR A using classes 500-999
* Dpy: Generated by AR B using classes 0499
* Dpo: Generated by AR B using classes 500-999
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Specifically, only D 4; is used to fine-tune the AE, while D 42, Dp1, and Dps are reserved only for
evaluation. This setup tests whether our method can distinguish between AR models A and B on
unseen classes. We evaluate three different settings with the above datasets and show the results in
Table[A24] The results reveal several important findings:

Table A24: AR attribution with class-split evaluation. Settings 1 and 2 evaluate cross-class gen-
eralization for AR attribution. The AE is fine-tuned only on D 4 (classes 0-499 from AR A), yet
achieves 100% TPR@1%FPR when distinguishing D 4o from Dp; and Dp,. Setting 3 confirms
that the inverse decoder cannot distinguish images from different ARs when both are labeled as be-
longing, validating that our signal is AR-specific rather than class-specific.

Setting  AE AE Fine-tuning Labeled as Non-belonging TPR@1%FPR

Data Belonging Data Data (%)
1 LlamaGen-AE-CZI DAl DAQ DBl 100.0
LlamaGen-AE-C21 Dai Dao Dpa 100.0
LlamaGen-AE-C2I DAl DBl DBQ 00

Cross-class generalization (Settings 1 and 2). Fine-tuning the AE on D 4; enables the inverse
decoder to reliably distinguish Do (AR A, classes 500-999) from Dp; and Dpo (AR B, any
classes), achieving 100% TPR@ 1%FPR. This demonstrates that an inverse decoder fine-tuned on
certain classes of a given AR model can successfully invert images from other classes generated
by the same model. Conversely, it cannot accurately invert images from a different AR model,
regardless of the class.

AR-specificity validation (Setting 3). When we test whether Dy and Do are distinguishable
(both generated by AR B but from different class ranges), the TPR@1%FPR drops to 0.0%. This
confirms that training on D 4; does not improve inversion quality for either Dpg; or Dps, as both
originate from a different AR model. This result validates that our method captures AR-specific
rather than class-specific patterns.

Implications for model attribution. These results support our design choice of focusing on model
family (AE) attribution while demonstrating that finer-grained AR attribution is also achievable. The
inverse decoder learns to recognize generation patterns specific to a particular AR transformer, which
generalize across different input classes. This property is desirable for practical data provenance
applications, where a model owner primarily seeks to determine whether an image was generated
by their model family, independent of the specific content or class depicted.

W COMPARISON WITH MEMBERSHIP INFERENCE BASELINES

Table [A23] We clarify the differences between our data provenance and membership inference at-
tacks (MIAs) in Section 2} and explain that MIAs cannot be applied to our data provenance task
because of the additional, over-strict requirements for the labels or prompts of a generated image.
In this section, we would like to further explore what could be the upper bound of MIAs if given
the additional information of labels for data provenance. Concretely, we provide the MIA-based
methods with the ground truth labels for both generated and real images, which are usually absent in
the real world. For the images generated by the class-to-image models, we use the conditional inputs
of the models as the labels. For the real dataset, ImageNet, we directly use the ground truth label.
Following the experimental setup in our work, we use the images generated by a given model as be-
longing images, and the other images, including the generated and natural datasets, as non-belonging
images. We evaluate two MIA-based approaches that the reviewer mentioned: CFG-Diff

2025) and ICAS (Yu et al} 2025). The TPR@1%FPR (%) for the two baselines and
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Table A25: TPR@1%FPR (%) of our method and two baseline methods based on membership
inference attacks (MIAs).. The two MIA-based approaches are CFG-Diff (Kowalczuk et al} [2023])
and ICAS The first column indicates the original model that has generated the
belonging images, the heading of the other columns specifies the natural datasets or generators from
which the non-belonging images are obtained.

Natural Generated

ImageNet  LlamaGen RAR Taming VAR

Model Method

CFG-Diff 309 96.9 - 1000 999
RAR = ICAS %4 97 - __ 209 _ DT _
Ours 100.0 99.9 999 100.0
CFG-Diff 2.5 6.2 164 549
VAR ICAS 7L 4447 660
Ours 100.0 99.2 1000 100.0

our method are shown as follows. The results demonstrate that our method outperforms the two
MIA-based approaches in nearly every case, without the additional need for the ground truth la-
bels. Notably, the two MIA-based approaches have a very low performance for VAR. They also
have a lower TPR@ 1%FPR (%) when using the real images as non-belonging data than using gen-
erated images, which means that the MIA-based approaches tend to attribute many real images to
one of the generative models. On the contrary, our method achieves low FPR, no matter what the
non-belonging data is.

X LLM USAGE DECLARATION

Large language models (LLMs) were used solely to improve the clarity, grammar, spelling, and
style of the manuscript. They were not employed to generate original research content, conduct data
analysis, or modify the scientific meaning. All substantive ideas, interpretations, and conclusions
are entirely those of the authors.
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