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Abstract
Two-point zeroth order methods are important in
many applications of zeroth-order optimization,
such as robotics, wind farms, power systems, on-
line optimization, and adversarial robustness to
black-box attacks in deep neural networks, where
the problem may be high-dimensional and/or time-
varying. Most problems in these applications are
nonconvex and contain saddle points. While ex-
isting works have shown that zeroth-order meth-
ods utilizing Ω(d) function valuations per iter-
ation (with d denoting the problem dimension)
can escape saddle points efficiently, it remains
an open question if zeroth-order methods based
on two-point estimators can escape saddle points.
In this paper, we show that by adding an ap-
propriate isotropic perturbation at each iteration,
a zeroth-order algorithm based on 2m (for any
1 ≤ m ≤ d) function evaluations per iteration
can not only find ε-second order stationary points
polynomially fast, but do so using only Õ(d/mε2ψ̄)
function evaluations, where ψ̄ ≥ Ω̃(

√
ε) is a pa-

rameter capturing the extent to which the function
of interest exhibits the strict saddle property.

1. Introduction
Two-point estimators, which approximate the gradient using
two function evaluations per iteration, have been widely
studied by researchers in the zeroth-order optimization liter-
ature, in convex (Nesterov & Spokoiny, 2017; Duchi et al.,
2015; Shamir, 2017), nonconvex (Nesterov & Spokoiny,
2017), online (Shamir, 2017), as well as distributed settings
(Tang et al., 2019). A key reason for doing so is that for
applications of zeroth-order optimization arising in robotics
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(Li et al., 2022), wind farms (Tang et al., 2020a), power
systems (Chen et al., 2020), online (time-varying) optimiza-
tion (Shamir, 2017), learning-based control (Malik et al.,
2019; Li et al., 2021), and improving adversarial robust-
ness to black-box attacks in deep neural networks (Chen
et al., 2017), it may be costly or impractical to wait for Ω(d)
(where d denotes the problem dimension) function evalu-
ations per iteration to make a step. This is especially true
for high-dimensional and problems with time-varying noise.
See Appendix A for more discussion.

However, despite the advantages of zeroth-order methods
with two-point estimators, there has been a lack of existing
work studying the ability of two-point estimators to escape
saddle points in nonconvex optimization problems. Since
nonconvex problems arise often in practice, it is crucial to
know if two-point algorithms can efficiently escape saddle
points of nonconvex functions and converge to second-order
stationary points (see Definition 1 for a definition).

To motivate the challenges of escaping saddle points using
two-point zeroth-order methods, we begin with a review of
escaping saddle points using first-order methods. The prob-
lem of efficiently escaping saddle points in deterministic
first-order optimization (with exact gradients) has been care-
fully studied in several earlier works (Jin et al., 2017; 2018b).
A key idea in these works is the injection of an isotropic
perturbation whenever the gradient is small, facilitating es-
cape from a saddle if a negative curvature direction exists
even without actively identifying the direction. However,
the analysis of efficient saddle point escape for stochastic
gradient methods is often more complicated. In general,
the behavior of the stochastic gradient near the saddle point
can be difficult to characterize. Hence, strong concentration
assumptions are typically made on the stochastic gradients
being used, such as subGaussianity, boundedness of the
variance or a bounded gradient estimator (Ge et al., 2015;
Daneshmand et al., 2018; Xu et al., 2018; Fang et al., 2019;
Roy et al., 2020; Vlaski & Sayed, 2021b), creating an ana-
lytical issue when such idealized assumptions fail to hold.

Indeed, though zeroth-order methods can be viewed as
stochastic gradient methods, common zeroth order estima-
tors, such as two-point estimators (Nesterov & Spokoiny,
2017), are not subGaussian, and can have unbounded vari-
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ance. For instance, it can be shown that the variance of
the two-point estimator is on the order of Ω(d‖∇f(x)‖2)
(Nesterov & Spokoiny, 2017), with both a dependence on
the problem dimension d as well as on the norm of the gra-
dient, which can be unbounded. Due to non-subGaussianity
and unboundedness, it is tricky to bound the effect of such
zeroth-order estimators and establish tight concentration
inequalities that facilitate its escape near saddle points. In
addition, the large variance of the zeroth-order estimator is
also an issue in non-saddle regions, i.e. when the gradient is
large. While this is not an issue to show function improve-
ment in expectation, as we discuss later, this becomes an
issue when guaranteeing high probability bounds.

Due to these difficulties, previous works on escaping saddle
points in zeroth-order optimization have exclusively focused
on approaches requiring Ω(d) function evaluations per iter-
ation to accurately estimate the gradient (Jin et al., 2018a;
Bai et al., 2020; Vlatakis-Gkaragkounis et al., 2019), or in
some cases negative curvature directions (Zhang et al., 2022;
Lucchi et al., 2021) or the Hessian itself (Balasubramanian
& Ghadimi, 2022), reducing in a sense the zeroth-order
problem back to a first-order one. However, as explained
earlier, two-point zeroth-order algorithms are important for
high-dimensional and/or time-varying problems in many
applications areas. This raises an important question:

Can two-point zeroth-order methods escape saddle
points and reach approximate second order stationary

points efficiently?

Our Contribution. In this work, we show that by adding
an appropriate isotropic perturbation at each iteration, a
zeroth-order algorithm based on any number m of pairs
(1 ≤ m ≤ d) of function evaluations per iteration can not
only find (ε,

√
ε)-second order stationary points (cf. the

definition later in Definition 1) polynomially fast, but do so
using only Õ(polylog( 1

δ )d/ε2.5) function evaluations, with a
probability of at least 1− δ. In particular, this proves that
using a single two-point zeroth-order estimator at each iter-
ation (with appropriate perturbation) suffices to efficiently
escape saddle points in zeroth-order optimization, with high
probability. Moreover, for functions that are (ε, ψ,O(

√
ε))

strict-saddle (see Definition 3 for a definition of strict saddle
functions), our results become Õ(polylog( 1

δ )d/ψε2), which
is a significant improvement when ψ � ε; strict saddle
functions have been identified as an important class of func-
tions in nonconvex optimization, with several well-known
examples such as tensor decomposition (Ge et al., 2015),
dictionary learning and phase retrieval (Sun et al., 2015).
A comparison of our results with existing zeroth-order and
first-order methods is shown in Table 1. We also provide
numerical results in Section 4 showing that our proposed
two-point algorithm requires fewer total function evalua-
tions to converge than zeroth order methods that use 2d

function evaluations per iteration, for a nonconvex test func-
tion proposed in (Du et al., 2017).

To overcome the theoretical challenges that were discussed
earlier, we i) first show, via a careful analysis, that zeroth
order methods can make function value improvement across
iterates with large gradients with high probability, even
when only a single two-point estimator (which can have
significant variance at large gradients) is used per iteration.
ii) Second, near saddle points, we overcome issues caused
by the unbounded variance and non-subGaussinity of zeroth-
order gradient estimators by developing new technical tools,
including novel martingale concentration inequalities in-
volving Gaussian vectors, to tightly bound such terms. In
turn, this allows us to show that the noise emanating from
the zeroth-order estimators will not overwhelm the effect
of the additional isotropic perturbative noise, facilitating
escape along negative curvature directions. To the best of
our knowledge, both analyses are novel, and may be inde-
pendent contributions on their own.

Related Work. Due to space considerations, we defer a full
discussion of related work to Appendix A.

2. Problem Setup
We make the following assumptions on the class of functions
f : Rd → R which we consider.

Assumption 1 (Properties of f ). We suppose that f : Rd →
R satisfies the following properties:

1. f is twice-differentiable and lower bounded, i.e. f∗ :=
minx f(x) > −∞.

2. f is L-gradient Lipschitz, i.e.

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rd.

3. f is ρ-Hessian Lipschitz, i.e.∥∥∇2f(x)−∇2f(y)
∥∥ ≤ ρ‖x− y‖ ∀x, y ∈ Rd.

In our work, we focus on finding approximate second order
stationary points, defined below.

Definition 1. A point x ∈ Rd is an (ε, ϕ)-second order
stationary point if

‖∇f(x)‖ < ε, and λmin(∇2f(x)) > −ϕ.

We define an (ε, ϕ)-approximate saddle point as follows.

Definition 2. A point x ∈ Rd is an (ε, ϕ)-approximate
saddle point, if

‖∇f(x)‖ < ε, and λmin(∇2f(x)) ≤ −ϕ.
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Iteration Complexity Fun. Evaluations. per iter

First-order (Jin et al., 2017) (deterministic) Õ
(

1
ε2

)
—

(Fang et al., 2019) (SGD) Õ
(

1
ε3.5

)
—

Zeroth-order

(Jin et al., 2018a) Õ
(

1
ε2

)
Õ
(
d2

ε3

)
(Bai et al., 2020) Õ

(
1
ε2

)
Õ
(
d2

ε8

)
(Vlatakis-Gkaragkounis et al., 2019) Õ

(
1
ε2

)
Õ (d)

(Balasubramanian & Ghadimi, 2022) Õ
(

1
ε1.5

)
Õ
(
d
ε2 + d4

ε

)
(Lucchi et al., 2021)† Õ

(
1
ε2

)
Õ
(

d
ε2/3

)
(Zhang et al., 2022) Õ

(
1
ε2

)
Õ(d)

Algorithm 1 (this paper, 1 ≤ m ≤ d)‡ Õ
(

d
ε2ψ̄m

)
2m

Table 1: Selected comparison of convergence results to (ε, O(
√
ε)-second order stationary points in smooth, nonconvex

functions; for †, the convergence is to (ε, ε2/3)-second order stationary points. For ‡, the term ψ̄ in the denominator is (i) ψ
when the function f is (ε, ψ,O(

√
ε))-strict saddle for a ψ > O(

√
ε) (see Definition 3 for a definition) and (ii) O(

√
ε) if

otherwise.

Following past convention (Jin et al., 2019a), we will fo-
cus in particular on escaping (ε,

√
ρε)-saddle points. For

notational simplicity, in following text, we refer to (ε,
√
ρε)-

saddle points simply as ε-saddle points and (ε,
√
ρε)-second

order stationary points as ε-second order stationary points.
Beyond the definition of ε-approximate saddle points above,
it is known that many nonconvex functions with saddle
points, such as orthogonal tensor decomposition (Ge et al.,
2015), phase retrieval and dictionary learning (Sun et al.,
2015), satisfy what is known as a strict saddle condition (Ge
et al., 2015). For the Hessians of the saddle points of such
functions, there is always a strict negative eigenvalue whose
magnitude is bounded from below. We provide a precise
definition below.

Definition 3. A twice-differential function f(x) is (ε, ψ, %)-
strict saddle for any ψ > % > 0, if for any point x, either

1. ‖∇f(x)‖ ≥ ε holds,

2. or when ‖∇f(x)‖ < ε holds, either

(a) λmin(∇2f(x)) ≤ −ψ, or
(b) λmin(∇2f(x)) > −%.

In our work, we consider the following batch symmetric
two-point zeroth-order estimator.

Definition 4 ((Batch) two-point zeroth-order estimator with
perturbation). We define a m-batch two-point zeroth order
estimator as follows:

g(m)
u (x) :=

1

m

m∑
i=1

f(x+ uZi)− f(x− uZi)
2u

Zi, (1)

where Zi
i.i.d∼ N(0, I), and u > 0 is a smoothing radius.

Algorithm 1 Zeroth-order perturbed gradient descent
(ZOPGD)
input :x0, horizon T , step-size η, smoothing radius u, per-

turbation radius r, batch size m
for step t = 0, . . . , T do

Sample Z(m) = {Zt,i}mi=1 ∼ N(0, I) to compute
g

(m)
u (xt)), defined in Eq. (1).

Update xt+1 = xt − η
(
g

(m)
u (xt) + Yt

)
, where

Yt ∼ N(0, r
2

d I)

Such 2m zeroth-order gradient estimators have frequently
been studied in zeroth-order optimization works (see e.g.
(Nesterov & Spokoiny, 2017)). To facilitate efficient escape
from saddle points, our proposed Algorithm 1 adds isotropic
perturbation at each iteration.

We now state an informal version of our main result, and
follow that with a few remarks.

Theorem 1 (Main result, informal version of Theorem 2).
Consider running Algorithm 1. Let Õ hide polylogarithmic
terms in δ and other parameters. Suppose δ ∈ (0, 1/e].
Suppose

√
ρε ≤ min{1, L}1, such that ψ̄ ≤ min{1, L},

where

ψ̄ :=

{
min{ψ, 1, L} if ∃ψ>√ρε s.t. f(·) is (ε, ψ,

√
ρε)-strict saddle

√
ρε if otherwise.

(2)

1In our paper, we focus on the case
√
ρε ≤ L; otherwise, by

theL-Lipschitz assumption, λmin(∇2f(x)) ≥ −L for all x ∈ Rd,
which implies ε-first order stationary points are also ε-second order
stationary points.
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Suppose

u=Õ

(
min {

√
ε,
√
r}

√
ρd

)
, r=Õ (ε) , η=Õ

(
mψ̄

dmax{L,L2}

)
,

Then, in

T= Ω̃

(
(f(x0)− f∗)

ηε2
+
ρ2(f(x0)− f∗)

ηψ̄4

)
= Ω̃

(
dmax{L,L2}ρ2(f(x0)− f∗)

mψ̄ε2

)
iterations (with each iteration using 2m function evalu-
ations), with probability at least 1 − δ, at least half the
iterates are (ε,

√
ρε)-second-order stationary points.

Remark 1. As the choice of η in Proposition 4 (Ap-
pendix D) and Theorem 2 (Appendix F) respectively imply,
the Ω̃

(
f(x0)−f∗

ηε2

)
term in the sample complexity comes

from the large gradient iterations (Proposition 4), whereas
the Ω̃

(
ρ2(f(x0)−f∗)

ηψ̄4

)
term comes from the escape saddle

point phase.
Remark 2. As a corollary of Theorem 1, for functions f
which are (ε, ψ,

√
ρε) strict saddle, assuming that ψ ≥√

ρε, the sample complexity of our algorithm scales as

Ω̃
(
dmax{L2,L}(f(x0)−f∗)

mε2ψ

)
, which scales as Ω̃

(
d
mε2

)
when

ψ is of size Ω(1). Thus, in this setting, for two-point estima-
tors, wherem = 1, the dependence on d and ε in our sample
complexity (as measured by function evaluations) matches
that achieved by the algorithms in (Vlatakis-Gkaragkounis
et al., 2019; Zhang et al., 2022), which have to use 2d func-
tion evaluations per iteration to estimate the gradient.

Comparison to gradient-based methods. For first-order
escape saddle point algorithms, standard perturbation-based
methods (without acceleration) can find a (ε, O(

√
ε))-

second-order stationary point using Õ(1/ε2) iterations for
deterministic GD (Jin et al., 2019a), while for standard SGD
the best-known rates are slower at Õ(1/ε3.5) (Fang et al.,
2019). In contrast, our sample complexity (as measured
by the total number of function evaluations) is Õ

(
d
ε2ψ̄

)
,

where ψ̄ is defined in Eq. (2). The extra (linear) dependence
on d is typical for zeroth-order algorithms (see e.g. (Nes-
terov & Spokoiny, 2017)); intuitively, gradient calculation
for d-dimensional functions requires O(d) calculations ag-
nostically, so it makes sense that zeroth-order algorithms
requires d times more iterations. For general non strict-
saddle functions, our dependence on ε sits between that of
the deterministic methods and SGD methods, and suggests
the benefit of a specialized treatment of zeroth-order meth-
ods over considering them simply as a subclass of SGD
methods. Moreover, for (ε, ψ,

√
ρε)- strict-saddle functions

where ψ = Ω(1), our sample complexity becomes Õ( dε2 ),
with an ε dependence that matches that of the best existing

sample complexity for non-accelerated first-order escape
saddle point methods (Jin et al., 2017)

Comparison to existing zeroth-order methods. As Ta-
ble 1 suggests, our sample complexity significantly outper-
forms that of (Jin et al., 2018a), (Bai et al., 2020), (Bala-
subramanian & Ghadimi, 2022), and also that in (Lucchi
et al., 2021), which is a random search method. We note
that the sample complexity in (Vlatakis-Gkaragkounis et al.,
2019; Zhang et al., 2022) outperform our method, with a
function evaluation complexity of Õ

(
d
ε2

)
. However, for

for (ε, ψ,
√
ρε)- strict-saddle functions where ψ = Ω(1),

our sample complexity becomes Õ( dε2 ), which matches the
sample complexity in (Vlatakis-Gkaragkounis et al., 2019;
Zhang et al., 2022). Moreover, a key limitation of their
methods is a requirement to use Ω(d) function evaluations
to estimate the gradient at each iteration, which may not be
practical in realistic applications when d is large. In contrast,
our method supports any number of function evaluations
at each iteration between 1 to d. Moreover, numerically,
we found that for a test nonconvex function proposed in
(Du et al., 2017), our method (with two-point estimators)
takes fewer function evaluations to escape saddle points
and converge to the global minimum than the methods in
(Vlatakis-Gkaragkounis et al., 2019; Zhang et al., 2022);
see Section 4 for details.

3. Proof strategy and key challenges in the
zeroth-order setting

Broadly speaking, our proof include two major parts, i)
characterizing the progress made in iterations when the gra-
dient is large (which we can define to be iterations t where
‖∇f(xt)‖ ≥ ε) (Section 3.1), ii) and iterations when we
are at an ε-approximate saddle point (where progress may
be made along the negative eigendirection of the Hessian
matrix) (Section 3.2). While the approach is similar to the
first-order case (e.g. (Jin et al., 2019a)), the zeroth-order
setting brings forth several unique challenges. In the rest
of this section, we explain these challenges, sketch out our
high-level proof outlines, and provide statements of the
main technical results. Due to limited space, we defer the
full proof to the Appendix.

3.1. Showing function decrease when gradients are
large

Challenge. Due to the noise in two-point (or 2m where m
is a small constant) zeroth-order gradient, even when the
gradient is large, it may not always be possible to make
progress at each iteration, especially when m < d is used
in the gradient estimation equation in Eq. (1). While it
is tempting to use an expectation-based argument to han-
dle this issue, it is known that expectation-based function
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decrease arguments are insufficient for the purpose of es-
caping saddle points (see e.g. Proposition 1 in (Ziyin et al.,
2021)). We tackle this issue by using high-probability argu-
ments instead; we note that achieving these high-probability
bounds is highly nontrivial due to the large variance of the
two-point zeroth-order estimator (scaling with d times the
squared norm of the gradient). Hence, any single iteration
of the zeroth-order method may in fact lead to a function
increase rather than decrease.

High-level proof outline. (i) We first characterize the func-
tion value change for our proposed algorithm (Lemma 1).
(ii) Next, we tackle the issue of the possibility that the func-
tion value might increase for any given iteration. The key
idea here is that across any small consecutive number of
iterations, there will be one iteration where the zeroth-order
estimator is sufficiently aligned with the gradient direc-
tion (Lemma 14 in Appendix D). (iii) Along with a series of
other technical results in Appendix D, we then show that the
function makes sufficient progress across the duration of the
algorithm, with high probability (Proposition 1). To more
concretely illustrate the key analytical challenge, we next
introduce the following function decrease lemma, proved in
Appendix D.
Lemma 1 (Function decrease for batch zeroth-order opti-
mization). Suppose at each time t, the algorithm performs
the update step (with batch-size parameter 1 ≤ m ≤ d)

xt+1 = xt − η
(
g(m)
u (xt) + Yt

)
,

where

g(m)
u (xt) =

1

m

m∑
i=1

f(xt + uZt,i)− f(xt − uZt,i)
2u

Zt,i,

where each Zt,i is drawn i.i.d from N(0, I), u > 0 is the
smoothing radius, and Yt ∼ N(0, r

2

d I) with r > 0 denoting
the perturbation radius.

Then, there exist absolute constants c1 > 0, C1 ≥ 1 such
that, for any T ∈ Z+ and T ≥ τ > 0, α > 0 and δ ∈
(0, 1/e], upon definingH0,τ (δ) to be the event on which the
inequality

f(xτ )− f(x0) (3)

≤ − 3η

4

τ−1∑
t=0

1

m

m∑
i=1

∣∣∣Z>t,i∇f(xt)
∣∣∣2 (4)

+

(
η

α
+
c1Lη

2χ3d

m

) τ−1∑
t=0

‖∇f(xt)‖2

+ τηu4ρ2 · c1d3
(

log
T

δ

)3

+ τLη2u4ρ2 · c1d4
(

log
T

δ

)4

+ ηc1r
2(α+ ηL) log

T

δ
+ τc1Lη

2r2 (5)

is satisfied (where χ := log(C1dmT/δ)), we have

P(H0,τ (δ)) ≥ 1− (τ + 4)δ

T
, P(∩τ

′
τ=1H0,τ (δ)) ≥ 1− 5τ ′δ

T

for any 0 ≤ τ ′ ≤ T .

Our goal is to show that we can arrive at a contradiction
f(xT ) < minx f(x) when there is a large number of steps
at which ‖∇f(xt)‖ ≥ ε (Proposition 1). As we can see
from Eq. (5), this implies that we need to prove a lower
bound of the form

T−1∑
t=0

1

m

m∑
i=1

∥∥∥Z>t,i∇f(xt)
∥∥∥2≥Ω

(
1

α
+
c1Lηχ

3d

m

) T−1∑
t=0

‖∇f(xt)‖2

(6)

for some αwhich is not too large (an example would be pick-
ing α such that it only scales logarithmically in the problem
parameters). However, it is tricky to prove such a lower-
bound in the zeroth-order setting. In particular, for small
batch-sizesm, 1

m

∑m
i=1

∥∥Z>t,i∇f(xt)
∥∥2

could be small even
as ‖∇f(xt)‖2 is large; this is because for each i ∈ [m], Zt,i
could have a negligible component in the ∇f(xt) direction.
This necessitates a more delicate analysis to prove a bound
similar to Eq. (6). Due to space reasons, we defer our more
detailed proof approach outline to Appendix D (see the dis-
cussion immediately following Lemma 1). The results in
Appendix D culminates in the following result which limits
the number of large-gradient.
Proposition 1 (Bound on number of iterates with large gra-
dients, informal version of Proposition 4). Let δ ∈ (0, 1/e]

be arbitrary. Letting Õ hide polylogarithmic dependencies
on δ (and other parameters), consider choosing u, r, η and
T such that

u = Õ

( √
ε

√
ρd

)
, r = O(ε), η = Õ

( m
dL

)
,

T = Ω̃

((
(f(x0)− f∗) + ε2/L)

)
ηε2

)
.

Then, with probability at least 1−O(δ), there are at most
T/4 iterations for which ‖∇f(xt)‖ ≥ ε.

3.2. Making progress near saddle points

Challenge. The noise in two-point zeroth-order estimators
makes the analysis around ε−approximate saddle points
challenging, because the concentration properties of the
(non-subGaussian) noise are hard to characterize. Intuitively,
a noisier estimator might facilitate easier escape from sad-
dle point. However, without an appropriate concentration
bound, the noise may behave in unpredictable ways, prevent-
ing escape from saddle regions. Previous analysis of saddle
point escape using stochastic estimators typically requires
these estimators to satisfy subGaussian properties (Jin et al.,
2019a; Fang et al., 2019), which zeroth-order estimators do
not satisfy.

High-level proof outline. (i) We first prove a technical
result showing that the travelling distance of the iterates
can be bounded in terms of the function value decrease
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(i.e., Improve or Localize, Lemma 2). (ii) Next, at any ε-
saddle point, we consider a coupling argument and define
two sequences running near-identical zeroth-order dynam-
ics, differing only in the sign of their perturbative term along
the minimum eigendirection of H , which denotes the Hes-
sian of the saddle (Lemma 3). Using Lemma 2 in point
(i), if we assume for contradiction that the two sequences
both “get stuck” and make little function value progress,
the dynamics of the difference between the two sequences
will remain small as both sequences remain close to the
saddle point. iii) However, since the perturbation vectors
of the two sequences differ in the (most) negative direction
of H , the norm of the the difference of the two sequences
will grow exponentially so long as a). the sequences remain
close to the saddle point (and thus the Hessian has a negative
curvature direction) and b). the effect of the zeroth-order
stochastic noise can be controlled. This leads to a contradic-
tion, implying that sufficient function decrease must have
been made (Proposition 5 in Appendix E.3). (iv) To show
that the zeroth-order stochastic noise can be controlled, we
prove one technical result (Proposition 2), providing a con-
centration bound for the product of (possibly unbounded)
subGaussian random vectors that scales linearly with the
dimension d. This enables us to control the effect of the
zeroth-order noise near saddle points, and is essential in
showing that the eventual sample complexity scales linearly
with d.

We provide a more detailed proof sketch below, where we
elaborate more on our analytical challenges and ideas. We
first introduce an informal statement of a key technical result
that bounds, with high probability, the travelling distance of
the iterates in terms of the function value decrease.
Lemma 2 (Improve or Localize, informal version of
Lemma 23). Consider the perturbed zeroth-order update Al-
gorithm 1. Let δ ∈ (0, 1/e] be arbitrary. Consider any Ts =

Ω̃
(

1
m log(1/δ)

)
, and any t0 ≥ 0. For any F > 0, suppose

f(xTs+t0) − f(xt0) > −F, i.e. f(xt0) − f(xTs+t0) < F .
Letting Õ hide polylogarithmic terms involving δ, suppose

u = Õ

(
min {

√
ε,
√
r}

√
ρd

)
, r = Õ

(
min

{
ε,

F

ηTs

})
,

η = Õ

(
m
√
ρε

dL

)
.

Then, with probability at least 1 − O
(
Tsδ
T

)
(here T ≥

Ts denotes the total number of iterations), for each τ ∈
{0, 1, . . . , Ts}, we have that

‖xt0+τ − xt0‖
2 ≤ φTs(δ, F ), where

φTs(δ, F )=Õ

(
max

{
Ts,

d

m

})
ηF + Õ(η2ε2).

Intuitively, the above result shows that if little function value
improvement has been made, then the algorithm’s iterates

have not moved much, such that it remains approximately
in a saddle region if it started out in a saddle region. Next,
Lemma 3 formally introduces the coupling we have men-
tioned, setting the stage for the rest of our arguments. For
notational convenience, in this section, unless otherwise
specified, we will assume that the initial iterate x0 is an
ε-saddle point.
Lemma 3. Suppose x0 is an ε-approximate saddle point.
Without loss of generality, suppose that the minimum
eigendirection of H := ∇2f(x0) is the e1 direction
(i.e. the first basis vector in Rd), and let γ to denote
−λmin(∇2f(x0)) (note γ ≥ √ρε). Consider the following
coupling mechanism, where we run the zeroth-order gra-
dient dynamics, starting with x0, with two isotropic noise
sequences, Yt and Y ′t respectively, where (Yt)1 = −(Yt)

′
1,

and (Yt)j = (Yt)
′
j for all other j 6= 1. Suppose that the

sequence {Zt,i}t∈T,i∈[m] is the same for both sequences.
Let {xt} denote the sequence with the {Yt} noise sequence,
and let the {x′t} denote the sequence with the {Y ′t } noise
sequence, where x′0 = x0, and

x′t+1

= x′t−η

∑m
i=1

(
Zt,iZ

>
t,i∇f(x′t)+ u

2
Zt,iZ

>
t,iH̃

′
t,iZt,i

)
m

+Y ′t

,
and H̃ ′t,i :=

H′t,i,+−H
′
t,i,−

2 , with H ′t,i,+ = ∇2f(x′t +
α′t,i,+uZ

′
i) for some α′t,i,+ ∈ [0, 1], and H ′t,i,− =

∇2f(xt − α′t,i,−uZ ′i) for some α′t,i,− ∈ [0, 1]. Then, for
any t ≥ 0,

x̂t+1

:= xt+1 − x′t+1

= − η
t∑

τ=0

(I−ηH)t−τ ξ̂g0(τ)︸ ︷︷ ︸
Wg0 (t+1)

−η
t∑

τ=0

(I−ηH)t−τ (H̄τ−H)x̂τ︸ ︷︷ ︸
WH (t+1)

− η
t∑

τ=0

(I − ηH)t−τ ξ̂u(τ)︸ ︷︷ ︸
Wu(t+1)

− η
t∑

τ=0

(I − ηH)t−τ Ŷτ︸ ︷︷ ︸
Wp(t+1)

where

ξg0(t) =
1

m

m∑
i=1

(Zt,iZ
>
t,i−I)∇f(xt),

ξ′g0(t) =
1

m

m∑
i=1

(Zt,i(Zt,i)
>−I)∇f(x′t),

ξ̂g0(t) = ξg0(t)− ξ′g0(t), ξu(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃t,iZt,i,

ξ′u(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃

′
t,iZt,i, ξ̂u(t) = ξu(t)− ξ′u(t),

Ŷt = Yt − Y ′t , H̄t =

∫ 1

0

∇2f(axt + (1− a)x′t)da.
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Our goal is to show that the dominating term in the evolu-
tion of the difference dynamics comes from the Wp term
involving the additional perturbation. To this end, we need
to bound the remaining terms, Wg0

,WH ,Wu. A key tech-
nical challenge is to find a precise concentration bound for
the Wg0(t+ 1) term, where

−Wg0(t+ 1)

= η

t∑
τ=0

(I−ηH)t−τ
(∑m

i=1(Zτ,iZ
>
τ,i−I)(∇f(xτ )−∇f(x′τ ))

m

)
.

For the simplicity of discussion, we assume for the time
being that m = 1, and drop the i index in the subscript
of Zτ,i. Since E[ZτZ

>
τ ] = I , heuristically, assuming that

ZτZ
>
τ −I satisfies “nice” concentration properties, utilizing

the independence of the Zτ ’s across time and the fact that
(I − ηH) � (1 + ηγ)I , we would like to show that with
high probability,
∥∥∥Wg0 (t)

∥∥∥
. η

√√√√t−1∑
τ=0

(1 + ηγ)2(t−1−τ)E
[∥∥(ZτZτ−I) (∇f(xτ )−∇f(x′τ ))∥∥2 | Fτ−1

]
(7)

where Fτ−1 is a sigma-algebra containing all randomness
up to and including iteration τ − 1, such that xτ and x′τ are
both in Fτ−1, but Zτ is not. Then, assuming that Eq. (7)
holds, since

E
[∥∥(ZτZτ − I) (∇f(xτ )−∇f(x′τ ))

∥∥2 | Fτ−1

]
= O(d)

∥∥∇f(xτ )−∇f(x′τ )
∥∥2,

it follows that

‖Wg0(t)‖≤η

√√√√O(d)

t−1∑
τ=0

(1+ηγ)2(t−1−τ)‖∇f(xτ )−∇f(x′τ )‖2

With this bound on ‖Wg0
(t)‖, we eventually prove in Propo-

sition 5 in Appendix E.3 that our algorithm escapes any
ε−saddle point with constant probability and that the O(d)
term appearing in the square root term above will eventu-
ally lead to an O(d) dependence in the sample complexity2.
We note that the O(d) dimension dependence matches that
of the best-known existing upper bound for finding first-
order stationary points in smooth nonconvex zeroth-order
optimization (Nesterov & Spokoiny, 2017), and has been
conjectured to be the best possible dimension dependence
for general smooth nonconvex zeroth-order optimization
(Balasubramanian & Ghadimi, 2022).

Key technical challenge The key challenge in the
above argument is to show that an equation in the
form of Eq. (7) could in fact hold. At first glance,
that an inequality such as Eq. (7) should hold is rather

2For general 1 ≤ m ≤ d, there will also be an O(1/m)
dependence in the sample complexity.

non-obvious — this is because while the variable
(ZτZτ − I)(∇f(xτ )−∇f(x′τ )) | Fτ−1 is mean-zero, it is
subExponential rather than subGaussian. In fact, even in
the subGaussian case, given a sequence of random vectors
x0, . . . ,xt−1, such that each E[xτ | Fτ−1] = 0, and that
each xτ | Fτ−1 is norm-subGaussian with parameter
στ ∈ Fτ−1 (which is an appropriate generalization
of subGaussianity for vectors, proposed in (Jin et al.,
2019b)), proving a concentration inequality of the form∥∥∥∑t−1

τ=0 xτ

∥∥∥ ≈ Õ(√∑t−1
τ=0 σ

2
τ

)
is a very delicate matter.

In our case, the analogue of xτ is (I − ηH)t−1−τ (ZτZτ−
I)(∇f(xτ )−∇f(x′τ )), while the analogue of σ2

τ is (1 +

ηγ)2(t−1−τ)E
[
‖(ZτZτ−I) (∇f(xτ )−∇f(x′τ ))‖2 |Fτ−1

]
.

Existing techniques (cf. (Tropp et al., 2015; Jin et al.,
2019b)) rely crucially on subGaussian properties that allow
for each τ the moment-generating function E[eθYτ | Fτ−1]
to be defined for any fixed (and non-random) θ > 0, where
Yτ takes the form

Yτ =

[
0 x>τ
xτ 0

]
,

such that E[Yτ | Fτ−1] = 0 (since E[xτ | Fτ−1] = 0),
and the eigenvalues of Yτ are ±‖xτ‖. In the case when xτ
is merely subExponential, the Moment Generating Func-
tion (MGF), E[eθYτ | Fτ−1], will no longer be well-
defined at any fixed (and non-random) θ > 0. This
poses a challenge in our setting, since xτ takes the form
(I − ηH)t−1−τ (ZτZ

>
τ − I)(∇f(xτ )−∇f(x′τ )), which is

subExponential rather than subGaussian. While it may be
possible to force (I − ηH)t−1−τ (ZτZ

>
τ − I)(∇f(xτ ) −

∇f(x′τ )) to be sub-Gaussian, say by normalizing Zτ to
have norm

√
d (note any bounded random vector is also

subGaussian), such that
∥∥(ZτZ

>
τ − I)g

∥∥2 ≤ d2‖g‖2 for
any vector g ∈ Rd, a careful examination of the argument in
Proposition 5 would show that this results in a O(d2) rather
than O(d) dependence in the sample complexity, incurring
a heavy price on the overall sample complexity (extra factor
of d) if d is large.

Our solution To overcome the issue, we build on the
following observation: with high probability, for any vector
g ∈ Rd,

∣∣Z>τ g∣∣ is bounded within some log factor of ‖g‖.
On the event {

∣∣Z>τ g∣∣ = Õ(‖g‖)}, the variable

(ZτZ
>
τ − I)g = Zτ (Z>τ g)− g ≈ Zτ‖g‖ − g

behaves approximately like a subGaussian random vec-
tor since Zτ ∼ N(0, Id). Based on this intuition, af-
ter some careful analysis, we can show that (ZτZ

>
τ −

I)(∇f(xτ )−∇f(x′τ )) | Fτ−1 is subGaussian on the event
that

∣∣Z>τ ∇f(xτ )
∣∣ is bounded within some log factor of

‖∇f(xτ )‖, which happens with high probability. This
then allows us to show that on this event, the correspond-
ing MGF is well-defined for all fixed θ > 0, enabling us

7



Escaping saddle points in zeroth-order optimization: the power of two-point estimators

to prove a concentration inequality of the form Eq. (7).
This intuition is crystallized in the following proposition,
which proves a more general bound than what we strictly
need. For notational simplicity, we introduce the function
lr(x) := log (x log(x)).
Proposition 2. Let Ft, t ≥ −1 be a filtration. Let (Zt)t≥0
be a sequence of random vectors following the distribution
N(0, I) such that Zt ∈ Ft and is independent of Ft−1,
and let (vt)t≥0 be a sequence of random vectors such that
vt ∈ Ft−1. For each τ ≥ 0, let

Wτ =

τ−1∑
t=0

Mt(ZtZ
>
t − I)vt,

where each Mt is a deterministic matrix of appropriate
dimension. Then, there exist some absolute constants
c′, C > 0 such that for any τ ∈ Z+ and δ ∈ (0, 1/e],
the following statements hold:

1. For any θ > 0, with probability at least 1− δ, we have

‖Wτ‖≤c′θ
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2+
1

θ
log(Cdτ/δ).

2. For any B > b > 0, with probability at least 1− δ,

either
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2 ≥ B, or

‖Wτ‖ ≤

√√√√max

{
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2, b

}
× c′

√
(log(Cτd/δ) + log(log(B/b) + 1))

Moreover, as is clear from the bounds above, we may pick
C ≥ 1 such that log

(
C
δ

)
≥ 1,∀δ ∈ (0, 1

e ].

With this result, along with a series of other technical results
in Appendix E.3, we can show that the algorithm makes
a function decrease of F with Ω(1) probability near an ε-
saddle point (Proposition 5 in Appendix E.3). Armed with
Proposition 5, as well as Proposition 1, the main result in
Theorem 1 then follows. The complete detailed analysis
can be found in Appendix E (escaping saddle point) and
Appendix F (main result).

4. Simulations
We test the performance of our proposed algorithm with
two-point estimators (ZOPGD-2pt) against existing zeroth-
order benchmarks using the octopus function (proposed in
(Du et al., 2017)).3 It is known that the octopus function
defined on Rd, which chains d saddle points sequentially,

3Our code can be found at https://github.com/
rafflesintown/escape-saddle-points-2pt

takes exponential (in d) time for exact gradient descent to
escape; it has thus emerged as a popular benchmark to eval-
uate algorithms that seek to escape saddle points. In our
experiments, we compare the performance of our two-point
estimator algorithm (ZOPGD-2pt) with PAGD (Algorithm
1 in (Vlatakis-Gkaragkounis et al., 2019)) and ZO-GD-NCF
(see (Zhang et al., 2022)), which are the only two existing
zeroth-order algorithms that have (a) a Õ(d/ε2) sample com-
plexity for escaping saddle points (with the latter algorithm
yielding the tightest bounds), and (b) performed the best
empirically on escaping saddle points (see the simulation
results in (Zhang et al., 2022)). Both PAGD and ZO-GD-
NCF have to use 2d function evaluations per iteration to
estimate the gradient while our algorithm only needs to use
2 function evaluations. We plot the function value against
the number of function evaluations.

We tested the algorithms for d = 10 and d = 30. To account
for the stochasticity in the algorithms, for each algorithm,
we computed the average and standard deviation over 30
trials, and plotted the mean trajectory with an additional
band that represents 1.5 times the standard deviation. For
our algorithm’s hyperparameters, we picked

η =
1

4dL
, u = 10−2, r = 0.05,m = 1.

Notem = 1 corresponds to using a two-point estimator. For
PAGD, we used the hyperparameters listed in their paper,
and for ZO-GD-NCF, we used the code from their Neurips
submission. For initialization, we chose a random x0 near
the saddle point at the origin, drawn from N(0, 10−3Id×d)

As we see in Fig. 2, our algorithm reaches the global mini-
mum of the octopus function in significantly fewer function
evaluations than PAGD and ZO-GD-NCF (approximately
2.5 times faster than ZO-GD-NCF, and approximately 3
times faster than PAGD), despite our algorithm only using 2
function evaluations per iteration compared to 2d function
evaluations per iteration for both PAGD and ZO-GD-NCF.
This suggests that in addition to our theoretical convergence
guarantees, there can also be empirical benefits to using
two-point estimators versus existing 2d-point estimators in
the zeroth-order escaping saddle point literature.

5. Conclusion
In this paper, we proved that using two function evalua-
tions per iteration suffices to escape saddle points and reach
approximate second order stationary points efficiently in
zeroth-order optimization. Along the way, we also gave the
first analysis of high-probability function change using two
(or more)-point zeroth-order gradient estimators, as well as
a novel concentration bound for sums of subExponential
(but not subGaussian) vectors which are each the products
of Gaussian vectors. These technical contributions may be
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Figure 1: Performance on toy octopus function, with
d = 30

of independent interest to researchers working in zeroth-
order optimization as well as general stochastic optimiza-
tion. Finally, we provided numerical evidence supporting
the theoretical convergence results.
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A. Related Work
Two-point methods in zeroth-order optimization. Two-point (or in general 2m-point, where 1 ≤ m < d with d being
the problem dimension) estimators, which approximate the gradient using two (or 2m) function evaluations per iteration,
have been widely studied by researchers in the zeroth-order optimization literature, in convex (Nesterov & Spokoiny, 2017;
Duchi et al., 2015; Shamir, 2017), nonconvex (Nesterov & Spokoiny, 2017), online (Shamir, 2017), as well as distributed
settings (Tang et al., 2019). A key reason for doing so is that for applications of zeroth-order optimization arising in robotics
(Li et al., 2022), wind farms (Tang et al., 2020a), power systems (Chen et al., 2020), online (time-varying) optimization
(Shamir, 2017), learning-based control (Malik et al., 2019; Li et al., 2021), and improving adversarial robustness to black-box
attacks in deep neural networks (Chen et al., 2017), it may be costly or impractical to wait for Ω(d) (where d denotes the
problem dimension) function evaluations per iteration to make a step. This is especially true for high-dimensional and/or
time-varying problems. Indeed, for high-dimensional problems, two-point estimators can make swift progress even in the
initial stage compared to 2d-point estimator, and can reach a higher-quality solution if computation is limited (Tang et al.,
2020b; Chen et al., 2017). For instance, consider the work in (Chen et al., 2017), which studies the use of zeroth-order
estimators to perform black-box attacks on deep neural networks, in order to identify (and then defend against) adversarial
images that may lead to misclassification. In the paper, the authors employed two-point zeroth-order estimators, due to the
high computational cost of using 2d function evaluations per iteration for hundreds of iterations (here d is the dimension of
an image, which in this case is over 20000). The authors showed empirically that their two-point estimators worked well;
however there over no accompanying theoretical results.

For online or time-varying environments, two-points estimators also often preferable. Since zeroth-order methods are often
used in physical systems whose environment drifts or changes over time, this leads naturally to a time-varying or online
optimization. For these problems, 2d-point estimators will not produce a good estimation because the underlying function
can drift to a very different problem while waiting for the 2d function evaluations. Indeed, the fewer function evaluations an
optimization procedure needs, the faster it can catch up with the time-varying environment. In fact, for online optimization,
it has been shown that two points estimator is optimal for convex Lipschitz functions (Shamir, 2017). Thus, two-point
estimators are a natural fit for time-varying online optimization problems.

Saddle point escape with access to deterministic gradient. While standard gradient descent can escape saddle points
asymptotically (Lee et al., 2019; Panageas et al., 2019), it is known that standard gradient descent may take exponential time
to escape saddle points (Du et al., 2017). Hence, when access to deterministic gradient is available, research has centered on
escaping saddle points with adding perturbation (Jin et al., 2017), momentum/acceleration based methods (Jin et al., 2018b;
Sun et al., 2019a; Staib et al., 2019), or gradient-based robust Hessian power/curvature exploitation methods (Zhang & Li,
2021; Adolphs et al., 2019). In addition, there has also been work on escaping saddle points devoted to specific optimization
settings, such as constrained optimization (Mokhtari et al., 2018; Avdiukhin et al., 2019), optimization of weakly convex
functions (Huang, 2021), bilevel optimization (Huang et al., 2022), as well as on general manifolds (Sun et al., 2019b;
Criscitiello & Boumal, 2019; Han & Gao, 2020).

Saddle point escape in stochastic gradient descent (SGD). In practice, only stochastic gradient estimators are available in
many problems. While SGD may converge to local maxima in worst-case scenarios (Ziyin et al., 2021), under assumptions
such as bounded variance or subGaussian noise, there have been many works that have studied the problem of saddle
point escape in SGD (Ge et al., 2015; Daneshmand et al., 2018; Xu et al., 2018; Jin et al., 2019a; Vlaski & Sayed, 2021b).
The best existing rate (without considering momentum/variance reduction techniques) appears to belong to that of (Fang
et al., 2019), which converges to ε-second order stationary points using Õ(1/ε3.5) stochastic gradients. While zeroth-order
gradient estimators may also be viewed as stochastic gradients, they typically do not satisfy the bounded/subGaussian
noise assumptions that are assumed in these works, making a direct comparison inappropriate. Escaping saddle point via
momentum methods in SGD has also been studied (Wang et al., 2021; Antonakopoulos et al., 2022); while we do not
consider incorporating momentum in our works, this may be interesting future work. A number of papers has also considered
the specialized setting of escaping saddle points in nonconvex finite-sum optimization (Reddi et al., 2018; Liang et al., 2021),
with many considering the case where variance-reduction is used (Ge et al., 2019; Li, 2019). While the finite-sum problem
is quite different from our problem, the variance reduction approach considered in these works may be a relevant future
direction. The saddle point escape problem has also been studied in other specific settings such as compressed optimization
(Avdiukhin & Yaroslavtsev, 2021), distributed optimization (Vlaski & Sayed, 2021a), or in the overparameterization case
(Roy et al., 2020).

Saddle point escape with zeroth-order information. The problem of escaping saddle points in zeroth-order optimization
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has been studied less often, and we have already listed all known works comparable to our work in the introduction (Bai
et al., 2020; Vlatakis-Gkaragkounis et al., 2019; Balasubramanian & Ghadimi, 2022); a more detailed comparison of these
works with our results has been provided in the discussion following the statement of our main result Theorem 1. We
would like to mention that (Roy et al., 2020) also includes a convergence result of Õ

(
d1.5

ε4.5

)
for the case with noisy function

evaluations, which is incomparable to our existing work which focuses on the case with exact function evaluation. In
addition, (Roy et al., 2020) also makes a subGaussian assumption on the estimator noise, which zeroth-order estimators in
our paper do not satisfy. Nonetheless, considering the extension to noisy function evaluations will make for important future
work.

Zeroth-order optimization. Our work rests on a line of research in zeroth-order optimization which focuses on constructing
gradient estimators using zeroth-order function values (Flaxman et al., 2005; Duchi et al., 2015; Nesterov & Spokoiny,
2017; Shamir, 2017; Larson et al., 2019). As we have discussed, for smooth nonconvex functions, it is known that two-
point zeroth-order estimators suffice to find first-order ε-stationary points using Õ(d/ε2) function evaluations (Nesterov &
Spokoiny, 2017). Our work studies the more complicated problem of reaching ε-second order stationary points, attaining a
rate of Õ(d/ε2.5).

B. Proof Roadmap
We begin by introducing several key concentration inequalities in Appendix C which we will frequently use in our proofs.
We then describe in detail (and prove) the sequence of results that lead up to Proposition 4 in Appendix D, showing that
there cannot be too many iterations with large gradients. Next, we describe the saddle point argument in detail, and prove
Proposition 5 in Appendix E.3. Finally, we combine these results and prove our main result Theorem 2 (whose informal
version is Theorem 1) in Appendix F

Throughout our proofs, absolute constants, as denoted by e.g. (c, c′, C), may change from line to line. However, within the
same proof, for clarity, we try to index different constants differently. We assume d ≥ 2 and m ≤ d.

Notations. We shall denote the conditional expectation and conditional probability by EF [·] = E[· | F ] and PF (·) = P(· |
F) where F is a sigma-algebra.

C. Concentration inequalities
This section serves to introduce several probabilistic results which will be useful for our main proofs in subsequent
sections. We first introduce subGaussian, subExponential and norm-subGaussian random vectors in Appendix C.1. Next,
in Appendix C.2, we provide concentration bounds for norm-subGaussian and subExponential random vectors. We then
prove a novel concentration inequality involving products of subGaussian random vectors in Appendix C.3. We conclude by
stating some concentration bounds for Appendix C.4 random variables.

C.1. subGaussian, subExponential and norm-subGaussian random vectors

We first define subGaussian and subExponential random vectors. A detailed reference for these concepts can be found in
(Vershynin, 2018).

Definition 5 (subGaussian and subExponential random vectors). A random vector x ∈ Rd is σ-subGaussian (SG(σ)), if
there exists σ > 0 such that for any unit vector g ∈ Sd−1,

E [exp(λ〈g,x− E[x]〉)] ≤ exp(λ2σ2/2) ∀λ ∈ R.

Meanwhile, a random vector x ∈ Rd is σ-subExponential (SE(σ)), if there exists σ > 0 such that for any unit vector
g ∈ Sd−1,

E [exp(λ〈g,x− E[x]〉)] ≤ exp(λ2σ2/2) ∀|λ| ≤ 1

σ

An alternative concentration property for random vectors revolving around its norm, known as norm-subGaussianity (Jin
et al., 2019b), is also relevant.
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Definition 6 (norm-subGaussian random vectors). A random vector x ∈ Rd is σ-norm-subGaussian (nSG(σ)), there exists
σ > 0 such that

P(‖x− Ex‖ ≥ s) ≤ 2e−
s2

2σ2 ∀s ≥ 0.

We recall the following result which provides several examples of nSG random vectors. In particular, it tells us a random
vector x ∈ Rd that is (σ/

√
d)−subGaussian is also σ-subGaussian.

Lemma 4 (Lemma 1 in (Jin et al., 2019b)). There exists absolute constant c such that the following random vectors are all
nSG(cσ).

1. A bounded random vector x ∈ Rd so that ‖x‖ ≤ σ.

2. A random vector x ∈ Rd, where x = ξe1 and the random variable ξ ∈ R is σ-subGaussian.

3. A random vector x ∈ Rd that is (σ/
√
d)−subGaussian

In addition, if x ∈ Rd is zero-mean nSG(σ), its component along a single direction is also subGaussian.

Lemma 5. Suppose x ∈ Rd is zero-mean nSG(σ). Then, for any fixed vector v ∈ Rd, 〈v,x〉 is zero-mean ‖v‖σ-
subGaussian.

Proof. Without loss of generality, we assume that v ∈ Sd−1 is a unit vector. That 〈v,x〉 is zero-mean follows directly from
x being zero-mean and v being fixed. Meanwhile, since |〈v,x〉| ≤ ‖v‖‖x‖ = ‖x‖, for any s ≥ 0, it follows that

P(|〈v,x〉| ≥ s) ≤ P(‖x‖ ≥ s) ≤ 2e−
s2

2σ2 ,

where the last inequality follows from the fact that x is zero-mean and also nSG(σ). Hence 〈v,x〉 is zero-mean SG(σ), as
desired.

C.2. Concentration bounds for norm-subGaussian and subExponential random vectors

We begin by giving some concentration bounds for norm-subGaussian random vectors. To do so, we introduce the following
condition.

Condition 1. Consider random vectors x1, . . . ,xn ∈ Rd, and corresponding filtrations Fi generated by (x1, . . . ,xi). We
assume xi | Fi−1 is zero-mean, nSG(σi), with σi ∈ Fi−1, i.e,

E [xi | Fi−1] = 0,

and

P (‖xi‖ ≥ s | Fi−1) ≤ 2e
− s2

2σ2
i ∀s ≥ 0,

where σi is a measurable function of (x1, . . . ,xi−1) for each i.

For norm subGaussian random vectors satisfying Condition 1, we first have the following bound.

Lemma 6. Suppose (x1, . . . ,xn) ∈ Rd satisfy Condition 1, i.e. each xi | Fi−1 is mean-zero, nSG(σi) with σi ∈ Fi−1. Let
{ui} denote a sequence of random vectors such that ui ∈ Fi−1 for every i ∈ [n]. Then, there exists an absolute constant c,
such that for any δ ∈ (0, 1) and λ > 0, with probability at least 1− δ,

n∑
i=1

〈ui,xi〉 ≤ cλ
n∑
i=1

‖ui‖2σ2
i +

1

λ
log(1/δ).

Proof. We note that if xi is mean-zero and nSG(σi), then by Lemma 5, 〈ui,xi〉 | Fi−1 is zero-mean and ‖ui‖σi-
subGaussian. The rest of the proof follows from the proof of Lemma 39 in (Jin et al., 2019a) (key idea is exponentiate
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and then apply Markov’s inequality). For completeness, we restate the proof here. Observe that for any i, since 〈ui,xi〉 is
‖ui‖σi-subGaussian, for any λ > 0, we have that

E [exp(λ〈ui,xi〉) | Fi−1] ≤ exp(λ2‖ui‖2σ2
i /2)

For any λ > 0 and s ≥ 0, observe that

P

(
n∑
i=1

λ〈ui,xi〉 − λ2‖ui‖2σ2
i /2 ≥ s

)

= P

(
exp

(
λ

n∑
i=1

〈ui,xi〉 − λ2‖ui‖2σ2
i /2

)
≥ exp(λs)

)

≤ E

[
exp

(
λ

n∑
i=1

〈ui,xi〉 − λ2‖ui‖2σ2
i /2

)]
exp(−λs)

= E

[
E

[
exp

(
λ

n∑
i=1

〈ui,xi〉 − λ2‖ui‖2σ2
i /2

)∣∣Fn−1

]]
exp(−λs)

= E

[
exp

(
λ

n−1∑
i=1

〈ui,xi〉 − λ2‖ui‖2σ2
i /2

)
E
[
exp

(
λ〈un,xn〉 − λ2‖un‖2σ2

n/2
) ∣∣Fn−1

]]
exp(−λs)

(i)
≤ E

[
exp

(
λ

n−1∑
i=1

〈ui,xi〉 − λ2‖ui‖2σ2
i /2

)]
exp(−λs) ≤ · · · ≤ exp(−λs)

Above, (i) follows from the fact that 〈ui,xi〉 | Fi−1 is zero-mean and ‖ui‖σi-subGaussian for each i ∈ [n]. The final result
then follows by picking c = 1

2 and s = log(1/δ).

Assuming Condition 1, the following concentration result also holds for a sequence of nSG random vectors.

Lemma 7 (Lemma 6, Corollary 7 and Corollary 8 in (Jin et al., 2019b) combined). Suppose (x1, . . . ,xn) ∈ Rd satisfy
Condition 1. Then, there exists an absolute constant c such that for any fixed δ ∈ (0, 1), θ > 0, with probability at least
1− δ, ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ cθ
n∑
i=1

σ2
i +

1

θ
log(2d/δ).

Moreover, there are two corollaries.

1. (Corollary 7 in (Jin et al., 2019b)) When {σi} is deterministic, there exists an absolute constant c such that for any
fixed δ ∈ (0, 1), with probability at least 1− δ.∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ c
√√√√log(2d/δ)

n∑
i=1

σ2
i

2. (Corollary 8 in (Jin et al., 2019b)) Suppose that the {σi} sequence is random. Then, there exists an absolute constant c
such that for any fixed δ ∈ (0, 1) and B > b > 0, with probability at least 1− δ:

either
n∑
i=1

σ2
i ≥ B or

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ ≤ c
√√√√max

{
n∑
i=1

σ2
i , b

}
· (log(2d/δ) + log(log(B/b)))

We state here a Bernstein-type concentration inequality for sub-exponential random variables, which we also need.
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Lemma 8 (Bernstein concentration inequality). Consider a sequence of independently distributed σ-subexponential
variables x1, . . . ,xn ∈ R, with mean E[xi] ≤ c′σ for some c′ > 0 and each i ∈ [n]. Then, there exists an absolute constant
C > 0, such that for any δ ∈ (0, 1), with probability at least 1− δ,

n∑
i=1

xi ≤ Cσ(n+ log(1/δ)). (8)

Proof. The result of Eq. (8) follows by applying Bernstein’s inequality to
∑n
i=1 xi−E[xi] (so each summand is mean-zero).

Per Bernstein’s inequality, (cf. Theorem 2.8.1 in (Vershynin, 2018)), there exists an absolute constant c > 0 such that for
any s ≥ 0,

P

(
n∑
i=1

(xi − E[xi]) ≥ s

)
≤ exp

(
−cmin

{
s2

nσ2
,
s

σ

})
.

Pick s = σ
(
n+ log(1/δ)

c

)
. Then,

min

{
s2

nσ2
,
s

σ

}
= min

{
n+ 2

log(1/δ)

c
+

(log(1/δ))2

c2n
, n+

log(1/δ)

c

}
= n+

log(1/δ)

c
.

Continuing, we have that

P

(
n∑
i=1

(xi − E[xi]) ≥ s

)
≤ exp

(
−cmin

{
s2

nσ2
,
s

σ

})
≤ exp

(
−c
(
n+

log(1/δ)

c

))
≤ δ.

Thus, it follows that with probability at least 1− δ,

n∑
i=1

(xi − E[xi]) ≤ σ
(
n+

log(1/δ)

c

)
=⇒

n∑
i=1

xi ≤ σ
(
n+

log(1/δ)

c

)
+ nc′σ,

where implication holds since by assumption, E[xi] ≤ c′σ for some c′ > 0. Then, by setting C = max{1 + c′, 1/c}, the
desired result follows.

C.3. A novel concentration inequality for the zeroth-order setting

In the zeroth-order setting, we will frequently have to bound the norms of terms of the form

Wτ =

τ−1∑
t=0

Mt(ZtZ
>
t − I)vt, (9)

where Mt is a known and fixed quantity, while Zt is random, and vt depends on x0 and the history of previous {Zj}t−1
j=0’s,

and is hence Ft−1-measurable. For our purposes, it suffices to consider Zt ∼ N(0, I).

To see why such a bound will be useful, as mentioned in the main text and as we will see again later in the full proofs, in the
analysis of escaping saddle points, we need to bound a term of the form

Wg0(τ) = η

τ−1∑
t=0

(I − ηH)τ−1−t(ZtZ
>
t − I)(∇f(xt)−∇f(x′t)),

where H = ∇2f(x0) (assuming that x0 is an ε-saddle point), and xt and x′t are two coupled sequences. Comparing with
Eq. (9), we see that for the equation above, we can define Mt = η(I − ηH)τ−1−t (a fixed and known quantity) and
vt = ∇f(xt)−∇f(x′t) (clearly, ∇f(xt)−∇f(x′t) is Ft−1-measurable). This motivates why we wish to bound terms of
the form Eq. (9).

Observe that each (ZtZ
>
t − I)vt | Ft−1 term is subExponential rather than subGaussian. While it is possible to define

norm-subExponential vectors in analogous way to norm-subGaussian vectors, the corresponding moment generating function
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(MGF) for subExponential random variables is not defined on the entirety of R. When bounding a sum in the form of∑τ−1
t=0 (ZtZ

>
t − I)vt, this creates a subtle but challenging technical issue.

Following the intuition outlined in the main text, we bypass this difficulty by proving the following result. For notational
simplicity, we introduce the function

lr(x) := log (x log(x)) . (10)

We now recall Proposition 2 which we first introduced in the main text.
Proposition 2. Let Ft, t ≥ −1 be a filtration. Let (Zt)t≥0 be a sequence of random vectors following the distribution
N(0, I) such that Zt ∈ Ft and is independent of Ft−1, and let (vt)t≥0 be a sequence of random vectors such that vt ∈ Ft−1.
For each τ ≥ 0, let

Wτ =

τ−1∑
t=0

Mt(ZtZ
>
t − I)vt,

where each Mt is a deterministic matrix of appropriate dimension. Then, there exist some absolute constants c′, C > 0 such
that for any τ ∈ Z+ and δ ∈ (0, 1/e], the following statements hold:

1. For any θ > 0, with probability at least 1− δ, we have

‖Wτ‖≤c′θ
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2+
1

θ
log(Cdτ/δ).

2. For any B > b > 0, with probability at least 1− δ,

either
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2 ≥ B, or

‖Wτ‖ ≤

√√√√max

{
τ−1∑
t=0

‖Mt‖22d(lr(Cτ/δ))2‖vt‖2, b

}
× c′

√
(log(Cτd/δ) + log(log(B/b) + 1))

Moreover, as is clear from the bounds above, we may pick C ≥ 1 such that log
(
C
δ

)
≥ 1,∀δ ∈ (0, 1

e ].

Proof. We will focus on proving the first point, since the second follows as a natural corollary of our proof of the first part
and the proof of Corollary 8 in (Jin et al., 2019b). For simplicity, we shall assume vt 6= 0 in the intermediate steps; extension
to the general case is straightforward.

First of all, for 0 ≤ α < 1, let

g(α; δ) =

√
2

π

∫ √2 lr(1/δ)

α

(x2 − 1)e−x
2/2 dx =

√
2

π

(
αe−α

2/2 −
δ
√

2 lr(1/δ)

log(1/δ)

)
.

It’s not hard to see that for a fixed δ ∈ (0, 1/e], g(α; δ) is continuous and strictly increasing over α ∈ [0, 1). Then, since
log x
x + 1 ≤ x for x ≥ 1, by plugging in x = log(1/δ), we get

lr(1/δ)

(log(1/δ))2
=

log log(1/δ) + log(1/δ)

(log(1/δ))2
=

1

log(1/δ)

(
log log(1/δ)

log(1/δ)
+ 1

)
≤ 1,

which leads to

g(2δ; δ) =

√
2

π

(
2δe−2δ2

−
δ
√

2 lr(1/δ)

log(1/δ)

)
≥
√

2

π

(
2e−2/e2δ −

√
2δ
)
> 0
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for δ ∈ (0, 1/e]. Furthermore, we obviously have g(0; δ) < 0. Therefore g(α; δ) = 0 has a unique solution in (0, 2δ), which
we denote by α(δ).4 These results imply that, for a random variable Z following the standard normal distribution, we have

E
[
(Z2 − 1)1

α(δ)≤|Z|≤
√

2 lr(1/δ)

]
=

√
2

π

∫ √2 lr(1/δ)

α(δ)

(x2 − 1)e−x
2/2 dx = g(h(δ); δ) = 0

and

P(α(δ) ≤ |Z| ≤
√

2 lr(1/δ)) ≥ 1− 2

(
1√
2π

∫ ∞
√

2 lr(1/δ)

e−x
2/2 dx+

1√
2π

∫ α(δ)

0

e−x
2/2 dx

)

≥ 1− 2

(
1

2
exp

(
−2 lr(1/δ)

2

)
+
α(δ)√

2π

)
= 1− 2

(
δ

2 log(1/δ)
+
α(δ)√

2π

)
≥ 1− 2

(
δ

2
+

2√
2π
δ

)
≥ 1− Cδ

for any δ ∈ (0, 1/e], where we define the absolute constant C := 2(1/2 + 2/
√

2π).

Now we let At denote the event

At =

{
α(δ) ≤

∣∣Z>t vt∣∣
‖vt‖

≤
√

2 lr(1/δ)

}
.

Since Z>t vt/‖vt‖ conditioned on Ft−1 follows the standard normal distribution, we have

PFt−1
(At) ≥ 1− Cδ, (11)

and
EFt−1

[
v>t
(
ZtZ

>
t − I

)
vt1At

]
= 0.

Moreover, for any random vector u ∈ Ft−1 that is orthogonal to vt, we have

EFt−1

[
u>
(
ZtZ

>
t − I

)
vt1At

]
= EFt−1

[
u>Zt

]
· EFt−1

[
Z>t vt1At

]
= 0,

where we used the fact that Z>t u is independent of Z>t vt conditioned on Ft−1. Therefore

EFt−1

[
(ZtZ

>
t − I)vt1At

]
= 0.

Consider defining then the random variable Qt by

Qt := (ZtZ
>
t − I)vt · 1At .

We now show that Qt | Ft−1 is norm-subGaussian. Let u ∈ Rd with ‖u‖ = 1 be arbitrary. We have

u>Qt = u>(ZtZ
>
t − I)vt · 1At

= u>
(
vtv
>
t

‖vt‖2
+ I − vtv

>
t

‖vt‖2

)
(ZtZ

>
t − I)vt · 1At

= u>vt

(
|Z>t vt|2

‖vt‖2
− 1

)
· 1At + u>

(
I − vtv

>
t

‖vt‖2

)
(ZtZ

>
t − I)vt · 1At

= u>vt

(
|Z>t vt|2

‖vt‖2
− 1

)
· 1At + u>⊥ZtZ

>
t vt · 1At ,

4By letting W0(x) denote the the principal branch of the Lambert W function, it can be shown that

α(δ) =

√
−W0

(
− 2δ2 lr(1/δ)

(log(1/δ))2

)
.
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where we denote u⊥ =
(
I − vtv

>
t

‖vt‖2

)
u. Since∣∣∣∣u>vt( |Z>t vt|2‖vt‖2

− 1

)
· 1At

∣∣∣∣ ≤ |u>vt|(2 lr(1/δ)− 1),

we see that u>vt
(
|Z>t vt|

2

‖vt‖2 − 1
)
· 1At conditioned on Ft−1 is |u>vt|(2 lr(1/δ) − 1)-subGaussian. Furthermore, since

|u>⊥ZtZ>t vt · 1At | ≤ |Z>t u⊥|
√

2 lr(1/δ)‖vt‖, we have

PFt−1

(
|u>⊥ZtZ>t vt · 1At | ≥ s

)
≤ PFt−1

(
|Z>t u⊥|

√
2 lr(1/δ)‖vt‖ ≥ s

)
,

and since Ztu⊥/‖u⊥‖ | Ft−1 follows the standard normal distribution, we see that u>⊥ZtZ
>
t vt · 1At is a√

2 lr(1/δ)‖u⊥‖‖vt‖-subGaussian variable. Note that u>Qt is just the sum of u>vt
(
|Z>t vt|

2

‖vt‖2 − 1
)
· 1At and u>⊥ZtZ

>
t vt ·

1At , we can conclude that u>Qt is subGaussian with parameter

(2 lr(1/δ)− 1)|u>vt|+
√

2 lr(1/δ)‖u⊥‖‖vt‖

≤ 2 lr(1/δ)(|u>vt|+ ‖u⊥‖‖vt‖) ≤ 2
√

2 lr(1/δ)
√
|u>vt|2 + ‖u⊥‖2‖vt‖2

= 2
√

2 lr(1/δ)‖vt‖,

whenever δ ∈ (0, 1/e]. Consequently, by Lemma 1 in (Jin et al., 2019b), we see that Qt | Ft−1 is 8 lr(1/δ)
√
d‖vt‖-norm-

subGaussian.

It follows easily that MtQt | Ft−1 is mean-zero and 8 lr(1/δ)‖Mt‖2‖vt‖
√
d-norm-subGaussian. Hence, by Lemma 6 in

(Jin et al., 2019a), we know that there exists an absolute constant c > 0 such that for any θ > 0 and δ > 0, we have that with
probability at least 1− δ, ∥∥∥∥∥

τ−1∑
t=0

MtQt

∥∥∥∥∥ ≤ cθ
τ−1∑
t=0

d(lr(1/δ))2‖Mt‖22‖vt‖
2

+
1

θ
log(2d/δ).

Now, consider denoting the event

A :=

τ−1⋃
t=0

At =
{∣∣Z>t vt∣∣ ∈ (α(δ)‖vt‖,

√
2 lr(1/δ))‖vt‖

)
, ∀t ∈ {0, . . . , τ − 1}

}
By the union bound and Eq. (11), we note that

P(A) ≥ 1− τCδ.

Moreover, note that on the event A,
∑τ−1
t=0 MtQt =

∑τ−1
t=0 Mt(ZtZ

>
t − I)vt. Hence,

P

(∥∥∥∥∥
τ−1∑
t=0

Mt(ZtZ
>
t − I)vt

∥∥∥∥∥ ≤ cθ
τ−1∑
t=0

d(lr(1/δ))2‖Mt‖22‖vt‖
2

+
1

θ
log(2d/δ)

)

≥ P

(∥∥∥∥∥
τ−1∑
t=0

MtYt

∥∥∥∥∥ ≤ cθ
τ−1∑
t=0

d(lr(1/δ))2‖Mt‖22‖vt‖
2

+
1

θ
log(2d/δ), and A happens

)

≥ 1−

(
P

(∥∥∥∥∥
τ−1∑
t=0

MtYt

∥∥∥∥∥ ≥ cθ
τ−1∑
t=0

d(lr(1/δ))2‖Mt‖22‖vt‖
2

+
1

θ
log(2d/δ)

)
+ P(Ac)

)
≥ 1− (δ + τCδ).

Now, by rescaling δ to δ/(Cτ + 1), we get the desired result. Note this C is different from the C in the statement of the
lemma by an absolute multiplicative factor.
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C.4. sub-Weibull random variables

In our work, we occasionally require bounding sums of heavy-tailed distribution, e.g. higher powers of ‖Z‖ where
Z ∼ N(0, I). To this end, we consider the following definition of sub-Weibull random variables.

Definition 7. We say that a random variable X ∈ R is sub-Weibull(K,α) for some K,α > 0,

P(|X| ≥ s) ≤ 2 exp(−(s/K)1/α) ∀s ≥ 0.

For instance, the standard normal distribution is sub-Weibull(1, 1
2 ). From the way we define the tail parameter α, the larger

the α, the heavier the tail of the distribution.

In our work, we need to show that the sum of sub-Weibull random variables is again sub-Weibull, which is ensured by the
following result

Lemma 9. Suppose X and Y are sub-Weibull(KX , α) and sub-Weibull(KY , α) respectively. Then, XY is sub-
Weibull(C(KX ·KY ), 2α) and X + Y is sub-Weibull(C(KX +KY ), α) for some absolute constant C > 0.

A helpful result is the following, which bounds the sum of identically distributed sub-Weibull random variables.

Lemma 10 (Corollary 3.1 in (Vladimirova et al., 2020)). Suppose X1, . . . , Xn are identically distributed (K ′, α) sub-
Weibull random variables. Then, for some absolute constant c > 0, for all s ≥ ncK ′, we have

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ s
)
≤ exp

(
−
( s

ncK ′

)1/α
)

In our work, we frequently need to bound sums of the k-th power of the norm of a standard d-dimensional Gaussian. We do
so using Lemma 10.

Lemma 11. Suppose Xi
i.i.d∼ N(0, Id) for i ∈ [n]. Then, for any k ∈ Z+, there exists absolute constants c, C > 0 such

that for any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣∣∣
n∑
i=1

‖Xi‖2k
∣∣∣∣∣ ≤ nCckdk(1 + (log(1/δ))k).

In particular, for any δ ∈ (0, 1/e) such that log(1/δ) ≥ 1, it follows that∣∣∣∣∣
n∑
i=1

‖Xi‖2k
∣∣∣∣∣ ≤ 2nCckdk(log(1/δ))k.

Proof. First, observe that for any j ∈ [d], (Xi)
2
j , being subExponential, is (1, 1)-subWeibull. Then, by Lemma 9,

‖Xi‖2 =
∑d
j=1(Xi)

2
j is (cd, 1) for some absolute constant c. Now, it follows from definition of sub-Weibullness in

Definition 7 that ‖Xi‖2k is (ckdk, k)-subWeibull. Hence, applying Lemma 10, we have that there exists absolute constant
C > 0 such that for any s ≥ nCckdk,

P

(∣∣∣∣∣
n∑
i=1

‖Xi‖2k
∣∣∣∣∣ ≥ s

)
≤ exp

(
−
( s

nCckdk

)1/k
)

Choosing s = (1 + (log(1/δ))k)nCckdk, we arrive then at the desired result.

C.5. Supermartingale concentration inequalities

We first state and prove a supermartingale-type concentration inequality of the form we later require.

Lemma 12. Consider a filtration of sigma-algebras F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn and a sequence of random variables
X1, . . . , Xn such that Xi ∈ Fi. Suppose that

PFi−1(Xi ≤ a) = 1 and PFi−1(Xi ≤ −b) ≥ p (12)
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for some a, b > 0 and 0 < p ≤ 1
2 . Then, for any 0 < µ ≤ b such that |−b+ µ| ≥ 1−p

p (a+ µ), we have

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
≤ exp

(
− s2

4n(b− µ)2

)
, ∀s > 0.

Proof. Observe that by Markov’s inequality, for any λ > 0,

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
= P

(
exp

(
λ

n∑
i=1

(Xi + µ)

)
≥ exp(λs)

)
≤

E [exp (λ
∑n
i=1(Xi + µ))]

exp(λs)
.

Now, observe that

E

[
exp

(
λ

n∑
i=1

(Xi + µ)

)]
= E

[
EFn−1

[
exp

(
λ

n∑
i=1

(Xi + µ)

)]]

= E

[
exp

(
λ

n−1∑
i=1

(Xi + µ)

)
EFn−1

[exp(λ(Xn + µ))]

]
. (13)

Let us now compute EFn−1
[exp(λ(Xn + µ))]:

EFn−1 [exp(λ(Xn + µ))]

=

∫
(−∞,−b]

exp(λ(x+ µ))PFn−1(Xn ∈ dx) +

∫
(−b,a]

exp(λ(x+ µ))PFn−1(Xn ∈ dx)

≤ PFn−1
(Xn ≤ −b) exp(λ(−b+ µ)) + PFn−1

(−b < Xn ≤ a) exp(λ(a+ µ))

≤ p exp(λ(−b+ µ)) + (1− p) exp(λ(a+ µ)).

Then observe that by our choice of µ, −b+ µ < 0, and that |−b+ µ| ≥ (a+ µ) 1−p
p . Since we assumed p ≤ 1

2 , this means
that 1−p

p ≥ 1 and so for any k ≥ 1,

|−b+ µ| ≥ (a+ µ)
1− p
p

=⇒ |−b+ µ| ≥ (a+ µ)

(
1− p
p

)1/k

=⇒ p|−b+ µ|k ≥ (1− p)(a+ µ)k.

Consequently, by Taylor expansion,

p exp(λ(−b+ µ)) + (1− p) exp(λ(a+ µ))

= 1 +

∞∑
k=1

λk(p(−b+ µ)k + (1− p)(a+ µ)k)

k!
≤ 1 +

∞∑
k=1

λk(p(−b+ µ)k + p |−b+ µ|k)

k!

= 1 +

∞∑
k=1

λ2k · 2p |−b+ µ|2k

(2k)!
≤ 1 +

∞∑
k=1

λ2k|−b+ µ|2k

(k)!

= exp(λ2(−b+ µ)2),

which leads to
EFn−1

[exp(λ(Xn + µ))] ≤ exp(λ2(−b+ µ)2).

Now, continuing from Eq. (13), we have that

E

[
exp

(
λ

n∑
i=1

(Xi + µ)

)]
≤ E

[
exp

(
λ

n−1∑
i=1

(Xi + µ)

)
EFn−1

1 [exp(λ(Xn + µ))]

]

≤ E

[
exp

(
λ

n−1∑
i=1

(Xi + µ)

)
exp(λ2(b− µ)2)

]
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≤ . . .
≤ exp(nλ2(b− µ)2).

Thus, for any λ > 0 and s ≥ 0,

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
≤

E [exp(λ(
∑n
i=1(Xi + µ)))]

exp(λs)

≤ exp(nλ2(b− µ)2 − λs)

By finding the minimizing λ, we find that

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
≤ exp

(
− s2

4n(b− µ)2

)
,

which completes the proof.

We will later require a weakened form of a supermartingale concentration inequality, as stated and proven below.

Proposition 3 (Weakened supermartingale concentration inequality). Consider a filtration of sigma-algebrasF0 ⊂ F1 · · · ⊂
Fn and a sequence of random variables X1, . . . , Xn such that Xi ∈ Fi. Consider for each i ∈ {1, . . . , n} a bad set Bi
where 1Bi ∈ Fi−1, and suppose

PFi−1
(Xi1Bci

≤ a) = 1 and PFi−1
(Xi1Bci

≤ −b) ≥ p

for some a, b > 0 and 0 ≤ p ≤ 1/2. Then, for any 0 < µ ≤ b such that |−b+ µ| ≥ 1−p
p (a+ µ), we have

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
≤ exp

(
− s2

4n(b− µ)2

)
+

n∑
i=1

P(Xi ∈ Bi), ∀s > 0.

Proof. We define Qi := Xi1Bci
. We can then apply Lemma 12 and get

P

(
n∑
i=1

Qi ≥ −nµ+ s

)
≤ exp

(
− s2

4n(b− µ)2

)
.

Since P (Xi 6= Qi for some i ∈ [n]) ≤
∑
i P(Xi ∈ Bi), it follows that

P

(
n∑
i=1

Xi ≥ −nµ+ s

)
≤ exp

(
− s2

4n(b− µ)2

)
+

n∑
i=1

P(Xi ∈ Bi),

which completes the proof.

D. Function decrease in large gradient regime
In this section, we show that sufficient function decrease can be made across the iterations with large gradients. We first
restate and prove the function decrease lemma (Lemma 1), first introduced in the main text. We then provide a detailed
roadmap of our proof in the subsequent discussion following the proof of Lemma 1.

Lemma 1 (Function decrease for batch zeroth-order optimization). Suppose at each time t, the algorithm performs the
update step (with batch-size parameter 1 ≤ m ≤ d)

xt+1 = xt − η
(
g(m)
u (xt) + Yt

)
,

where

g(m)
u (xt) =

1

m

m∑
i=1

f(xt + uZt,i)− f(xt − uZt,i)
2u

Zt,i,
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where each Zt,i is drawn i.i.d from N(0, I), u > 0 is the smoothing radius, and Yt ∼ N(0, r
2

d I) with r > 0 denoting the
perturbation radius.

Then, there exist absolute constants c1 > 0, C1 ≥ 1 such that, for any T ∈ Z+ and T ≥ τ > 0, α > 0 and δ ∈ (0, 1/e],
upon definingH0,τ (δ) to be the event on which the inequality

f(xτ )− f(x0) (3)

≤ − 3η

4

τ−1∑
t=0

1

m

m∑
i=1

∣∣∣Z>t,i∇f(xt)
∣∣∣2 (4)

+

(
η

α
+
c1Lη

2χ3d

m

) τ−1∑
t=0

‖∇f(xt)‖2

+ τηu4ρ2 · c1d3
(

log
T

δ

)3

+ τLη2u4ρ2 · c1d4
(

log
T

δ

)4

+ ηc1r
2(α+ ηL) log

T

δ
+ τc1Lη

2r2 (5)

is satisfied (where χ := log(C1dmT/δ)), we have

P(H0,τ (δ)) ≥ 1− (τ + 4)δ

T
, P(∩τ

′
τ=1H0,τ (δ)) ≥ 1− 5τ ′δ

T

for any 0 ≤ τ ′ ≤ T .

Proof. First, for each t ∈ {−1, . . . , τ}, we define Ft to be the sigma-algebra generated by

x0, ({Z0,i}mi=1, . . . , {Zt,i}mi=1), (Y0, . . . , Yt).

Note that F−1 is the sigma-algebra generated only by x0.

By Taylor expansion, for any x, y ∈ Rd, there exists α ∈ [0, 1] such that f(x+y) = f(x)+〈∇f(x), y〉+ 1
2y
>∇2f(x+αy) y.

Therefore
f(xt + uZt,i)− f(xt − uZt,i)

2u
= 〈∇f(x), Zt,i〉+

u

2
Z>t,iH̃t,iZt,i

with

H̃t,i =
∇2f(x+ αi,+uZt,i)−∇2f(x− αi,−uZt,i)

2

for some αi,± ∈ [0, 1], and

xt+1 = xt − η

(
1

m

m∑
i=1

(
Zt,iZ

>
t,i∇f(xt) +

u

2
Zt,iZ

>
t,iH̃t,iZt,i

)
+ Yt

)
(14)

By the ρ-Hessian Lipschitz property of f , it follows that
∥∥∥H̃t,i

∥∥∥ ≤ ρu‖Zt,i‖
Observe that

f(xt+1)
(i)
≤ f(xt) + 〈xt+1 − xt,∇f(xt)〉+

L

2
‖xt+1 − xt‖2

(ii)
= f(xt)− η

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 − η 1

m

m∑
i=1

u

2
Z>t,i∇f(xt) · Z>t,iH̃t,iZt,i − η〈∇f(xt), Yt〉

+
Lη2

2

∥∥∥∥∥ 1

m

m∑
i=1

(
Zt,iZ

>
t,i∇f(xt) +

u

2
Zt,iZ

>
t,iH̃t,iZt,i

)
+ Yt

∥∥∥∥∥
2

(iii)
≤ f(xt)−

η

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

η

m

m∑
i=1

(∣∣Z>t,i∇f(xt)
∣∣2

4
+
u2
∣∣Z>t,iH̃t,iZt,i

∣∣2
4

)
− η〈∇f(xt), Yt〉
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+
Lη2

2

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥
2

+ u2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥
2

+ 4‖Yt‖2


(iv)
≤ f(xt)−

3η

4m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

ηu2

m

m∑
i=1

u2ρ2‖Zt,i‖6

4
− η〈∇f(xt), Yt〉

+
Lη2

2

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥
2

+
u2

m

m∑
i=1

u2ρ2‖Zt,i‖8 + 4‖Yt‖2


≤ f(xt)−
3η

4m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

ηu4ρ2

4m

m∑
i=1

‖Zt,i‖6 +
Lη2u4ρ2

2m

m∑
i=1

‖Zt,i‖8 − η〈∇f(xt), Yt〉

+
Lη2

2

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥
2

+ 4‖Yt‖2
 (15)

Above, to derive (i), we used the L-smoothness of f . To derive (ii), we used the expression for (xt+1 − xt) shown in
Eq. (14). To derive (iii), we used the fact that ab ≤ (a2 + b2)/2 for any a, b ∈ R≥0, as well as two applications of the fact

that ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any two vectors a, b ∈ Rd. To derive (iv), we used the fact that
∥∥∥H̃t,i

∥∥∥ ≤ ρu‖Zt,i‖.
To continue from Eq. (15), we first observe that we can rewrite

Zt,iZ
>
t,i∇f(xt) = (Zt,iZ

>
t,i − I)∇f(xt) +∇f(xt),

so that ∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt)

∥∥∥∥∥
2

+ 2‖∇f(xt)‖2.

Observe that we can apply the bound in Proposition 2 to
∥∥∑m

i=1(Zt,iZ
>
t,i − I)∇f(xt)

∥∥, and since Zt,i is independent of
Ft−1 for all i, we know there exist absolute constants c1 > 0, C1 ≥ 1 such that for any δ ∈ (0, 1/e] and θ > 0, with
probability at least 1− δ conditioned on Ft−1,∥∥∥∥∥

m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt)

∥∥∥∥∥ ≤ c1θ

m∑
i=1

d(lr(C1m/δ))
2‖∇f(xt)‖2 +

1

θ
log(C1dm/δ)

= c1θmd(lr(C1m/δ))
2‖∇f(xt)‖2 +

1

θ
log(C1dm/δ). (16)

Moreover, since C1 ≥ 1, log(C1dm/δ) and lr(C1m/δ) both are at least 1 as long as δ ∈ (0, 1/e]. Observe that conditioned
on Ft−1,∇f(xt) is fixed. Hence, we can pick

θ =
1√

c1md lr(C1dm/δ)‖∇f(xt)‖

which is Ft−1-measurable, and plug it into Eq. (16) to find that the probability conditioned on Ft−1 of the following event∥∥∥∥∥
m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt)

∥∥∥∥∥ ≤ 2
√
c1(lr(C1dm/δ))

3/2
√
md‖∇f(xt)‖ (17)

is at least 1− δ. By taking the total expectation, it follows that the event has a total probability at least 1− δ. Thus, with
probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt)

∥∥∥∥∥
2

+ 2‖∇f(xt)‖2
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≤ 4c1(lr(C1dm/δ))
3 d

m
‖∇f(xt)‖2 + 2‖∇f(xt)‖2

≤ c2(lr(C1dm/δ))
3 d

m
‖∇f(xt)‖2, (18)

where the last inequality comes from the fact that lr(C1dm/δ) ≥ 1, our assumption at the outset of the appendix that d ≥ m,
and denoting c2 := 4c1 + 2.

Denote the event H̃0,τ (δ) as the event that

f(xτ )− f(x0) ≤ −
τ−1∑
t=0

3η

4m

m∑
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∣∣Z>t,i∇f(xt)
∣∣2 + Lη2 c2d(lr(C1dm/δ))

3

m
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‖∇f(xt)‖2

+
ηu4ρ2

4m
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‖Zt,i‖6 +
Lη2u4ρ2

2m

τ−1∑
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‖Zt,i‖8

− η
τ−1∑
t=0

〈∇f(xt), Yt〉+ 2Lη2
τ−1∑
t=0

‖Yt‖2 (19)

holds.

Now, continuing from Eq. (15), and using the bound in Eq. (18), summing over the iterations from t = 0 to τ − 1, we find
using the union bound that P(∩τ ′τ=1H̃0,τ (δ)) ≥ 1− τ ′δ, P(H̃0,τ (δ)) ≥ 1− τδ.

Now, by Lemma 6, for any δ ∈ (0, 1), α > 0, with probability at least 1− δ, there exists an absolute constant c3 > 0 such
that

−η
τ−1∑
t=0

〈∇f(xt), Yt〉 ≤ η

(
1

α

τ−1∑
t=0

‖∇f(xt)‖2 + c3αr
2 log(1/δ)

)
. (20)

Meanwhile, since Yt ∼ N(0, (r2/d)I), ‖Yt‖2 is sub-exponential with sub-exponential norm cr2 for some absolute constant
c > 0, and by Bernstein’s inequality (Lemma 8), there exists some absolute constant c4 > 0 such that

τ−1∑
t=0

‖Yt‖2 ≤ c4r
2(τ + log(1/δ)) (21)

with probability at least 1− δ.

To bound
∑τ−1
t=0

1
m

∑m
i=1‖Zt,i‖

6 and
∑τ−1
t=0

1
m

∑m
i=1‖Zt,i‖

8, both sums of heavy tailed Gaussian moments, we use
Lemma 11, which states that for any k ∈ Z+ and δ ∈ (0, 1), with probability at least 1− δ,
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‖Zt,i‖2k ≤ c5τ(c6)kdk(1 + (log(1/δ))k) (22)

for some absolute constants c5, c6 > 0. As in the statement of the proof, using χ := lr(C1dm/δ) to ease the notation, denote
the event that

f(xτ )− f(x0) ≤ − 3η

4
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holds asH0,τ (δ).
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Plugging Eq. (20), Eq. (21), and Eq. (22) into Eq. (19), by union bound, we see that

P(∩τ
′

τ=1H0,τ (δ)) ≥ 1− (τ ′ + 4τ ′)δ = 1− 5τ ′δ, P(H0,τ ) ≥ 1− (τ + 4)δ.

The final result then follows by rescaling δ to δ
T and denoting c1 := max{c2, c3, 2c4, c5c36/2, c5c46}.

Outline of proof approach. Similar to the first-order setting, our goal is to show that we can arrive at a contradiction
f(xT ) < minx f(x) when there is a large number of steps at which ‖∇f(xt)‖ ≥ ε. Roughly speaking, as Eq. (5) shows,
we need to prove a lower bound of the form

T−1∑
t=0

1

m

m∑
i=1

∥∥Z>t,i∇f(xt)
∥∥2 ≥ Ω

(
1

α
+
c1Lηχ

3d

m

) T−1∑
t=0

‖∇f(xt)‖2 (23)

for some α which is not too large (an example would be picking α such that it only scales logarithmically in the problem
parameters). However, it is tricky to prove such a lower-bound in the zeroth-order setting. In particular, for small batch-sizes
m, 1

m

∑m
i=1

∥∥Z>t,i∇f(xt)
∥∥2

could be small even as ‖∇f(xt)‖2 is large; this is because for each i ∈ [m], Zt,i could have a
negligible component in the∇f(xt) direction. This necessitates a more careful analysis to prove a bound similar to Eq. (23).
We do so using the following approach.

1. Intuitively, whilst for each individual iteration t, 1
m

∑m
i=1

∥∥Z>t,i∇f(xt)
∥∥2

could be small even as ‖∇f(xt)‖2 is large,
in a small number of (consecutive) iterations {t0, . . . , t0 + tf}, with high probability, there will be at least one iteration
t within {t0, . . . , t0 + tf − 1}, such that 1

m

∑m
i=1

∥∥Z>t,i∇f(xt)
∥∥2

= Ω(‖∇f(xt)‖2). We formalize this intuition in
Lemma 14. Thus, we consider breaking the time-steps into chunks where each chunk has tf consecutive iterations.

2. Consider any such interval {t0, . . . , t0 + tf − 1}. There are two cases to consider.

(a) The first case is when the gradient throughout all tf iterations is large enough to dominate the perturbation terms.
Intuitively, in this case, it is not hard to see that given appropriate parameter choices, the gradient will change little
throughout the tf iterations. In fact, as we formalize in Lemma 16, for an appropriate choice of tf and η, we can
show that

1

2
‖∇f(xt0)‖ ≤ ‖∇f(xt)‖ ≤ 2‖∇f(xt0)‖ ∀t ∈ {t0, . . . , t0 + tf − 1}.

As a result, combined with point 1, we see that
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m

m∑
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∥∥Z>t,i∇f(xt)
∥∥2 ≥ Ω(‖∇f(xt0)‖2).

Thus, by choosing α and η judiciously, for such intervals, it is possible to show that
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)
Ω
(
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)
Thus, in these intervals, it is possible to obtain function improvement on the order of ηΩ(‖∇f(xt0)‖2).

(b) The remaining case is when the gradient is small and dominated by the perturbation terms in any one of the tf
iterations. In this case, as we show in Lemma 17, for each of the tf iterations, the gradient will be small and on the
same scale as the perturbation terms. In turn, by choosing r, u and η appropriately, we can make the perturbation
terms small. Thus, whilst these intervals may not contribute to function decrease, they also contribute little in the
way of function increase.
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3. When there are at least T/4 iterations with large gradient (i.e. ‖∇f(xt)‖ ≥ ε), assuming tf divides T , it follows that
there are at least T/(4tf ) intervals of length tf where one iteration in the interval contains a large gradient. By choosing
u, r and η appropriately such they are dominated by ε, it is possible to show that with high probability, such an interval
cannot belong to the second case above, and must instead be from the first case. Since ‖∇f(xt)‖ ≈ ‖∇f(xt0)‖ for
each t ∈ {t0, . . . , t0 + tf − 1} in this case, and we know that one of the iterations has a gradient with size at least ε, it
follows that we make function decrease progress of at least ηΩ(ε2) for such intervals. By appropriately choosing η, u
and r to limit the effects of the intervals of the second form, we can then show a contradiction of the form f(xT ) < f∗.
We demonstrate this formally in Proposition 4.

We formalize our approach in the following series of results. First, for analytical convenience, we prove the following result
showing that for any t, the perturbation terms ‖Yt‖ and 1

m

∑m
i=1‖Zt,i‖

4 are bounded with high probability.

Lemma 13. There exists an absolute constant c3 > 0 such that, for any t ∈ N, the event

Gt(δ) :=

{
‖Yt‖2 ≤ c23r2

(
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log(T/δ)

d

)
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1

m

m∑
i=1

‖Zt,i‖4 ≤ 2c3d
2

(
log

T
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)2
}

has probability at least 1− 2δ/T for any δ ∈ (0, 1/e].

Proof. Noting that Yt ∼ N(0, (r2/d)I), by applying Bernstein’s inequality (Lemma 8), it can be shown that with probability
at least δ/T ,

‖Yt‖2 ≤ c23r2

(
1 +

log(T/δ)

d

)
,

where c3 > 0 is some absolute constant. Then by using Lemma 11, applying the union bound, and redefining the constant
c3, we complete the proof.

Next, in Lemma 14, we show that in a small number of iterations, with high probability, there exists some iteration t such
that 1

m

∑m
i=1

∣∣Z>t,i∇f(xt)
∣∣2 ≥ 1

2‖∇f(xt)‖2.

Lemma 14. There exists an absolute constant c2 ≥ 1 such that, upon defining

tf (δ) =

⌈
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m

log
T

δ

⌉
, δ > 0,

and defining the event
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{
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m
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2
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}
,

we have
P (Bt0(δ; k)) ≥ 1− δ

T
.

for any δ ∈ (0, 1), t0 ∈ N and k ≥ tf (δ).
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Et =
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m
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}
.
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{
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}m
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)
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≤ exp (−c′m) ,

where c′ is some positive absolute constant. Then, for any t0, k ∈ N,

P
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2
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)
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]
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[
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[
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]
≤ · · · ≤ exp(−c′mk).

Therefore, by letting c2 = max{1, 1/c′} and
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⌈
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T

δ

⌉
,
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P

(
1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 < 1

2
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)
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T
,

which completes the proof.

The term tf (δ) will frequently appear in the proofs to come; in the sequel we denote

tf (δ) :=

⌈
c2
m

log
T

δ

⌉
, δ ∈ (0, 1/e], (24)

where c2 ≥ 1 is the absolute constant defined in Lemma 14.

We next show that with high probability, the norm difference term ‖∇f(xt+1)−∇f(xt)‖ can be bounded in terms of
‖∇f(xt)‖ and the perturbation terms

∥∥∥ u
2m

∑m
i=1 Zt,iZ

>
t,iH̃t,iZt,i

∥∥∥ as well as ‖Yt‖.

Lemma 15. Define

At(δ) :=

{
‖∇f(xt+1)−∇f(xt)‖ ≤

‖∇f(xt)‖
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+ ηL

(∥∥∥∥∥ u
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Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)}
(25)

where tf (δ) is defined in Eq. (24), and let C1 ≥ 1 be the corresponding absolute constants defined in Lemma 1. Then there
exists an absolute constant c4 > 0 such that, whenever η satisfies

ηL
c4(lr(C1dmT/δ))

3/2
√
d√

m
≤ 1

8tf (δ)
, (26)

we have
P(At(δ)) ≥ 1− δ

T

for any δ ∈ (0, 1/e] and t ∈ Z+.

Proof. Since∇f is L-Lipschitz, following the zeroth-order update step, we see that

‖∇f(xt+1)−∇f(xt)‖ ≤ L‖xt+1 − xt‖ (27)

= ηL

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt) +

u

2m
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i=1

Zt,iZ
>
t,iH̃t,iZt,i + Yt

∥∥∥∥∥. (28)
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Now, it follows from Eq. (18) (with a slight modification in the absolute constant terms since here the norm is not squared)
that there exists some absolute constant c4 > 0 such that for any δ ∈ (0, 1/e], we have that with probability at least 1− δ/T ,
the event ∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,i∇f(xt)

∥∥∥∥∥ ≤ c4(lr(C1dmT/δ))
3/2

√
d

m
‖∇f(xt)‖,

Hence, continuing from Eq. (28), it follows that with probability at least 1− δ/T ,

‖∇f(xt+1)−∇f(xt)‖

≤ ηL

(
c4(lr(C1dmT/δ))

3/2

√
d

m
‖∇f(xt)‖+

∥∥∥∥∥ u

2m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
,

and by plugging in the condition Eq. (26), we see that the event

At(δ) =

{
‖∇f(xt+1)−∇f(xt)‖ ≤

‖∇f(xt)‖
8tf (δ)

+ ηL

(∥∥∥∥∥ u

2m
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Zt,iZ
>
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∥∥∥∥∥+ ‖Yt‖

)}
has probability at least 1− δ/T .

We show now that if the norm of the gradient dominates the norm of the perturbation terms, and we choose the step-size η
sufficiently small, then in a small number of iterations, the norm of the gradient does not change very much. For notational
simplicity, we denote the event

E(t1, t2, δ) :=

t1+t2−1⋂
t=t1

{
‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)}
.

Lemma 16. Let δ ∈ (0, 1/e] and T ∈ Z+ be such that T > 2tf (δ) + 1. Consider any positive integer t′f ≤ 2tf (δ), and
any t0 ∈ {0, . . . , T − 1− t′f}. Suppose η satisfies the condition Eq. (26). Then, on the event

E(t0, t
′
f , δ) ∩

t0+t′f−1⋂
t=t0

At(δ)

 ,

we have
1

2
‖∇f(x0)‖ ≤ ‖∇f(xt)‖ ≤ 2‖∇f(x0)‖

for all t ∈ {t0, . . . , t0 + t′f − 1}.

Proof. By plugging

‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)

into the definition of At(δ), we see that, on the event E(t0, t
′
f , δ) ∩

(⋂t0+t′f−1

t=t0 At(δ)
)

, we have

‖∇f(xt+1)−∇f(xt)‖ ≤
‖∇f(xt)‖

4tf (δ)
,

and consequently, (
1− 1

4tf (δ)

)
‖∇f(xt)‖ ≤ ‖∇f(xt+1)‖ ≤

(
1 +

1

4tf (δ)

)
‖∇f(xt)‖,

which leads to (
1− 1

4tf (δ)

)t−t0
‖∇f(x0)‖ ≤ ‖∇f(xt)‖ ≤

(
1 +

1

4tf (δ)

)t−t0
‖∇f(x0)‖

for all t ∈ {t0, . . . , t0 + t′f}. Then, since (1 + 1/(4x))2x ≤ 2 and (1 − 1/(4x))2x ≥ 1/2 for any x ≥ 1, noting that
t′f ≤ 2tf (δ), we get the desired result.
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Conversely, in the following result, we show that in a small number of consecutive iterations, if the gradient is smaller than
the perturbation terms in any one of the iterations, then for each of the iterations in this range, the gradient will be small and
be on the same scale as the size of the perturbation terms.

Lemma 17. Let δ ∈ (0, 1/e] and T ∈ Z+ be such that T > 2tf (δ) + 1. Consider any positive integer t′f ≤ 2tf (δ), and
any t0 ∈ {0, . . . , T − 1− t′f}. Suppose η satisfies the condition Eq. (26). Then, on the event

Ec(t0, t′f , δ) ∩

t0+t′f−1⋂
t=t0

At(δ)

 ∩
t0+t′f−1⋂

t=t0

Gt(δ)

 ,

we have

‖∇f(xt)‖ ≤ c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
∀t ∈ {t0, t0 + 1, . . . , t0 + t′f − 1},

where c5 is some absolute constant.

Proof. Let t′ be the first iteration in {t0, t0 + 1, . . . , t0 + t′f − 1} such that

‖∇f(xt′)‖ ≤ 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt′,iZ
>
t′,iH̃t′,iZt′,i

∥∥∥∥∥+ ‖Yt′‖

)
. (29)

Since we are working on an event which is a subset of Ec(t0, t′f , δ), t′ is well-defined. By ‖H̃t′,i‖ ≤ ρu‖Zt′,i‖, we see that

‖∇f(xt′)‖ ≤ 8tf (δ)ηL

(
u2ρ

2m

m∑
i=1

‖Zt′,i‖4 + ‖Yt′‖

)

≤ 8tf (δ)ηL

(
c3u

2d2ρ

(
log

T

δ

)2

+ c3

√
1 +

log(T/δ)

d
r

)
,

where we used the definition of Gt(δ).

Recall that t′ is the first time step such that Eq. (29) holds. By deriving similarly as in the proof of Lemma 16, we can show
that for any j ∈ {t0, t0 + 1, . . . , t′ − 1},

‖∇f(xj)‖ ≤ 2‖∇f(xt′)‖ ≤ 16tf (δ)ηLc3

(
u2d2ρ
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T
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√
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d
r

)
.

Meanwhile, for iterations t ∈ [t′, t0 + t′f ), by using the definitions of At(δ) and Gt(δ), we have
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√
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d
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)

=
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1
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t−t′∑
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(
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1
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(
u2d2ρ

(
log
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+

√
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d
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)

≤
(
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1

8tf (δ)
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‖∇f(xt′)‖
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((
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)
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+
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)
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≤ e1/4 · 8tf (δ)ηLc3

(
u2d2ρ

(
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T

δ

)2

+

√
1 +

log(T/δ)

d
r

)

+ 8tf (δ)(e1/4 − 1) · ηLc3

(
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(
log
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+

√
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≤ 16tf (δ)ηLc3

(
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(
log
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+

√
1 +
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d
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)
,

where we used t′f ≤ 2tf (δ) and the fact that (1− 1/(8x))2x ≤ e1/4 for all x > 0. By defining c5 := 16c3, we complete the
proof.

We next derive a useful result showing that the function change f(xτ )− f(x0) can be decomposed into one component
arising from intervals when the gradient dominates noise (which improves function value) and another component arising
from intervals with small gradient which may add to function value but whose contributions are bounded in terms of η, u
and r. For now, we focus on the case τ ≥ tf (δ), since it will be useful to us in proving that there cannot be more than T/4
iterations with large gradient.

Lemma 18 (Function change for large τ ). Let c1 > 0, c4 > 0, c5 > 0, C1 ≥ 1 be the absolute constants defined in the
statements of the previous lemmas. Let δ ∈ (0, 1/e], and let τ ≥ tf (δ)) be arbitrary. Consider splitting {0, 1 . . . , τ − 1}
into K := bτ/tf (δ)c intervals:

Jk = {ktf (δ), . . . , (k + 1)tf (δ)− 1}, 0 ≤ k < K − 1,

JK−1 = {(K − 1)tf (δ), . . . , τ − 1}.

Let I1 denote the set of indices k such that for every time-step t in the interval Jk, the gradient dominates the noise terms as

‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
. (30)

Suppose we choose η such that

η ≤ 1

Ltf (δ)
·min

{ √
m

8c4(lr(C1dmT/δ))3/2
√
d
,

m

128c1(lr(C1dmT/δ))3d

}
. (31)

Then, on the event

Eτ (δ) := Hτ (δ) ∩

(
τ−1⋂
t=0

At(δ)

)
∩

(
τ−1⋂
t=0

Gt(δ)

)
∩

(
K−2⋂
k=0

Bktf (δ)(δ; tf (δ))

)
∩ B(K−1)tf (δ)(δ; τ−(K−1)tf (δ)),

we have the following upper bound on function value change:

f(xτ )− f(x0) ≤ −
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2 + τ

c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2

+ τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ τc1Lη

2r2. (32)

Moreover, P(Eτ (δ)) ≥ 1− (5τ+4)δ
T .

Proof. Without loss of generality, we may assume that τ is a multiple of tf (δ).5 Then, any interval Jk = {t0, . . . , t0 +
tf (δ)− 1} belongs to one of the following two cases:

5To accommodate the last interval which has length at most 2tf (δ) − 1, we note that the results we require for the proof, namely
Lemma 14, Lemma 16 and Lemma 17, all hold for any interval length t′f ≤ 2tf (δ).
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Case 1) (Gradient dominates noise): Recall that this means that for every t ∈ Jk, we have

‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
.

By our choice of η in Eq. (31), we can apply Lemma 16 to get

min
t∈Jk
‖∇f(xt)‖ ≥

1

4
max
t∈Jk
‖∇f(xt)‖.

We now consider the two cases when J has fewer than tf (δ) iterations and when J = Jk f

Note also that on the event Bktf (δ)(δ; tf (δ)), there exists some t ∈ Jk such that

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 ≥ 1

2
‖∇f(xt)‖2.

This implies then that

1

4

∑
t∈Jk

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 ≥ 1

4
min
t∈Jk
‖∇f(xt)‖2 ≥

1

64
max
t∈Jk
‖∇f(xt)‖2

≥ 1

64tf (δ)

∑
t∈Jk

‖∇f(xt)‖2. (33)

Thus by setting α = 128tf (δ) in Eq. (5) and by choosing η such that

c1Lη
2χ3d

m
≤ η

α
=

η

128tf (δ)
⇐⇒ η ≤ m

128c1Ltf (δ)dχ3
,

it follows that

− 3η

4

∑
t∈Jk

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈Jk

‖∇f(xt)‖2

= − 3η

4

∑
t∈Jk

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

η

64tf (δ)

∑
t∈Jk

‖∇f(xt)‖2

≤ − η

2

∑
t∈Jk

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2

≤ − η

2
min
t∈Jk
‖∇f(xt)‖2 (34)

Case 2) (Gradient does not dominate noise): there exists some t ∈ Jk such that

‖∇f(xt)‖ ≤ 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
.

By our choice of η in Eq. (31), we can apply Lemma 17 to get

‖∇f(xt)‖ ≤ c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
∀t ∈ Jk.

Hence, by setting α = 128tf (δ) in Eq. (5) and choosing η such that

c1Lη
2χ3d

m
≤ η

α
=

η

128tf (δ)
,
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it follows that (
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈Jk

‖∇f(xt)‖2

≤ η

64tf (δ)

∑
t∈Jk

(
c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ
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+

√
1 +

log(T/δ)
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))2

≤ c25
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tf (δ)2η3L2

(
u2d2ρ

(
log
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δ

)2

+

√
1 +

log(T/δ)

d
r

)2

(35)

Without loss of generality, we may assume that τ is a multiple of tf (δ).6 Then, any interval Jk = {t0, . . . , t0 + tf (δ)− 1}
belongs to one of the following two cases:

Having studied the two cases, we may now proceed to use them to complete the proof. Let Ic1 denote the complement of I1
in {0, 1, . . . ,K − 1}. Then,

− 3η

4

τ−1∑
t=0

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

α
+
c1Lη

2χ3d

m

) τ−1∑
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‖∇f(xt)‖2

=
∑
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−3η

4

∑
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1

m
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∣∣2 +

(
η
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+
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2χ3d

m

)∑
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‖∇f(xt)‖2
)

+
∑
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(
−3η

4
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m

m∑
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∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈Jk

‖∇f(xt)‖2
)

≤ −
∑
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η

2
min
t∈Jk
‖∇f(xt)‖2 +

∑
k∈Ic1

tf (δ)

 c25
64
tf (δ)2η3L2

(
u2d2ρ

(
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δ

)2

+

√
1 +

log(T/δ)

d
r

)2


≤ −
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2 + τ

c25
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tf (δ)2η3L2

(
u2d2ρ

(
log
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δ

)2

+

√
1 +

log(T/δ)

d
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)2

. (36)

and so by Eq. (5),

f(xτ )− f(x0) ≤ −
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2 + τ

c25
64
tf (δ)2η3L2

(
u2d2ρ

(
log
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δ

)2

+

√
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log(T/δ)
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+ τηu4ρ2 · c1d3

(
log
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δ
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+ τLη2u4ρ2 · c1d4

(
log
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δ

)4

+ ηc1r
2(α+ ηL) log

T

δ
+ τc1Lη

2r2.

Note that we choose α = 128tf (δ). In addition, observe that by our choice of δ (such that δ ≤ 1
e ), it follows that√

1 + log(T/δ)
d ≤

√
2 log(T/δ).

We can now complete our proof by using the union bound (suppressing the dependence of some of the events on δ for
notational simplicity) to derive

P(Ecτ ) ≤ P(Hcτ ) +

τ−1∑
t=0

P(Act) +

τ−1∑
t=0

P(Gct ) +

K−1∑
k=0

P(Bcktf (δ)(δ; tf (δ)))

≤ (τ + 4)δ

T
+
τ

T
δ + 2

τ

T
δ +

Kδ

T
≤ (5τ + 4)

T
δ.

6To accommodate the last interval which has length at most 2tf (δ) − 1, we note that the results we require for the proof, namely
Lemma 14, Lemma 16 and Lemma 17, all hold for any interval length t′f ≤ 2tf (δ).
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We are now ready to show that if sufficiently many iterations have a large gradient, then with high probability, the function
value of the last iterate f(xT ), will be less than minx f(x), a contradiction. Hence this limits the number of iterations that
can have a large gradient.

Proposition 4. Let c1 > 0, c2 ≥ 1, c4 > 0, c5 > 0, C1 ≥ 1 be the absolute constants defined in the statements of the
previous lemmas, and let δ ∈ (0, 1/e] be arbitrary. Suppose we choose u, r, η and T such that

u ≤
√
ε

d
√
ρ log(T/δ)

·min

{
1

64c25c2
,

1

2048c1c2

}1/4

, r ≤ ε ·min

{
1

8c5
√

2c2
,

1

32
√
c1

}
,

η ≤ 1

Ltf (δ)
min

{
1

log(T/δ)
,

√
m

8c4(lr(C1dmT/δ))3/2
√
d
,

m

128c1(lr(C1dmT/δ))3d

}
,

T ≥ max

{
256tf (δ)

(
(f(x0)− f∗) + ε2/L)

)
ηε2

, 4

}
.

Then, with probability at least 1− 6δ, there are at most T/4 iterations for which ‖∇f(xt)‖ ≥ ε.

Proof. Without loss of generality, we assume that T is a multiple of tf (δ), and we similarly split {0, 1, . . . , T} into
K = bT/tf (δ)c intervals J0, . . . , JK−1. Let I1 denote the set of indices k such that for every t ∈ Jk,

‖∇f(xt)‖ > 8tf (δ)ηL

[(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥
)

+ ‖Yt‖

]
. (37)

We let Ic1 denote the complement of I1 in {0, 1, . . . ,K − 1}. We denote

ET (δ) := HT (δ) ∩

(
T−1⋂
t=0

At(δ)

)
∩

(
T−1⋂
t=0

Gt(δ)

)
∩

(
K−1⋂
k=0

Bktf (δ)(δ; tf (δ))

)
.

In the remaining part of the proof, unless otherwise stated, we shall always assume that we are working on the event ET (δ).

By Lemma 18 with τ = T and our choices of η and δ in the statement of the lemma, we have

f(xT )− f(x0) ≤ −
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2 + T

c25
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tf (δ)2η3L2

(
u2d2ρ

(
log

T

δ
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+
√

2 log(T/δ)r

)2
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(
log
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(
log

T
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)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ Tc1Lη

2r2. (38)

Suppose that there are at least T/4 iterations where ‖∇f(xt)‖ ≥ ε. Let Iε denote the set of indices k for which there exists
some t ∈ Jk with ‖∇f(xt)‖ ≥ ε. Then, by the pigeonhole principle, the set Iε has at least dT/(4tf (δ))e members. Note
that, by our choices of the parameters η, u, r, it can be shown that

c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
< ε, (39)

while by Lemma 17, if k is in Ic1 , we have

‖∇f(xt)‖ ≤ c5tf (δ)ηL

(
u2d2ρ log(T/δ) +

√
1 +

log(T/δ)

d
r

)
, ∀t ∈ Jk.

This implies that Iε ⊆ I1.

Observe that by Lemma 16, for any k ∈ I1, we have

1

2

∥∥∇f(xktf (δ))
∥∥ ≤ ‖∇f(xt)‖ ≤ 2

∥∥∇f(xktf (δ))
∥∥, ∀t ∈ Jk.
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This implies in particular that for any k ∈ Iε, we have mint∈Jk‖∇f(xt)‖2 ≥ 1
16ε

2, and consequently

−
∑
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η

2
min
t∈Jk
‖∇f(xt)‖2 ≤ −
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η

2
· ε

2

16
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2
· ε

2

16
= − Tηε2

128tf (δ)
.

Hence, by Eq. (38),

f(xT )− f(x0) ≤ − Tηε2

128tf (δ)
+ T
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Now, by our choices of u, r and η, we have

T
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+
√
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32
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(
log T
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2048c2 log(T/δ)
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≤ Tηε2

512tf (δ)
,

where we used log(T/δ) ≥ 1 and 2c2 log(T/δ) ≥ tf (δ). We also have

Tηu4ρ2 · c1d3

(
log
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δ
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(
log
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≤ Tη · ε2

2048c2d log(T/δ)
+ Tη · ε2

2048c2tf (δ) log(T/δ)
+ Tη · ε2

1024tf (δ) log(T/δ)

≤ Tηε2

512tf (δ)
,

where we used c2d log(T/δ) ≥ tf (δ), c2 ≥ 1 and log(T/δ) ≥ 1. Finally,

ηc1r
2(128tf (δ) + ηL) log

T

δ
≤ (128tf (δ) + 1)ε2

1024Ltf (δ)
<
ε2

L
.

By plugging these bounds into Eq. (40), we get

f(xT )− f(x0) < − Tηε2

128tf (δ)
+

Tηε2

512tf (δ)
+

Tηε2

512tf (δ)
+
ε2

L
≤ − Tηε2

256tf (δ)
+
ε2

L
.

Therefore, as long as

T ≥
256tf (δ)

(
(f(x0)− f∗) + ε2/L)

)
ηε2

,

we will get f(xT ) < f∗, which is a contradiction. Thus, we can conclude that on the event ET (δ), there are at most T/4
iterations for which ‖∇f(xt)‖ ≥ ε.

We can now complete our proof by using the union bound (suppressing the dependence of some of the events on δ for
notational simplicity) to derive

P(EcT ) ≤ P(HcT ) +

T−1∑
t=0

P(Act) +

T−1∑
t=0

P(Gct ) +

K−1∑
k=0

P(Bcktf (δ)(δ; tf (δ)))

≤ (T + 4)δ

T
+ δ + 2δ +

Kδ

T
≤ 6δ.
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E. Escaping saddle point
In this section, we first show that the travelling distance of the iterates can be bounded in terms of the function value
improvement (Appendix E.2). Utilizing this result, as well as Proposition 2 in Appendix C.3 which provides a concentration
bound on the the zeroth-order noise, we then prove that sufficient function value decrease can be made near a saddle point in
Appendix E.3.

E.1. Key quantities and notation

We will use γ to denote −λmin(∇2f(x0)), where we know that γ ≥ √ρε.

E.2. Improve or Localize

In this subsection, we aim to bound the movement of the iterates across a number of steps in terms of the function value
improvement made during these number of steps.

We first state a simple result separating the norm of the difference between xt0+τ and xt0 into a few different terms.

Lemma 19. Consider the perturbed zeroth-order update Algorithm 1. Then, for any t0 ∈ N and τ ∈ N,

‖xt0+τ − xt0‖
2 ≤ V1(t0, τ) + V2(t0, τ) + V3(t0, τ) + V4(t0, τ), (41)

where

V1(t0, τ) := 8η2τ
∑t0+τ−1
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∥∥∥2

.
(42)

Proof. For notational convenience, let t0 := 0. Then, applying the form of the perturbed zeroth-order update in Algorithm 1,
we get
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.

We now proceed to bound the terms V1(t0, τ), V2(t0, τ), V3(t0, τ) and V4(t0, τ).

First, we have the following result bounding V1(t0, τ).

Lemma 20. Let c1 > 0, c2 ≥ 1, c4 > 0, c5 > 0, C1 ≥ 1 be the absolute constants defined in the statements of the previous
lemmas, and let δ ∈ (0, 1/e] be arbitrary.
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Suppose we choose η such that

η ≤ 1

Ltf (δ)
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{ √
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.

There are two cases to consider.

1. The first is when τ ≥ tf (δ). In this case, split {t0, t0 + 1, . . . , t0 + τ − 1} into K := bτ/tf (δ)c intervals:

Jk = {t0 + ktf (δ), . . . , t0 + (k + 1)tf (δ)− 1}, 0 ≤ k < K − 1,

JK−1 = {t0 + (K − 1)tf (δ), . . . , t0 + τ − 1}.

Then, on the event
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where

Nu,r(τ ; δ) := τ
c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2

+ τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ τc1Lη

2r2

+ c25t
3
f (δ)η3L2

(
u2d2ρ log(T/δ) +

√
2 log(T/δ)r

)2

. (43)

2. The second is when τ < tf (δ). Suppose we choose u and r such that

u ≤
√
ε

d
√
ρ log(T/δ)

·min

{
1

64c25c2
,

1

2048c1c2

}1/4

, r ≤ ε ·min

{
1

8c5
√

2c2
,

1

32
√
c1

}
.

Suppose the event ∩t0+τ−1
t=t0 (At(δ) ∩ Gt(δ) holds. Suppose also that ‖∇f(xt0)‖ ≤ ε. Then,

V1(t0, τ) ≤ 32η2τ2ε2 ≤ 32η2(tf (δ))2ε2

Proof. 1. We first consider the case where τ ≥ tf (δ). Let I1 denote the set of indices k such that for every time-step t in
the interval Jk, the gradient dominates the noise terms as

‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
. (44)

WLOG, we may assume that t0 := 0, and denote V1(τ) := V1(0, τ). WLOG, we also assume that τ is a multiple of
tf (δ). From Lemma 18, on the event that Eτ (δ) holds and by our choice of η, we have

f(xτ )− f(x0) ≤ −
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2 + τ

c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2
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+ τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ τc1Lη

2r2.

By Lemma 16 (and our choice of η), it follows that for any k ∈ I1, on the event ∩t∈JkAt(δ), we have∑
t∈Jk

‖∇f(xt)‖2 ≤ 4tf min
t∈Jk
‖∇f(xt)‖2.

Thus, on the event that Eτ (δ) holds, for our choice of η, we have

η
∑
k∈I1

∑
t∈Jk

‖∇f(xt)‖2 ≤ 4tf (δ)η
∑
k∈I1

min
t∈Jk
‖∇f(xt)‖2

≤ 8tf (δ)
∑
k∈I1

η

2
min
t∈Jk
‖∇f(xt)‖2

≤ 8tf (δ)

(f(x0)− f(xτ )) + τ
c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2


+ 8tf (δ)

(
τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log
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δ

)4
)

+ 8tf (δ)

(
ηc1r

2(128tf (δ) + ηL) log
T

δ
+ τc1Lη

2r2

)
.

Similarly, for any k ∈ Ic1 (where Ic1 denotes the complement of I1 in {0, 1, . . . ,K − 1}, i.e. intervals where the
gradient is smaller than than the perturbation terms in some iteration), on the event (∩t∈JkAt(δ)) ∩ (∩t∈JkGt(δ)), by
Lemma 17 (and our choice of η), we have

‖∇f(xt)‖ ≤ c5tf (δ)ηL
(
u2d2ρ log(T/δ) +

√
2 log(T/δ)r

)
, ∀t ∈ Jk.

On the event that Eτ (δ) holds, this gives us then

η
∑
k∈Ic1

∑
t∈Jk

‖∇f(xt)‖2 ≤ ητ
(
c25t

2
f (δ)η2L2

(
u2d2ρ log(T/δ) +

√
2 log(T/δ)r

)2
)
.

Hence, on the event that Eτ (δ) holds, we have that

η

τ−1∑
t=0

‖∇f(xt)‖2 = η
∑
k∈I1

∑
t∈Jk

‖∇f(xt)‖2 + η
∑
k∈Ic1

∑
t∈Jk

‖∇f(xt)‖2

≤ 8tf (δ)

(f(x0)− f(xτ )) + τ
c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2


+ 8tf (δ)

(
τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4
)

+ 8tf (δ)

(
ηc1r

2(128tf (δ) + ηL) log
T

δ
+ τc1Lη

2r2

)
+ 8tf (δ)ητ

(
c25t

2
f (δ)η2L2

(
u2d2ρ log(T/δ) +

√
2 log(T/δ)r

)2
)
.

This yields the final result for the case τ ≥ tf (δ).
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2. We next consider the case where 1 ≤ τ < tf (δ). Recall the notation that

E(t0, t0 + τ, δ) := ∩t0+τ−1
t=t0

{
‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)}

There are two cases to consider.

(a) On the event E(t0, t0 + τ, δ) ∩
(
∩t0+τ−1
t=t0 At(δ)

)
, we have by Lemma 16 that ‖∇f(xt)‖ ≤ 2‖∇f(x0)‖ for each

t ∈ {0, 1, . . . , τ − 1}. Then,

V1(t0, τ) = 8η2τ

t0+τ−1∑
t=t0

‖∇f(xt)‖2 ≤ 8η2τ2
(

4‖∇f(x0)‖2
)
≤ 32η2τ2ε2,

where the final inequality uses the assumption that ‖∇f(x0)‖ ≤ ε.
(b) Suppose the event Ec(t0, t0 + τ, δ) ∩

(
∩t0+τ−1
t=t0 At(δ)

)
∩
(
∩t0+τ−1
t=t0 Gt(δ)

)
holds. In this case, by Lemma 17, we

have that for each t ∈ {t0, t0 + 1, . . . , t0 + τ − 1}

‖∇f(xt)‖ ≤c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
≤ ε,

where the final inequality follows by our choice of η, u and r (cf. Eq. (39)). Hence,

V1(t0, τ) = 8η2τ

t0+τ−1∑
t=t0

‖∇f(xt)‖2

≤ 8η2τ2

(
c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

))2

≤ 8η2τ2ε2 < 32η2τ2ε2.

The final result for the case τ < tf (δ) then follows.

We proceed to bound V2(t0, τ).

Lemma 21. Let c1 > 0, c2 ≥ 1, c4 > 0, c5 > 0, C1 ≥ 1 be the absolute constants defined in the statements of the previous
lemmas, and let δ ∈ (0, 1/e] be arbitrary and τ > 0 be arbitrary. Suppose we choose η such that

η ≤ 1

Ltf (δ)
·min

{ √
m

8c4(lr(C1dmT/δ))3/2
√
d
,

m

128c1(lr(C1dmT/δ))3d

}
.

Let Ts denote an integer such that Ts ≥ max {τ, tf (δ)}, and for any F > 0, define

B(δ;F ) :=
8tf (δ)(F +Nu,r(Ts, δ))

η

(
Ts +

d

m

)
(lr(CT 2/δ))2, bτ (δ;F ) :=

tf (δ)τF

η
.

Let c′, C > 0 denote the same constants as in the statement of Proposition 2. Denote the event that

either
t0+τ−1∑
t=t0

d

m
(lr(CT 2/δ))2‖∇f(xt)‖2 ≥ B(δ;F )
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√
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)
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(
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holds as Lt0,τ (δ;F )7. We show that P(Lt0,τ (δ;F )) ≥ 1 − δ
T . Finally, denote the event Mt0,Ts(F ) as the event that

f(xt0)− f(xt0+Ts) < F .

Then, on the event Lt0,τ (δ) ∩ Et0,Ts(δ) ∩Mt0,Ts(F ) (where E0,Ts(δ) is as defined in Lemma 20),

V2(t0, τ) ≤ 8c′2β1(δ;F )ηtf (δ) max

{
8d

m
(lr(CT 2/δ))2 (F +Nu,r(Ts, δ)) , τF

}
, (45)

where

β1(δ;F ) := log

(
CT 2

δ

)
+ log

(
log

(
B(δ;F )

b1(δ;F )

)
+ 1

)
.

Proof. We note that P(Lt0,τ (δ;F )) ≥ 1− δ
T . is a direct consequence of Proposition 2. In the rest of the proof, without loss

of generality, we assume that t0 = 0 for notational simplicity. On the event L0,τ (δ;F ) ∩ E0,Ts(δ) ∩Mt0,Ts(F ), suppose
that

τ−1∑
t=0

d

m
(lr(CT 2/δ))2‖∇f(xt)‖2 ≥ B(δ;F ) =

8tf (δ)(F +Nu,r(Ts, δ))

η

(
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m
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(lr(CT 2/δ))2
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t=0

‖∇f(xt)‖2 ≥ 8tf (δ)(F +Nu,r(Ts, δ))
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Ts−1∑
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‖∇f(xt)‖2 ≥ 8tf (δ)(F +Nu,r(Ts, δ))

=⇒ 8η2Ts

Ts−1∑
t=0

‖∇f(xt)‖2 ≥ 64ηTstf (δ)(F +Nu,r(Ts, δ))

=⇒ 8η2Ts

Ts−1∑
t=0

‖∇f(xt)‖2 ≥ 64ηTstf (δ)(f(x0)− f(xTs) +Nu,r(Ts, δ)), since f(x0)− f(xTs) ≤ F

⇐⇒ V1(0, Ts) ≥ 64ηTstf (δ)(f(x0)− f(xTs) +Nu,r(Ts, δ)),

where we note the last equation contradicts Lemma 20. For notational simplicity, denote

βτ (δ;F ) := log

(
CT 2

δ

)
+ log

(
log

(
B(δ;F )

bτ (δ;F )

)
+ 1

)
.

Observe that β1 is larger than βτ for every τ ≥ 1. Since Lt0,τ (δ;F ) holds, we must have then that√
V2(0, τ)

8η2
≤ c′

√√√√max

{
τ−1∑
t=0

d

m
(lr(CT 2/δ))2‖∇f(xt)‖2, bτ (δ;F )

}
β1(δ;F ).

Now, continuing, recalling the definition of V1(0, Ts) = 8η2Ts
∑Ts−1
t=0 ‖∇f(xt)‖2

V2(0, τ) ≤ c′2β1(δ;F ) max

{
8η2
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d

m
(lr(CT 2/δ))2‖∇f(xt)‖2, 8η2bτ (δ;F )
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(lr(CT 2/δ))2‖∇f(xt)‖2, 8η2bτ (δ;F )
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, 8ηtf (δ)τF
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7We note that by construction, B(δ;F ) ≥ bτ (δ;F )
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(i)
≤ c′2β1(δ;F ) max

{
d

m
(lr(CT 2/δ))2 (64ηtf (δ)(f(x0)− f(xTS ) +Nu,r(Ts, δ))) , 8ηtf (δ)τF

}
(ii)
≤ c′2β1(δ;F ) max

{
d

m
(lr(CT 2/δ))2 (64ηtf (δ)(F +Nu,r(Ts, δ))) , 8ηtf (δ)τF

}
= c′2β1(δ;F )(8ηtf (δ)) max

{
d

m
(lr(CT 2/δ))2 (8(F +Nu,r(Ts, δ))) , τF

}
.

We note that (i) is a consequence of Lemma 20, while (ii) comes from our assumption that the eventMt0,Ts(F ) holds, i.e.
f(xt0)− f(xt0+Ts) ≤ F .

We next bound V3(t0, τ) and V4(t0, τ).

Lemma 22. Let c > 0 denote the same constant in Lemma 7. Consider any arbitrary 0 < δ ≤ 1/e, and let τ ≥ tf (δ) be
arbitrary. Let Nt0,τ (δ) denote the event that

V3(t0, τ) := 4η2

∥∥∥∥∥
t0+τ−1∑
t=t0

Yt

∥∥∥∥∥
2

≤ 4c6η
2τ log(2dT/δ)r2,

where c6 > 0 is an absolute constant. Then, by Lemma 7, P(Nt0,τ (δ)) ≥ 1− δ
T . Denote the event

Ot(δ) :=

{
1

m

m∑
i=1

‖Zt,i‖8 ≤ c7d4

(
log

(
T

δ

))4
}
,

where c7 > 0 is an absolute constant. Then, on the event ∩t0+τ−1
t=t0 Ot(δ), we have

V4(t0, τ) ≤ 4c7η
2τ2ρ2u4d4

(
log

(
T

δ

))4

.

Moreover, for each t, P(Ot(δ)) ≥ 1− δ
T .

Proof. The proof for V3(t0, τ) follows directly from Lemma 7, by picking c6 to be the c that appears in the statement of
Lemma 7. Meanwhile, observe that

V4(t0, τ) = 4η2

∥∥∥∥∥
τ−1∑
t=0

1

m

m∑
i=1

uZt,iZ
>
t,iH̃t,iZt,i
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2

≤ 4η2τ
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t=t0

∥∥∥∥∥ 1

m

m∑
i=1

uZt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥
2
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(iii)
≤ 4η2τ

t0+τ−1∑
t=t0

1

m

m∑
i=1

ρ2u4‖Zt,i‖8

≤ 4c7η
2τ2ρ2u4d4

(
log

(
T

δ

))4

.

Above, to derive (iii), we used the bound that
∥∥∥H̃t,i

∥∥∥ ≤ ρu‖Zt,i‖. The final inequality is a consequence of our assumption

that ∩t0+τ−1
t=t0 Ot(δ) holds. Finally, the result that P(Ot(δ)) ≥ 1− δ

T holds due to Lemma 11, where we note that we may
pick the absolute constant c7 to be equal to 2Cc4, where c, C > 0 are the absolute constants that appear in the statement of
Lemma 11.

Finally, combining the earlier results, we have the following technical result, which bounds the travelling distance of the
iterates in terms of the decrease in function value decrease.
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Lemma 23 (Improve or Localize). Consider the perturbed zeroth-order update Algorithm 1. Let c′ > 0, c1 > 0, c2 ≥
1, c4 > 0, c5 > 0, c6 > 0, c7 > 0, C1 ≥ 1 be the absolute constants defined in the statements of the previous lemmas,
and let δ ∈ (0, 1/e] be arbitrary. Consider any Ts ≥ tf (δ). For any F > 0, suppose f(xTs) − f(x0) > −F, i.e.
f(x0)− f(xTs) < F . Suppose that the event

Pt0,Ts(δ, F ) := ∩Tsτ=1 (Lt0,τ (δ;F ) ∩Nt0,τ (δ)) ∩
(
∩t0+Ts−1
t=t0 Ot(δ) ∩ At(δ) ∩ Gt(δ)

)
∩
(
∩Ts−1
τ=tf (δ)Et0,τ (δ)

)
holds, where the events Et0,τ (δ),Lt0,τ (δ),Nt0,τ (δ),Ot(δ) are as defined in Lemma 20, Lemma 21 and Lemma 22, and
Gt(δ) and At(δ) are as defined in Lemma 13 and Lemma 15. Suppose we choose u, r and η such that

u ≤
√
ε

d
√
ρ log(T/δ)

·min

{
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}1/4
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√
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}
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{
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√
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8c4(lr(C1dmT/δ))3/2
√
d
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m

128c1(lr(C1dmT/δ))3d

}
.

Suppose η ≤ min
{

1, 1
tf (δ) ,

1
tf δL

}
. Suppose also we pick u and r small enough such that

u ≤ r1/2

d log(T/δ)ρ1/2
, r2 ≤ min

 F

ηTs log(T/δ)
(

65c25
8 + 132c1 + 1

) , F

4c6 log(2dT/δ) + 4c7ηTs

 .

Then, for each τ ∈ {0, 1, . . . , Ts}, we have that

‖xt0+τ − xt0‖
2 ≤ φTs(δ, F ),

where

φTs(δ, F )≤max
{

128ηTstf (δ)F, 32η2(tf (δ))2ε2
}

+8c′2β1(δ;F )ηtf (δ) max

{
16d

m
(lr(CT 2/δ))2F, TsF

}
+ Tsηtf (δ)F,

where β1(δ;F ) is defined as in Lemma 21. Moreover, P(Pt0,Ts(δ, F )) ≥ 1− 12Tsδ
T .

Proof. We recall that

‖xt0+τ − xt0‖
2 ≤ 8η2τ

t0+τ−1∑
t=t0

‖∇f(xt)‖2︸ ︷︷ ︸
V1(t0,τ)

+ 8η2
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>
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∥∥∥∥∥
2

︸ ︷︷ ︸
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By Lemma 20, Lemma 21, and Lemma 22, which bound V1(t0, τ), V2(t0, τ), and V3(t0, τ), V4(t0, τ) respectively, on the
event Pt0,Ts(δ, F ), we have, for any 0 ≤ τ ≤ Ts,

‖xτ − x0‖2 ≤ V1(0, τ) + V2(0, τ) + V3(0, τ) + V4(0, τ)

≤ max
{
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4
,
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where Nu,r(τ ; δ) is defined as in Lemma 20.

For the simplified bound (which does not contain Nu,r(τ ; δ)), it remains for us to show that our choice of u and r ensures
that Nu,r(Ts, δ) ≤ F and

4c6η
2Ts log(2dT/δ)r2 + 4c7η

2T 2
s ρ

2u4d4 (log(T/δ))
4 ≤ ηTstf (δ)F.

First, our choice of u ensures that
u4d4ρ2(log(T/δ))4 ≤ r2.

Next, recall that
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3
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.

Recalling our choice of η such that

η ≤ min{1, 1

tf (δ)
,

1

tf (δ)L
},

it follows that

Nu,r(Ts; δ) ≤ ηTsr2

(
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)
≤ ηTsr2 log(T/δ)

(
65c25

8
+ 132c1 + 1

)
≤ F,

where the last inequality follows choosing r such that r2 ≤ F

ηTs log(T/δ)

(
65c25

8 +132c1+1

) . Similarly, we have

4c6η
2Ts log(2dT/δ)r2 + 4c7η

2T 2
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(
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≤ ηTstf (δ)
(
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2
)

By choosing r such that

r2 ≤ F

4c6 log(2dT/δ) + 4c7ηTs
,

it follows that

4c6η
2Ts log(2dT/δ)r2 + 4c7η

2T 2
s ρ

2u4d4 (log(T/δ))
4 ≤ ηTstf (δ)F,

as desired.

We next lower bound the probability of

Pt0,Ts(δ, F ) := ∩Tsτ=1 (Lt0,τ (δ;F ) ∩Nt0,τ (δ)) ∩
(
∩t0+Ts−1
t=t0 Ot(δ) ∩ At(δ) ∩ Gt(δ)

)
∩
(
∩Tsτ=tf (δ)Et0,τ (δ)

)
.

Observe that

∩Tsτ=tf (δ) Et0,τ (δ)
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= ∩Tsτ=tf (δ)

(
Ht0,τ (δ)∩

(
t0+τ−1⋂
t=t0

At(δ) ∩ Gt(δ)

)
∩

(
K−2⋂
k=0

Bt0+ktf (δ)(δ; tf (δ))

)
∩Bt0+(K−1)tf (δ)(δ; τ−(K−1)tf (δ))

)

= ∩Tsτ=tf (δ)

(
Ht0,τ (δ)∩

(
K−2⋂
k=0

Bt0+ktf (δ)(δ; tf (δ))

)
∩Bt0+(K−1)tf (δ)(δ; τ−(K−1)tf (δ))

)
∩

(
Ts−1⋂
t=t0

At(δ)∩Gt(δ)

)
.

Note this implies that ∩Tsτ=tf (δ)Et0,τ (δ) ∩
(
∩Ts−1
t=t0 At(δ) ∩ Gt(δ)

)
= ∩Tsτ=tf (δ)Et0,τ (δ) We note that by Lemma 1,

P
((
∩Tsτ=tf (δ)Ht0,τ (δ)

)c)
≤ 5Tsδ

T
.

Meanwhile, we note that

∩Ts−1
t=t0 Bt(δ; tf (δ)) ⊆ ∩Tsτ=tf (δ)

((
K−2⋂
k=0

Bt0+ktf (δ)(δ; tf (δ))

)
∩Bt0+(K−1)tf (δ)(δ; τ−(K−1)tf (δ))

)
.

Hence, by Lemma 14, we have that

P

((
∩Tsτ=tf (δ)

((
K−2⋂
k=0

Bt0+ktf (δ)(δ; tf (δ))

)
∩Bt0+(K−1)tf (δ)(δ; τ−(K−1)tf (δ))

))c)

≤ P
((
∩Ts−1
t=t0 Bt(δ; tf (δ))

)c)
≤ Tsδ

T
.

Meanwhile, by Lemma 13 and Lemma 15, we may bound

P

((
Ts−1⋂
t=t0

At(δ) ∩ Gt(δ)

)c)
≤ Tsδ

T
+

2Tsδ

T
=

3Tsδ

T
.

Hence, it follows that

P
((
∩Tsτ=tf (δ)Et0,τ (δ) ∩

(
∩Ts−1
t=t0 At(δ) ∩ Gt(δ)

))c)
≤ 5Tsδ

T
+
Tsδ

T
+

3Tsδ

T
=

9Tsδ

T
.

Meanwhile, it follows from our results in the preceding lemmas that

P
((
∩Tsτ=1 (Lt0,τ (δ;F ) ∩Nt0,τ (δ)) ∩

(
∩Ts−1
t=t0 Ot(δ)

))c)
≤ 3Tsδ

T
.

Hence, it follows that P(Pt0,Ts(δ, F )) ≥ 1− 12Tsδ
T .

E.3. Proving function value decrease near saddle point

We next build on the technical result earlier to prove that each time we are near the saddle point, there is a constant
probability of making significant function value decrease. We briefly provide a high-level proof outline below. In our
proof, we introduce a coupling argument connecting two closely-related sequences both starting from the saddle, differing
only in the sign of their perturbative term along the minimum eigendirection of the Hessian at the saddle. Specifically,
when function decrease from a saddle is not sufficiently large, due to the earlier technical result, we know that the coupled
sequences will remain within a radius φ of the original saddle for a large number (which we will denote as Ts) of iterations.
We then utilize this fact to show that the difference of the coupled sequence will (with some constant probability) grow
exponentially large, eventually moving out of their specified radius φ within Ts iterations, leading to a contradiction.

Our first result formally introduces the coupling, setting the stage for the rest of our arguments. For notational convenience,
in this section, unless otherwise specified, we will often assume that the initial iterate x0 is an ε-saddle point.
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Lemma 3. Suppose x0 is an ε-approximate saddle point. Without loss of generality, suppose that the minimum eigendirection
of H := ∇2f(x0) is the e1 direction (i.e. the first basis vector in Rd), and let γ to denote−λmin(∇2f(x0)) (note γ ≥ √ρε).
Consider the following coupling mechanism, where we run the zeroth-order gradient dynamics, starting with x0, with
two isotropic noise sequences, Yt and Y ′t respectively, where (Yt)1 = −(Yt)

′
1, and (Yt)j = (Yt)

′
j for all other j 6= 1.

Suppose that the sequence {Zt,i}t∈T,i∈[m] is the same for both sequences. Let {xt} denote the sequence with the {Yt} noise
sequence, and let the {x′t} denote the sequence with the {Y ′t } noise sequence, where x′0 = x0, and

x′t+1

= x′t−η

∑m
i=1

(
Zt,iZ

>
t,i∇f(x′t)+ u

2
Zt,iZ

>
t,iH̃

′
t,iZt,i

)
m

+Y ′t

,
and H̃ ′t,i :=

H′t,i,+−H
′
t,i,−

2 , withH ′t,i,+ = ∇2f(x′t+α
′
t,i,+uZ

′
i) for some α′t,i,+ ∈ [0, 1], andH ′t,i,− = ∇2f(xt−α′t,i,−uZ ′i)

for some α′t,i,− ∈ [0, 1]. Then, for any t ≥ 0,

x̂t+1

:= xt+1 − x′t+1

= − η
t∑

τ=0

(I−ηH)t−τ ξ̂g0(τ)︸ ︷︷ ︸
Wg0 (t+1)

−η
t∑

τ=0

(I−ηH)t−τ (H̄τ−H)x̂τ︸ ︷︷ ︸
WH (t+1)

− η
t∑

τ=0

(I − ηH)t−τ ξ̂u(τ)︸ ︷︷ ︸
Wu(t+1)

− η
t∑

τ=0

(I − ηH)t−τ Ŷτ︸ ︷︷ ︸
Wp(t+1)

where

ξg0(t) =
1

m

m∑
i=1

(Zt,iZ
>
t,i−I)∇f(xt),

ξ′g0(t) =
1

m

m∑
i=1

(Zt,i(Zt,i)
>−I)∇f(x′t),

ξ̂g0(t) = ξg0(t)− ξ′g0(t), ξu(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃t,iZt,i,

ξ′u(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃

′
t,iZt,i, ξ̂u(t) = ξu(t)− ξ′u(t),

Ŷt = Yt − Y ′t , H̄t =

∫ 1

0

∇2f(axt + (1− a)x′t)da.

Proof. Observe that

x̂t+1 := xt+1 − x′t+1

= xt − η (∇f(xt) + ξg0
(t) + ξu(t)Yt)−

[
x′t − η

(
∇f(x′t) + ξ′g0

(t) + ξ′u(t) + Y ′t
)]

= x̂t − η
[
(∇f(xt)−∇f(x′t)) +

(
ξg0

(t)− ξ′g0
(t)
)

+ (ξu(t)− ξ′u(t)) + (Yt − Y ′t )
]

= x̂t − ηHx̂t − η(H̄t −H)x̂t − ηξ̂g0(t)− ηξ̂u(t)− ηŶt

= − η
t∑

τ=0

(I − ηH)t−τ ξ̂g0
(τ)︸ ︷︷ ︸

Wg0 (t+1)

− η
t∑

τ=0

(I − ηH)t−τ (H̄τ −H)x̂τ︸ ︷︷ ︸
WH(t+1)

− η
t∑

τ=0

(I − ηH)t−τ ξ̂u(τ)︸ ︷︷ ︸
Wu(t+1)

− η
t∑

τ=0

(I − ηH)t−τ Ŷτ︸ ︷︷ ︸
Wp(t+1)

where

ξg0
(t) =

1

m

m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt), ξ′g0

(t) =
1

m

m∑
i=1

(Zt,i(Zt,i)
> − I)∇f(x′t), ξ̂g0

(t) = ξg0
(t)− ξ′g0

(t),
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ξu(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃t,iZt,i, ξ′u(t) =

1

m

m∑
i=1

u

2
Zt,iZt,iH̃

′
t,iZt,i, ξ̂u(t) = ξu(t)− ξ′u(t),

Ŷt = Yt − Y ′t , H̄t =

∫ 1

0

∇2f(axt + (1− a)x′t)da.

To derive the final equality, we utilized the fact that x′0 = x0. This completes our proof.

Suppose x0 is an ε-saddle point. Recall that γ > 0 denotes −λmin(∇2f(x0)), where we know that γ ≥ √ρε.

γ ≥ ψ̄ :=

{
min{ψ, 1, L} if f(·) is (ε, ψ,

√
ρε)-strict saddle for any ψ >

√
ρε

√
ρε otherwise.

In the sequel, for any t ≥ 0, it is helpful to define the quantities

β(t)2 :=
(1 + ηγ)2t

(ηγ)2 + 2ηγ
, α(t)2 :=

(1 + ηγ)2t − 1

(ηγ)2 + 2ηγ
. (46)

We next introduce some probabilistic events (and their implications) which, if true, can be used to bound the sizes of
‖Wg0(t+ 1)‖, ‖Wu(t+ 1)‖, ‖Wu(t+ 1)‖ (and as we will see in the next result, indirectly bound ‖WH(t+ 1)‖. These
bounds will be useful in the final proof of making function value progress near a saddle point.

Lemma 24. We assume δ ∈ (0, 1/e] throughout the lemma. Suppose that we pick u, r and η as specified in Lemma 23.
Suppose Ts ≥ tf (δ). Suppose also that

f(xTs)− f(x0) > −F, f(x′Ts)− f(x0) > −F.

Then, we have the following results.

1. Let Sφ(δ) denote the event

Sφ(δ) :=
{

max{‖xt − x0‖2, ‖x′t − x0‖
2} ≤ φTs(δ, F ), ∀0 ≤ t ≤ Ts

}
.

In addition, let Su(δ) denote the event

Su(δ) :=

{
‖Wu(t+ 1)‖ ≤ ηβ(t+ 1)

√
3√
ηψ̄

(
2c3ρd

2(log(T/δ))2
)
u2, ∀0 ≤ t ≤ Ts − 1

}
,

where c3 is the same absolute constant as the c3 in the preceding lemmas. Then,

P(Sφ(δ) ∩ Su(δ)) ≥ 1− 24Tsδ

T
.

2. Consider defining the eventRt(δ), which is the event where

either
t∑

τ=0

(1 + ηγ)2(t−τ)
dL2

m

∥∥xτ − x′τ∥∥2(lr(CT 2/δ))2 ≥ GTs(δ, F ), or

‖Wg0(t+ 1)‖

≤ c′η

√√√√max

{(
lr

(
CT 2

δ

))2 t∑
τ=0

dL2

m
(1 + ηγ)2(t−τ)‖xτ−x′τ‖2, g(t+ 1)

}(
log

(
CdT 2

δ

)
+log

(
log

(
GTs(δ, F )

g(t+ 1)

))
+1

)

normalsize holds. Above, c′, C refer to the same constants as in Proposition 2, and

GTs(δ, F ) := 8

Ts−1∑
τ=0

(1 + ηγ)2τ
dL2

m
(lr(CT 2/δ))2φTs(δ, F ) +

(
β(Ts)ηr

60
√
d

)2

, g(t+ 1) :=

(
β(t+ 1)ηr

60
√
d

)2

.
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Then, P(Rt(δ)) ≥ 1− δ
T

. Suppose the event (
∩Ts−1
t=0 Rt(δ)

)
∩ Sφ(δ)

holds. Then, the event Sg0(δ) holds, where
Sg0(δ) := ∩Ts−1

t=0 Sg0,t(δ),

and Sg0,t(δ) is defined as

Sg0,t(δ) :=

‖Wg0(t+ 1)‖ ≤ ζ1(δ, F )c′η

√√√√max

{(
lr

(
CT 2

δ

))2 t∑
τ=0

dL2

m
(1 + ηγ)2(t−τ)‖xτ − x′τ‖2, g(t+1)

}
where

ζ1(δ, F ) :=

(
log

(
CdT 2

δ

)
+ log

(
log

(
GTs(δ, F )

g(1)

))
+ 1

)
.

3. In addition, let Sp(δ) denote the event

Sp(δ) :=

{
‖Wp(t+ 1)‖ ≤

2
√

2 log(T/δ)β(t+ 1)ηr√
d

∀0 ≤ t ≤ Ts − 1

}
.

Then, P(Sp(δ)) ≥ 1− Tsδ
T

.

Proof. We consider the three claims separately.

1. Note that our assumptions satisfy the conditions required in Lemma 23. Hence, by Lemma 23, on the event P0,Ts(δ, F ),
we have that ‖xτ − x0‖2 ≤ φTs(δ, F ). Simultaneously, on the event P0,Ts(δ, F ), we know that ∩Ts−1

t=0 Gt(δ) holds, i.e.

1

m

m∑
i=1

‖Zt,i‖4 ≤ 2c3d
2 (log(T/δ))

2
, ∀0 ≤ t ≤ Ts − 1. (47)

Thus, for Wu(t+ 1), we have that

‖Wu(t+ 1)‖ =

∥∥∥∥∥η
t∑

τ=0

(I − ηH)t−τ ξ̂u(τ)

∥∥∥∥∥
≤

∥∥∥∥∥η
t∑

τ=0

(I − ηH)t−τξu(τ)

∥∥∥∥∥+

∥∥∥∥∥η
t∑

τ=0

(I − ηH)t−τ ξ̂′u(τ)

∥∥∥∥∥
≤ η

t∑
τ=0

(1 + ηγ)t−τ

(∥∥∥∥∥ 1

m

m∑
i=1

u

2
Zt,iZt,iH̃t,iZt,i

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

u

2
Zt,iZt,iH̃

′
t,iZt,i

∥∥∥∥∥
)

≤ η
t∑

τ=0

(1 + ηγ)t−τ
ρ

m

m∑
i=1

‖Zt,i‖4u2

(iv)
≤ η

t∑
τ=0

(1 + ηγ)t−τρ(2c3)d2(log(T2/δ))2u2

≤ η (1 + ηγ)t+1

ηγ

(
2c3ρCd

2(log(T/δ))2
)
u2

(v)
= ηβ(t+ 1)

√
(ηγ)2 + 2ηγ

ηγ

(
2c3ρd

2(log(T/δ))2
)
u2

≤ ηβ(t+ 1)

√
3

√
ηγ

(
2c3ρd

2(log(T/δ))2
)
u2
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(vi)
≤ ηβ(t+ 1)

√
3√
ηψ̄

(
2c3ρd

2(log(T/δ))2
)
u2

where the inequality in (iv) holds due to Eq. (47), the equality in (v) holds due to the definition of β(t+ 1), and the
inequality in (vi) used the fact that γ ≥ ψ̄.

Hence the event

∩Tst=0

{
‖xt − x0‖2 ≤ φTs(δ, F ) and

}
∩ Su(δ)

holds with probability at least 1− 12Tsδ
T .

Note that by the coupling, the distribution of x′τ is the same as that of xτ . Thus, by the assumption f(x′Ts)− f(x0) >

−F , it follows by a similar argument that the bound ‖x′τ − x0‖2 ≤ φTs(δ, F ) also holds with probability at least
1− 12Tsδ

T . The claim then follows by an application of the union bound.

2. For the second claim, observe first that the claim P(Rt(δ)) ≥ 1− δ
T is a consequence of Proposition 2. Suppose next

that f(xTs)− f(x0) > −F . Then, by definition of the event Sφ(δ), we know that

‖xτ − x0‖2 ≤ φTs(δ, F ), ‖x′τ − x0‖
2 ≤ φTs(δ, F )

where φTs(δ, F ) is as defined in Lemma 23.

Suppose now thatRt(δ) holds true, and suppose for contradiction that

t∑
τ=0

(1 + ηγ)2(t−τ) dL
2

m
‖xτ − x′τ‖

2
(lr(CT 2/δ))2

≥ GTs(δ, F )

= 8

Ts−1∑
τ=0

(1 + ηγ)2τ dL
2

m
(lr(CT 2/δ))2φTs(δ, F ) +

(
β(Ts)ηr

60
√
d

)2

.

This implies that there exists some 0 ≤ τ ≤ t ≤ Ts such that ‖xτ − x′τ‖
2 ≥ 8φTs(δ, F ). However, we also know that

on the event Sφ(δ),

‖xτ − x′τ‖
2 ≤ 2‖xτ − x0‖2 + 2‖x′τ − x0‖

2 ≤ 4φTs(δ, F ).

This leads to a contradiction. We must then have that

‖Wg0
(t+ 1)‖ ≤ ζ1(δ, F )c′η

√√√√max

{(
lr

(
CT 2

δ

))2 t∑
τ=0

dL2

m
(1 + ηγ)2(t−τ)‖xτ − x′τ‖

2
, g(t+1)

}
,

where

ζ1(δ, F ) :=

√
log

(
CdT 2

δ

)
+ log

(
log

(
G(δ, F )

g(1)

)
+ 1

)

3. Observe that

Wp(t+ 1) = η

t∑
τ=0

(I − ηH)t−τ Ŷτ = η

t∑
τ=0

(1 + ηγ)t−τ (2(Yτ )1),

which means that Wp(t+ 1) is a 1-dimensional Gaussian with variance

η2
t∑

τ=0

(1 + ηγ)2(t−τ) 4r2

d
=

4η2r2

d

(1 + ηγ)2(t+1) − 1

2ηγ + (ηγ)2
=

4η2r2α(t+ 1)2

d
. (48)
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Since α(t+1) ≤ β(t+1), using the subGaussianity of a Gaussian distribution, it follows that for any t, with probability
at least 1− δ/T ,

‖Wp(t+ 1)‖ ≤
2
√

2 log(T/δ)β(t+ 1)ηr√
d

.

For any F > 0, we are now ready to show that the algorithm makes a function decrease of F with Ω(1) probability near an
ε-saddle point.

Proposition 5. Suppose that xt0 is an ε-approximate saddle point. Let c′ > 0, c1 > 0, c2 ≥ 1, c4 > 0, c5 > 0, c6 > 0, c7 >
0, C1 ≥ 1 be the absolute constants defined in the statements of the previous lemmas, and let δ ∈ (0, 1/e] be arbitrary.
Consider any F > 0. As in the statement of Lemma 23, suppose we choose u, r and η such that

u ≤
√
ε

d
√
ρ log(T/δ)

·min

{
1

64c25c2
,

1

2048c1c2

}1/4

, r ≤ ε ·min

{
1

8c5
√

2c2
,

1

32
√
c1

}
,

η ≤ 1

Ltf (δ)
min

{
1

log(T/δ)
,

√
m

8c4(lr(C1dmT/δ))3/2
√
d
,

m

128c1(lr(C1dmT/δ))3d

}
.

Suppose we pick

Ts = max

{
d ι
ηψ̄
e, tf (δ), 4

}
, (49)

where

ι = max

{
log

(
2
√
φTs(δ, F )

20
√
d
√
η2γ2 + 2ηγ

ηr

)
, 1

}
,

ψ̄ :=

{
min{ψ, 1, L} if f(·) is (ε, ψ,

√
ρε)-strict saddle for any ψ >

√
ρε

√
ρε otherwise.

Suppose in addition that u, η also satisfy the conditions

u ≤

√
r
√
ηψ̄

120
√

3c3
√
dρd2(log(T/δ))2

, η ≤ max

{
1

c′c9ζ1(δ, F )
,

mψ̄

360ι(c′)2c29dL
2
(
lr
(
CT 2

δ

))2
ζ1(δ, F )2

,
1

2ψ̄

}
,

where ζ1(δ, F ) is as defined in Lemma 23, c′, c3, C > 0 are the same constants as in the previous results, and c9 = 2
√

2+ 1
20 .

Suppose also that φTs(δ, F ) satisfies the bound

φTs(δ, F ) ≤
(

ψ̄

60c9ιρ log(T/δ)

)2

. (50)

Then, with probability at least 1
3 −

13Tsδ
T , f(xt0+Ts)− f(xt0) ≤ −F .

Proof of Proposition 5. Without loss of generality, we assume that t0 = 0. By Lemma 3, we have

x̂t+1

:= xt+1 − x′t+1

= − η
t∑

τ=t0

(I − ηH)t−τ ξ̂g0
(τ)︸ ︷︷ ︸

Wg0
(t+1)

− η
t∑

τ=t0

(I − ηH)t−τ (H̄τ −H)x̂τ︸ ︷︷ ︸
WH(t+1)

− η
t∑

τ=t0

(I − ηH)t−τ ξ̂u(τ)︸ ︷︷ ︸
Wu(t+1)

− η
t∑

τ=t0

(I − ηH)t−τ Ŷτ︸ ︷︷ ︸
Wp(t+1)
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where

ξg0(t) =
1

m

m∑
i=1

(Zt,iZ
>
t,i − I)∇f(xt), ξ′g0

(t) =
1

m

m∑
i=1

(Zt,i(Zt,i)
> − I)∇f(x′t), ξ̂g0(t) = ξg0(t)− ξ′g0

(t),

ξu(t) =
1

m

m∑
i=1

u

2
Zt,iZt,iH̃t,iZt,i, ξ′u(t) =

1

m

m∑
i=1

u

2
Zt,iZt,iH̃

′
t,iZt,i, ξ̂u(t) = ξu(t)− ξ′u(t),

Ŷt = Yt − Y ′t , H̄t =

∫ 1

0

∇2f(axt + (1− a)x′t)da.

Recall that we define for t ≥ 0,

β(t)2 :=
(1 + ηγ)2t

(ηγ)2 + 2ηγ
, α(t)2 :=

(1 + ηγ)2t − 1

(ηγ)2 + 2ηγ
.

Throughout the proof, we suppose for contradiction that

f(xTs)− f(x0) > −F, f(x′Ts)− f(x0) > −F,

and assume the event (
∩Ts−1
t=0 Rt(δ)

)
∩ Sφ(δ) ∩ Su(δ) ∩ Sp(δ)

holds, where the events intersected are defined in Lemma 24. Then, by Lemma 24, the event Sg0
(δ) (also defined in

Lemma 24) holds8.

Consider the following induction argument, where we seek to show that there exists an absolute constant c9 > 0 such that
for every t ∈ {0, 1, . . . , Ts},

‖xt − x′t‖ ≤ c9 log(T/δ)
β(t)ηr√

d
, and max {‖Wg0

(t)‖, ‖WH(t)‖, ‖Wu(t)‖} ≤ β(t+ 1)ηr√
d

(51)

Combined with a lower bound on ‖Wp(t+ 1)‖ (which makes use of the property that Wp(t + 1) is a 1-dimensional
Gaussian), we will then use the inductive claim in Eq. (51) to show that

‖Wp(Ts)‖ ≥ 2
(∥∥Wg0(Ts)

∥∥+ ‖WH(Ts)‖+ ‖Wu(Ts)‖
)
.

Since Wp(t + 1) is a 1-dimensional Gaussian random variable with a standard deviation that grows exponentially with
t, by our choice of Ts, we will see that

∥∥xTs − x′Ts∥∥ is larger than what expect (since our assumptions imply that

max
{
‖xTs − x0‖2,

∥∥x′Ts − x0

∥∥2
}
≤ φTs(δ, F ), i.e. xTs and x′Ts both remain close to x0 and hence close to each other).

This yields a contradiction, implying that on the event we assumed to hold, i.e.(
∩Ts−1
t=0 Rt(δ)

)
∩ Sφ(δ) ∩ Sp(δ)

the assumption

f(xTs)− f(x0) > −F, and f(x′Ts)− f(x0) > −F

is not true, i.e. one of the sequences must have made function value progress of at least F .

We proceed to prove Eq. (51). Observe that the claim holds for the base case t = 0; this is true since x0 = x′0. Now suppose
that this holds for all τ ≤ t. We will seek to show that Eq. (51) holds for t+ 1 as well. We do so by bounding the norms of
Wg0

(t+ 1),WH(t+ 1),Wu(t+ 1) and Wp(t+ 1) respectively.

8We may also directly assume that Sg0(δ) also holds, but our way of reasoning prevents double counting of probabilities.
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1. (Bounding ‖Wg0
(t+ 1)‖) Since the event Sg0

(δ) holds, it follows that for each 0 ≤ t ≤ Ts − 1, we have that

‖Wg0(t+ 1)‖ ≤ ζ1(δ, F )c′η

√√√√max

{(
lr

(
CT 2

δ

))2 t∑
τ=0

dL2

m
(1 + ηγ)2(t−τ)‖xτ − x′τ‖

2
, g(t+1)

}
where

ζ1(δ, F ) :=

(
log

(
CdT 2

δ

)
+ log

(
log

(
GTs(δ, F )

g(1)

))
+ 1

)
,

and the terms GTs(δ, F ) and g(1) are defined as in Lemma 24. Recall by the inductive claim in Eq. (51) that there
exists c9 > 0 such that

‖xτ − x′τ‖ ≤ c9 log(T/δ)
β(t)ηr√

d
∀ 0 ≤ τ ≤ t.

Hence, it follows that

‖Wg0
(t+ 1)‖ ≤ c′ζ1(δ, F )ηmax

{
√
t+ 1

(
lr

(
CT 2

δ

))
c9
√
dL√
m

β(t)ηr√
d

,
β(t+ 1)ηr

60
√
d

}
.

Hence, noting the choice of Ts in Eq. (49), by choosing η such that

c′c9ζ1(δ, F )η
√
Ts

(
lr

(
CT 2

δ

)) √
dL√
m
≤ 1

60
⇐⇒ η ≤ mψ̄

360ι(c′)2c29dL
2
(
lr
(
CT 2

δ

))2
ζ1(δ, F )2

, and (52)

c′c9ζ1(δ, F )η ≤ 1.

it follows that

‖Wg0
(t+ 1)‖ ≤ β(t+ 1)ηr

60
√
d

.

2. Meanwhile, the term WH(t+ 1) can be bounded as follows. By the inductive assumption in Eq. (51), we have that

‖x̂τ‖ = ‖xτ − x′τ‖ ≤ c9 log(T/δ)
β(τ)ηr√

d
∀ 0 ≤ τ ≤ t.

Moreover, on the event our proof assumes, we know that

max
{
‖xτ − x0‖2, ‖x′τ − x0‖

2
}
≤ φTs(δ, F ).

Thus, using the ρ-Hessian Lipschitz property, we have

‖WH(t+ 1)‖ = η

∥∥∥∥∥
t∑

τ=0

(I − ηH)t−τ (H̄τ −H)x̂τ

∥∥∥∥∥
≤ η

t∑
τ=0

(1 + ηγ)t−τρ
√
φTs(δ, F )

c9 log(T/δ)β(τ)ηr√
d

≤ c9(t+ 1) log(T/δ)ηρ
√
φTs(δ, F )

β(t)ηr√
d

≤ c9Ts log(T/δ)ηρ
√
φTs(δ, F )

β(t)ηr√
d

.

Given our choice of Ts in Eq. (49), if

c9Ts log(T/δ)ηρ
√
φTs(δ, F ) ≤ 1

60
⇐⇒ φTs(δ, F ) ≤

(
ψ̄

60c9ιρ log(T/δ)

)2

it follows that

‖WH(t+ 1)‖ ≤ β(t+ 1)ηr

60
√
d

.
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3. Meanwhile, for Wu(t+ 1), since the event Su(δ) holds, we have that

‖Wu(t+ 1)‖ ≤ ηβ(t+ 1)

√
3√
ηψ̄

(
2c3ρd

2(log(T/δ))2
)
u2.

Now, by picking

ηβ(t+ 1)

√
3√
ηψ̄

(
2c3ρd

2(log(T/δ))2
)
u2 ≤ β(t+ 1)ηr

60
√
d

⇐⇒ u ≤

√
r
√
ηψ̄

120
√

3c3
√
dρd2(log(T/δ))2

,

it follows that with probability 1− δ/T , ‖Wu(t+ 1)‖ ≤ β(t+1)ηr

60
√
d

.

4. Meanwhile, observe that since Sp(δ) holds, it follows that

Wp(t+ 1) ≤
2
√

2 log(T/δ)β(t+ 1)ηr√
d

.

Combining the bounds for Wg0 ,Wp,WH and Wu, it follows that

‖x̂t+1‖ ≤ ‖Wg0
(t+ 1)‖+ ‖Wp(t+ 1)‖+ ‖WH(t+ 1)‖+ ‖Wu(t+ 1)‖

≤ β(t+ 1)ηr√
d

(
1

60
+

1

60
+

1

60
+ 2
√

2 log(T/δ)

)
≤ β(t+ 1)ηr√

d

(
1

20
+ 2
√

2

)
log(T/δ),

where the final inequality uses the fact that 0 < δ ≤ 1/e (which implies log(T/δ) ≥ 1). Hence, we see that the first part
of the inductive claim of Eq. (51) holds with the constant c9 := 1

20 + 2
√

2, and the second part follows naturally as a
consequence of our argument above.

Meanwhile, observe that for any η such that ηψ̄ ≤ 1
2 , we have that (1 + ηγ)

1
ηψ̄ ≥ 2. Thus, by choosing η such that ηψ̄ ≤ 1

2 ,
we have that for any t ≥ 1

ηψ̄
,

α(t+ 1)2 ≥ 1

2
β(t+ 1)2.

Hence, following Eq. (48), by choosing Ts ≥ 1
ηψ̄

, Wp(Ts) is a 1-dimensional Gaussian with variance at least 2η2r2β(Ts)
d ,

such that with probability at least 2/3,

‖Wp(Ts)‖ ≥
β(Ts)ηr

10
√
d
.

Simultaneously, we know that on the event(
∩Ts−1
t=0 Rt(δ)

)
∩ Sφ(δ) ∩ Su(δ) ∩ Sp(δ),

we have

‖Wg0(Ts)‖+ ‖WH(Ts)‖+ ‖Wu(Ts)‖ ≤
3β(Ts)ηr

60
√
d

=
β(Ts)ηr

20
√
d
.

We note that by Lemma 24, we have

P
((
∩Ts−1
t=0 Rt(δ)

)
∩ Sφ(δ) ∩ Su(δ) ∩ Sp(δ)

)
≥ 1−

(
24Tsδ

T
+
Tsδ

T
+
Tsδ

T

)
= 1− 26Tsδ

T
.
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Thus, with probability at least 2/3− 26Tsδ
T , we have

‖x̂Ts‖ ≥
1

2
‖Wp(Ts)‖ ≥

β(Ts)ηr

20
√
d

Thus, choosing Ts ≥ ι
η ψ̄, where

ι = max

{
log

(
2
√
φTs(δ, F )

20
√
d
√
η2γ2 + 2ηγ

ηr

)
, 1

}
,

noting that if ηψ̄ ≤ 1/2, then (1 + ηγ)
1
ηψ̄ ≥ (1 + ηψ̄)

1
ηψ̄ ≥ 2, we have that with probability at least 2/3− 26Tsδ

T ,

‖x̂Ts‖ ≥
β(Ts)ηr

20
√
d

=
ηr

20
√
d

(1 + ηγ)Ts√
2ηγ + (ηγ)2

≥ ηr

20
√
d

(1 + ηγ)

log

(
2
√
φTs

(δ,F )
20
√
d
√
η2γ2+2ηγ
ηr

)
ηψ̄√

2ηγ + (ηγ)2

≥ ηr

20
√
d
√

2ηγ + (ηγ)2
2

log

(
2
√
φTs (δ,F )

20
√
d
√
η2γ2+2ηγ
ηr

)
> 2
√
φTs(δ, F ) > 2

√
φ(Ts, δ).

Thus, at least one of ‖xTs − x0‖ and
∥∥x′Ts − x0

∥∥ is larger than
√
φ(Ts, δ), a contradiction. Since the two sequences have

the same distribution, it follows that with probability at least 1/3− 13Tsδ
T , f(xTs)− f(x0) ≤ −F .

In the result above, we require an upper bound on the norm of φTs(δ, F ) to hold (i.e. equation 50), which in turn necessitates
an upper bound on F , the function value improvement we can expect to make. Below, we show how to choose F to be as
large as possible (up to constants and logarithmic factors) whilst still satisfying equation 50, assuming that u, r and η are
chosen appropriately small such that the dominant term of ‖φTs(δ, F )‖ scales with F .

Lemma 25. Consider choosing F such that

F =
1

2

(
ψ̄

60c9ιρ log(T/δ)

)2
1

ηTstf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))
.

Suppose η ≤ min
{

1, 1
tf (δ) ,

1
tf δL

}
. Suppose we pick u and r small enough such that

u ≤ r1/2

d log(T/δ)ρ1/2
, r2 ≤ min

 Fψ̄

2ι log(T/δ)
(

65c25
8 + 6c1 + 1

) , F

4c6 log(2dT/δ) + 8c7ι
ψ̄

 .

Then, Nu,r(Ts, δ) ≤ F , and that

4c6η
2Ts log(2dT/δ)r2 + 4c7η

2T 2
s ρ

2u4d4 (log(T/δ))
4 ≤ ηTstf (δ)F.

Suppose in addition η is small enough so that

32η2(tf (δ))2ε2 ≤ 1

2

(
ψ̄

60c9ιρ log(T/δ)

)2

.

Suppose also that ψ̄ ≤ 19 and η ≤ m
d , so that Ts ≥ ι

ηψ̄
≥ d

m . Then, the condition in Eq. (50) will be satisfied.
9Without loss of generality, we may set ψ̄ = 1 if f(·) is (ε, ψ,

√
ρε)-strict saddle for any ψ > 1.
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Proof. We note that since ι
ψ̄
≤ Ts ≤ 2ι

ψ̄
, it follows by our choice of r that r also satisfies the condition

r2 ≤ min

 F

ηTs log(T/δ)
(

65c25
8 + 6c1 + 1

) , F

4c6 log(2dT/δ) + 4c7ηTs

 .

Hence, our choice of η, u and r satisfies the conditions in Lemma 23, and it follows then that

φTs(δ, F )≤max
{

128ηTstf (δ)F, 32η2(tf (δ))2ε2
}

+ 8c′2β1(δ;F )ηtf (δ) max

{
16d

m
(lr(CT 2/δ))2F, TsF

}
+ Tsηtf (δ)F,

where β1(δ;F ) is as defined in Lemma 21.

The condition in Eq. (50) requires that

φTs(δ, F ) ≤
(

ψ̄

60c9ιρ log(T/δ)

)2

.

By our choice of η such that

32η2(tf (δ))2ε2 ≤ 1

2

(
ψ̄

60c9ιρ log(T/δ)

)2

,

it suffices for us to show that

1

2

(
ψ̄

60c9ιρ log(T/δ)

)2

≥ 128ηTstf (δ)F + 8c′2β1(δ;F )ηtf (δ) max

{
16d

m
(lr(CT 2/δ))2F, TsF

}
+ ηTstf (δ)F

= 129ηTstf (δ)F + 8c′2β1(δ;F )ηtf (δ) max

{
16d

m
(lr(CT 2/δ))2F, TsF

}
.

By our assumption, we know that Ts ≥ d
m . Thus, further simplifying indicates that it suffices for us to show

1

2

(
ψ̄

60c9ιρ log(T/δ)

)2

≥ 129ηTstf (δ)F + 8c′2β1(δ;F )ηtf (δ) max
{

16Ts(lr(CT
2/δ))2F, TsF

}
. (53)

By choosing F such that

F ≤ 1

2

(
ψ̄

60c9ιρ log(T/δ)

)2
1

ηTstf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))
,

we see that Eq. (53) is satisfied.

Remark 3. Suppose without loss of generality that Ts = ι
ηψ̄

. Then, as a consequence of Lemma 25, we note that the
amortized function value progress of decreasing function value by F over Ts iterations is

F

Ts
=

1

2

(
ψ̄

60c9ιρ log(T/δ)

)2
1

ηT 2
s tf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))

= η
ψ̄4

ρ2

(
1

2ι2
1

(60c9ι log(T/δ))2 (tf (δ)) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))

)
F. Proving the main result (informal statement in Theorem 1, full statement in Theorem 2)
In this section, we prove our main result. First, we need an additional result (Lemma 26) showing that with high probability,
we can bound the function value increase if a saddle appears within tf (δ) iterations immediately after we have had Ts
iterations after the previous saddle. We note that such a bound is necessary because our earlier result upper bounding
function increase in τ iterations (see Lemma 18) focused on the case where τ ≥ tf (δ). Next, we state and prove Theorem 2,
which is the precise version of Theorem 1 in the main text.
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Lemma 26 (Function change for small τ ). Let c1 > 0, c4 > 0, c5 > 0, C1 ≥ 1 be the absolute constants defined in the
statements of the previous lemmas. Let δ ∈ (0, 1/e], and suppose τ < tf (δ).

Let J denote the interval {0, 1 . . . , τ − 1} where τ < tf (δ).

Suppose we choose η such that

η ≤ 1

Ltf (δ)
·min

{ √
m

8c4(lr(C1dmT/δ))3/2
√
d
,

m

128c1(lr(C1dmT/δ))3d

}
. (54)

Suppose also we pick u, r and η as prescribed in the statement of Proposition 4.

Suppose that mint∈J‖∇f(xt)‖ ≤ ε. Then, on the event

Dτ (δ) := H0,τ (δ) ∩

(
τ−1⋂
t=0

At(δ)

)
∩

(
τ−1⋂
t=0

Gt(δ)

)
,

we have the following upper bound on function value change:

f(xτ )− f(x0) ≤ η

4
ε2 + tf (δ)ηu4ρ2 · c1d3

(
log

T

δ

)3

+ tf (δ)Lη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ tf (δ)c1Lη

2r2.

Moreover, P(Dτ (δ)) ≥ 1− (4tf (δ)+4)δ
T .

Proof. Throughout the proof, we assume that the event Dτ (δ) holds.

Let J denote {0, 1 . . . , τ − 1} where τ < tf (δ). Then, J belongs to one of the two following cases.

Case 1) (Gradient dominates noise): Recall that this means that for every t ∈ J , we have

‖∇f(xt)‖ > 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
.

By our choice of η in Eq. (31), we can apply Lemma 16 to get

min
t∈J
‖∇f(xt)‖ ≥

1

4
max
t∈J
‖∇f(xt)‖.

Thus by setting α = 128tf (δ) in Eq. (5) and by choosing η such that

c1Lη
2χ3d

m
≤ η

α
=

η

128tf (δ)
⇐⇒ η ≤ m

128c1Ltf (δ)dχ3
,

it follows that

− 3η

4

∑
t∈J

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈J
‖∇f(xt)‖2

= − 3η

4

∑
t∈J

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

η

64tf (δ)

∑
t∈J
‖∇f(xt)‖2

≤ η

64tf (δ)

∑
t∈J
‖∇f(xt)‖2

≤ η

64tf (δ)

∑
t∈J

max
t∈J
‖∇f(xt)‖2

≤ 16η

64tf (δ)

∑
t∈J

min
t∈J
‖∇f(xt)‖2 ≤

η

4
min
t∈J
‖∇f(xt)‖2 ≤

η

4
ε2, (55)

where the final bound holds since we assumed mint∈J‖∇f(xt)‖ ≤ ε.
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Case 2) (Gradient does not dominate noise): there exists some t ∈ J such that

‖∇f(xt)‖ ≤ 8tf (δ)ηL

(
u

2

∥∥∥∥∥ 1

m

m∑
i=1

Zt,iZ
>
t,iH̃t,iZt,i

∥∥∥∥∥+ ‖Yt‖

)
.

By our choice of η in Eq. (31), we can apply Lemma 17 to get

‖∇f(xt)‖ ≤ c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
∀t ∈ J.

Note that, by our choices of the parameters η, u, r, it can be shown that

c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

)
< ε,

Hence, by setting α = 128tf (δ) in Eq. (5) and choosing η such that

c1Lη
2χ3d

m
≤ η

α
=

η

128tf (δ)
,

it follows that (
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈J
‖∇f(xt)‖2

≤ η

64tf (δ)

∑
t∈J

(
c5tf (δ)ηL

(
u2d2ρ

(
log

T

δ

)2

+

√
1 +

log(T/δ)

d
r

))2

≤ η

64tf (δ)

∑
t∈J

ε2

≤ η

64
ε2 (56)

Combining both cases above (Eq. (55) and Eq. (56)), we see that for the choice α = 128tf (δ), the bound

− 3η

4

∑
t∈J

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

128tf (δ)
+
c1Lη

2χ3d

m

)∑
t∈J
‖∇f(xt)‖2 ≤

η

4
ε2 (57)

always holds.

Recall by Eq. (5) that we have

f(xτ )− f(x0) ≤ − 3η

4

τ−1∑
t=0

1

m

m∑
i=1

∣∣Z>t,i∇f(xt)
∣∣2 +

(
η

α
+
c1Lη

2χ3d

m

) τ−1∑
t=0

‖∇f(xt)‖2

+ τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(α+ ηL) log

T

δ
+ τc1Lη

2r2.

By plugging in Eq. (57) above, as well as the choice α = 128tf (δ), we see that

f(xτ )− f(x0) ≤ η

4
ε2 + tf (δ)ηu4ρ2 · c1d3

(
log

T

δ

)3

+ tf (δ)Lη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ tf (δ)c1Lη

2r2.
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We can now complete our proof by using the union bound (suppressing the dependence of some of the events on δ for
notational simplicity) to derive

P(Dcτ ) ≤ P(Hcτ ) +

τ−1∑
t=0

P(Act) +

τ−1∑
t=0

P(Gct )

≤ (τ + 4)δ

T
+
τ

T
δ + 2

τ

T
δ ≤ (4tf (δ) + 4)

T
δ

Armed with Proposition 5 and Lemma 25, we are now ready to show for T sufficiently large, with high probability, there
can be no more than T/4 ε-saddle points. Combined with Proposition 4, this yields the following result.

Theorem 2. Suppose we pick u, r, η such that they satisfy the conditions in Proposition 5 and Lemma 25. Suppose F is
chosen as prescribed in Lemma 25. Suppose that ψ̄ ≤ 1, so that Ts ≥ ι

ηψ̄
≥ d

mL
10. Suppose we pick Ts as prescribed in

Proposition 5. Suppose in addition we pick r such that

r2 ≤ min

 ε2

4(130c1tf (δ) + c1 log(T/δ) + c1)
,

F ψ̄

80ι log(T/δ)
(

65c25
8 + 132c1 + 1

)
 .

Suppose also that we choose η such that

η ≤ 0.1

2ε2
ψ̄

2ι

1

2

(
ψ̄

60c9ιρ log(T/δ)

)2
1

tf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))

Suppose

T ≥

{
256tf (δ)

(
(f(x0)− f∗) + ε2/L)

)
ηε2

,
ϕρ2 (f(x0)− f∗)

ηψ̄4
, 256d ι

ηψ̄
e, 256tf (δ), 1024

}
, (58)

where

ϕ := 20
(
2ι2(60c9ι log(T/δ))2 (tf (δ))

(
129 + 8c′2β1(δ;F )

(
16(lr(CT 2/δ))2 + 1

)))
.

Then, with probability at least 1− 22δ, there are at least T/2 ε-approximate second order stationary points.

Proof. Consider defining the following sequence of stopping times:

τ1 = inf
t
{t ≤ T : ‖∇f(xt)‖ < ε, λmin(∇2f(xt)) ≤ −

√
ρε},

τi+1 = inf
t
{t ≤ T : t > τi + Ts, ‖∇f(xt)‖ < ε, λmin(∇2f(xt)) ≤ −

√
ρε}, ∀1 ≤ i ≤ bT/Tsc.

We note that if τi = T , then τj = T for any j > i. Let Ns denote the (random) number of saddle points encountered in T
iterations.

We observe that we can decompose the function change as

f(xT )− f(x0)

= (f(xτNs )− f(x0)) + (f(xT )− f(xτNs ))

10Recall we focus on the case ψ̄ ≤ L, since otherwise, by the L-Lipschitz assumption, λmin(∇2f(x)) ≥ −L for all x ∈ Rd, i.e.
ε-first order stationary points are also ε-second order stationary points.
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= (f(xτ1)− f(x0)) +

Ns∑
i=1

(f(xτi+Ts)− f(xτi)) +

Ns−1∑
i=1

(
f(xτi+1)− f(xτi+Ts)

)
+ (f(xT )− f(xτNs ))

=

Ns∑
i=1

(f(xτi+Ts)− f(xτi))︸ ︷︷ ︸
U1

+ (f(xτ1)− f(x0)) +

Ns−1∑
i=1

(
f(xτi+1

)− f(xτi+Ts)
)

︸ ︷︷ ︸
U2

+(f(xT )− f(xτNs )).

We first consider U1. Letting xj := xT for any j ≥ T , we have that

Ns∑
i=1

f(xτi+Ts)− f(xτi) =

bT/Tsc∑
i=1

(f(xτi+Ts)− f(xτi)) 1τi<T

Now, by Eq. (32), observe that with probability at least 1− (5Ts+4)δ
T ≥ 1− 6Tsδ

T (note Ts ≥ 4), for any 1 ≤ i ≤ T/Ts, we
have that

(f(xτi+Ts)− f(xτi)) 1τi<T ≤ τ
c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2

+ τηu4ρ2 · c1d3

(
log

T

δ

)3

+ τLη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ τc1Lη

2r2

:= Mu,r,Ts .

Suppose we pick u, r such that Mu,r,Ts ≤ 0.1F . Recall from Proposition 5 that with probability at least 1/3 − 13Tsδ
T ,

(f(xτi+Ts)− f(xτi)) 1τi<T ≤ −F . Choosing δ such that 1/3 − 13Tsδ
T ≥ 0.3, and letting µ = 0.1F , we note that

|−F + µ| = 0.9F ≥ 0.7
0.30.2F ≥ 0.7

0.3 (Mu,r,Ts + µ).

Now, let Eτi denote the bad event on which

neither (f(xτi+Ts)− f(xτi)) 1τi<T ≤ −F, nor (f(xτi+Ts)− f(xτi)) 1τi<T ≤Mu,r,Ts ≤ 0.1F.

We know that Eτi has probability at most 6Tsδ
T . Let Eτ := ∪bT/Tsci=1 Eτi , such that P(Eτ ) ≤ 6δ. Then, by applying the

weakened supermartingale inequality in Proposition 3, we have

P

T/Ts∑
i=1

(f(xτi+Ts)− f(xτi)) 1τi<T ≥ −Ns0.9F + s

 ≤ E
[
exp

(
− s2

4NsF 2

)]
+ P(Eτ ) ≤ exp

(
− s2

4(T/Ts)F 2

)
+ 6δ.

Now, pick s = 2F
√√

log(1/δ)T/Ts, then

P

T/Ts∑
i=1

(f(xτi+Ts)− f(xτi)) 1τi<T ≥ −Ns0.9F + 2F

√√
log(1/δ)T/Ts

 ≤ 7δ.

Note that supposing for contradiction that there are at least T/4 saddles, we must then have that Ns ≥ T/(4Ts), such that

−Ns0.9F + 2F

√√
log(1/δ)T/Ts) ≤ F (−0.9T/(4Ts) + (2

√√
log(1/δ)T/Ts)) ≤ F (−0.1T/Ts),

where we may ensure the last inequality by picking T/Ts such that

T/Ts ≥
(

2

0.125

)2√
log(1/δ) = 256

√
log(1/δ).
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Note that our choice of T ensures this.

Thus, with probability at least 1− 7δ,

U1 =

T/Ts∑
i=1

(f(xτi+Ts)− f(xτi)) 1τi<T ≤ −(0.1T/Ts)F.

Next, we bound the summand U2. Recall that

U2 = (f(xτ1)− f(x0)) +

Ns−1∑
i=1

(
f(xτi+1

)− f(xτi+Ts)
)
.

Without loss of generality, we may analyze each of the summands f(xτi+1
) − f(xτi+Ts) in the same way as we treat

(f(xτ1)− f(x0)). Let us then consider the summand f(xτ1)− f(x0). There are two cases to consider.

1. The first is when τ1 < tf (δ). In this case, since we know that ‖∇f(xτ1)‖ ≤ ε (as xτ1 is an ε-saddle point), it follows
by Lemma 26 that

f(xτ1)− f(x0) ≤ η

4
ε2 + tf (δ)ηu4ρ2 · c1d3

(
log

T

δ

)3

+ tf (δ)Lη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ tf (δ)c1Lη

2r2

with probability at least 1− (4tf (δ)+4)δ
T .

2. The second case is when τ1 ≥ tf (δ). In this case, by Lemma 18, we have that

f(xτ1)− f(x0) ≤ τ1
c25
64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2

+ τ1ηu
4ρ2 · c1d3

(
log

T

δ

)3

+ τ1Lη
2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ τ1c1Lη

2r2.

with probability at least 1− (5τ1+4)δ
T .

By our choice of u, we know that

tf (δ)ηu4ρ2 · c1d3

(
log

T

δ

)3

+ tf (δ)Lη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ tf (δ)c1Lη

2r2

≤ tf (δ)r2c1 + tf (δ)r2c1 + c1r
2(128tf (δ) + 1) log(T/δ) + c1r

2

= r2(130c1tf (δ) + c1 log(T/δ) + c1).

Hence, by picking r such that

r ≤ ε2

4(130c1tf (δ) + c1 log(T/δ) + c1)
,

it follows that

ηε2

4
≥ tf (δ)ηu4ρ2 · c1d3

(
log

T

δ

)3

+ tf (δ)Lη2u4ρ2 · c1d4

(
log

T

δ

)4

+ ηc1r
2(128tf (δ) + ηL) log

T

δ
+ tf (δ)c1Lη

2r2.
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Then, if τ1 < tf (δ), with probability at least 1− (5tf (δ)+4)
δ ,

f(xτ1)− f(x0) ≤ ηε2

2
.

Suppose also that we pick r such that

r2 ≤
F
√
ρε

80ι log(T/δ)
(

65c25
8 + 132c1 + 1

) ≤ F

40ηTs log(T/δ)
(

65c25
8 + 132c1 + 1

) .
Then, it can be verified that

F

40

T

Ts
≥ T c

2
5

64
η3tf (δ)2L2

(
u2d2ρ

(
log

T

δ

)2

+
√

2 log(T/δ)r

)2

+ Tηu4ρ2 · c1d3

(
log

T

δ

)3

+ TLη2u4ρ2 · c1d4

(
log

T

δ

)4

+
T

Ts
ηc1r

2(128tf (δ) + ηL) log
T

δ
+ Tc1Lη

2r2.

Then, by a union bound, it follows that with probability at least 1− 9δ,

U2 = (f(xτ1)− f(x0)) +

Ns−1∑
i=1

(
f(xτi+1

)− f(xτi+Ts)
)

≤ T

Ts

ηε2

2
+
F

40

T

Ts

Therefore, by the union bound, with probability at least 1− 16δ,

f(xτNs )− f(x0) = U1 + U2 ≤
T

Ts

(
−0.1F + ηε2/2 +

F

40

)
By recalling our choice of F in Lemma 25, by choosing η such that

η ≤ 0.1

2ε2
ψ̄

2ι

1

2

(
ψ̄

60c9ιρ log(T/δ)

)2
1

tf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))

≤ 0.1

2ε2
1

2

( √
ρε

60c9ιρ log(T/δ)

)2
1

ηTstf (δ) (129 + 8c′2β1(δ;F ) (16(lr(CT 2/δ))2 + 1))
=

0.1F

2ε2
,

it follows that with probability at least 1− 16δ,

f(xτNs )− f(x0) = U1 + U2

≤ T

Ts

(
−0.1F + ηε2/2 +

F

40

)
≤ T

Ts
(−0.1F + 0.1F/4 + 0.1F/4) =

T

Ts
(−0.05F ).

Choose T such that

−(0.05T/Ts)F ≤ −(f(x0)− f∗) ⇐⇒ T ≥ 20Ts(f(x0)− f∗)
F

≥ ϕρ2 (f(x0)− f∗)
ηψ̄4

yields a contradiction, where

ϕ := 20
(
2ι2(60c9ι log(T/δ))2 (tf (δ))

(
129 + 8c′2β1(δ;F )

(
16(lr(CT 2/δ))2 + 1

)))
Hence, with probability at least 1 − 16δ, there cannot be more than T/4 saddle points. In addition, with probability at
least 1− 6δ, by Proposition 4, there cannot be more than T/4 iterates with ‖∇f(xt)‖ ≥ ε. Hence, with probability at least
1− 22δ, there are at least T/2 ε-approximate second order stationary points.
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G. More complete discussion of simulations
We test the performance of our proposed algorithm with two-point estimators (ZOPGD-2pt) against existing zeroth-order
benchmarks using the octopus function (proposed in (Du et al., 2017)) of varying dimensions.11 It is known that the octopus
function defined on Rd, which chains d saddle points sequentially, takes exponential (in d) time for exact gradient descent to
escape; it has thus emerged as a popular benchmark to evaluate and compare the performance of algorithms that seek to
escape saddle points. In our experiments, we compare the performance of our two-point estimator algorithm (ZOPGD-2pt)
with PAGD (Algorithm 1 in (Vlatakis-Gkaragkounis et al., 2019)) and ZO-GD-NCF (see (Zhang et al., 2022)), which are
the only two existing zeroth-order algorithms that have (a) a Õ(d/ε2) sample complexity for escaping saddle points (with the
latter algorithm yielding the tightest bounds), and (b) performed the best empirically on escaping saddle points (see the
simulation results in (Zhang et al., 2022)). We note that both PAGD and ZO-GD-NCF have to use 2d function evaluations
per iteration to estimate the gradient while our algorithm only needs to use 2 function evaluations. In our plots, we plot the
function value against the number of function evaluations. For completeness, we also plot the performance of exact gradient
descent (normalized such that its x-axis is also the number of function queries).

We tested the algorithms for d = 10 and d = 30. To account for the stochasticity in the algorithms, for each algorithm, we
computed the average and standard deviation over 30 trials, and plotted the mean trajectory with an additional band that
represents 1.5 times the standard deviation. For our algorithmś hyperparameters, we picked

η =
1

4dL
, u = 10−2, r = 0.05,m = 1( i.e. two-point estimator) (59)

For PAGD, we used the hyperparameters listed in their paper, and for ZO-GD-NCF, we used the code from their Neurips
submission. We note in particular that both methods used the step-size 1

4L . For initialization, we chose a random x0 near the
saddle point at the origin, drawn from N(0, 10−3Id×d)

12 (fixed for all trials and all algorithms).

As we can see in Fig. 2, in both cases, our algorithm reaches the global minimum of the octopus function in significantly fewer
function evaluations than PAGD and ZO-GD-NCF (approximately 2.5 times faster than ZO-GD-NCF, and approximately 3
times faster than PAGD), despite our algorithm only using 2 function evaluations per iteration compared to 2d function
evaluations per iteration for both PAGD and ZO-GD-NCF. As a sanity check, we note that the number of function evaluations
required for PAGD and ZO-GD-NCF to reach the global minimum approximately matches that in Figure 1 of (Zhang et al.,
2022); here the correspondence is only approximate since (Zhang et al., 2022) only plots one trial while we compute the
mean and standard deviation of 30 trials.

This result suggests that in addition to the theoretical convergence guarantees, there might also be empirical benefits to using
two-point estimators versus existing 2d-point estimators in the zeroth-order escaping saddle point literature.

11Our code can be found at https://github.com/rafflesintown/escape-saddle-points-2pt
12Using the random seed in our code, we note that ‖∇f(x0)‖ = 0.011 for d = 10 and ‖∇f(x0)‖ = 0.030 for d = 30.
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(b) d = 30

Figure 2: Performance on toy octopus function, with τ = e, L = e, γ = 1 (Here, τ, L, γ are parameters determining the
properties of f . Our parameter choice is consistent with that in (Zhang et al., 2022). See (Du et al., 2017) for details about
the definitions of τ, L and γ.).
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