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Abstract

Two-point zeroth order methods are important in
many applications of zeroth-order optimization,
such as robotics, wind farms, power systems, on-
line optimization, and adversarial robustness to
black-box attacks in deep neural networks, where
the problem may be high-dimensional and/or time-
varying. Most problems in these applications are
nonconvex and contain saddle points. While ex-
isting works have shown that zeroth-order meth-
ods utilizing §2(d) function valuations per iter-
ation (with d denoting the problem dimension)
can escape saddle points efficiently, it remains
an open question if zeroth-order methods based
on two-point estimators can escape saddle points.
In this paper, we show that by adding an ap-
propriate isotropic perturbation at each iteration,
a zeroth-order algorithm based on 2m (for any
1 < m < d) function evaluations per iteration
can not only find e-second order stationary points
polynomially fast, but do so using only O (@/me>4)
function evaluations, where v > Q(\/E) is a pa-
rameter capturing the extent to which the function
of interest exhibits the strict saddle property.

1. Introduction

Two-point estimators, which approximate the gradient using
two function evaluations per iteration, have been widely
studied by researchers in the zeroth-order optimization liter-
ature, in convex (Nesterov & Spokoiny, 2017; Duchi et al.,
2015; Shamir, 2017), nonconvex (Nesterov & Spokoiny,
2017), online (Shamir, 2017), as well as distributed settings
(Tang et al., 2019). A key reason for doing so is that for
applications of zeroth-order optimization arising in robotics
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(Li et al., 2022), wind farms (Tang et al., 2020a), power
systems (Chen et al., 2020), online (time-varying) optimiza-
tion (Shamir, 2017), learning-based control (Malik et al.,
2019; Li et al., 2021), and improving adversarial robust-
ness to black-box attacks in deep neural networks (Chen
et al., 2017), it may be costly or impractical to wait for Q(d)
(where d denotes the problem dimension) function evalu-
ations per iteration to make a step. This is especially true
for high-dimensional and problems with time-varying noise.
See Appendix A for more discussion.

However, despite the advantages of zeroth-order methods
with two-point estimators, there has been a lack of existing
work studying the ability of two-point estimators to escape
saddle points in nonconvex optimization problems. Since
nonconvex problems arise often in practice, it is crucial to
know if two-point algorithms can efficiently escape saddle
points of nonconvex functions and converge to second-order
stationary points (see Definition 1 for a definition).

To motivate the challenges of escaping saddle points using
two-point zeroth-order methods, we begin with a review of
escaping saddle points using first-order methods. The prob-
lem of efficiently escaping saddle points in deterministic
first-order optimization (with exact gradients) has been care-
fully studied in several earlier works (Jin et al., 2017; 2018b).
A key idea in these works is the injection of an isotropic
perturbation whenever the gradient is small, facilitating es-
cape from a saddle if a negative curvature direction exists
even without actively identifying the direction. However,
the analysis of efficient saddle point escape for stochastic
gradient methods is often more complicated. In general,
the behavior of the stochastic gradient near the saddle point
can be difficult to characterize. Hence, strong concentration
assumptions are typically made on the stochastic gradients
being used, such as subGaussianity, boundedness of the
variance or a bounded gradient estimator (Ge et al., 2015;
Daneshmand et al., 2018; Xu et al., 2018; Fang et al., 2019;
Roy et al., 2020; Vlaski & Sayed, 2021b), creating an ana-
lytical issue when such idealized assumptions fail to hold.

Indeed, though zeroth-order methods can be viewed as
stochastic gradient methods, common zeroth order estima-
tors, such as two-point estimators (Nesterov & Spokoiny,
2017), are not subGaussian, and can have unbounded vari-
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ance. For instance, it can be shown that the variance of
the two-point estimator is on the order of Q(d||V f(z)||*)
(Nesterov & Spokoiny, 2017), with both a dependence on
the problem dimension d as well as on the norm of the gra-
dient, which can be unbounded. Due to non-subGaussianity
and unboundedness, it is tricky to bound the effect of such
zeroth-order estimators and establish tight concentration
inequalities that facilitate its escape near saddle points. In
addition, the large variance of the zeroth-order estimator is
also an issue in non-saddle regions, i.e. when the gradient is
large. While this is not an issue to show function improve-
ment in expectation, as we discuss later, this becomes an
issue when guaranteeing high probability bounds.

Due to these difficulties, previous works on escaping saddle
points in zeroth-order optimization have exclusively focused
on approaches requiring 2(d) function evaluations per iter-
ation to accurately estimate the gradient (Jin et al., 2018a;
Bai et al., 2020; Vlatakis-Gkaragkounis et al., 2019), or in
some cases negative curvature directions (Zhang et al., 2022;
Lucchi et al., 2021) or the Hessian itself (Balasubramanian
& Ghadimi, 2022), reducing in a sense the zeroth-order
problem back to a first-order one. However, as explained
earlier, two-point zeroth-order algorithms are important for
high-dimensional and/or time-varying problems in many
applications areas. This raises an important question:

Can two-point zeroth-order methods escape saddle
points and reach approximate second order stationary
points efficiently?

Our Contribution. In this work, we show that by adding
an appropriate isotropic perturbation at each iteration, a
zeroth-order algorithm based on any number m of pairs
(1 < m < d) of function evaluations per iteration can not
only find (e, 1/€)-second order stationary points (cf. the
definition later in Definition 1) polynomially fast, but do so
using only O(polylog(})d/c2:5) function evaluations, with a
probability of at least 1 — §. In particular, this proves that
using a single two-point zeroth-order estimator at each iter-
ation (with appropriate perturbation) suffices to efficiently
escape saddle points in zeroth-order optimization, with high
probability. Moreover, for functions that are (e, ¥, O(1/€))
strict-saddle (see Definition 3 for a definition of strict saddle
functions), our results become O(Polylog(%)d/wez), which
is a significant improvement when ) > ¢; strict saddle
functions have been identified as an important class of func-
tions in nonconvex optimization, with several well-known
examples such as tensor decomposition (Ge et al., 2015),
dictionary learning and phase retrieval (Sun et al., 2015).
A comparison of our results with existing zeroth-order and
first-order methods is shown in Table 1. We also provide
numerical results in Section 4 showing that our proposed
two-point algorithm requires fewer total function evalua-
tions to converge than zeroth order methods that use 2d

function evaluations per iteration, for a nonconvex test func-
tion proposed in (Du et al., 2017).

To overcome the theoretical challenges that were discussed
earlier, we 1) first show, via a careful analysis, that zeroth
order methods can make function value improvement across
iterates with large gradients with high probability, even
when only a single two-point estimator (which can have
significant variance at large gradients) is used per iteration.
ii) Second, near saddle points, we overcome issues caused
by the unbounded variance and non-subGaussinity of zeroth-
order gradient estimators by developing new technical tools,
including novel martingale concentration inequalities in-
volving Gaussian vectors, to tightly bound such terms. In
turn, this allows us to show that the noise emanating from
the zeroth-order estimators will not overwhelm the effect
of the additional isotropic perturbative noise, facilitating
escape along negative curvature directions. To the best of
our knowledge, both analyses are novel, and may be inde-
pendent contributions on their own.

Related Work. Due to space considerations, we defer a full
discussion of related work to Appendix A.

2. Problem Setup

We make the following assumptions on the class of functions
f : R4 — R which we consider.

Assumption 1 (Properties of f). We suppose that f : R? —
R satisfies the following properties:

1. f is twice-differentiable and lower bounded, i.e. f* :=
min, f(z) > —o0.

2. fis L-gradient Lipschitz, i.e.

IVf(z) = VIl < L|z —y| Va,y € R™.

3. f is p-Hessian Lipschitz, i.e.

[V2f(z) = V2f ()| < plle —yll Yo,y € R™.

In our work, we focus on finding approximate second order
stationary points, defined below.

Definition 1. A point 2 € R? is an (e, ¢)-second order
stationary point if

IVf(@)| <e and  Auin(V2f(2)) > —¢.

We define an (e, p)-approximate saddle point as follows.

Definition 2. A point # € R is an (e, )-approximate
saddle point, if

IVf@)ll <e and  Amin(VZf(2)) < —¢.
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Iteration Complexity | Fun. Evaluations. per iter
; (Jin et al., 2017) (deterministic) O(%) —
First-ord > \e
Horeer (Fang et al., 2019) (SGD) 0 (=) —
(Jin et al., 2018a) 0 (%) O(%
(Bai et al., 2020) 0 (%) o(%
Zeroth-order | (Vlatakis-Gkaragkounis et al., 2019) 0 (%) O (d)
(Balasubramanian & Ghadimi, 2022) O () O (i - i)
(Lucchi et al., 2021)f O (%) O (£
(Zhang et al., 2022) 0 (%) O(d)
Algorithm 1 (this paper, 1 < m < d)} o} <ﬁ) 2m

Table 1: Selected comparison of convergence results to (¢, O(y/€)-second order stationary points in smooth, nonconvex
functions; for T, the convergence is to (e, €2/ 3)—second order stationary points. For ! the term 1) in the denominator is (i) v
when the function f is (e, 1, O(y/€))-strict saddle for a ¢ > O(y/€) (see Definition 3 for a definition) and (i) O(+/€) if

otherwise.

Following past convention (Jin et al., 2019a), we will fo-
cus in particular on escaping (e, ,/pé€)-saddle points. For
notational simplicity, in following text, we refer to (e, \/p€)-
saddle points simply as e-saddle points and (¢, ,/p€)-second
order stationary points as e-second order stationary points.
Beyond the definition of e-approximate saddle points above,
it is known that many nonconvex functions with saddle
points, such as orthogonal tensor decomposition (Ge et al.,
2015), phase retrieval and dictionary learning (Sun et al.,
2015), satisfy what is known as a strict saddle condition (Ge
et al., 2015). For the Hessians of the saddle points of such
functions, there is always a strict negative eigenvalue whose
magnitude is bounded from below. We provide a precise
definition below.

Definition 3. A twice-differential function f(x) is (e, v, 9)-
strict saddle for any 1) > g > 0, if for any point z, either

1. [V f(x)]| > €holds,
2. or when ||V f(z)|| < € holds, either

(a) )\min(VQf(x)) < _'1/1, or
(0) Amin(V2f(2)) > —o.

In our work, we consider the following batch symmetric
two-point zeroth-order estimator.

Definition 4 ((Batch) two-point zeroth-order estimator with
perturbation). We define a m-batch two-point zeroth order
estimator as follows:

(D

m)y._ L " fe 4 uZ) — flr—uZy) |
Ju (x) o m ; 2u sz

where Z; s N(0,7), and u > 0 is a smoothing radius.

Algorithm 1 Zeroth-order perturbed gradient descent
(ZOPGD)
input : x(, horizon T, step-size 1, smoothing radius u, per-
turbation radius r, batch size m
for stept =0,...,T do
Sample Z(™) = {Z, 3™, ~ N(0,I) to compute
9™ (2,)), defined in Eq. (1).
T — 1 (gftm)(xt) + Yt) ,  where

Update x4 =
th ~ N(Ov %I)

Such 2m zeroth-order gradient estimators have frequently
been studied in zeroth-order optimization works (see e.g.
(Nesterov & Spokoiny, 2017)). To facilitate efficient escape
from saddle points, our proposed Algorithm 1 adds isotropic
perturbation at each iteration.

‘We now state an informal version of our main result, and
follow that with a few remarks.

Theorem 1 (Main result, informal version of Theorem 2).

Consider running Algorithm 1. Let O hide polylogarithmic
terms in ¢ and other parameters. Suppose 6 € (0,1/e].

Suppose \/pe < min{1,L}!, such that ¢» < min{1, L},
where

~ Jmin{ep, 1, L} if I > /pes.t. f(-)is (e,4,/pe)-strict saddle
vi= /Pe if otherwise.
2

'In our paper, we focus on the case \/pe < L; otherwise, by
the L-Lipschitz assumption, Amin (V2 f(x)) > —L forall z € R,
which implies e-first order stationary points are also e-second order
stationary points.
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Suppose
o (mnVEVT g o mi
“_O< NG ) =0(9.n O(dmaX{L,m})’
Then, in
5 [ (f(zo) — f7 P(f(xo) — f*
ro (L)1) | Pt )
_9 (dmaX{LyLQ}PQ(f(l‘o) - f*)>
mape>

iterations (with each iteration using 2m function evalu-
ations), with probability at least 1 — 0, at least half the
iterates are (€, \/p€)-second-order stationary points.

Remark 1. As the choice of n in Proposition 4 (Ap-
pendix D) and Theorem 2 (Appendix F) respectively imply,
the Q (%) term in the sample complexity comes
from the large gradient iterations (Proposition 4), whereas
the (W) term comes from the escape saddle
point phase.

Remark 2. As a corollary of Theorem 1, for functions f
which are (e,1), \/p€) strict saddle, assuming that ¢ >
\/pé, the sample complexity of our algorithm scales as

Q (dmax{ﬁ;,fe}z(i(mo)ff*)), which scales as ( d ) when

me?

1 is of size (1). Thus, in this setting, for two-point estima-
tors, where m = 1, the dependence on d and ¢ in our sample
complexity (as measured by function evaluations) matches
that achieved by the algorithms in (Vlatakis-Gkaragkounis
et al., 2019; Zhang et al., 2022), which have to use 2d func-
tion evaluations per iteration to estimate the gradient.

Comparison to gradient-based methods. For first-order
escape saddle point algorithms, standard perturbation-based
methods (without acceleration) can find a (e, O(y/€))-
second-order stationary point using O(1/€?) iterations for
deterministic GD (Jin et al., 2019a), while for standard SGD
the best-known rates are slower at O(1/¢%%) (Fang et al.,
2019). In contrast, our sample complexity (as measured

by the total number of function evaluations) is 1) (ﬁ),
where 1) is defined in Eq. (2). The extra (linear) dependence
on d is typical for zeroth-order algorithms (see e.g. (Nes-
terov & Spokoiny, 2017)); intuitively, gradient calculation
for d-dimensional functions requires O(d) calculations ag-
nostically, so it makes sense that zeroth-order algorithms
requires d times more iterations. For general non strict-
saddle functions, our dependence on ¢ sits between that of
the deterministic methods and SGD methods, and suggests
the benefit of a specialized treatment of zeroth-order meth-
ods over considering them simply as a subclass of SGD
methods. Moreover, for (¢, 1), \/pe)- strict-saddle functions
where 1) = (1), our sample complexity becomes O(e%),
with an e dependence that matches that of the best existing

sample complexity for non-accelerated first-order escape
saddle point methods (Jin et al., 2017)

Comparison to existing zeroth-order methods. As Ta-
ble 1 suggests, our sample complexity significantly outper-
forms that of (Jin et al., 2018a), (Bai et al., 2020), (Bala-
subramanian & Ghadimi, 2022), and also that in (Lucchi
et al., 2021), which is a random search method. We note
that the sample complexity in (Vlatakis-Gkaragkounis et al.,
2019; Zhang et al., 2022) outperform our method, with a
function evaluation complexity of 0 (6%) However, for
for (e,, \/pé)- strict-saddle functions where ¢ = Q(1),
our sample complexity becomes O(E%), which matches the
sample complexity in (Vlatakis-Gkaragkounis et al., 2019;
Zhang et al., 2022). Moreover, a key limitation of their
methods is a requirement to use {2(d) function evaluations
to estimate the gradient at each iteration, which may not be
practical in realistic applications when d is large. In contrast,
our method supports any number of function evaluations
at each iteration between 1 to d. Moreover, numerically,
we found that for a test nonconvex function proposed in
(Du et al., 2017), our method (with two-point estimators)
takes fewer function evaluations to escape saddle points
and converge to the global minimum than the methods in
(Vlatakis-Gkaragkounis et al., 2019; Zhang et al., 2022);
see Section 4 for details.

3. Proof strategy and key challenges in the
zeroth-order setting

Broadly speaking, our proof include two major parts, i)
characterizing the progress made in iterations when the gra-
dient is large (which we can define to be iterations ¢ where
IV f(x:)|] > €) (Section 3.1), ii) and iterations when we
are at an e-approximate saddle point (where progress may
be made along the negative eigendirection of the Hessian
matrix) (Section 3.2). While the approach is similar to the
first-order case (e.g. (Jin et al., 2019a)), the zeroth-order
setting brings forth several unique challenges. In the rest
of this section, we explain these challenges, sketch out our
high-level proof outlines, and provide statements of the
main technical results. Due to limited space, we defer the
full proof to the Appendix.

3.1. Showing function decrease when gradients are
large

Challenge. Due to the noise in two-point (or 2m where m
is a small constant) zeroth-order gradient, even when the
gradient is large, it may not always be possible to make
progress at each iteration, especially when m < d is used
in the gradient estimation equation in Eq. (1). While it
is tempting to use an expectation-based argument to han-
dle this issue, it is known that expectation-based function
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decrease arguments are insufficient for the purpose of es-
caping saddle points (see e.g. Proposition 1 in (Ziyin et al.,
2021)). We tackle this issue by using high-probability argu-
ments instead; we note that achieving these high-probability
bounds is highly nontrivial due to the large variance of the
two-point zeroth-order estimator (scaling with d times the
squared norm of the gradient). Hence, any single iteration
of the zeroth-order method may in fact lead to a function
increase rather than decrease.

High-level proof outline. (i) We first characterize the func-
tion value change for our proposed algorithm (Lemma 1).
(ii) Next, we tackle the issue of the possibility that the func-
tion value might increase for any given iteration. The key
idea here is that across any small consecutive number of
iterations, there will be one iteration where the zeroth-order
estimator is sufficiently aligned with the gradient direc-
tion (Lemma 14 in Appendix D). (iii) Along with a series of
other technical results in Appendix D, we then show that the
function makes sufficient progress across the duration of the
algorithm, with high probability (Proposition 1). To more
concretely illustrate the key analytical challenge, we next
introduce the following function decrease lemma, proved in
Appendix D.

Lemma 1 (Function decrease for batch zeroth-order opti-
mization). Suppose at each time t, the algorithm performs
the update step (with batch-size parameter 1 < m < d)

Tep1 =T — 1) (gfj”) () + Yt> :
where
1 Ui xt—i—uZ“ —f(xt —UZt 7,)
- . Z 79
g m Z 2u b,

where each Zy ; is drawn i.i.d from N(0,I), v > 0 is the
smoothing radius, and Y; ~ N (0, %I ) with r > 0 denoting
the perturbation radius.

Then, there exist absolute constants ¢c; > 0,Cy > 1 such
that, forany T € ZT and T > 7 > 0, a > 0 and § €
(0, 1/e], upon defining Ho - (0) to be the event on which the
inequality

f(zr) — f(zo) 3)
37] T—1 1 m
RERIrPY

I 2 3d T—1
+ (L4 D) S0 s

«
t=0

Z5V f () ’ )

4 2 3 T\?* 2 4 2 4 T\*
+Tmnu”p” - eid 10g§ +T7Ln"u p” - c1d logg

T
+neir?(a+ nL) log 5 + 1e1Ln?r? 5)

is satisfied (where x := log(C1dmT/4)), we have

P(Ho,r(é))zlf(T—;@é, 57'6

P(NI_1Ho-(5)) > 1— =

forany0 < 7' <T.

Our goal is to show that we can arrive at a contradiction
f(zr) < min, f(x) when there is a large number of steps
at which |V f(z¢)|| > e (Proposition 1). As we can see
from Eq. (5), this implies that we need to prove a lower
bound of the form

T-1 m T-1
1 2 1 elny®d 2
- >Q = A

> > (a + SN STV F ()

t=0
(6)

Z5V f (1)

for some « which is not too large (an example would be pick-
ing « such that it only scales logarithmically in the problem
parameters). However, it is tricky to prove such a lower-
bound in the zeroth-order setting. In particular, for small

S 2V f () ||2 could be small even

as ||V f(x)||? is large; this is because for each i € [m], Z;
could have a negligible component in the V f(z;) direction.
This necessitates a more delicate analysis to prove a bound
similar to Eq. (6). Due to space reasons, we defer our more
detailed proof approach outline to Appendix D (see the dis-
cussion immediately following Lemma 1). The results in
Appendix D culminates in the following result which limits
the number of large-gradient.

batch-sizes m, +
m

Proposition 1 (Bound on number of iterates with large gra-
dients, informal version of Proposition 4). Let ¢ € (0,1/¢]

be arbitrary. Letting O hide polylogarithmic dependencies
on § (and other parameters), consider choosing u, r, 1 and
T such that

u—@(ﬁd) = 0(e), 1 O( )
T_Q<((f(wo) +62/L)

Then, with probability at least 1 — O(9), there are at most
T /4 iterations for which |V f(x¢)|| > e.

3.2. Making progress near saddle points

Challenge. The noise in two-point zeroth-order estimators
makes the analysis around e—approximate saddle points
challenging, because the concentration properties of the
(non-subGaussian) noise are hard to characterize. Intuitively,
a noisier estimator might facilitate easier escape from sad-
dle point. However, without an appropriate concentration
bound, the noise may behave in unpredictable ways, prevent-
ing escape from saddle regions. Previous analysis of saddle
point escape using stochastic estimators typically requires
these estimators to satisfy subGaussian properties (Jin et al.,
2019a; Fang et al., 2019), which zeroth-order estimators do
not satisfy.

High-level proof outline. (i) We first prove a technical
result showing that the travelling distance of the iterates
can be bounded in terms of the function value decrease
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(i.e., Improve or Localize, Lemma 2). (ii) Next, at any e-
saddle point, we consider a coupling argument and define
two sequences running near-identical zeroth-order dynam-
ics, differing only in the sign of their perturbative term along
the minimum eigendirection of H , which denotes the Hes-
sian of the saddle (Lemma 3). Using Lemma 2 in point
(1), if we assume for contradiction that the two sequences
both “get stuck” and make little function value progress,
the dynamics of the difference between the two sequences
will remain small as both sequences remain close to the
saddle point. iii) However, since the perturbation vectors
of the two sequences differ in the (most) negative direction
of H, the norm of the the difference of the two sequences
will grow exponentially so long as a). the sequences remain
close to the saddle point (and thus the Hessian has a negative
curvature direction) and b). the effect of the zeroth-order
stochastic noise can be controlled. This leads to a contradic-
tion, implying that sufficient function decrease must have
been made (Proposition 5 in Appendix E.3). (iv) To show
that the zeroth-order stochastic noise can be controlled, we
prove one technical result (Proposition 2), providing a con-
centration bound for the product of (possibly unbounded)
subGaussian random vectors that scales linearly with the
dimension d. This enables us to control the effect of the
zeroth-order noise near saddle points, and is essential in
showing that the eventual sample complexity scales linearly
with d.

We provide a more detailed proof sketch below, where we
elaborate more on our analytical challenges and ideas. We
first introduce an informal statement of a key technical result
that bounds, with high probability, the travelling distance of
the iterates in terms of the function value decrease.

Lemma 2 (Improve or Localize, informal version of

Lemma 23). Consider the perturbed zeroth-order update Al-
gorithm 1. Let § € (0,1/e| be arbitrary. Consider any T =

Q (% log(1/6)), and any to > 0. For any F > 0, suppose
f(sz-i-tg) - f(xto) > —F,ie. f(xto) - f(sz-i-to) < F.
Letting O hide polylogarithmic terms involving 6, suppose

-0 (B5) 0l ).

o(mf>

n

Then, with probability at least 1 — O (TT‘S) (here T >
T denotes the total number of iterations), for each T €
{0,1,...,Ts}, we have that

|44 — 210 |I> < b1, (8, F),  where

b7, (6, F) =0 (max {Ts, i}) IF + O(re?).

Intuitively, the above result shows that if little function value
improvement has been made, then the algorithm’s iterates

have not moved much, such that it remains approximately
in a saddle region if it started out in a saddle region. Next,
Lemma 3 formally introduces the coupling we have men-
tioned, setting the stage for the rest of our arguments. For
notational convenience, in this section, unless otherwise
specified, we will assume that the initial iterate x( is an
e-saddle point.

Lemma 3. Suppose x is an e-approximate saddle point.
Without loss of generality, suppose that the minimum
eigendirection of H = V2f(xg) is the e, direction
(i.e. the first basis vector in R%), and let  to denote
~Amin(V2f(x0)) (note v > \/P€). Consider the following
coupling mechanism, where we run the zeroth-order gra-
dient dynamics, starting with xq, with two isotropic noise
sequences, Y; and Y, respectively, where (V)1 = —(Y1)},
and (Yy); = (Y1)} for all other j # 1. Suppose that the
sequence {Zy ;}ier icm) IS the same for both sequences.
Let {x;} denote the sequence with the {Y;} noise sequence,
and let the {x}} denote the sequence with the {Y}} noise
sequence, where x{, = x, and

ZC;-H
) Yoy (Zt,iZtT,ivf(x:&)Jr%Zt,iZtT,ifﬂ,z’Zt,i) )
=Ty m +1/;5 )
=~ H;, . —H, .
and Hi; = —ttt—tie with H], , = V2f(z} +

agﬂH_uZz() for some oy, . € [0,1], and H;, =
V2 f(xy — o ; _uZj) for some o) ; _ € [0,1]. Then, for
anyt > 0,

i’t+l

/
= T4l — Teqa
t

=-n Z(I_WH)t_Tégo (T)—n Z(]_WH)t_T(HT —H)i,

7=0

Wgq (t+1) Wiy (t41)

—nY (I=nH)" "u(r)—n Y (I—nH)" Y,

W (t41) W (t+1)
where
1 m
€ao (D) = > (Z0iZi =DV [ (1),
i=1

m

€0 (0) = = > (ZualZui) =DV (&),

i=1

un(0) = oo (1) — 00 (0), Eult) = — > 2 0Bl Zs,
1=1

(VIR

f; (t) = % Z th,iZt,iﬁLg,iZt,i’ éu(t) = ﬁu(t) - f;(t)z
i=1

1
f’}:thYt/, EQ:/ VQf(a:thr(lfa)x;)da.
0
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Our goal is to show that the dominating term in the evolu-
tion of the difference dynamics comes from the W), term
involving the additional perturbation. To this end, we need
to bound the remaining terms, Wy, Wgr, W,,. A key tech-
nical challenge is to find a precise concentration bound for
the Wy, (t 4 1) term, where

- qu (t + 1)

m

= UZ(I—nH)t'r(Z?;l(ZT’iZTviI)(vf(mf)vf(mT))> .

For the simplicity of discussion, we assume for the time
being that m = 1, and drop the ¢ index in the subscript
of Z,,. Since E[Z,Z]] = I, heuristically, assuming that
7.7 — I satisfies “nice” concentration properties, utilizing
the independence of the Z’s across time and the fact that
(I —nH) = (14 nv)I, we would like to show that with
high probability,

[wao 0]

t—1
< nd S 42 DR (|[(Z 2 = 1) (Vf (@) =V f (@)1 | Froa]
=0

(©]

where F,_; is a sigma-algebra containing all randomness
up to and including iteration 7 — 1, such that ., and . are

both in F._1, but Z; is not. Then, assuming that Eq. (7)
holds, since

E[[[(Z 2 = 1) (Vf(wr) = VI | Froa]
= 0(d)||V f(wr) = V)],

it follows that

t—1

Wao ()]l Snd O(d) Y (14m7)2 DV f (27) =V f(a}) |

7=0

With this bound on || W, (¢)||, we eventually prove in Propo-
sition 5 in Appendix E.3 that our algorithm escapes any
e—saddle point with constant probability and that the O(d)
term appearing in the square root term above will eventu-
ally lead to an O(d) dependence in the sample complexity?.
We note that the O(d) dimension dependence matches that
of the best-known existing upper bound for finding first-
order stationary points in smooth nonconvex zeroth-order
optimization (Nesterov & Spokoiny, 2017), and has been
conjectured to be the best possible dimension dependence
for general smooth nonconvex zeroth-order optimization
(Balasubramanian & Ghadimi, 2022).

Key technical challenge The key challenge in the
above argument is to show that an equation in the
form of Eq. (7) could in fact hold. At first glance,
that an inequality such as Eq. (7) should hold is rather

’For general 1 < m < d, there will also be an O(1/m)
dependence in the sample complexity.

non-obvious — this is because while the variable
(Z:Z; —I)(Vf(x;)—Vf(zl)) | Fr—1 is mean-zero, it is
subExponential rather than subGaussian. In fact, even in
the subGaussian case, given a sequence of random vectors
Xo, ..., &t_1, such that each E[x, | F,_1] = 0, and that
each . | F,_1 is norm-subGaussian with parameter
o, € JF;_1 (which is an appropriate generalization
of subGaussianity for vectors, proposed in (Jin et al.,
2019b)), proving a concentration inequality of the form

Hzt;:t x| ~O0 ( Sy a%) is a very delicate matter.

In our case, the analogue of ., is (I — nH)"™ =" (Z, Z, —
I)(Vf(x;)—Vf(zL)), while the analogue of o2 is (1 +
2R (22— 1) (Vf 0) =V @) [P Fra)-
Existing techniques (cf. (Tropp et al., 2015; Jin et al.,
2019b)) rely crucially on subGaussian properties that allow

for each 7 the moment-generating function E[e?Y~ | F,_]
to be defined for any fixed (and non-random) 6 > 0, where
Y. takes the form

_[o =
YT_L:T O]’

such that E[Y; | F._1] = 0 (since E[z, | Fr_1] = 0),
and the eigenvalues of Y, are ||« ||. In the case when x.,
is merely subExponential, the Moment Generating Func-
tion (MGF), E[e’Y | F,_4], will no longer be well-
defined at any fixed (and non-random) # > 0. This
poses a challenge in our setting, since x.- takes the form
(L —nH)™ " (2,2 — 1)(V f(2,) - V f (&), which is
subExponential rather than subGaussian. While it may be
possible to force (I — nH)! == (Z, 2] — I)(Vf(z,) —
Vf(z")) to be sub-Gaussian, say by normalizing Z, to
have norm v/d (note any bounded random vector is also
subGaussian), such that ||(Z, 2] — I)gH2 < d?||g|)? for
any vector g € RY, a careful examination of the argument in
Proposition 5 would show that this results in a O(d?) rather
than O(d) dependence in the sample complexity, incurring
a heavy price on the overall sample complexity (extra factor
of d) if d is large.

Our solution To overcome the issue, we build on the
following observation: with high probability, for any vector
g € R%, |Z] g is bounded within some log factor of ||g||.

On the event {|Z g| = O(||g||)}. the variable

(ZTZ;r —I)g = ZT(Z‘;rg) —g= Z‘ngH -9

behaves approximately like a subGaussian random vec-
tor since Z, ~ N(0,I;). Based on this intuition, af-
ter some careful analysis, we can show that (Z,Z] —
I)(Vf(x;) =V f(al)) | Fr—1 is subGaussian on the event
that |Z V f(z,)| is bounded within some log factor of
IV f(z;)||, which happens with high probability. This
then allows us to show that on this event, the correspond-
ing MGF is well-defined for all fixed # > 0, enabling us
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to prove a concentration inequality of the form Eq. (7).
This intuition is crystallized in the following proposition,
which proves a more general bound than what we strictly
need. For notational simplicity, we introduce the function
Ir(x) = log (xzlog(x)).

Proposition 2. Let F;, t > —1 be a filtration. Let (Z;)1>0
be a sequence of random vectors following the distribution
N(0,I) such that Z, € F; and is independent of F;_1,
and let (vi);>0 be a sequence of random vectors such that
vy € Fy_1. Foreach T > 0, let

T—1
Wr=>" M(ZZ] — I,

t=0

where each My is a deterministic matrix of appropriate
dimension. Then, there exist some absolute constants
c,C > 0 such that for any 7 € Z* and § € (0,1/e],
the following statements hold:

1. Forany 6 > 0, with probability at least 1 — §, we have

T—1
1
IW-AI<0 D IIMell5d(1r(CT/8))* [ve |+ log(Cdr /).

t=0

2. Forany B > b > 0, with probability at least 1 — §,

T—1
either Y || M| 5d(ix(C7/8))?||ve|* > B, or

t=0

T—1
W[ < |max {ZIIMtid(lr(CT/5))2llvtll2, b}

t=0

x /v/(log(Cd/5) + log(log(B/b) + 1))

Moreover, as is clear from the bounds above, we may pick
C > 1 such that log (%) > 1,V € (0, %]

With this result, along with a series of other technical results
in Appendix E.3, we can show that the algorithm makes
a function decrease of F' with (1) probability near an e-
saddle point (Proposition 5 in Appendix E.3). Armed with
Proposition 5, as well as Proposition 1, the main result in
Theorem 1 then follows. The complete detailed analysis
can be found in Appendix E (escaping saddle point) and
Appendix F (main result).

4. Simulations

We test the performance of our proposed algorithm with
two-point estimators (ZOPGD-2pt) against existing zeroth-
order benchmarks using the octopus function (proposed in
(Du et al., 2017)).3 It is known that the octopus function
defined on R?, which chains d saddle points sequentially,

30ur code can be found at https://github.com/
rafflesintown/escape-saddle-points-2pt

takes exponential (in d) time for exact gradient descent to
escape; it has thus emerged as a popular benchmark to eval-
uate algorithms that seek to escape saddle points. In our
experiments, we compare the performance of our two-point
estimator algorithm (ZOPGD-2pt) with PAGD (Algorithm
1 in (Vlatakis-Gkaragkounis et al., 2019)) and ZO-GD-NCF
(see (Zhang et al., 2022)), which are the only two existing
zeroth-order algorithms that have (a) a O(d/e?) sample com-
plexity for escaping saddle points (with the latter algorithm
yielding the tightest bounds), and (b) performed the best
empirically on escaping saddle points (see the simulation
results in (Zhang et al., 2022)). Both PAGD and ZO-GD-
NCF have to use 2d function evaluations per iteration to
estimate the gradient while our algorithm only needs to use
2 function evaluations. We plot the function value against
the number of function evaluations.

We tested the algorithms for d = 10 and d = 30. To account
for the stochasticity in the algorithms, for each algorithm,
we computed the average and standard deviation over 30
trials, and plotted the mean trajectory with an additional
band that represents 1.5 times the standard deviation. For
our algorithm’s hyperparameters, we picked

n= ﬁ,u =10"2,7r =0.05,m = 1.
Note m = 1 corresponds to using a two-point estimator. For
PAGD, we used the hyperparameters listed in their paper,
and for ZO-GD-NCEF, we used the code from their Neurips
submission. For initialization, we chose a random ¢ near
the saddle point at the origin, drawn from N (0, 1073 I3 4)

As we see in Fig. 2, our algorithm reaches the global mini-
mum of the octopus function in significantly fewer function
evaluations than PAGD and ZO-GD-NCF (approximately
2.5 times faster than ZO-GD-NCEF, and approximately 3
times faster than PAGD), despite our algorithm only using 2
function evaluations per iteration compared to 2d function
evaluations per iteration for both PAGD and ZO-GD-NCF.
This suggests that in addition to our theoretical convergence
guarantees, there can also be empirical benefits to using
two-point estimators versus existing 2d-point estimators in
the zeroth-order escaping saddle point literature.

5. Conclusion

In this paper, we proved that using two function evalua-
tions per iteration suffices to escape saddle points and reach
approximate second order stationary points efficiently in
zeroth-order optimization. Along the way, we also gave the
first analysis of high-probability function change using two
(or more)-point zeroth-order gradient estimators, as well as
a novel concentration bound for sums of subExponential
(but not subGaussian) vectors which are each the products
of Gaussian vectors. These technical contributions may be
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Figure 1: Performance on toy octopus function, with
d=30

of independent interest to researchers working in zeroth-
order optimization as well as general stochastic optimiza-
tion. Finally, we provided numerical evidence supporting
the theoretical convergence results.
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A. Related Work

Two-point methods in zeroth-order optimization. Two-point (or in general 2m-point, where 1 < m < d with d being
the problem dimension) estimators, which approximate the gradient using two (or 2/m) function evaluations per iteration,
have been widely studied by researchers in the zeroth-order optimization literature, in convex (Nesterov & Spokoiny, 2017;
Duchi et al., 2015; Shamir, 2017), nonconvex (Nesterov & Spokoiny, 2017), online (Shamir, 2017), as well as distributed
settings (Tang et al., 2019). A key reason for doing so is that for applications of zeroth-order optimization arising in robotics
(Li et al., 2022), wind farms (Tang et al., 2020a), power systems (Chen et al., 2020), online (time-varying) optimization
(Shamir, 2017), learning-based control (Malik et al., 2019; Li et al., 2021), and improving adversarial robustness to black-box
attacks in deep neural networks (Chen et al., 2017), it may be costly or impractical to wait for 2(d) (where d denotes the
problem dimension) function evaluations per iteration to make a step. This is especially true for high-dimensional and/or
time-varying problems. Indeed, for high-dimensional problems, two-point estimators can make swift progress even in the
initial stage compared to 2d-point estimator, and can reach a higher-quality solution if computation is limited (Tang et al.,
2020b; Chen et al., 2017). For instance, consider the work in (Chen et al., 2017), which studies the use of zeroth-order
estimators to perform black-box attacks on deep neural networks, in order to identify (and then defend against) adversarial
images that may lead to misclassification. In the paper, the authors employed two-point zeroth-order estimators, due to the
high computational cost of using 2d function evaluations per iteration for hundreds of iterations (here d is the dimension of
an image, which in this case is over 20000). The authors showed empirically that their two-point estimators worked well;
however there over no accompanying theoretical results.

For online or time-varying environments, two-points estimators also often preferable. Since zeroth-order methods are often
used in physical systems whose environment drifts or changes over time, this leads naturally to a time-varying or online
optimization. For these problems, 2d-point estimators will not produce a good estimation because the underlying function
can drift to a very different problem while waiting for the 2d function evaluations. Indeed, the fewer function evaluations an
optimization procedure needs, the faster it can catch up with the time-varying environment. In fact, for online optimization,
it has been shown that two points estimator is optimal for convex Lipschitz functions (Shamir, 2017). Thus, two-point
estimators are a natural fit for time-varying online optimization problems.

Saddle point escape with access to deterministic gradient. While standard gradient descent can escape saddle points
asymptotically (Lee et al., 2019; Panageas et al., 2019), it is known that standard gradient descent may take exponential time
to escape saddle points (Du et al., 2017). Hence, when access to deterministic gradient is available, research has centered on
escaping saddle points with adding perturbation (Jin et al., 2017), momentum/acceleration based methods (Jin et al., 2018b;
Sun et al., 2019a; Staib et al., 2019), or gradient-based robust Hessian power/curvature exploitation methods (Zhang & Li,
2021; Adolphs et al., 2019). In addition, there has also been work on escaping saddle points devoted to specific optimization
settings, such as constrained optimization (Mokhtari et al., 2018; Avdiukhin et al., 2019), optimization of weakly convex
functions (Huang, 2021), bilevel optimization (Huang et al., 2022), as well as on general manifolds (Sun et al., 2019b;
Criscitiello & Boumal, 2019; Han & Gao, 2020).

Saddle point escape in stochastic gradient descent (SGD). In practice, only stochastic gradient estimators are available in
many problems. While SGD may converge to local maxima in worst-case scenarios (Ziyin et al., 2021), under assumptions
such as bounded variance or subGaussian noise, there have been many works that have studied the problem of saddle
point escape in SGD (Ge et al., 2015; Daneshmand et al., 2018; Xu et al., 2018; Jin et al., 2019a; Vlaski & Sayed, 2021b).
The best existing rate (without considering momentum/variance reduction techniques) appears to belong to that of (Fang
et al., 2019), which converges to e-second order stationary points using O(l /€3:5) stochastic gradients. While zeroth-order
gradient estimators may also be viewed as stochastic gradients, they typically do not satisfy the bounded/subGaussian
noise assumptions that are assumed in these works, making a direct comparison inappropriate. Escaping saddle point via
momentum methods in SGD has also been studied (Wang et al., 2021; Antonakopoulos et al., 2022); while we do not
consider incorporating momentum in our works, this may be interesting future work. A number of papers has also considered
the specialized setting of escaping saddle points in nonconvex finite-sum optimization (Reddi et al., 2018; Liang et al., 2021),
with many considering the case where variance-reduction is used (Ge et al., 2019; Li, 2019). While the finite-sum problem
is quite different from our problem, the variance reduction approach considered in these works may be a relevant future
direction. The saddle point escape problem has also been studied in other specific settings such as compressed optimization
(Avdiukhin & Yaroslavtsev, 2021), distributed optimization (Vlaski & Sayed, 2021a), or in the overparameterization case
(Roy et al., 2020).

Saddle point escape with zeroth-order information. The problem of escaping saddle points in zeroth-order optimization
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has been studied less often, and we have already listed all known works comparable to our work in the introduction (Bai
et al., 2020; Vlatakis-Gkaragkounis et al., 2019; Balasubramanian & Ghadimi, 2022); a more detailed comparison of these
works with our results has been provided in the discussion following the statement of our main result Theorem 1. We
would like to mention that (Roy et al., 2020) also includes a convergence result of O (fi—z) for the case with noisy function
evaluations, which is incomparable to our existing work which focuses on the case with exact function evaluation. In
addition, (Roy et al., 2020) also makes a subGaussian assumption on the estimator noise, which zeroth-order estimators in
our paper do not satisfy. Nonetheless, considering the extension to noisy function evaluations will make for important future
work.

Zeroth-order optimization. Our work rests on a line of research in zeroth-order optimization which focuses on constructing
gradient estimators using zeroth-order function values (Flaxman et al., 2005; Duchi et al., 2015; Nesterov & Spokoiny,
2017; Shamir, 2017; Larson et al., 2019). As we have discussed, for smooth nonconvex functions, it is known that two-
point zeroth-order estimators suffice to find first-order e-stationary points using O(d/ €2) function evaluations (Nesterov &
Spokoiny, 2017). Our work studies the more complicated problem of reaching e-second order stationary points, attaining a
rate of O(d/e>?).

B. Proof Roadmap

We begin by introducing several key concentration inequalities in Appendix C which we will frequently use in our proofs.
We then describe in detail (and prove) the sequence of results that lead up to Proposition 4 in Appendix D, showing that
there cannot be too many iterations with large gradients. Next, we describe the saddle point argument in detail, and prove
Proposition 5 in Appendix E.3. Finally, we combine these results and prove our main result Theorem 2 (whose informal
version is Theorem 1) in Appendix F

Throughout our proofs, absolute constants, as denoted by e.g. (¢, ¢/, C'), may change from line to line. However, within the

same proof, for clarity, we try to index different constants differently. We assume d > 2 and m < d.

Notations. We shall denote the conditional expectation and conditional probability by Ex[-] = E[- | F] and P£(-) = P(- |
F) where F is a sigma-algebra.

C. Concentration inequalities

This section serves to introduce several probabilistic results which will be useful for our main proofs in subsequent
sections. We first introduce subGaussian, subExponential and norm-subGaussian random vectors in Appendix C.1. Next,
in Appendix C.2, we provide concentration bounds for norm-subGaussian and subExponential random vectors. We then
prove a novel concentration inequality involving products of subGaussian random vectors in Appendix C.3. We conclude by
stating some concentration bounds for Appendix C.4 random variables.

C.1. subGaussian, subExponential and norm-subGaussian random vectors

We first define subGaussian and subExponential random vectors. A detailed reference for these concepts can be found in
(Vershynin, 2018).

Definition 5 (subGaussian and subExponential random vectors). A random vector & € R? is o-subGaussian (SG(0)), if
there exists ¢ > 0 such that for any unit vector g € S4~1,

E[exp(A(g,x — E[z]))] < exp(A\?6?/2) VA €R.

Meanwhile, a random vector € R? is o-subExponential (SE(0)), if there exists o > 0 such that for any unit vector
g €S+,
E [exp(AMg, 2 — E[z]))] < exp(\?0?/2) V|A| <

1
o

An alternative concentration property for random vectors revolving around its norm, known as norm-subGaussianity (Jin
et al., 2019b), is also relevant.
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Definition 6 (norm-subGaussian random vectors). A random vector € R¢ is o-norm-subGaussian (n1SG(o)), there exists
o > 0 such that

2
P(||lz — Ex|| > s) < 2e” 2.2 Vs> 0.

We recall the following result which provides several examples of nSG random vectors. In particular, it tells us a random
vector & € R? that is (¢/+/d)—subGaussian is also o-subGaussian.

Lemma 4 (Lemma 1 in (Jin et al., 2019b)). There exists absolute constant ¢ such that the following random vectors are all
nSG(co).

1. A bounded random vector x € R? so that ||z| < o.
2. A random vector & € R%, where © = £e, and the random variable ¢ € R is o-subGaussian.

3. A random vector x € R? that is (o /\/d)—subGaussian

In addition, if € R? is zero-mean nSG(0), its component along a single direction is also subGaussian.

Lemma 5. Suppose © € R? is zero-mean nSG(c). Then, for any fixed vector v € RY, (v, x) is zero-mean |v|o-
subGaussian.

Proof. Without loss of generality, we assume that v € S?~! is a unit vector. That (v, ) is zero-mean follows directly from
x being zero-mean and v being fixed. Meanwhile, since |[(v, x)| < ||v||||z|| = |||, for any s > 0, it follows that

92
B(|{v, 2)| > ) < B(|l2]| > s) < 2752,

where the last inequality follows from the fact that x is zero-mean and also nSG(c). Hence (v, x) is zero-mean SG(o), as
desired. O

C.2. Concentration bounds for norm-subGaussian and subExponential random vectors

We begin by giving some concentration bounds for norm-subGaussian random vectors. To do so, we introduce the following
condition.

Condition 1. Consider random vectors x1, . . ., x,, € R, and corresponding filtrations F; generated by (z1, .. .,x;). We
assume x; | F;_1 is zero-mean, nSG(o;), with o; € F;_1, i.e,

E [:BZ ‘ .7:2‘_1] = 0,

and
2

s

P(|lai]| > s | Fim1) <2 7% Vs >0,

where o; is a measurable function of (x1,...,x;_1) for each i.

For norm subGaussian random vectors satisfying Condition 1, we first have the following bound.

Lemma 6. Suppose (x1,...,x,) € R? satisfy Condition 1, i.e. each x; | F;_, is mean-zero, nSG(a;) with o; € F;_1. Let
{w;} denote a sequence of random vectors such that w; € F;_1 for every i € [n]. Then, there exists an absolute constant c,
such that for any 6 € (0,1) and \ > 0, with probability at least 1 — 0,

n

S (i) < A il o? + 5 og(1/0)

=1 i=1

Proof. We note that if x; is mean-zero and nSG(o;), then by Lemma 5, (u;,x;) | F;—1 is zero-mean and |u;| o;-
subGaussian. The rest of the proof follows from the proof of Lemma 39 in (Jin et al., 2019a) (key idea is exponentiate
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and then apply Markov’s inequality). For completeness, we restate the proof here. Observe that for any 4, since (u;, x;) is
||u; ||os-subGaussian, for any A > 0, we have that

E [exp(Aui, @) | Fio1] < exp(3°|us|*07/2)

For any A > 0 and s > 0, observe that
P (Z Mus, i) = N||ug| 07 /2 > 8)
=1
—P <exp (A > (ui, @) — N 02/2> > exp(As))

i=1

<E |exp (/\ Z(ul,:m} — 22| 02/2>1 exp(—A\s)
—E|E lexp <)\ Z(u“:m} ||ul|| 02/2> |.7-"n 1” exp(—A\s)
L i=1
=FE |exp </\ i(uz,mﬁ — N2l 02/2> [exp (A(un,wn> — /\2Hun||20i/2) |.7-"n_1H exp(—As)
()

<E [exp (AZ wi, i) — N2 |ug| 02/2>

Above, (i) follows from the fact that (w;, x;) | F;_1 is zero-mean and ||u;||o;-subGaussian for each i € [n]. The final result
then follows by picking ¢ = % and s = log(1/4). 0O

exp(—As) < -+ < exp(—As)

Assuming Condition 1, the following concentration result also holds for a sequence of nSG random vectors.

Lemma 7 (Lemma 6, Corollary 7 and Corollary 8 in (Jin et al., 2019b) combined). Suppose (x1,...,z,) € R? satisfy
Condition 1. Then, there exists an absolute constant ¢ such that for any fixed § € (0,1), 6 > 0, with probability at least
1-49,

n
PO
i=1

n
1
<ch 2+ ~log(2d/9).
<o) ot + 5log(24/5)
Moreover, there are two corollaries.

1. (Corollary 7 in (Jin et al., 2019b)) When {0} is deterministic, there exists an absolute constant ¢ such that for any
fixed 6 € (0, 1), with probability at least 1 — 6.

n
D@
i=1

<c,|log(2d/6) ) o?
=1

2. (Corollary 8 in (Jin et al., 2019b)) Suppose that the {c;} sequence is random. Then, there exists an absolute constant ¢
such that for any fixed 6 € (0,1) and B > b > 0, with probability at least 1 — §:

either ZO’ >B or

>

< ¢, | max {ZO‘ } (log(2d/0) 4 log(log(B/b)))

We state here a Bernstein-type concentration inequality for sub-exponential random variables, which we also need.
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Lemma 8 (Bernstein concentration inequality). Consider a sequence of independently distributed o-subexponential
variables 1, . .., x, € R, withmean E[x;] < /o for some ¢’ > 0 and each i € [n]. Then, there exists an absolute constant
C > 0, such that for any § € (0, 1), with probability at least 1 — §,

Zwi < Co(n+log(1/9)). (8)

=1

Proof. The result of Eq. (8) follows by applying Bernstein’s inequality to 2?21 x; — E[x;] (so each summand is mean-zero).
Per Bernstein’s inequality, (cf. Theorem 2.8.1 in (Vershynin, 2018)), there exists an absolute constant ¢ > 0 such that for

any s > 0,
P zn:(w —E[x;]) > s | <exp | —cmin s
i=1 Z v B Y TLO’2’ g .

Pick s =0 (n + M). Then,

s\ log(1/5) | (log(1/8))?  log(1/8)\ _  log(1/5)
mln{ } mm{n—i—? + n+ } n+ .

no?’ o c c2n ’ c c

Continuing, we have that

P (é(m ~E[z)]) > s> < exp (cmin {;_22 Z}) < exp (c <n+ log(cl/5)>) <.

Thus, it follows that with probability at least 1 — 0,

zn:(f'?z' —Elz]) <o ( log 1/5 ) sz <o < 10g(§/5)> +ndo,

i=1
where implication holds since by assumption, E[z;] < /o for some ¢/ > 0. Then, by setting C = max{1 + ¢/, 1/c}, the
desired result follows.

C.3. A novel concentration inequality for the zeroth-order setting

In the zeroth-order setting, we will frequently have to bound the norms of terms of the form

T—1
Wr =Y M{(ZZ] — I, 9)
t=0

where M, is a known and fixed quantity, while Z; is random, and v, depends on x( and the history of previous {Z; }t is
and is hence F;_;-measurable. For our purposes, it suffices to consider Z, ~ N (0, I).

To see why such a bound will be useful, as mentioned in the main text and as we will see again later in the full proofs, in the
analysis of escaping saddle points, we need to bound a term of the form

|
—

T

Woo(r) =0 (I —nH)"'"HZ2] — D)(Vf(x:) = Vf(2}),

Il
=]

where H = V2 f(x() (assuming that g is an e-saddle point), and x; and z} are two coupled sequences. Comparing with
Eq. (9), we see that for the equation above, we can define M; = n(I — nH)™ '~ (a fixed and known quantity) and
ve = Vf(xy) — Vf(x}) (clearly, Vf(z) — V f(x}) is F;—1-measurable). This motivates why we wish to bound terms of
the form Eq. (9).

Observe that each (Z;Z,' — I)v; | F;_1 term is subExponential rather than subGaussian. While it is possible to define
norm-subExponential vectors in analogous way to norm-subGaussian vectors, the corresponding moment generating function
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(MGF) for subExponential random variables is not defined on the entirety of R. When bounding a sum in the form of
:;01 (Z:Z,] — Iy, this creates a subtle but challenging technical issue.

Following the intuition outlined in the main text, we bypass this difficulty by proving the following result. For notational
simplicity, we introduce the function
Ir(z) = log (x log(x)) . (10)

We now recall Proposition 2 which we first introduced in the main text.

Proposition 2. Let F;, t > —1 be a filtration. Let (Z;);>¢ be a sequence of random vectors following the distribution

N(0,I) such that Z, € F and is independent of F;,_1, and let (v,);>0 be a sequence of random vectors such that v, € F;_1.
For each ™ > 0, let

T—1
W, =Y M(ZZ/ — v,

t=0

where each My is a deterministic matrix of appropriate dimension. Then, there exist some absolute constants ¢, C > 0 such
that for any 7 € 7" and § € (0, 1/¢], the following statements hold:

1. For any 6 > 0, with probability at least 1 — 6, we have

T—1
1
IW-AI<c0 ) |IMe|5d(1x(CT/8))* [[ve|* + 5 log(Cdr /5).

t=0

2. Forany B > b > 0, with probability at least 1 — 9,

T—1

either Y || M| 5d(Ir(C7/8))?||ve|* > B, or
t=0

T—1
W=l < maX{ZIIMtgd(lr(CT/5))2||vt||2»b}

t=0

x '/ (log(C7d/5) + log(log(B/b) + 1))
Moreover, as is clear from the bounds above, we may pick C > 1 such that log (%) > 1,V € (0, %}

Proof. We will focus on proving the first point, since the second follows as a natural corollary of our proof of the first part
and the proof of Corollary 8 in (Jin et al., 2019b). For simplicity, we shall assume v; # 0 in the intermediate steps; extension
to the general case is straightforward.

First of all, for 0 < o < 1, let

2o pvERal) et o 2 e 0y/21x(1/0)
g(a,é)—\/;/a (x® —1e /da:—\/;<oze / _log(1/6)>'

It’s not hard to see that for a fixed § € (0, 1/e], g(a; d) is continuous and strictly increasing over « € [0, 1). Then, since

10% + 1 <z forx > 1, by plugging in z = log(1/4), we get
Ir(1/6)  loglog(1/d) +log(1/0) 1 loglog(1/6)
P T CCAS TR R
which leads to
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for § € (0,1/e]. Furthermore, we obviously have ¢g(0; d) < 0. Therefore g(«; d) = 0 has a unique solution in (0, 2d), which
we denote by a(8).* These results imply that, for a random variable Z following the standard normal distribution, we have

) 2 v 21r(1/6) ) ey
E{(Z - 1)1a(5)§|Z\S\/m} - \/;/a(é) (27 = 1)e™ Tde = g(h(9);0) = 0

and

1 o0 2 ]_ Oc(ls) 2
Pla(d) < |Z] < /21r(1/6)) >1 -2 / _w/de_g_i/ e~ /2 4y
(a(0) < |Z] (1/6)) < vor | s 7,

b2 (; ( zwé)*3%>:1‘2<2logf1/6>+0\}(§>
>1—2<6 \/27>>1—C<5

for any ¢ € (0,1/¢], where we define the absolute constant C' := 2(1/2 + 2//27).

Ay = {a(a) Nzl 21r(1/(5)}.

Y

Now we let A; denote the event

[z |
Since Z,' v;/|v¢|| conditioned on F;_; follows the standard normal distribution, we have
Pr,_,(A) > 1-C6, an

and
Ex,_, [v/ (Z:2] —I)vla,] =0.

Moreover, for any random vector v € F;_; that is orthogonal to v;, we have
Er, (v (2.2 —I)vla,| =Ex,_,[u' Z)] Ex_,[Z vila,] =0,
where we used the fact that Z," u is independent of Z,” v; conditioned on F;_;. Therefore
Er,_,[(Z:Z] — I)v,14,] =0.
Consider defining then the random variable Q); by
Q= (Z2Z,) — Iy - 14,.
We now show that Q; | F;_ is norm-subGaussian. Let u € R¢ with ||u|| = 1 be arbitrary. We have

UTQt = UT(ZtZtT — I)’Ut . ]].A

t

T T

T [ Utl Uty T

=1U + 1 - )(ZtZ _I)Ut']lAt
(vtll2 [[oe]2 '

T, 12 T

T | Z, vl > T( Vel ) T

=u v —1)-14,4+u (I- (Z1Z, — Dy - 1g,
< [[ve]|? [[vel|? !

T |2, v T T
=Uu Ut TAE — 1) 14, +u, ZiZ, ve- 1g,,
t

“By letting W (x) denote the the principal branch of the Lambert W function, it can be shown that
2021r(1/4) >
(e (5 ) = — Wo (— 5 |-
\/ (log(1/5))?

18




Escaping saddle points in zeroth-order optimization: the power of two-point estimators

ool )
where we denote u| = (I — 7t ) u. Since
[lvell

ZT 2
T (Ivl _ 1) L,

<lu' -
e <|u'v(21e(1/6) — 1),

T 2
we see that u ' vy (‘i‘v;ﬂﬂ - 1) - 14, conditioned on F;_1 is |u'v:|(21r(1/8) — 1)-subGaussian. Furthermore, since

lul ZiZ vy - 1a,| < |Z7uy|\/210(1/6)| 0|, we have

Pr., (W] ZZ] v 14| 2 ) <P, (12 s |yV2E(/D) ]| > 5).

and since Zyu, /|luy| | JFi—1 follows the standard normal distribution, we see that u|Z,Z, v, - 14, is a

) . . T e T, (12w ). T T,
v/21r(1/0)||u||||ve]|-subGaussian variable. Note that w ' @y is just the sum of u ' v, e — 1) - La, anduy ZZ, v

1 4,, we can conclude that u' @; is subGaussian with parameter
(21r(1/6) = )" vg] + v/21r(1/6)[fu s [[Joe]

< 21r(1/8) (Ju v + fJullfvell) < 2\/51r(1/5)\/luTvt|2 + ur [P foe]?
= 2v21r(1/6) ve |,

whenever § € (0,1/¢]. Consequently, by Lemma 1 in (Jin et al., 2019b), we see that Q; | F;_1 is 81r(1/8)v/d||v;||-norm-
subGaussian.

It follows easily that M;Q, | F;—; is mean-zero and 81r(1/8)|| M ||, ||v¢||v/d-norm-subGaussian. Hence, by Lemma 6 in
(Jin et al., 2019a), we know that there exists an absolute constant ¢ > 0 such that for any 8 > 0 and § > 0, we have that with
probability at least 1 — 6,

T7—1

> M@,

t=0

T—1

1
< c8y d(Ir(1/8))°(|Melloe)® + g log(2d/9).
t=0

Now, consider denoting the event

A= A= {12 w] € (o)l VIR 0al) , e {0,713}
t=0

By the union bound and Eq. (11), we note that
P(A) > 1—71C6.

Moreover, note that on the event A, 22;01 M,Q; = :;01 M(Z:Z, — I'v;. Hence,

|
>

- (|5
(o

>1— (5 +7C9).

T—1
> M(Z,:2] — D,
t=0

= 09Z_:d(lr(l/ﬁ))zllMtllgllvtH2 + ;10g(2d/5)>
t=0

T—1

7—1

< e8> d(ir(1/8)* Ml + 5 log(2d/6), and 4 happens>
t=0

7—1

> MY,
t=0

> 0’ d(Ie(1/8))2 My 2w + ;log@d/a)) + P(AC))

t=0

Now, by rescaling 0 to §/(Ct + 1), we get the desired result. Note this C'is different from the C in the statement of the
lemma by an absolute multiplicative factor. O
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C.4. sub-Weibull random variables

In our work, we occasionally require bounding sums of heavy-tailed distribution, e.g. higher powers of ||Z| where
Z ~ N(0,I). To this end, we consider the following definition of sub-Weibull random variables.

Definition 7. We say that a random variable X € R is sub-Weibull(K, «) for some K, a > 0,

P(|X| > s) < 2exp(—(s/K)Y*) Vs> 0.

For instance, the standard normal distribution is sub-Weibull(1, %). From the way we define the tail parameter c, the larger
the «, the heavier the tail of the distribution.

In our work, we need to show that the sum of sub-Weibull random variables is again sub-Weibull, which is ensured by the
following result

Lemma 9. Suppose X and Y are sub-Weibull(Kx,«) and sub-Weibull(Ky ,«) respectively. Then, XY is sub-
Weibull(C(Kx - Ky),2a) and X +Y is sub-Weibull(C(K x + Ky ), ) for some absolute constant C' > 0.

A helpful result is the following, which bounds the sum of identically distributed sub-Weibull random variables.

Lemma 10 (Corollary 3.1 in (Vladimirova et al., 2020)). Suppose X1, ..., X, are identically distributed (K', o) sub-
Weibull random variables. Then, for some absolute constant ¢ > 0, for all s > ncK’, we have

P( > ) <eo (- () ")

In our work, we frequently need to bound sums of the k-th power of the norm of a standard d-dimensional Gaussian. We do
so using Lemma 10.

n

>

i=1

Lemma 11. Suppose X; s N(0,1,) fori € [n). Then, for any k € 7™, there exists absolute constants c,C > 0 such
that for any 6 € (0, 1), with probability at least 1 — 9,

ZHXiH%

=1

< nCc*d"(1+ (log(1/6))%).

In particular, for any 6 € (0, 1/e) such that log(1/8) > 1, it follows that

n
) el

i=1

< 2nCc*d*(log(1/6))".

Proof. First, observe that for any j € [d], (Xl)f being subExponential, is (1,1)-subWeibull. Then, by Lemma 9,

X7 = Z?Zl(Xi)? is (cd, 1) for some absolute constant c. Now, it follows from definition of sub-Weibullness in

Definition 7 that || X;||** is (c*d*, k)-subWeibull. Hence, applying Lemma 10, we have that there exists absolute constant

C > 0 such that for any s > nCcFd*,
s 1/k
2 ¢ SeXp<_(nCckdk) )

]P <
Choosing s = (1 + (log(1/6))*)nCc*d*, we arrive then at the desired result. O

n

k
>l
=1

C.5. Supermartingale concentration inequalities

We first state and prove a supermartingale-type concentration inequality of the form we later require.
Lemma 12. Consider a filtration of sigma-algebras Fo C F; C - -+ C Fp—1 C F,, and a sequence of random variables
Xi,..., X, such that X; € F;. Suppose that

]P)]:FI(XZ' < a) =1 and P]:

i—1

(Xi <—b)>p (12)
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for some a,b > 0and 0 < p < L. Then, for any 0 < p < b such that |—b + p| > ( + ), we have

P X, > — < _—— .
(Z = ”””)‘exp( 4n(b—u)2)’ v >0

i=1

Proof. Observe that by Markov’s inequality, for any A > 0,

P (i: X; > —np+ s) =P (exp <)\ zn:(Xz + M)) > exp()\s)> < E fexp (A3 (Xi + N))}

exp(As)

exp </\ i:(Xi + u)) Er, . [exp(A(Xn + p))]

Now, observe that

E =E

exp <>\ Z(Xz + N))

i=1

i=1

Ez,_, [exp (A > X+ u))

=E 13)

i=1

Let us now compute Ex,_, [exp(A(X,, + u))]:
Er. . [exp(A(Xn + p))]
= / exp(Max + p) Pr,_, (X, € dx) —|—/ exp(Mz + p)Pr, (X, € dx)
(—o00,—b] (—b,a]
SPr, (Xn < =b)exp(M(=b+p)) + Pr,_, (=b < Xy < a) exp(Aa+p))
<pexp(AM=b+ p)) + (1 = p)exp(Ma + p)).

Then observe that by our choice of p, —b + p < 0, and that |—b + u| > (a + M) =P Since we assumed p < < , this means
that 1%0 > landso forany k > 1,

1\ VE
e bt ul > (atp) (pp) — plbt > (1 - p)a+ ).

1-p
|=b+pl = (a+p)

Consequently, by Taylor expansion,

peXp(/\(*b +m) + (1 —p)exp(Ma+ p))

N (p(=b+ p)* + (1 — p)(a + p)*) — A(p(=b+ )" + p|—b+ ul*)
_1+Z ! <1+), !

k=1

)\Zk 2p‘_b+ﬂ|2k > /\le—b+/.t|2k
1

Xp()‘z(ib + ‘LL) )7

which leads to
Er,_ [exp(A(Xn + p))] < exp(A*(=b+ p)?).

Now, continuing from Eq. (13), we have that

exp <A > (X + u))

i=1

E

n—1

<E [exp (A > (X + u)) Er, .1 [exp(AM( Xy + p))]
=1

<E leXp (A z_:(Xi - u)) exp(A?(b - M)Q)]

i=1
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< exp(nA?(b— p)?).

Thus, for any A > 0 and s > 0,

P (Z P ) _ EfexpA(SI (X5 + 1))

P - exp(As)
< exp(nA2(b — p)? — \s)

By finding the minimizing ), we find that
P X; > - < _— ),
; = _exp( 4n(bu)2)

which completes the proof. O

We will later require a weakened form of a supermartingale concentration inequality, as stated and proven below.

Proposition 3 (Weakened supermartingale concentration inequality). Consider a filtration of sigma-algebras Fo C F1--- C
Fr. and a sequence of random variables X1, . .., X, such that X; € F;. Consider for eachi € {1,...,n} a bad set B;
where 1, € F;_1, and suppose

P]-],l(Xi]le < CL) =1 and P]—"i,l(Xi]le < —b) > P
for some a,b > 0and 0 < p < 1/2. Then, for any 0 < pn < b such that |—b + u| > 1%”(a—i—u), we have
n 82 n
P X, > — < S P(X; € Bi), V¥s>0.
Proof. We define ); :== X;1c. We can then apply Lemma 12 and get
P P> — < —_ .
2 @z s G =
Since P (X; # Q; for some i € [n]) <) . P(X; € B;), it follows that
n 82 n
Pl Xiz~— < e P(X; € B;),
; > —np+s _exp( 4n(b—u)2)+; (X; € B;)

which completes the proof. O

D. Function decrease in large gradient regime

In this section, we show that sufficient function decrease can be made across the iterations with large gradients. We first
restate and prove the function decrease lemma (Lemma 1), first introduced in the main text. We then provide a detailed
roadmap of our proof in the subsequent discussion following the proof of Lemma 1.

Lemma 1 (Function decrease for batch zeroth-order optimization). Suppose at each time t, the algorithim performs the
update step (with batch-size parameter 1 < m < d)

Ti1 =T — 1) (gf}”) (24) + Y%) :

where

m 1N floe+uZey) — e —uZyy)
9™ (z) = o ; 50 = Zt.is
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where each Z, ; is drawn i.i.d from N(0,I), v > 0 is the smoothing radius, and Y; ~ N (0, - I) with v > 0 denoting the
perturbation radius.

Then, there exist absolute constants ¢; > 0,01 > 1 such that, forany T € Zt andT > 17> 0, > 0and § € (0,1/€],
upon defining Ho - (8) to be the event on which the inequality

f(zr) = f(z0) 3)

T—1 m
3 1 2
- Zﬂ > ooy D |2V (@) O]
t=0 " i=1
T—1
n , aln’x’d 2
4 (L4 D) 549 o)
t=0
4
+ 7'77u4p2 s d? (log z;) + TLn2u4p2 erd! <10g %)
2 T 2 2
+ neir®(a+nl)log 5 +TeiLnr 5)

is satisfied (where x = log(C1dmT/4)), we have

P(Ho,-(d)) 21— @, P(NTy Ho» (8)) 2 1 — 20

forany 0 < 7/ <T.

Proof. First, foreacht € {—1,...,7}, we define F; to be the sigma-algebra generated by

Zo, ({ZO,i}zilv“'v{Zt,i}zil)v (%avn)
Note that F_; is the sigma-algebra generated only by z.
By Taylor expansion, for any z,y € R, there exists a € [0, 1] such that f(z+y) = f(z)+(Vf(2),y)+1y V> f(z+ay)y.

Therefore
flee+uZ ;) — floe —uZy)
2u

u -
=(Vf(x),Z) + §Z;|:th,iZt,i

with
H, V2 f(@ + aiyuZyi) = V2 f(@ — oy uZy,i)
i =
' 2

for some «; 4 € [0, 1], and

1 m
T = - (m > (2295 @) + 5 202 i Zes) + Yt> (14)

=1

< pul|Zy 4|

By the p-Hessian Lipschitz property of f, it follows that Hﬁtﬂ»

Observe that
o) L )
f(@er1) < fae) + (@1 — 20, V() + *||$t+1 — x|

(11) m

= f(x) an|ZHVf z1)|” —an SZN V(@) 2] HyiZoy — (Y f(20), Y2)

2
L1 & U ~
== Z; (204209 f(20) + 5 Z0i 2 1) + Yo
(i) m m NZENF @) wR| 28 e Zea|
n 2 n , t gttt i bt
L 3 (e e RO
=1 =1
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2 2

L
L

VAR
9 +4[|Yy ||

1 m
2 T 5
— E ZtiZy i HyiZy i
m “ 1
P

1 m
2 - Z Zt,iZtTivf(xt)

” 2 2 116
< ) Z;ZLW z)|’ %Zf" — (Y (1), V2)

i=1
Ui u
g |2 o A )| 432l 4
Ln utp?
Z!ZLW r+—2|| Zll° + =5 Zuz“n n(V (@), )
2
I/?’]2 1 i 2
+=5 (2 E;Zt,iZLVf(aro + 47| (15)

Above, to derive (i), we used the L-smoothness of f. To derive (ii), we used the expression for (x:11 — 2+) shown in
Eq. (14). To derive (iii), we used the fact that ab < (a2 + b2) /2 for any a,b € R0, as well as two applications of the fact

that ||a 4 b||*> < 2(|ja]|® + ||b]|*) for any two vectors a, b € R%. To derive (iv), we used the fact that Hﬁ“ < pul| Zy ;]|

To continue from Eq. (15), we first observe that we can rewrite
Zyi 2N (1) = (Zei 2 — DV () + V f (1),

so that

2

+ 2]V f (o) |-

m

%Z(th 1 — DV [ ()

i=1

<2

1 m
m Z; Zt7iZ;:in(xt)

Observe that we can apply the bound in Proposition 2 to HZ (Z: lZfT ;= DV ()], . 1s independent of
Fi_1 for all 7, we know there exist absolute constants ¢; > 0, 01 > 1 such that for any § € (0,1/e] and § > 0, with
probability at least 1 — § conditioned on F;_1,

m

Z(ZMZL — )V f(x)

i=1

< 0> dr(Com/5)7 |V ()| + 7 Tog(Crdm/)

=1

1
= ¢,0md(Ir(Cym/8))? ||V f (z0)||* + 5 108(Cidm/0). (16)
Moreover, since Cy > 1, log(C1dm/§) and Ir(Cym/§) both are at least 1 as long as 6 € (0,1/¢]. Observe that conditioned
on F;_1, Vf(x;) is fixed. Hence, we can pick

1
— amd Ie(Crdm/8)||V £ (z,)]|

which is F;_;-measurable, and plug it into Eq. (16) to find that the probability conditioned on F;_; of the following event

m

Z(ZMZ,:TJ =DV f(z1)

i=1

< 2/c1(Ir(C1dm/6))**Vmd||V f (a1) | (17)

is at least 1 — 4. By taking the total expectation, it follows that the event has a total probability at least 1 — §. Thus, with
probability at least 1 — 6,

2
<2

2
+ 2|V £ ()]

m

% Z(Zt,iZtT,i =DV f(zy)

i=1

1 m
m Z Zt,iZtTivf(xt)

i=1
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< 41 (K(Crm /0)* L9 F )| + 29 ()|
< o (x(Crdm ) |9 f(a0) 1s)

where the last inequality comes from the fact that lr(C'ydm/d) > 1, our assumption at the outset of the appendix that d > m,
and denoting ¢o := 4¢; + 2.

Denote the event H - (d) as the event that

Flan) — flzo) < — Zj:@ ij|ZLVf CCt)’ + Iy 5 cad(Ir( C1dm/5 )3 TZIHVf @)
t=0 =1
Nl P e i
4m t=0 i=1 Z t=0 i=1
—nz V (1), Yz) +2Ln2Z||Y|| (19)

— t=0
holds.

Now, continuing from Eq. (15), and using the bound in Eq. (18), summing over the iterations from ¢ = 0 to 7 — 1, we find
using the union bound that P(N7_, Ho - (6)) > 1 — 7', P(Hy - (6)) > 1 — 76.

Now, by Lemma 6, for any ¢ € (0,1), o > 0, with probability at least 1 — §, there exists an absolute constant c3 > 0 such
that

T—1

*UZ Vi(x),Y;) < n( ZHVf xt) +c3ar21og(1/5)> . (20)

t=0

Meanwhile, since Y; ~ N (0, (r2/d)I), ||Y;||* is sub-exponential with sub-exponential norm ¢r% for some absolute constant
c > 0, and by Bernstein’s 1nequahty (Lemma 8), there exists some absolute constant ¢4 > 0 such that

T—1

D IYil? < ear®(r + log(1/9)) 1)

t=0
with probability at least 1 — 4.

To bound 375 L S [1Z,4]|° and 357 L 2™ [ Z4.4||°, both sums of heavy tailed Gaussian moments, we use
Lemma 11, which states that for any k € Z* and ¢ € (0, 1), with probability at least 1 — &,

i S Z0al® < exr(co) (1 + (log(1/6))F) @)

t=0 =1

for some absolute constants ¢5, ¢g > 0. As in the statement of the proof, using x := Ir(Cydm/§) to ease the notation, denote
the event that

T—1 m T—1
3n 1 2 n  Ln®x3d
o) = fan) < = 3 S ZLV ) 4 (L EEED) S
t=0 =1 t=0
4.2 1 3 1 4
+ Tm; P -esepd? <log 5> + 7Ln*u*p? - cscd? (log 6)

1
-+ 2C4L772TT2

+ n(csar? + 2c4nLr?) log 3

holds as Ho. - (9).
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Plugging Eq. (20), Eq. (21), and Eq. (22) into Eq. (19), by union bound, we see that

P(NT_ Ho,(8) > 1— (7 +47)6 =1 =576,  P(Ho,) > 1— (1 +4)6.
The final result then follows by rescaling § to % and denoting c¢; = max{ca, ¢3, 24, ¢5¢3/2, c5ca ). O

Outline of proof approach. Similar to the first-order setting, our goal is to show that we can arrive at a contradiction
f(zr) < min, f(x) when there is a large number of steps at which ||V f(z;)|| > e. Roughly speaking, as Eq. (5) shows,
we need to prove a lower bound of the form

T-1

1 1 Ly3d\ <=
LS 2 0 (%4 S S s @3)

t=0 i=1 t=0

for some o which is not too large (an example would be picking « such that it only scales logarithmically in the problem
parameters). However, it is tricky to prove such a lower-bound in the zeroth-order setting. In particular, for small batch-sizes
m, Ly ||ZtT’in(:z:t) ||2 could be small even as ||V f(z)||* is large; this is because for each i € [m], Z; ; could have a
negligible component in the V f(z;) direction. This necessitates a more careful analysis to prove a bound similar to Eq. (23).

We do so using the following approach.

1. Intuitively, whilst for each individual iteration ¢, -1 3" | ||thT V() HZ could be small even as |V f(z;)|” is large,
in a small number of (consecutive) iterations {to, . . ., to + ¢}, with high probability, there will be at least one iteration

t within {to,...,to + t; — 1}, such that L > ||Z;Vf(xt)’|2 = Q(||Vf(x¢)]|?). We formalize this intuition in
Lemma 14. Thus, we consider breaking the time-steps into chunks where each chunk has ¢; consecutive iterations.

2. Consider any such interval {¢o, ..., tqg+ ¢ - 1}. There are two cases to consider.

(a) The first case is when the gradient throughout all ¢ iterations is large enough to dominate the perturbation terms.
Intuitively, in this case, it is not hard to see that given appropriate parameter choices, the gradient will change little
throughout the ¢ iterations. In fact, as we formalize in Lemma 16, for an appropriate choice of ¢ and 1, we can
show that

1
SIVF@)Il IVl <20V fzw)| - VE e {to,... to + 17 — 1}
As aresult, combined with point 1, we see that

to+ts—1

> ZHZFwat I > QUIV f () P).

t=to

Thus, by choosing « and 7 judiciously, for such intervals, it is possible to show that

to+ty—1 1 c Lnxdd to+ty—1
2 ZHZt VE@)| 2 QI (ae)I) 22 (a + 1m) > IVr@)IP
t=to t=to
(1 elnd 2
=Q (a t+— )0 (tf||Vf($m)|| )

Thus, in these intervals, it is possible to obtain function improvement on the order of 7(||V f (4, )||*).

(b) The remaining case is when the gradient is small and dominated by the perturbation terms in any one of the ¢
iterations. In this case, as we show in Lemma 17, for each of the ¢ iterations, the gradient will be small and on the
same scale as the perturbation terms. In turn, by choosing r, u and n appropriately, we can make the perturbation
terms small. Thus, whilst these intervals may not contribute to function decrease, they also contribute little in the
way of function increase.
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3. When there are at least T'/4 iterations with large gradient (i.e. ||V f(x¢)|| > €), assuming ¢ divides T, it follows that
there are at least 7'/ (4t ¢ ) intervals of length ¢ where one iteration in the interval contains a large gradient. By choosing
u, r and 1 appropriately such they are dominated by e, it is possible to show that with high probability, such an interval
cannot belong to the second case above, and must instead be from the first case. Since ||V f(z,)|| =~ ||V f(z4,)|| for
eacht € {ty,...,to +t; — 1} in this case, and we know that one of the iterations has a gradient with size at least €, it
follows that we make function decrease progress of at least n€(e2) for such intervals. By appropriately choosing 7, u
and r to limit the effects of the intervals of the second form, we can then show a contradiction of the form f(z7) < f*.
We demonstrate this formally in Proposition 4.

We formalize our approach in the following series of results. First, for analytical convenience, we prove the following result
showing that for any ¢, the perturbation terms ||Y; | and L 3™ || Z,; |* are bounded with high probability.

Lemma 13. There exists an absolute constant cg > 0 such that, for any t € N, the event

log(T'/6 1 & T\?
Gi(9) = {|Yt||2 < cir? <1 + d)) and EZ”ZMHZL < 2c3d? (1og 5)

i=1

has probability at least 1 — 20 /T for any § € (0,1/e].

Proof. Noting that Y; ~ N (0, (r?/d)I), by applying Bernstein’s inequality (Lemma 8), it can be shown that with probability

atleast 6 /T,
log(T/§
il < et (14 <EGR)
where c3 > 0 is some absolute constant. Then by using Lemma 11, applying the union bound, and redefining the constant
c3, we complete the proof. O

Next, in Lemma 14, we show that in a small number of iterations, with high probability, there exists some iteration ¢ such
1 m T 201 2
that =327, ’Zt,ivf(xt” > SV f ()"

Lemma 14. There exists an absolute constant co > 1 such that, upon defining

t(5) = mmgﬂ, 5> 0,
and defining the event
to+k—1 1 m 1
By (0:k) = {m S IZL @] 2 519l }
t=to =1
we have 5

forany 6 € (0,1), to € Nand k > t¢(9).

Proof. Denote the event
1 « 1
= { Y12V ()P < IIVf(xt)IIQ} :
m = 2
Observe that, conditioned on F;_1, the set of random variables {||V f(z)||> — |Z,;V f ()| }Z , are independent, mean-
I

zero, and subexponential with subexponential norm < ¢||V f(x)||? for some absolute constant ¢ > 0. Hence

m

Pr._,(E) =Pr,_, (;Zw Vi@ < IIVf(wt)|2>

=1

=P7,_, (Z (Ivs @2 - 2595 @of") > Z‘nwm)n?)
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< exp (=dm),

where ¢’ is some positive absolute constant. Then, for any g, k € N,

1 & 1
P(m ; ’ZtT,in(xt)P < §||Vf(xt)||2 for every ¢ € [to,to + k:))

to+k—1 to+k—2
- El H 1g,| =E H Ip, Bz, .\ [ﬂEth]]
t=to t=to
to-+h—2
< exp(—c'm) El H ]lEt] < - <exp(—=cd'mk).
t=to

Therefore, by letting c; = max{1,1/¢'} and

5
we get
(LS 1209 < LIVl forevery t € [to,to 1+ 1) ) < 2
m = & 2 ’ -1
which completes the proof. O
The term ¢ ;(9) will frequently appear in the proofs to come; in the sequel we denote
C2 T
te(0) = | —log = 0 € (0,1/e], 24
0= 20 g] 50 @)

where ¢y > 1 is the absolute constant defined in Lemma 14.
We next show that with high probability, the norm difference term ||V f(z,41) — V f(x¢)|| can be bounded in terms of
IV f(x:)|| and the perturbation terms H ) D Zt,iZt—;fItint,i

+ [1Ye )} (25)

Lemma 15. Define
where t(0) is defined in Eq. (24), and let C1 > 1 be the corresponding absolute constants defined in Lemma 1. Then there
exists an absolute constant c4 > 0 such that, whenever 1) satisfies

as well as ||Y%]|.

A(0) 1= {||Vf<xt+1>—w<$t)| < w - (

m
u T ind
— E Zyily Hy i Zy
2m 4 1 ’

i

ca(Ir(CrdmT /6))3/?V/d 1

L 26
" Jm = 86,0) (20)
we have 5
P(A(8) > 1- 2
forany é§ € (0,1/e|andt € Z+.
Proof. Since V f is L-Lipschitz, following the zeroth-order update step, we see that
IVFf(@er1) = V()| < Llwegr — ] (27
1 & U ~
=nL|—=Y 2.7 . — 2.2 H,;Z; + Y| 28
ny = ; 42V f () + o ; iy i HiiZei + Yt (28)
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Now, it follows from Eq. (18) (with a slight modification in the absolute constant terms since here the norm is not squared)
that there exists some absolute constant ¢4 > 0 such that for any 6 € (0, 1/e], we have that with probability at least 1 — § /7,
the event

< 04(1r(01me/5))3/2\/levf(xt)IL

+ ||Yt||> ,
+ ||Yt|>}

has probability at least 1 — § /7. O

1 m
™ z_; Zt,iZtTin(xt>

Hence, continuing from Eq. (28), it follows that with probability at least 1 — § /T,
IV f(@e41) = V()]

<L <C4(lr(Clme/5))3/2\/vaf(xt) +

m
’LL ~
.
— g ZyiZy Hy i Zy
2m 4 1 ’
1=

and by plugging in the condition Eq. (26), we see that the event

4/(5) = {IIVf<wt+1> - vt < T o (H;jn DAL

We show now that if the norm of the gradient dominates the norm of the perturbation terms, and we choose the step-size n
sufficiently small, then in a small number of iterations, the norm of the gradient does not change very much. For notational
simplicity, we denote the event

t1+to—1 m
uwll 1 ~
E(ty,te,0) = 8t6L7—§ZiZT-HiZi Y, .
(t1,t2,0) th {Vf(xt)||> £(0)n (2 e iZy i HeiZe || + || t||>}

Lemma 16. Let § € (0,1/e] and T € Z be such that T > 2t;(3) + 1. Consider any positive integer t’y < 2t(6), and
any tg € {0,...,T — 1 — t};}. Suppose n satisfies the condition Eq. (26). Then, on the event

tot+ty—1

Eto, t,0)n [ [ Ad) ],

t=to
we have )
S IVF@o)ll < IV (o)l < 2[[V f(zo)ll
forallt € {to,... to+1t —1}.
Proof. By plugging

IV A > 8t ()L (g

1 -
= Zii 2] Hy i 7
m =1 ’

+ ||Y2||>

into the definition of .4;(d), we see that, on the event & (to, ', d) N ( zo:t-;}—l At(5)> e have
Vf(x
IV f(xig1) = V(x| < W’

and consequently,
(1- ) 1@l < 19l < (14 4 ) 19w,

which leads to

L \tt L \tt
1— < <1
(1-m) Il <95l < (14 0 ) IV s
forall t € {to,...,to + t;}. Then, since (1 + 1/(42))*" < 2 and (1 — 1/(4x))** > 1/2 for any > 1, noting that
t’f < 2t4(6), we get the desired result. O
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Conversely, in the following result, we show that in a small number of consecutive iterations, if the gradient is smaller than
the perturbation terms in any one of the iterations, then for each of the iterations in this range, the gradient will be small and
be on the same scale as the size of the perturbation terms.

Lemma 17. Let § € (0,1/e] and T € Z* be such that T > 2t;(8) + 1. Consider any positive integer t’y < 2t(6), and
any ty € {0,...,T — 1 — t};}. Suppose n satisfies the condition Eq. (26). Then, on the event

to+ty—1 to+ty—1
Etotp, )0 [ () AG || () G ],
t=to t=to
we have
T\? log(T/6
[V f(zo)ll < esty(0)nL <u2d2p <log 6) +4/1+ Og(d/)r> vt € {to,to +1,...,to + 1 — 1},

where c5 is some absolute constant.

Proof. Lett' be the first iteration in {tg, %o + 1,...,%0 + t’f — 1} such that

ul| 1 & ~
HVf(:Ct/)H S 8tf((5)77L (2 E Z Zt’,iZt—’ert’,iZt’,i
i=1

+ |Yt'||> : (29)

Since we are working on an event which is a subset of £¢(to, ¢, 6), t' is well-defined. By | Hy il < pull Zer s,

IV f ()] <8tp (6 ( ZHZt' |+ ||Yt'||>

2
< Sty (cgudp(logf) rofor )

where we used the definition of G;(4).

Recall that ¢’ is the first time step such that Eq. (29) holds. By deriving similarly as in the proof of Lemma 16, we can show
that for any j € {to,t0 +1,...,t' — 1},
T\° log(T'/5
95l < 209 ()] < 1615 (5)nLey <u2d2p (1085 ) +y/1+ g(d”> .

Meanwhile, for iterations ¢ € [t', ¢o + t;), by using the definitions of A;(5) and G;(5), we have

1 20 T\? log(T/9)

1 t+1—t
- (H W) IV f ()l
t—t' —i 9
8 rat) ) )

< (Lt gig) IVl

(e R G R
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T\’ log(T
<el/t. 8tr(0)nLes <u2d2p (log 6) +14/1+ Og(M)r)

d
T\? log(T
+8t7(0)(e/* = 1) - nLes <u2d2p <log 5) +4/1+ Og(/é)r>

d
T\ log(T
< 16t4(8)nLes <u2d2p (log 5) +4/1+ Og(d/‘s)r> ,

where we used ¢ < 2t(5) and the fact that (1 — 1/(8x))?* < e/ for all z > 0. By defining c5 := 16¢3, we complete the
proof. O

We next derive a useful result showing that the function change f(z,) — f(xo) can be decomposed into one component
arising from intervals when the gradient dominates noise (which improves function value) and another component arising
from intervals with small gradient which may add to function value but whose contributions are bounded in terms of 7, u
and r. For now, we focus on the case 7 > t¢(J), since it will be useful to us in proving that there cannot be more than 7'/4
iterations with large gradient.

Lemma 18 (Function change for large 7). Let ¢; > 0,¢q4 > 0,c5 > 0,C1 > 1 be the absolute constants defined in the
statements of the previous lemmas. Let 6 € (0,1/e], and let T > t;(5)) be arbitrary. Consider splitting {0,1...,7 — 1}
into K = |7/t;(6)] intervals:
Jp = {ktf(5), oo (k+ l)tf<5) -1} 0<k< K -1,
Jx_ 1= {(K — 1)tf((5), e, T — 1}.

Let I, denote the set of indices k such that for every time-step t in the interval Jy, the gradient dominates the noise terms as

1 & ~
— 212 Hy 2,
m ’

i=1

IV £ > 8ts (3L (;

+ ||Yi> : (30)

Suppose we choose 1 such that

n<

1 vm m } 31)

Lty (5) min { 8ca(Ir(CrdmT/6))3/2y/d’ 128¢1 (Ir(CrdmT/6))3d

Then, on the event

T—1 T—1 K-2
E:(6) =H,(6)N <ﬂ At(5)> N <ﬂ Qt(5)> N ( ﬂ Bktf(a)(5;tf(5))> N Bk —1)t,(5) (05 7— (K =1)t£(9)),
t=0 t=0 k=0

we have the following upper bound on function value change:

2

ey 2 teJ 64

fzr) — flmo) < — Z mmHVf(:vt)H —I—T— n*tp(6)*L? <u2d2p <log Zg) + 210g(T/6)7“>

T\* T\*
+ utp? - erd® <1og 5) +7Ln*utp? - crd? <1og 5)

T
+77017“2(128tf((5) —|—77L) logg +7—01L’l727“2. )

(57+4)6
Moreover, P(E.(0)) > 1 — ==,

Proof. Without loss of generality, we may assume that 7 is a multiple of ¢;(5).> Then, any interval J, = {to,...,to +
t7(6) — 1} belongs to one of the following two cases:

3To accommodate the last interval which has length at most 2¢ () — 1, we note that the results we require for the proof, namely
Lemma 14, Lemma 16 and Lemma 17, all hold for any interval length s < 2t;().
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Case 1) (Gradient dominates noise): Recall that this means that for every t € Ji, we have

+ ”Yt> :

195 @)l > 8t ()L (g

1 & -
— " 202 Hy i
m =1

By our choice of 7 in Eq. (31), we can apply Lemma 16 to get

1
. 1
?El}]rkl”vf(xt)“ 27 Iggfllvf(xt)ll-

We now consider the two cases when J has fewer than ¢ #(¢) iterations and when J = Jj, f

Note also that on the event By, (5)(d; t£(5)), there exists some ¢ € Jj, such that

1 1
— 3|25V E@)[ 2 51V @)
=1

This implies then that

1 2 1 2
> Z\z”wt menwm)u z@ggfnwwn

tEJk i=1

_64t ZHW ). (33)

teJ
Thus by setting o = 128¢,(6) in Eq. (5) and by choosing 7 such that
2.3
abnxd m__n o™
m a  128t(9) 128¢1 Lt f(6)dx?

it follows that

3 1 & Ln?v3d
D= B AR GICAIIES (1282(5) + 27X ) SOV ()]

: m
teJy i=1 teJy

3 1 &
St IR BN

tedy =1

< IS SN[

teJ, =1

n . 2
— 5 min||Vf(z,)] 34

+ ||Yt> :

2
V(x| < estr(6)nL [ u?d?p ( log T +4/1+ Mr vt € Jg.
! 5 d

IN

Case 2) (Gradient does not dominate noise): there exists some ¢ € Jj, such that

IV £ ()|l < 8tr(8)nL (;

1 & -
— " ZiiZ Hy 2
m =1

By our choice of 7 in Eq. (31), we can apply Lemma 17 to get

Hence, by setting o = 128t£(0) in Eq. (5) and choosing 7 such that

c1Ln?x3d

L
m «

©128t4(6)’
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it follows that

L 2 3d
(128: Ol = Z@X ) STV E))?
/ teJy
i log(T'/d
= 64t £(5) t;k (Cstf(5)nL (u d? <1og ) \/7 ))
2 2

Without loss of generality, we may assume that 7 is a multiple of ¢ f(6).6 Then, any interval Ji, = {to,...,to +t;(d) — 1}
belongs to one of the following two cases:

Having studied the two cases, we may now proceed to use them to complete the proof. Let I denote the complement of I;
in{0,1,..., K — 1}. Then,

3'r711m L23d r—1
S Al (L ) Svste

t=0
1 2.3 9
Z( > SNz + (T * Lj;xd)ZWf(xm)

kel = " im1 teJy
a1 Ln?x3d
+Z( S PRI +(128t 5t ) LIVl
kelf tEJk i=1 teJy

2 2 2
2 s 2,372 [, 22 T log(T'/6)
< - E m1n||Vf(xt)|| + E tr(9) 64tf(5) n°L (u d°p (log 5> +14/1+ T

kels
2
7\° log(T/d
< —Z m1n||Vf )2 +T64 F(8)*n*L? <u2d2p (logé) + 1—&—Og(d/)r> . (36)

and so by Eq. (5),

2 2 2
flar) = flzo) < — Z mmHVf 17t)|| +7-64 (5)2773L2 <u2d2p <log ?) + 1—|—10g(§/5)r>
kGIl

4.2 3 T\’ 244 2 4 T\*
+mu”p” - c1d logg + 7Ln*u”p® - c1d logg
T
+nerr?(a+ nL) log 5+ Tc1 Lf*r?

Note that we choose o« = 128t f(é). In addition, observe that by our choice of § (such that § < %), it follows that

1+ 8010 <\ /BTog(T/).

We can now complete our proof by using the union bound (suppressing the dependence of some of the events on ¢ for
notational simplicity) to derive

T—1 T—1 K—-1
P(ES) < B(HS) + 3 P(AD) + 3 PG + 3 BB, (5)(3:£(5)))
t=0 t=0 k=0
(r+4)6 K§ _ (57 +4)
<+ ki g S
S + 5+2 6+ T = a ) 0

8To accommodate the last interval which has length at most 2¢(§) — 1, we note that the results we require for the proof, namely
Lemma 14, Lemma 16 and Lemma 17, all hold for any interval length s < 2t;().
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We are now ready to show that if sufficiently many iterations have a large gradient, then with high probability, the function
value of the last iterate f(xr), will be less than min, f(z), a contradiction. Hence this limits the number of iterations that
can have a large gradient.

Proposition 4. Let ¢y > 0,¢c0 > 1,¢4 > 0,¢5 > 0,C > 1 be the absolute constants defined in the statements of the
previous lemmas, and let § € (0,1/¢] be arbitrary. Suppose we choose u, v, n) and T such that

PSSRV (RS NS S GO G DU S
~ d\/plog(T/d) 64c2co’ 2048¢1 o ’ - 8cs\/2ca 324 /c1 |’
< 1 . { 1 vm m }

min , ) )
= Lts(6) 10g(T'/8)” 8¢y (Ir(CrdmT/8))3/2y/d’ 128¢1 (Ir(CrdmT/6))3d

T max { 256t7(8) ((f (x0) = f*) + €*/L)) 74} |

ne

Then, with probability at least 1 — 60, there are at most T'/4 iterations for which ||V f(x;)|| > e.

Proof. Without loss of generality, we assume that 7" is a multiple of ¢;(J), and we similarly split {0,1,...,T"} into
K = |T/ts(0)] intervals Jy, ..., Jx—1. Let I; denote the set of indices & such that for every t € Jj,

ul 1 & -
<2Hm Z VARVAR: IRVAY ) + || Y]
We let I denote the complement of [ in {0,1,..., K — 1}. We denote

T-1 T-1 K-1
Er(6) =Hr(0) N (ﬂ At(5)> N (ﬂ Qt(5)> N (ﬂ Bmfw)(&;tf@))) :
t=0 t=0

k=0

IV f ()|l > 8t (8)nL : 37)

In the remaining part of the proof, unless otherwise stated, we shall always assume that we are working on the event E1(9).

By Lemma 18 with 7 = T" and our choices of 77 and ¢ in the statement of the lemma, we have
2
G

flar) = flao) < = Y7 Jminl|VF()|* + T

kel

. T 2
ty(6)°n°L? <u2d2p <log 6) + 2log(T/5)r>
7\° 7\ 4
+ T77’u4p2 . Cld3 (log 5) + TL772u4p2 ) 01d4 (log 5)
T
+77C1T2(128tf(5) +nL) 1Og§ +T61L7]21"2, a8)

Suppose that there are at least 7'/4 iterations where |V f(z;)|| > €. Let I, denote the set of indices & for which there exists
some ¢ € Ji, with ||V f(z¢)|| > e. Then, by the pigeonhole principle, the set I, has at least [7'/(4t7())] members. Note
that, by our choices of the parameters 7, u, r, it can be shown that

2
est(8)nL <u2d2p (log f) +4/1+ bg((?%) <e, (39)

while by Lemma 17, if k is in I], we have

IV f(z)]| < estp(d)nL <u2d2plog(T/5) +14/1+ bg(g/é)r> , vt € Ji.

This implies that I. C I.

Observe that by Lemma 16, for any k € I;, we have
1
iuvf(xktf(é))H <V f)ll < 2|V (@re, ) ||, vt € Jg.
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This implies in particular that for any k € I, we have minye s, |V f(z,)||> > -5€2, and consequently
2 2 2
n € T n € Tne
— E \V/ 2< - E <= .1
2 ip IV (@)l 2716~ 4t,(6) 2

keh kel.

16 128t(0)

Hence, by Eq. (38),

For) — floo) < — —L1€ 1Sy (52012 (2a? <1o T)2+ 210g(T/0)r 2
T 0= T 128t,(0) a1 P8 &

T\* 7\ 4
+ Tu*p? - 1 d? (log 6) + T - (nL)u'p? - crd’ <log 5)
T
+77017”2(128tf(5) +77L) logg +T77'C177L7"2. 40)

Now, by our choices of u, r and 7, we have
2

2 2

T%tf(d)zngl/z <u2d2p <log ?) + 210g(T/5)r>
c? \*

<Tn- 37;75 £(6)2(nL)? <u4d4p2 <log 5) +2 1og(T/5)r2>

<7 €? €2 < Tne?
=1 20480y (log 2) T 208ey 1og(T/0) | = 512t(0)

where we used log(7'/9) > 1 and 2¢3 log(T'/d) > t5(0). We also have

, T\* \*
Tnu*p? - c1d® (log 5> +Tn - (nL)u*p? - c1d* (log 6) + Te1 Ln?r?

62 62 62
<Tp- Th - T -
= Y 0Repdlog(T/0) " 2048cat 1 (6) log(T/8) | 1024t; () log(T0)
< Tne? 7
= 512t4(0)

where we used codlog(T'/d) > t¢(d), co > 1 and log(T'/d) > 1. Finally,
T  (128t4(6) + 1)e* €2
2(128t4(8) + nL)log = < ~—— LT 7 o T
newr”(1284(0) +nl)log 5 < oo Gy < I
By plugging these bounds into Eq. (40), we get
Tne? Tne? Tne? €2 Tne> €
_ — - 4
flar) = f(wo) < 1286,(6) | 512t,(8) ' 5126,(8) | L = 256¢;(0) | L

Therefore, as long as
256t 4 (0) ((f(z0) — f*) + €/L))
ne’ ’
we will get f(z7) < f*, which is a contradiction. Thus, we can conclude that on the event Er(0), there are at most 7'/4
iterations for which ||V f ()] > e.

T>

We can now complete our proof by using the union bound (suppressing the dependence of some of the events on ¢ for
notational simplicity) to derive

T-1 T-1 K-1
P(E7) SP(HE) + D PIA)) + Y PG + D BBy, (5)(6:15(5)))
t=0 t=0 k=0

(T'+4)0

<
- T

+5+25+KT5§66. O
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E. Escaping saddle point

In this section, we first show that the travelling distance of the iterates can be bounded in terms of the function value
improvement (Appendix E.2). Utilizing this result, as well as Proposition 2 in Appendix C.3 which provides a concentration
bound on the the zeroth-order noise, we then prove that sufficient function value decrease can be made near a saddle point in
Appendix E.3.

E.1. Key quantities and notation

We will use 7 to denote —Amin (V2 f(20)), where we know that v >  /pe.

E.2. Improve or Localize

In this subsection, we aim to bound the movement of the iterates across a number of steps in terms of the function value
improvement made during these number of steps.

We first state a simple result separating the norm of the difference between x4, and ¢, into a few different terms.

Lemma 19. Consider the perturbed zeroth-order update Algorithm 1. Then, for any to € Nand T € N,

€ty r — 21 ||* < Va(to, T) + Valto, 7) + Va(to, 7) + Valto, ), 41
where
Vi(to, ) = 8n>r 30T |V 2 Valto, ) =8n?|| ST LS (ZiiZ) - DV i
1(to, ) =8> 2l J;(It)H, 2(to, 7) = 80| 2ol doim1 (ZeiZy; — 1) f(f';t) “2)

Va(to, ) = 4772HZ§U:JZ;_1 Yt‘

) ‘/4(7507 7') = 47]2 HE?:;;—_l 1 ZZil UZ,L,J'ZtTiIN{t,,‘Zt’i

m

Proof. For notational convenience, let ¢p := 0. Then, applying the form of the perturbed zeroth-order update in Algorithm 1,
we get

2
|z — 20|

T—1
E Ti41 — Tt
t=0

2

2

T—1 m m
1 1 ~
=1’ Z o Z ZyiZ Y f () + m Z wZyiZ HyiZi + Yy
t=0 i=1 i=1
T—1 1 m 2 7—1 1 m ~ 2 T—1 2
< dn? Z — Z ZiaZ NV f )|+ 4n? Z — Z uZy; 2 HeiZesa|| +4n° Z Y
=0 "M i =0 i t=0
T—1 m T—1 2 T—1 m 2 7—1 2
1 1 -
<4y Z m Z(Zt,izt—l,—i =DV f(x) + Z V()| + 4o Z m Z UZt,iZ;Ht,iZt,i + 40 Z Y
t=0 i=1 t=0 t=0 i=1 t=0
T—1 T—1 m 2 T—1 2 T—1 m 2
1 1 -
< 87727' Z”Vf(ﬂft)HQ + 87}2 Z m Z(Zt,iZtTi — DV f(z)|| + 4772 Z Y| + 4772 Z m Z UZt,iZ;—th,iZt,i
t=0 t=0 i=1 t=0 t=0 i=1
V1(0,7) V2(0,7) V3(0,7) V4 (0,7)

We now proceed to bound the terms V7 (tg, 7), Va(to, 7), Va(to, 7) and Vi (to, 7).

First, we have the following result bounding V; (¢o, 7).

Lemma 20. Letc; > 0,¢0 > 1,¢4 > 0,c5 > 0,C1 > 1 be the absolute constants defined in the statements of the previous
lemmas, and let § € (0, 1/e] be arbitrary.
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Suppose we choose 1 such that

N ——- min{ vm mn } .
~ Ltg(0) 8ca(Ir(ChdmT/8))3/2v/d’ 128¢; (Ir(C1dmT/5))3d

There are two cases to consider.

1. The first is when T > t4(0). In this case, split {to,to + 1,...,to + 7 — 1} into K := |7/t#(0)] intervals:

Jk:{to-f—kﬁf(a) Sto+ (B4 1) ()_1} 0<k<K-—1,
Ji—1={to+ (K = )ts(6),... . to+7—1}.

Then, on the event

otr—1 ot+T—1 K2
5t0,7(5)1—Hto,r(5)ﬂ( N At(5)>ﬂ< N gdd))m(ﬂ Bto+ktf<6)(5%tf(5))> NBiy+ (1)t 4(6) (07— (K —1)t5(6)),

we have that

to+7—1

Vilto,7) =81°1 Y IV (x|l

< 64n7t(0) ((f(wo) — f(27)) + Nup(7;0))

where
2 2
Nuy(736) = 4773tf ( log + 210g(T/6)r>

T 7\*
+ Tutp? - e1d® log§> +7Ltutp? - epd? <log§>
+ ner? (128t 4(8) +nL) log 3 + e Ln’r
2
+ C5t3(5)7]3L2 u?d®plog(T/5) + 210g(T/5)7") . 43)

2. The second is when T < t¢(9). Suppose we choose w and r such that

_ Ve . 1 1 1/4 P 1 1
—————— -min r ‘mind ———, —— 5.
= dy/plog(T/9) 64cZey’ 2048¢cicy | =€ 8csv/2¢; 32y/c1
Suppose the event ﬂt°+T Y(A4(8) N G, (0) holds. Suppose also that |V f(x4,)|| < e. Then,

Vi(to,7) < 32n°12€® < 32n°(t(6))%€?

Proof. 1. We first consider the case where 7 > t¢(5). Let I; denote the set of indices k such that for every time-step ¢ in
the interval J, the gradient dominates the noise terms as

IV f (o)l > 8tr(6)nL (

‘ Zzt 120 HeiZo i

+ Ytll) (44)

WLOG, we may assume that ¢, := 0, and denote V() := V;(0, 7). WLOG, we also assume that 7 is a multiple of
t#(6). From Lemma 18, on the event that £ (J) holds and by our choice of 7, we have

2

2
Flan) — fa) < — 30 Dminl 9l + 7 it 0)712 <u2d2p CHE 2log<T/6>r>

kel
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T\?® T\*
+ mutp? - e d® (log 5) +7Ln?utp? - crd? (log 5)
2 T 2.2
+neir(128t4(0) +nL) log 5 + Te  Lp“r
By Lemma 16 (and our choice of 1), it follows that for any & € I, on the event N;¢ 5, A:(d), we have

DIV @) < 4t ggglzllvf(fvt)\\2~

tedy

Thus, on the event that £, (§) holds, for our choice of 1, we have

Y D IVF@)I® <Atp(@)n Y min|VF ()|’

kel tedy keh

<stp(6) Y I 2 ;relygllvf(xt)lf

kel

<810) | (Flao) — flao)) + 7 Bt (0212 <u2d2p(log§) ¥ 2log<T/6>r>

f T\* T\*
+ 8ts(9) <Tnu4p2 e d? <log 6) +7Lntutp? - crd? <log 6) )
2 T 2,2
+ 8t(6) | near=(128t4(6) +nL) logg + T Lnre ) .
Similarly, for any & € I{ (where I{ denotes the complement of I; in {0,1,..., K — 1}, i.e. intervals where the

gradient is smaller than than the perturbation terms in some iteration), on the event (N:c 5, A+ (6)) N (Nees, G:(0)), by
Lemma 17 (and our choice of 1), we have

IV f(z0)l| < est(8)nL (quQplog(T/(S)—i— 210g(T/5)r>, vt € Jy.

On the event that £ (J) holds, this gives us then

0> SIS < (m?(&) 212 (u2dplog(T/5) + 2log<T/6>r)2) .

kelg tedy

Hence, on the event that £, (§) holds, we have that

T—1
Y IVF@IF =0 D IVF@®+n Y Y IVF)l
t=0 kel tedy kelg tedy
2

<8t(0) | (Flao) — Flan)) 7 e (0212 (ﬁd%(logf;) n 2log<T/5>r>

T 7\*
+ 8t¢() (Tnu4p2 e d® (log 5) + 7Ln*utp? - cpd? (log 5) )
2 r 2 2
+ 8tr(0) (nclr (128t () + nL)logg + 11 Lnr )
2
+ 8ty(o)nT (cgtfc(é)nzLQ <u2d2plog(T/5) + 210g(T/5)r) ) :
This yields the final result for the case 7 > t£(6).
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2. We next consider the case where 1 < 7 < t¢(J). Recall the notation that

m

1 -
= ZiiZ ) HyiZs
m

i=1

E(to,to +7,0) = Ni7 {nvmo > 8ty (o)L (;‘

There are two cases to consider.

+ Yt”)}

() On the event &(to, to + 7,8) N (N{2ET " A4,(8)) , we have by Lemma 16 that ||V f(z)|| < 2|V f(0)]| for each

t€{0,1,...,7 — 1}. Then,

totr—1
Vi(to, 7) = 8n°t Z IV f(@)l* < 8n°r? (4||Vf($())“2> < 327,

t=to

where the final inequality uses the assumption that |V f(zo)|| < e.

(b) Suppose the event £(to, o + 7, ) N (MIZET "1 A,(6)) N (N{Z77'G4(8)) holds. In this case, by Lemma 17, we

have that for each t € {to,t0 + 1,...,t0 +7 — 1}
T\? log(T'/6
195 ()| <estr(GnL <u2d2p (1og 5) Ty g(d/)>
<e

— )

where the final inequality follows by our choice of 7, v and r (cf. Eq. (39)). Hence,

to+7—1

Vi(to,7) =80t > [[Vf(z)]”

t=tg

2
T\? log(T
< 8n’r? <C5tf(6)77L <u2d2p <1og 5) +14/14+ Og(d/d)r>>

< 8n?7ie? < 32n2 722,

The final result for the case 7 < £;(4) then follows.

We proceed to bound Va(tg, 7).

Lemma 21. Letc; > 0,c0 > 1,¢4 > 0,c5 > 0,C1 > 1 be the absolute constants defined in the statements of the previous

lemmas, and let § € (0, 1/e] be arbitrary and 7 > 0 be arbitrary. Suppose we choose n such that

n < o . min{ vm m }
~ Ltg(0) 8ca(It(C1dmT/8))3/2/d’ 128¢1 (It(CrdmT /8))3d |~

Let T denote an integer such that Ts > max {1, t;(3)}, and for any F > 0, define

(5 ) = SO R () (T " i) (W(CT2 /)7, b (6;F) =

Let ¢, C > 0 denote the same constants as in the statement of Proposition 2. Denote the event that

to+7—1
either %(11«(CT2/5))2|\W(%)||2 > B(; F)

tf((S)TF

to+1—1 2 :
V2g;)2’ 7) Sc’\jmax{ Z :l(lr(CTQ/5))2|Vf(:Et)|2,bT(5;F)} (log (CTT) +log (log (b‘i(((;:?))

t=tq

39



Escaping saddle points in zeroth-order optimization: the power of two-point estimators

holds as Ly, -(5; F)". We show that P(Ly, ;(5;F)) > 1 — 2. Finally, denote the event My, r,(F) as the event that
f(@e) = f(@oqr,) < F.
Then, on the event Ly, +(0) N &y 1, (6) N My, 1, (F) (Where Eo 1, () is as defined in Lemma 20),

m

Va(to, 7) < 8¢2B1(0; F)nt #(5) max { 8d(1r(CT2 JON? (F + Ny (Ts,9)) ,TF} , (45)

where

B1(8; F) = log <C§T2> +log <10g <£Egg> n 1) .

Proof. We note that P(Ly, - (6; F')) > 1 — 2. is a direct consequence of Proposition 2. In the rest of the proof, without loss
of generality, we assume that £y = 0 for notational simplicity. On the event Lo ,(; F') N &y 1, (0) N My, 1. (F'), suppose
that

9
|
—

g
S|

A(CT/8) 2V f (@)|]? = B F) = SHOE T Nur(T29)) ( d

2N 2 /5112
: T, + m) (I(CT?/5))

t

Sl
I

1
— Y _[IVF(@)l* = 8t7(8)(F + Nuw(Ts,6))
o
= Y IVF@)l* > 8t£(8)(F + Nunp(Ts,0))
t=0 .
= 80T, Y [V F(@)* > 64nTutp(8)(F + Ny (T, 6))
7o
= 80T Y [V F(@)l* > 64nTut(0)(f(x0) — f(r,) + Nup(T5,0)), since f(xo) — f(ar,) < F
t=0
< V1(0,Ts) > 64nTst(6)(f(zo) — fzr,) + Nupw(Ts, 9)),

where we note the last equation contradicts Lemma 20. For notational simplicity, denote

B,(8; F) == log (C(?Z) + log <log (i((‘;g) + 1) .

Observe that (31 is larger than 5, for every 7 > 1. Since £, - (d; F') holds, we must have then that

V2(0,7)
812

T—1
< J max {Z Law(or2/8) 219 £ @) b5 F)} B1(5: F).
t=0

Now, continuing, recalling the definition of V3 (0, T5) = 87T Y- 25 ||V f (20) ||

T—1
Va(0,7) < By (6 F) max {&f > Law(0T/8) 219 £ @) 807D 5 F)}

t=0

T:—1
< ?Bi(8; F) maX{8Tl2 > :L(1r(CT2/5))2||Vf(3Jt)|I2,877267(5;17)}

t=0

< 05 ) ma { L u(er AT

m s

sty (0)rF |
"We note that by construction, B(d; F') > b, (6; F)
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2 ?31(; F) max {;riz(lr(CTQ/(S))Q (64nt;(6)(f(x0) — f(w1s) + Nuyr(Ts,6))) a877tf(5)7F}

< 26, (6 F) max {iur(cﬁ/é))? (6401 (O)(F + Nur (15, 6))) ’8"”(5)”?}

= 2065 )30t 0)) o { 2 (x(CT/0)) (8(F + Ny (T.,0)) 7F |

We note that (i) is a consequence of Lemma 20, while (ii) comes from our assumption that the event M, 7. (F') holds, i.e.
fla) = f(igyr,) < F.

O

We next bound V3 (g, 7) and Vy(to, 7).
Lemma 22. Let ¢ > 0 denote the same constant in Lemma 7. Consider any arbitrary 0 < 6 < 1/e, and let 7 > t4(0) be
arbitrary. Let Ny, -(8) denote the event that

to+7—1

ZY;

t=to

Vs(to, 7) = < degn’rlog(2dT/5)r?

where cg > 0 is an absolute constant. Then, by Lemma 7, P(Ny, -(8)) > 1 — %. Denote the event

0u(5) = {; inzmns < ' o (f))}

where c; > 0 is an absolute constant. Then, on the event ;2571 04(5), we have

AN
Va(to, 7) < dern’r2p*utd (log (5)> .

Moreover, for each t, P(Oy(§)) > 1 —

e

Proof. The proof for Vs(to, 7) follows directly from Lemma 7, by picking cg to be the ¢ that appears in the statement of
Lemma 7. Meanwhile, observe that

Vi(to, 7) = 4n? Z Z“Z“Z“H“Z“
to+7—1 m ?
S 47]27- Z m Z UZtvi’Zt—ljth’iZt’i
t=to =1
(iii) toxr—1

<apr Y ZPZU4||ZM||

t=to

T\ 4
<Adem?r?ptutd? (log (6)) .

Above, to derive (iii), we used the bound that Hf[t,i < pul|Z; ;|- The final inequality is a consequence of our assumption

that N;% °+T 10, (6) holds. Finally, the result that P(O;(5)) > 1 — 2 holds due to Lemma 11, where we note that we may
pick the absolute constant ¢7 to be equal to 2C¢*, where ¢, C' > 0 are the absolute constants that appear in the statement of
Lemma 11. H

Finally, combining the earlier results, we have the following technical result, which bounds the travelling distance of the
iterates in terms of the decrease in function value decrease.
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Lemma 23 (Improve or Localize). Consider the perturbed zeroth-order update Algorithm 1. Let ¢ > 0,¢1 > 0,¢c9 >
1,e4 > 0,¢5 > 0,¢6 > 0,¢7 > 0,C1 > 1 be the absolute constants defined in the statements of the previous lemmas,
and let 6 € (0,1/e] be arbitrary. Consider any T, > t¢(5). For any F > 0, suppose f(zr,) — f(xo) > —F, ie
f(zo) — f(zT,) < F. Suppose that the event

Pio.1, (0, F) 1= (12, (Lay 0 (63 F) 0 Niy,r(0)) 1 (M7 04(0) N A0) N Ga(8)) 1 (12

holds, where the events E, +(0), Lty +(8), Ny, +(0), O:(0) are as defined in Lemma 20, Lemma 21 and Lemma 22, and
G¢(0) and A4(0) are as defined in Lemma 13 and Lemma 15. Suppose we choose u, v and 1 such that

e Ve Lt M P 1 1

= d/plog(T/5) M 642ey’ 2048cres | 0 = MM  Besv2e B2y S

n< — mm{ , v , m 3}.
Lif(9) log(T/3)” 8cq(Ir(CrdmT/8))3/2/d’ 128¢1 (Ir(C1dmT/6))3d

Suppose n < min {1, ﬁv ﬁ } Suppose also we pick u and r small enough such that

< —7«1/2 r? < min r r
= dlog(T/5)p' /2"~ ~ 0T, log(T/6) (65;? +132¢; + 1) " 4cg log(2dT/8) + 4ern T,

Then, for each T € {0,1,...,T,}, we have that

|2tgtr — 26 ||* < b, (8, F),

where

16d
o1, (6, F) <max {128nTst ¢ () F, 320 (t£(8))2€* } +8c/2 81 (6; F)nt ¢ (6) max {::l(lr(CTZ/é))QF, TSF} + Tty (0)F,
where [31(8; F) is defined as in Lemma 21. Moreover, P(Py, ,(, F)) > 1 — %

Proof. We recall that

2

to+7—1 to+7—1
|Ztgrr — zeo|” < 877 > IV E(x) )|1? + 8n? > Z ZiZy; — DV f (1)

t=to t=to
1%} (to,T) Vs (to T)

toFr—1  ||? to+r—1

+ 4P| D | 4P| > ZM@@@l

t=to t=to

Vg(to,T) V4 (to,T)

By Lemma 20, Lemma 21, and Lemma 22, which bound V; (tg, 7), Va(to, 7), and V3(to, 7), Va(to, 7) respectively, on the
event Py, 1, (9, F), we have, for any 0 < 7 < T,

|2 — zol® < VA(0,7) + Va(0,7) + V5(0,7) + V4(0,7)
< max{64r]rtf(5)(F—|—Nu,,.(T;(S)) 32n2(t )2 2}

+ 8¢?B1(8; F)nt () max {i;i(lr(CTQ/é))2 (F + Ny (T, 9)) 7TF}

+ degn?log(2dT/6)r? + dern®r2 p?utd* (log(T/6))*
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where N, ,(7;9) is defined as in Lemma 20.
For the simplified bound (which does not contain NV, ,.(7; d)), it remains for us to show that our choice of w and r ensures
that Ny, ,(Ts,0) < F and
4een* T log(2dT /8)r? + 4ern® T2 p2utd* (log(T/6))* < 0Tt (6)F.
First, our choice of u ensures that
utd*p?(log(T/6))* < r2.
Next, recall that

2 2 2
Ny (156) = T%UBtf(5)2L2 <u2d2p <log ?) + 210g(T/5)r>

T\® T\*
+ mutp? - erd® <1og 6) + 7Ln?utp? - cyd? <1og 5)

T
+ neir? (128t 4(8) +nL) log 5 +7e Lnp?r?

2
+ A (OmPL? (u2d2plog(T/5)+ 2log(T/5)r) .

Recalling our choice of 7 such that
1

< min{l, —— —*

/r] —_ mln b b b
ty(6) ty(0)L

it follows that

8c?

64

Ny (Ts;6) < nTr? ( log(T'/8) + 2¢1 + 2¢1 + (128¢1 + 1) 1log(T/6) + ¢1 + 8¢2 log(T/(S))

9 65c2
< nTsr*log(T/9) =5 +132¢1 +1) < F,

F

where the last inequality follows choosing r such that r? < o2
nTs log(T'/9) <%+132c1+1

) . Similarly, we have

Acgn? Ty 1og(2dT /8)1? + dern®T2 p*utd* (log(T/6))*
< Tt (8) (degnlog(2dT/8)r? + denTsp®utd* (log(T/6))*)
< Tt (8) (4cenlog(2dT/8)r* + dernTor?)
By choosing r such that
9 F
r° < ,
~ deglog(2dT/6) + 4enTs

it follows that
Acgn’ Ty 1og(2dT /6)r* + dern®T7 p*ud* (log(T/6))* < nTut(6)F,

as desired.

We next lower bound the probability of

Pio.1. (8, F) = (T2 (Lopir (6 F) 01 Nigr(8) 1 (NI4T 7104(0) 1. A(8) N Ga(8)) 1 (NI )t (9)) -

=t (

Observe that

NIy 5) Etor (9)

s
T=t¢
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ot —1 K—2
ﬂf;tf((;) (Hto, ( m A (8) N Gy(6 > N < ﬂ Bt0+ktf(6)(5§ t,f(5))> thoJr(Kfl)tf(&)((S; T—(K—l)tf((s))>

t=to k=0

= mfitf(é)é-[to7 (ﬂ Bto+ktf 5tf(5))>ﬂ3to+(l<1)tf(6)(5§7 (K—=1)tg(6 ) ﬂ A(8)NGe(6 )

t=to

Note this implies that ﬂT . (5)6}0,7(5) N (mt tol‘At( )N gt(a)) = 5 Cto. +(0) We note that by Lemma 1,

T tf
5 5
(2 ) )
Meanwhile, we note that
K—2
Nizy, Be(8;t5(8)) € Ff;tf((;)(( N Bto+ktf<6)(5;tf(5))> thoJr(Kl)tf(ﬁ)(a;T_(K_l)tf(a))> .
k=0

Hence, by Lemma 14, we have that

K-2 c
P ((ﬂfitf((;)(( ﬂ Bto+k:tf(6)(5§tf(5))> thO+(K1)tf(5)(6;T_(K_1)tf(6))>> >
k=0

<P (P85 150))) ) < 2.

Meanwhile, by Lemma 13 and Lemma 15, we may bound

N T 2T 3T.6
(mAt mgt)))STJrT—T.

t=to

Hence, it follows that

P (07, 000 (0T A0 1 6u(9)) ) ) < 2220 4 T2 4 210 9T

Meanwhile, it follows from our results in the preceding lemmas that

P ((ﬂfll (Lto,r (85 F) NNy 2 (6)) N (mf folot(a)))c> < 317}5_

Hence, it follows that P(Py, 1, (6, F)) > 1 — 1252,

E.3. Proving function value decrease near saddle point

We next build on the technical result earlier to prove that each time we are near the saddle point, there is a constant
probability of making significant function value decrease. We briefly provide a high-level proof outline below. In our
proof, we introduce a coupling argument connecting two closely-related sequences both starting from the saddle, differing
only in the sign of their perturbative term along the minimum eigendirection of the Hessian at the saddle. Specifically,
when function decrease from a saddle is not sufficiently large, due to the earlier technical result, we know that the coupled

sequences will remain within a radius ¢ of the original saddle for a large number (which we will denote as T%) of iterations.

We then utilize this fact to show that the difference of the coupled sequence will (with some constant probability) grow
exponentially large, eventually moving out of their specified radius ¢ within T} iterations, leading to a contradiction.

Our first result formally introduces the coupling, setting the stage for the rest of our arguments. For notational convenience,
in this section, unless otherwise specified, we will often assume that the initial iterate x¢ is an e-saddle point.
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Lemma 3. Suppose x is an e-approximate saddle point. Without loss of generality, suppose that the minimum eigendirection
of H := V2 f(xq) is the ey direction (i.e. the first basis vector in R?), and let y to denote —\in (V2 f(20)) (note vy > /pe).
Consider the following coupling mechanism, where we run the zeroth-order gradient dynamics, starting with xq, with
two isotropic noise sequences, Yy and Y/ respectively, where (Y;)1 = —(Y1)}, and (Yy); = (Y1)’; for all other j # 1.
Suppose that the sequence { Zy ; }1c,ic[m] is the same for both sequences. Let {x;} denote the sequence with the {Y;} noise
sequence, and let the {x}} denote the sequence with the {Y/} noise sequence, where x{, = xq, and

!
Ti41

, >y (Zt,iZtTivf(w;)+%Zﬁ,iZ;,riI:It/,iZt,i) ,
=Ty +Y:€ )

m

H'

~ o —HL, .
and H{ ; := —to—tie with H] , | = V? f(x}+a},; (uZ]) forsome o ; , € [0,1], and H] ; = V?f(x;—a},; uZ])

for some Oéy/m,— € [0, 1]. Then, for any t > 0,
Ti41
=Tl — $£+1

= —ny (I—nH)" & (r)=n)y_ (I-nH)'"(H,—H)i-

7=0

Woq (t+1) Wi (t4+1)

—nY (I =nH)""&u(r)—n > (I-nH)" Y,
T= =0

W (t41) W (t41)

where

m

b00(t) = - S (25— 1)V f(w),
i=1

m

€ (6) = %Z(zt,xzt,if—f)w@;),

i=1

IRVARY: PRVRR

N\Q

~ 1 S
oo () = 0o (1) = €00 (), €ut) = - Z
5; (t) = % Z %Zt,iZt,igt,,iZtm éu(t) =&u(t) — é;(t)’
A i=1 ] .
Vi=Y.-Y/, H= / V* f(aze + (1 = a)z})da.

0

Proof. Observe that

Tpg1 = Tyl — Tpyq

=2 =0 (Vf(20) + &gy (8) + &u(t)Y2) — [ — 1 (Vf (1) + &, (1) + &,(8) + YY) ]
=y —n [(V () = VI(}) + (£ (1) = &5 (1) + (Eult) = &,(8) + (Vi — Y1)
=Ty — T]Hfft —n(Hy — H)dy — négo(t) — néu(t) — Y

ST = Y (7) =0 3O Y, — H), — 3 ) )~ 3T~ )Y,
7=0

7=0 7=0 7=0
Wy (t+1) W (t+1) W (t+1) W (t+1)
where
1 m 1 m .
fgo (t) = E Z(Ztﬂ'zt—,ri - I)vf('rt)’ £g0 E Z Zt i Zt % I)Vf(l‘;), ggo (t) = 590 (t) - 6;0 (t)a
i=1 i—1
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1 ~ I ~ s
Cult) = — > 5 ZeiZeitliZei, &1 = — > 5 ZeiZeilly i Zei, &ult) = Eult) = €4 (D),
=1 =1

1
Y,=Y,-Y/, H = / V2f(azx, + (1 — a)z})da.
0
To derive the final equality, we utilized the fact that 2, = (. This completes our proof. O

Suppose g is an e-saddle point. Recall that v > 0 denotes —Amin (V2 (20)), where we know that +—=>—/pe-

S g {min{w, L, L} if f(-)is (e,v, \/pé)-strict saddle for any 1) > /pe

\/PE otherwise.

In the sequel, for any ¢ > 0, it is helpful to define the quantities

2 _ (4m)* o (LEm)* -1 16
Aley = ()2 + 2y olt)” = ()2 + 20y (#0)

We next introduce some probabilistic events (and their implications) which, if true, can be used to bound the sizes of
(W (t + 1)|, |Wy(t + 1), [[Wy(t + 1)|| (and as we will see in the next result, indirectly bound ||[Wp (¢t + 1)||. These
bounds will be useful in the final proof of making function value progress near a saddle point.

Lemma 24. We assume § € (0,1/e] throughout the lemma. Suppose that we pick u,r and 1 as specified in Lemma 23.
Suppose T > t(0). Suppose also that

fzr,) — flxo) > —F,  f(a7,) — f(20) > —F.

Then, we have the following results.
1. Let §4(9) denote the event
84(0) 1= {max{llz. — zoll®, |4} — 2o’} < 61,5, F), Vo<t <T.}.

In addition, let S,,(0) denote the event

8u(6) = {IIW(t+1)II<nﬁ(t+1) (26592 (los(T/5))?) o, V0<t<Ts—1}7

V3
Vi
where c3 is the same absolute constant as the c3 in the preceding lemmas. Then,

P(S,(8) N Su(0)) > 1 — 22150

2. Consider defining the event R.(0), which is the event where

t 2
cither y (1 + m)%‘”)%um - a4 ||((CT?/6))* 2 G, (8, F), or
=0

[Weo (t+ 1

ganJmax{( (<F)) Z e oA (t+1>}(log (955) 1om (10 (52 ) 1)

normalsize holds. Above, ¢, C refer to the same constants as in Proposition 2, and

Gr.(5,F) =8 3 (1 +n7)2T%(lr(CT2/6))2¢TS @, F) + (%gi}g’“) L gt+1) = (5(2;“7\/1;7’") .
=0
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Then, P(R¢(8)) > 1 — 2. Suppose the event
(mT* Rz(&)) N84(8)

holds. Then, the event Sy, (6) holds, where
Sao(8) 3= N2 Sgo,0(8),

and Sgq.,+(0) is defined as

. {”W%(H visaene Nmax{(h" () Z 92 (1 g e - x;|2,g<t+1)}}

where

a6, F) = (log (CC;T2> log (log (%)) + 1) .

3. In addition, let S,,(9) denote the event

5,(6) == {|Wp(t+ 1) < 2V 21°g(T<25(t FU <<t - 1}.

Then, P(S,(8)) > 1 — T2,
Proof. We consider the three claims separately.

1. Note that our assumptions satisfy the conditions required in Lemma 23. Hence, by Lemma 23, on the event Py 1, (4, F'),
we have that ||z, — zo||> < ¢7. (6, ). Simultaneously, on the event Po.r, (8, F), we know that N/ G;(5) holds, i.e.

1 m
— D N Zeill* < 2e3d® (log(T/5))*, YO<t<T,—1. (47)

i=1

Thus, for W,, (¢t + 1), we have that

7 Z(I —nH)"T ()

7721 nH)"TE(T)|| +

Wt + 1) =

(I —nH)'"7€,(r)

=0

<772 1+77’V (H Z Zt zZt 'LHt zth

1 — -
=N 222,08, 2,
=0 m 2 ,

i=1

)

m

<nz L+ Z”th

T -
<Y (1+07)"77p(2c3)d* (log(T2/6))*u’
=0
1+ t+1
Sn( nv) (
Y

2c3pCd* (log(T'/6))?) u?
C B+ 1)“”3;”’” (2e3pd? (log(T/5))?) o
<B4 1) fni (203 (105(T/3))?) u?
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(vi)

< nB(t+1)——= (2c3pd*(log(T/6))?) u*

V3
Vo
where the inequality in (iv) holds due to Eq. (47), the equality in (v) holds due to the definition of (¢ + 1), and the
inequality in (vi) used the fact that v > ).

Hence the event
7z {llee = woll® < 6r. (5, F) and } 15,(6)
holds with probability at least 1 —

12756
-7 -

Note that by the coupling, the distribution of z7_ is the same as that of .. Thus, by the assumption f (27, ) — f(zo) >

—F, it follows by a similar argument that the bound ||z, — zo||> < ¢, (6, F) also holds with probability at least
1-— 12—%‘5 The claim then follows by an application of the union bound.

. For the second claim, observe first that the claim P(R;(¢)) > 1 — £ is a consequence of Proposition 2. Suppose next
that f(z7,) — f(zo) > —F. Then, by definition of the event S4(4), we know that

|2 — 2o|* < 61, (6, F), ||zl — zo|* < b1, (6, F)

where ¢, (J, F') is as defined in Lemma 23.

Suppose now that R;(d) holds true, and suppose for contradiction that

: dL?
S S — P (x(CT2/6))

ﬂ(Tst

5, dL?
Z L) O 0) o 0.) + (B!

This implies that there exists some 0 < 7 < t < Ty such that ||z, — x’TH2 > 8¢r. (9, F'). However, we also know that
on the event S, (9),

2 2
lzr = 24 |I° < 2]y — aol® + 2l|2, — zo||” < 467, (6, F).

This leads to a contradiction. We must then have that

2\ 2t 2
Wit + DI < G5, ) max{(lr () e, — ol <t+1>}
T7=0
where
_ Cdr? G(6, F)
C1(0, F) = \/log< 5 >+1og (log( (D) )+1>
. Observe that

Wyt+1) =0 (I —nH)"Y, =1 (14177 (2(Y-)),
7=0 7=0

which means that Wp(t + 1) is a 1-dimensional Gaussian with variance
t
T e I i e S A Gk Vi
d d 2y + (17)? d '

(48)

7=0
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Since a(t+1) < B(t+1), using the subGaussianity of a Gaussian distribution, it follows that for any ¢, with probability
atleast 1 — §/T,

[Wp(t+1)|| < 21/21og(T/5)(t + L)nr
p >~ \/g .

O

For any F' > 0, we are now ready to show that the algorithm makes a function decrease of F' with (1) probability near an
e-saddle point.

Proposition 5. Suppose that x4, is an e-approximate saddle point. Let ¢ > 0,¢1 > 0,¢3 > 1,¢4 > 0,¢5 > 0,¢6 > 0,¢7 >
0,Ch1 > 1 be the absolute constants defined in the statements of the previous lemmas, and let 6 € (0, 1/e] be arbitrary.
Consider any F > 0. As in the statement of Lemma 23, suppose we choose u, r and 1 such that

u < L min 1 ! v r < e-min 71 1
= dy/plog(T/d) 64cZcy 2048crcs | = 8csv/2es 32/c1 |
WP NI S S S S
Lt(0) 10g(T/0)” 8cy(Ir(C1dmT/8))3/2/d’ 128¢1(Ir(C1dmT/6))3d

Suppose we pick

T, :max{fiﬂ,tf(é),ll}, (49)

n

where

22
L:max{log (2 ¢TS<5,F>2MW> ,1}7
’f]’l"

- {min{w, 1, LYy if f(0) is (e, v, /pe)-strict saddle for any v > ./pe
Y= .
\/Pe otherwise.

Suppose in addition that w,n also satisfy the conditions

u<\/ T\/W 77<max{ L il 1}7

120v/3¢3v/dpd? (log(T)/5))?’ ceoC1(0,F)’ 360,(c')2e2dL? (Ir (C12))° ¢, (6, F)2 20

where (1 (6, F) is as defined in Lemma 23, ¢, c3, C > 0 are the same constants as in the previous results, and cy = 22+ %

Suppose also that ¢, (8, F) satisfies the bound

Y

2
6069Lplog(T/5)) ' 50)

¢Ts(5aF)<<

Then, with probability at least & — 13;:55, f(@eorr,) — f(2e,) < —F.

Proof of Proposition 5. Without loss of generality, we assume that t; = 0. By Lemma 3, we have

Ti41
L I
= It+1 — l‘t+1
t t

= ST ) g ()~ S ) T (H, — H)iy —n S (- gH) ()~ S (L nH) Y,

T=tg T=to T=tg T=to

Wy (t41) Wi (t+1) W (t+1) W (t+1)
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where

m

6as0) = 0 DAL = DVI 0. €0 = 10D (aatZu) = DVIGD: - Gl0) = ) = 5,0

i=1

1w ~ U ~ S
&ult) = — > 5 ZuiliilliiZui, €,(1) = — Z S Z0i 2l Zuis u(t) = €u(t) — €,(0),

=1 i=1

1
H=YieYl H= [ Vet (- @i
0

Recall that we define for ¢t > 0,

o _ (4 e (4m)* -1
B = ()2 + 20y’ 0= ()2 + 20y

Throughout the proof, we suppose for contradiction that

f(ITs)ff(xO)>7Fa f(x’lfs)ff(IO)>7Fa

and assume the event
(N5 Ru(6)) N1.85(8) N Su(8) N S,(9)

holds, where the events intersected are defined in Lemma 24. Then, by Lemma 24, the event S, (6) (also defined in
Lemma 24) holds?.

Consider the following induction argument, where we seek to show that there exists an absolute constant cg > 0 such that

foreveryt € {0,1,...,Ts},

B(t)nr B(t+ Dmr
Vd Vd

Combined with a lower bound on ||, (¢ + 1)|| (which makes use of the property that W,(¢ + 1) is a 1-dimensional
Gaussian), we will then use the inductive claim in Eq. (51) to show that

le — 24| < o log(T/0) ; and max {{[|Wg, (4)[|, [Wa @), [Wu(®)[l} < GD

W (Tl = 2 ([Woycr.)

HIWa (T + [Wu(T)]) -

Since W, (t + 1) is a 1-dimensional Gaussian random variable with a standard deviation that grows exponentially with
t, by our choice of T, we will see that Ha:Ts — 2, H is larger than what expect (since our assumptions imply that

2 . .
max { |z, — xol?, |, — @ol| } < ¢r,(0, F), i.e. xr, and 27, both remain close to zo and hence close to each other).
This yields a contradiction, implying that on the event we assumed to hold, i.e.

@ AONREAOIENG
the assumption
flar,) — f(zo) > —F, and f(a7) — f(zo) > —F

is not true, i.e. one of the sequences must have made function value progress of at least F'.

We proceed to prove Eq. (51). Observe that the claim holds for the base case ¢ = 0; this is true since xy = x{,. Now suppose
that this holds for all 7 < ¢. We will seek to show that Eq. (51) holds for ¢ 4+ 1 as well. We do so by bounding the norms of
W (t +1), Wr(t + 1), Wy (t + 1) and W, (¢ + 1) respectively.

8We may also directly assume that S, () also holds, but our way of reasoning prevents double counting of probabilities.
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1. (Bounding |W, (¢t + 1)) Since the event Sy () holds, it follows that for each 0 < t < T — 1, we have that

CT?\\ "~ dL?
Woult+ DIl < G5 ) max{(lr( =) Zm<1+m>2<t—f>||x7—x;n%g(m)}

=0

6.5 (e (1) o (e (S252)) 1),

and the terms G, (9, F') and g(1) are defined as in Lemma 24. Recall by the inductive claim in Eq. (51) that there
exists cg > 0 such that

where

B(t)nr

s — || < colog(T/§
[ IT||_9g(/)\/E

Vo<t <t

Hence, it follows that

[Woo(t+ )| < 16, F)nmax{\W i (1 (CTQ)) coVdL f(t)nr Bt + ”W} |

J vmo Vd T 60Vd

Hence, noting the choice of T in Eq. (49), by choosing 7 such that

CT\\ VdL 1 mi
'coC1(6, F TS<1 < >>< = n < , and (52)
a0, Ey'Ts (I (= Vm = 60 7 3604(c)2c3dL2 (Ir (€22))° ¢1(5, F)?

gl (6, F)n < 1.

it follows that

B(t+ L)nr
60vVd

2. Meanwhile, the term Wy (t 4+ 1) can be bounded as follows. By the inductive assumption in Eq. (51), we have that

B(r)nr
Vid

[Weo(t+ 1D <

171 = [l — 27| < colog(T/0) vo<T<t.

Moreover, on the event our proof assumes, we know that
2
max { [lz, = woll*, o}, — @oll*} < 61, (5, F).

Thus, using the p-Hessian Lipschitz property, we have
t

Z(I - UH)t_T(Hr — H)z,
=0

t
<Y (L+m)""pVer. (5, F)
=0

Wa(t+ 1)l =n

o log(T/0)B(T)nr
Vd

B(t)nr

Vid

<eo(t+1)log(T/8)np/ ér. (0, F)
< coT, log(T/8)np/ %7 (6. F) 2.

tnr
Ja
Given our choice of T in Eq. (49), if

1 0 2
coTs log(T/5)Tlp ¢Ts(5a F) < @ <~ ¢T3(5a F) < (6069Lp10g(T/5))

it follows that
Bt + Dnr

Wr(t+1)] < 2"
W (t+1)] 0va
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3. Meanwhile, for W, (¢ + 1), since the event S,, () holds, we have that

V3
Vi

Wt + D] <np(t+1) (2c3pd? (log(T/6))?) u?

Now, by picking

V3 2 o 2 _ B+ 1nr u r/no
AE+1) f (2eapd (log(T/0))") u” < 6ovd <\/120\/§c?,\/&pd2(1og(T/5))2’

it follows that with probability 1 — 8/, | W, (¢ + 1) < 242k,

4. Meanwhile, observe that since S,,(J) holds, it follows that

2/2Tog(T/8)A(t + 1)y
W,(t+1) < og( /ﬁ +

Combining the bounds for W,

90+ Wp, Wi and W, it follows that

el < [Weo (& + DI + [Wp(t + 1)|| +[[Wa (it + D[+ [Wult + 1)
Blt+1mr (1
<————— | =+ —= 4+ — +2/21log(T/$)
< Nz 60+60+ +24/21og(T/6)

< W (210 + 2\f> log(T'/9),

where the final inequality uses the fact that 0 < 6 < 1/e (which implies log(7"/d) > 1). Hence, we see that the first part
of the inductive claim of Eq. (51) holds with the constant cg = 2—10 + 24/2, and the second part follows naturally as a
consequence of our argument above.

Meanwhile, observe that for any 7 such that ¢» < 1, we have that (1 + nv)ﬁ > 2. Thus, by choosing 7 such that 71) <

we have that for any ¢ > ﬁ,

_23

alt+1)* > -8t +1)%

2n2r2B(Ts)
Hence, following Eq. (48), by choosing T > %,

such that with probability at least 2/3,

- ¢, W, (T5) is a 1-dimensional Gaussian with variance at least

W,z = 200

Simultaneously, we know that on the event
(N2 Ru(8)) N1 S4(6) NSu(8) N1 8,(6),

we have

IWao (T + [War ()] + W (1) < 22k _ BT

60v/d 20Vd
We note that by Lemma 24, we have
24T.6 T6 T.0 267,60
Ts—1 >1_ s s s _ s )
P((ﬂtzo Rt(d)) ms¢(5)msu(5)msp(5)) >1 < e s T> -
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Thus, with probability at least 2/3 — %, we have

ﬁ(T8>77T
20V/d

) 1
127, | = SIW,(Ts)l =

Thus, choosing T > 7%7,/_1, where

22
L:max{log (2 ¢TS(57F)20\/8 7y +2m>’1}7
'f]'l"

noting that if ) < 1/2, then (1 + n*y)n%ﬂ > (1+ mﬂ)ﬁ > 2, we have that with probability at least 2/3 — 26L=0,

BT )nr  mqr (L+ny)™

= 20Vd  20V/d \/2ny + (7)?

log (zm@)
nr (1+n7) v
20Vd 2y + ()2

21,

s

v

nr
22m@¢%7?@%¥ > 2/, (6, F) > 21/9(T, 8).

Thus, at least one of ||z7, — x|l and Hmi‘p — x| is larger than /¢ (T}, 6), a contradiction. Since the two sequences have
the same distribution, it follows that with probability at least 1/3 — 23L:0 (21 ) — f(z) < —F. O

In the result above, we require an upper bound on the norm of ¢, (d, F') to hold (i.e. equation 50), which in turn necessitates
an upper bound on F', the function value improvement we can expect to make. Below, we show how to choose F' to be as
large as possible (up to constants and logarithmic factors) whilst still satisfying equation 50, assuming that u, r and n are
chosen appropriately small such that the dominant term of ¢, (6, F)|| scales with F.

Lemma 25. Consider choosing F such that

#= (i) 1
"~ 2\ 60ciplog(T/8) ) nTsts(8) (129 + 8c¢231(5; F) (16(1r(CT2/5))2 + 1))

Suppose n < min {1, ﬁ, t,«% } Suppose we pick u and r small enough such that
r1/2 F@ F

U< ———, r2§min , o
dlog(T/8)p'/? 20log(T/8) (52 + 6y +1) 4o log(24T/0) + %

8
Then, N, ,(Ts,6) < F, and that

4en® Ty 1og(2dT /8)r? + 4ern® T2 p?utd* (log(T/6))* < 0Tyt ;(6)F.
Suppose in addition n is small enough so that

1 Y ’
32 (£ (9))%€* < 5 <60c9Lplog(T/6)) '

> 2. Then, the condition in Eq. (50) will be satisfied.

a
m

Suppose also that ) < 1° and n < ™, so that Ty >

0 =
“Without loss of generality, we may set 1) = 1if f(-) is (¢, 1, \/pe)-strict saddle for any ¢ > 1.
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Proof. We note that since + < Ty < % it follows by our choice of 7 that r also satisfies the condition

F F

1T log(T/9) (6586§ + 6c1 + 1) " dcglog(2dT/6) + dernTs

r? < min

Hence, our choice of 7, u and r satisfies the conditions in Lemma 23, and it follows then that
16d
o1, (6, F) <max {128nT,t () F, 320" (t£(8))%€* } + 8¢ B1(8; F)nt £ (5) max {m(lr(CT2 /8))*F, TSF} + Tynts(8)F,

where (31 (9; F') is as defined in Lemma 21.

The condition in Eq. (50) requires that

1; 2
L) < | ——mF—+= ) .
¢1.(0,F) < (GOCnglog(T/cS))
By our choice of 1 such that
- 2
1 Y
M2(te(NV2e2 < = ———— 7
27 (L (9] = 2 <6009Lp10g(T/6)) ’
it suffices for us to show that
1 b ? 16d
e | > 1280 Tt (0)F + 8¢ B (8 F)nt 4 (0 —(It(CT?/8))*F, T F Tsts(6)F
5 (Gt ) = IZSTO)F 4 8251(0: Pty (0 max { " (e(CT2 0)F.1.F | 4 Tt 0

16d
=1299Tst;(0)F + 8¢ B1(8; F)nt #(8) max {m(hr(C’TQ/cS))QF7 TSF} .
By our assumption, we know that T, > % Thus, further simplifying indicates that it suffices for us to show

- 2
% (W) > 129nTt §(8)F + 8¢ B1(0; F)nt s(8) max { 16T, (Ir(CT?/8))*F, T, F } . (53)
By choosing F' such that

e !
= 2 \ 60coplog(T/6)) nTsts(8) (129 4 8c261(0; F) (16(1r(CT?/5))? + 1))’
we see that Eq. (53) is satisfied.

O

L

Remark 3. Suppose without loss of generality that T, = 07
amortized function value progress of decreasing function value by F' over T iterations is

F 1 < & )2 1
60corplog(T/6) ) nT3ts(d) (129 + 8¢ (6; F) (16(1e(CT?/9))* + 1))

. Then, as a consequence of Lemma 25, we note that the

T, 2

(] ! )
p? \ 22 (60cotlog(T/0))2 (t£(6)) (129 + 8251 (6; F) (16(Ir(CT?/9))? + 1))

F. Proving the main result (informal statement in Theorem 1, full statement in Theorem 2)

In this section, we prove our main result. First, we need an additional result (Lemma 26) showing that with high probability,
we can bound the function value increase if a saddle appears within ¢ ;(J) iterations immediately after we have had T}
iterations after the previous saddle. We note that such a bound is necessary because our earlier result upper bounding
function increase in 7 iterations (see Lemma 18) focused on the case where 7 > ¢ (0). Next, we state and prove Theorem 2,
which is the precise version of Theorem 1 in the main text.
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Lemma 26 (Function change for small 7). Letc; > 0,¢4 > 0,c5 > 0,C1 > 1 be the absolute constants defined in the
statements of the previous lemmas. Let § € (0,1/e], and suppose T < t;(0).

Let J denote the interval {0,1...,7 — 1} where 7 < t4(9).

Suppose we choose 1 such that

1 ) vm m
1< g min Sea(Ir(CrdmT/0)* /P e LT oY

Suppose also we pick u,r and 1 as prescribed in the statement of Proposition 4.

Suppose that min.e ||V f(z¢)|| < €. Then, on the event

7—1 7—1
D, (8) == Ho - (5) N (ﬂ At(5)> N <ﬂ gt(a)) ,
t=0 t=0
we have the following upper bound on function value change:

\° \*
flzr) = f(zo) < 262 +tp(O)nutp? - c1d® <10g 5) +t(8)Ln*up? - c1d? <log 5)

T
+ nerr? (128t 4(8) + nL) log 5t ty(0)er Lnr?.
(4t7(5)+4)6
Moreover, P(D,(0)) > 1 — Lz,

Proof. Throughout the proof, we assume that the event D, () holds.

Let J denote {0,1...,7 — 1} where 7 < t(d). Then, J belongs to one of the two following cases.

Case 1) (Gradient dominates noise): Recall that this means that for every ¢t € J, we have

+ ”Yt> :

ul| 1 & ~
[V f(@e)ll > 8ts(8)nL (2 o Z ZyiZ{ i HyiZy s
i=1

By our choice of 7 in Eq. (31), we can apply Lemma 16 to get
1

1 > — .

min||Vf(ze)]| 2 7 max|[Vf(z0)]|

Thus by setting o = 128¢,(4) in Eq. (5) and by choosing 7 such that
al’x®d _n _ 1

m
S /L —
m o 128,(0) = 128c1 Lt (8)dy®’
it follows that

3n 1 — T 2 n c1Ln?x3d 5
_ IZEE;}Z“VJ[(%” + (128tf(5) + - > ZHVf(mt)H

teJ i= teJ

_ 377 1 m 2 n 9
= =7 2 DAV + g DIV @l

teJ

|
D
=
3
—
o)
™
<
K.!
—~
&
o+
==

16 . .
13 min| ()| < D min 97 () < L, 55)
teJ

Vi)l <e

where the final bound holds since we assumed min;e |
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+ 1Y ) :
By our choice of 7 in Eq. (31), we can apply Lemma 17 to get

2
IV f(ze)]] < estyp(d)nL <u2d2p (log ?) +14/1+ 10g(§/6)r> vt e J.

Case 2) (Gradient does not dominate noise): there exists some ¢t € J such that

ull 1 & -
Tt)|| = otf(0)n Sl t,idy 41t i 4t
IVfzo)ll < 8tp@nL | 5[ — D 2 Z) H,,Z
i=1

Note that, by our choices of the parameters 7, u, r, it can be shown that

T\ log(T
csty(6)nL <u2d2p (log 5) /14 Og(d/é)r> <e

Hence, by setting o = 128t£(0) in Eq. (5) and choosing 7 such that

al’x’d _n _
m T o 128t4(0)’

it follows that

n c1Ln?x3d
(s 22 SV sl

teJ

2 2
64tf Z(stf ( d2p<log§> + 1_|_10g(§/§)r>>

= 64tf Z

eJ
N 2
< L
< 646 (56)
Combining both cases above (Eq. (55) and Eq. (56)), we see that for the choice av = 128¢(¢), the bound
n crLn?x3d 2 _ 1 o
Z < = 57
gL Z! Tt + (g + ) sl < Ye 7
tes " teJ
always holds.
Recall by Eq. (5) that we have
"7 m n C1L7]2X3d T—1 )
o) - Z R Iz s+ (2 A S ste)

t=0
4

T\? T
+ mutp? - e1d® <log 6> +7Ln*utp? - crd* <log 6>
2 T 2.2
+neir®(a+nlL) logg + Te1 Lntr

By plugging in Eq. (57) above, as well as the choice av = 128¢4(6), we see that

T\* \*
flzr) = f(zo) < Ze +tp(O)nutp? - c1d® <log 5) +tp(8) Ln*utp® - cyd* <log 5)
+ nerr? (128t 4(8) +nlL) log% +t4(8)er Ln*r?
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We can now complete our proof by using the union bound (suppressing the dependence of some of the events on ¢ for
notational simplicity) to derive

B(DS) < P(HS) + 3 B(AD) + 3 B(G9)
t=0 t=0
< (t14+4)6
- T

(427 (0) +4)

T 0 O

T T
—04+2=0<
-I-T + T70S

Armed with Proposition 5 and Lemma 25, we are now ready to show for 7" sufficiently large, with high probability, there
can be no more than 7'/4 e-saddle points. Combined with Proposition 4, this yields the following result.

Theorem 2. Suppose we pick u,r,n such that they satisfy the conditions in Proposition 5 and Lemma 25. Suppose I is
chosen as prescribed in Lemma 25. Suppose that ¢ < 1, so that Ts > ﬁ > ﬁ 10 Suppose we pick Ty as prescribed in
Proposition 5. Suppose in addition we pick r such that

€2 Fi

4(13061tf(5) +c 10g(T/(5) + Cl)’ S0L log(T/é) (658(:§ +132¢; + 1)

r? < min

Suppose also that we choose n such that

_ 0191 b 2 1
T=5279,3 (6009Lp10g(T/5)> t4(6) (129 + 8¢261(6; F) (16(Ir(CT2/6))2 + 1))
Suppose
256t ¢ (6 — ) +€e2/L 2 — f*
. { i >(<f<x;>€2 I +E/0) e <fm> f )’256%1’256”(5)’1024}’ 58)
where

@ =20 (2.*(60cgtlog(T/8))? (t£(8)) (129 + 8¢ B1(6; F) (16(1r(CT?/6))* 4+ 1))) .
Then, with probability at least 1 — 226, there are at least T /2 e-approximate second order stationary points.

Proof. Consider defining the following sequence of stopping times:

mo=if{t <T: [[Vf(20)] < & Amin(V2f (1)) < —V/pe},
Tit1 = irtlf{t ST it>74+Ts, V(@) < € Amin(VEf(24)) < —/pe}, V1 <i<|T/Ts].

O

We note that if 7, = T, then 7; = T for any j > 4. Let [N, denote the (random) number of saddle points encountered in T’
iterations.

We observe that we can decompose the function change as
fler) = (o)
= (f(mTNs) - f(:EO)) + (f(wT) - f(xTNS))

!%Recall we focus on the case 1) < L, since otherwise, by the L-Lipschitz assumption, Amin(V2f(2)) > —L for all z € R?, i.e.
e-first order stationary points are also e-second order stationary points.
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(o)~ Fo) 4 D (i) = )4 3 (o)~ Foym) + ar) — Hery,)
. =z

= Z(f(xnws)*f(l’n))Jr(f(ﬂ?n - Z (@ripy) = f@rr1)) +(f(2r) = fl2ry,))-
U, Uz

We first consider U;. Letting z; := 7 for any j > T', we have that

LT/

N
Z f@rs1,) — f(2r,) = Z (f@r1,) — f(2r)) L

=1

Now, by Eq. (32), observe that with probability at least 1 — w >1-— % (note Ts > 4), forany 1 < i < T /T, we
have that

2

(f(@rq1,) = f(27,) Lncr < T@ 0t (8)%L3 <u2d2p (1og ?) + 210g(T/6)r>

T\® T\"
+mutp? - end® (log 5) + 7Ln*utp? - e d? (log 5)

T
+ neyr?(128t(8) + nL) log 5 + 7¢1 Ln?r?
= wu,r,Ts+

Suppose we pick w,r such that M, ,r, < 0.1F. Recall from Proposition 5 that with probability at least 1/3 — B—TTf‘S,
(f(@r41.) — f(zr,)) 1y« < —F. Choosing ¢ such that 1/3 — 13—%5 > 0.3, and letting ¢ = 0.1F, we note that

- =0.9F > 310.2F > ST(M,, .7, + ).

Now, let £, denote the bad event on which

neither (f(2r,+1.) — f(27,)) lr,<cr < —F, nor (f(zr,+1.) — f(27)) Ir,<r < Muyz, <0.1F.

We know that £, has probability at most GT O Let &, = UZLZ{TSJET” such that P(€;) < 6J. Then, by applying the
weakened supermartingale inequality in Proposmon 3, we have

T/T,

2 2
P ; (F@rir) — f(@r)) 1rer > —N,0.9F + 5 | <E [exp <—4N5F2ﬂ +P(E,) < exp <_4(T/SJ;)F2> + 60.

Now, pick s = 2F\/+/log(1/6)T /T, then

/T,
P> (f@rer) = f(2n)) lner = =N0.9F + 2F\/\/log(1/8)T /T, | < 7.
i=1

Note that supposing for contradiction that there are at least T'/4 saddles, we must then have that Ny > T'/(4T5), such that

—N,0.9F + 2F\/\/log(1/8)T/T}) < F(—0.9T/(4T,) + (2/ og(1/8)T/T)) < F(—0.1T/T}),

where we may ensure the last inequality by picking T'/T such that

2
T/Ts > (2> V1og(1/8) = 256+/log(1/6).

0.125
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Note that our choice of I" ensures this.
Thus, with probability at least 1 — 76,

T/Ts
Ur= > (f(@r41) = f(@r,) L1rcr < —(0.1T/T,)F.
i=1
Next, we bound the summand Us. Recall that

No—1

U2 = (f(m'rl) - f($0)) + Z (.f(x‘l'z‘+1) - f(xTi+Ts)) .

i=1
Without loss of generality, we may analyze each of the summands f(z.,,,) — f(z7,47,) in the same way as we treat

(f(xr) — f(zg)). Let us then consider the summand f(x,, ) — f(zo). There are two cases to consider.

1. The firstis when 71 < t7(0). In this case, since we know that |V f(z,, )| < € (as z, is an e-saddle point), it follows
by Lemma 26 that

T\? T\*
flar) — flzg) < 262 + tf(é)nu4p2 cod? <10g 5) + tf(é)Ln2u4p2 cepd? <10g 5)
T
+ nclr2(128tf(5) +nL)log 5 + tf(5)c1L7727"2

. . (4t;(8)+4)0
with probability at least 1 — ===,

2. The second case is when 7 > ¢ f((S). In this case, by Lemma 18, we have that

2 2 2
f(@r) = flxo) <7 g—ZHStf(5)2L2 (quQp (log f) + 210g(T/5)7">

T\° T\*
+mnutp? - erd® <log 5) + i Ln?u*p? - erd? <1og 5)
+ nerr? (128t 4(8) + nL) log % + me Ln?r?.

. s (51144)d
with probability at least 1 — 7.

By our choice of u, we know that

3 4
te(O)nup?® - ey d® (log ?) +t(8)Ln*u*p? - cyd? (log z;) +nerr?(128t4(8) +nL) logg +t(8)er Ln*r?

<tp(8)rey +tp(8)r?er + err®(128t4(0) + 1) log(T/8) + 17
= 12(130c1t £ (8) + c1 log(T/8) + c1).

Hence, by picking r such that

62

<
"= 41301, (6) + 1 log(T/6) + 1)’

it follows that

2 T

T 3 4
% > tp()nu'p? - erd’® <10g 5) +tr(8) Lnu'p? - erd’ (log 5)

T
+ 7]017'2(128tf((5) + T)L) log g + tf((s)ClLleT‘z.
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Then, if 7 < ¢£(8), with probability at least 1 — ZL(0)+4)

2
ne
f(@r) — f(2o) < TR
Suppose also that we pick 7 such that

, F./pe F
s 65c2 < 65¢2 ’
80¢ log(T'/6) (Tﬁ 1326, + 1) 40nT, log(T/5) (TS +132¢; + 1)

Then, it can be verified that

£

2
EN > Tﬁn‘gt (6)2L% | u?d?p logz 2 ++/2log(T/0)r
40T, = ! 5

64
T\® T\*
+ Tnutp? - ey d® <1og 5) + TLn*u*p? - ed <1og 5)
T 2 T 2,2
+ Zoner (128t4(6) +nL)log 5 + TeyLn“re.
S

Then, by a union bound, it follows that with probability at least 1 — 94,

Ng—1

Uz = (f('rﬁ) - f(.TO)) + Z (f('rndd) - f(xTH'Ts))

i=1
< Tn? FT
—Ts 2 40 T
Therefore, by the union bound, with probability at least 1 — 164,
T F
F(@ny,) = f(w0) = Uy + U < - (—0.1F )2 40)

By recalling our choice of F' in Lemma 25, by choosing 7 such that

_ 0191 ¥ 2 1

1< 5353 (Goammeg@) 50 TSR TP
_011 ( NG )2 1 _0.1F
= 2e22 \ 60coiplog(T/5) ) nTsts(0) (129 + 826, (5; F) (16(Ir(CT2/6))2 +1))  2€2’

it follows that with probability at least 1 — 166,
f(wry,) = f(wo) = Uy + Us

T F
< |-01F 2194 —
ST < 0.1F +mne” /2 + 40)
T T
< ?(—0.1F +0.1F/4 +0.1F/4) = ?(—0.0SF).

Choose T such that

. 207;(f(x0) = f*) o ¢p* (f(wo) = f7)

—(0.05T/T)F < —(f(wo) — f*) <= T ja = et

yields a contradiction, where
¢ = 20 (23(60cgrlog(T/6))? (t£(8)) (129 + 8¢ B1(6; F) (16(1r(CT?/5))* + 1)))
Hence, with probability at least 1 — 16, there cannot be more than 7'/4 saddle points. In addition, with probability at

least 1 — 64, by Proposition 4, there cannot be more than 7'/4 iterates with ||V f(x;)|| > €. Hence, with probability at least
1 — 226, there are at least T'/2 e-approximate second order stationary points.
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G. More complete discussion of simulations

We test the performance of our proposed algorithm with two-point estimators (ZOPGD-2pt) against existing zeroth-order
benchmarks using the octopus function (proposed in (Du et al., 2017)) of varying dimensions.'! It is known that the octopus
function defined on R¢, which chains d saddle points sequentially, takes exponential (in d) time for exact gradient descent to
escape; it has thus emerged as a popular benchmark to evaluate and compare the performance of algorithms that seek to
escape saddle points. In our experiments, we compare the performance of our two-point estimator algorithm (ZOPGD-2pt)
with PAGD (Algorithm 1 in (Vlatakis-Gkaragkounis et al., 2019)) and ZO-GD-NCF (see (Zhang et al., 2022)), which are
the only two existing zeroth-order algorithms that have (a) a O(d/eQ) sample complexity for escaping saddle points (with the
latter algorithm yielding the tightest bounds), and (b) performed the best empirically on escaping saddle points (see the
simulation results in (Zhang et al., 2022)). We note that both PAGD and ZO-GD-NCF have to use 2d function evaluations
per iteration to estimate the gradient while our algorithm only needs to use 2 function evaluations. In our plots, we plot the
function value against the number of function evaluations. For completeness, we also plot the performance of exact gradient
descent (normalized such that its x-axis is also the number of function queries).

We tested the algorithms for d = 10 and d = 30. To account for the stochasticity in the algorithms, for each algorithm, we
computed the average and standard deviation over 30 trials, and plotted the mean trajectory with an additional band that
represents 1.5 times the standard deviation. For our algorithms$ hyperparameters, we picked

1
N= U= 1072, 7 = 0.05,m = 1( i.e. two-point estimator) (59)
For PAGD, we used the hyperparameters listed in their paper, and for ZO-GD-NCF, we used the code from their Neurips
submission. We note in particular that both methods used the step-size ﬁ. For initialization, we chose a random x( near the
saddle point at the origin, drawn from N (0, 107314 4)'? (fixed for all trials and all algorithms).

As we can see in Fig. 2, in both cases, our algorithm reaches the global minimum of the octopus function in significantly fewer
function evaluations than PAGD and ZO-GD-NCF (approximately 2.5 times faster than ZO-GD-NCF, and approximately 3
times faster than PAGD), despite our algorithm only using 2 function evaluations per iteration compared to 2d function
evaluations per iteration for both PAGD and ZO-GD-NCEF. As a sanity check, we note that the number of function evaluations
required for PAGD and ZO-GD-NCF to reach the global minimum approximately matches that in Figure 1 of (Zhang et al.,
2022); here the correspondence is only approximate since (Zhang et al., 2022) only plots one trial while we compute the
mean and standard deviation of 30 trials.

This result suggests that in addition to the theoretical convergence guarantees, there might also be empirical benefits to using
two-point estimators versus existing 2d-point estimators in the zeroth-order escaping saddle point literature.

""Our code can be found at https://github.com/rafflesintown/escape-saddle-points-2pt
'2Using the random seed in our code, we note that |V f(zo)|| = 0.011 for d = 10 and ||V f(x0)|| = 0.030 for d = 30.

61


https://github.com/rafflesintown/escape-saddle-points-2pt

Escaping saddle points in zeroth-order optimization: the power of two-point estimators

oA
oA
-
—200 A ‘
—1000 A
—400
g — @D E — GD
T 600 —— Z0-GD-NCF g —— Z0-GD-NCF
5 PAGD § 20001 PAGD
a0l —— ZOPGD 2-pt g FOpGD 2:pt
.5 minimum function value 2 === minimum function value
1000 4 -3000 1
—1200 1
—4000 A
-1400—F=——t————————,,—_— oo ——_- | T
$ 85388858 ¢8¢8%8°§8
— ~ 5] < n © ~ ) o 3 o .—qHNNmmvvmmwwr\v\wwc\mgg
Number of function queries

Number of function queries

(a)d=10 (b)d =30

Figure 2: Performance on toy octopus function, with 7 = e, L = e,y = 1 (Here, 7, L,y are parameters determining the

properties of f. Our parameter choice is consistent with that in (Zhang et al., 2022). See (Du et al., 2017) for details about
the definitions of 7, L and +.).
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