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ABSTRACT

The Lurie Network is proposed as a unifying architecture for modelling time-
invariant nonlinear dynamical systems. Many existing continuous-time models
including Recurrent Neural Networks and Neural Oscillators are special cases
of the Lurie Network when applied to this domain. Motivated by the need for a
general inductive bias, shared by many systems, this paper proposes an approach to
enable network weights and biases to be trained in such a manner that a generalised
concept of stability is guaranteed. This generalised stability measure is that of
k-contraction which enables global convergence to a point, line or plane in the
neural state-space. This result is leveraged to construct a Graph Lurie Network
(GLN) satisfying the same convergence properties. Unconstrained parametrisations
of these conditions are derived allowing the models to be trained using standard
optimisation algorithms, whilst limiting the search space to solutions satisfying the
k-contraction constraints. Empirical results show significant improvement in terms
of prediction accuracy, generalisation and robustness compared to other uncon-
strained and stability-constrained models. Furthermore, both models consistently
learnt representations which respected the convergence behaviour of the dynamics.

1 INTRODUCTION

A Lurie1 system is a class of nonlinear ordinary differential equations (ODE) comprising a linear
time-invariant (LTI) component interconnected with a, potentially time-varying, nonlinearity. Such
systems are ubiquitous throughout the sciences and engineering, including machine learning (ML)
and neuroscience Pauli et al. (2021a); Lessard et al. (2016); Lanthaler et al. (2024); Wilson & Cowan
(1972). When modelling time-invariant dynamical systems, many ML models including Linear State
Space Models (LSSM), Recurrent Neural Networks (RNN) and some Graph Neural Networks (GNN)
are special cases of a Lurie system (§3.1). Such models have proven to be highly expressive as
demonstrated by their successful application on a wide range of tasks such as sequential processing
Kozachkov et al. (2022a); Erichson et al. (2020); Chang et al. (2019); Gu et al. (2021), computer
vision Erichson et al. (2020); Chang et al. (2019); Gu et al. (2021), language modelling Gu et al.
(2021) and computational chemistry Rusch et al. (2022).

Consider dynamical systems in the field of neuroscience: convergence and stability of a latent state
are crucial for learning, information propagation Kozachkov et al. (2020); Centorrino et al. (2022);
Pascanu et al. (2013); Vogt et al. (2022), memory storage Kozachkov et al. (2022b); Krotov &
Hopfield (2020); Ramsauer et al. (2020) and robustness Manchester et al. (2021); Pauli et al. (2021b;
2023). For example, multi-stable and orbitally stable systems are, respectively, observed in associative
memory Kozachkov et al. (2023) and working memory Kozachkov et al. (2022b). Furthermore, these
processes occur in different regions of the brain interconnected through a graph structure. A graph
structure and these convergent properties are shared with many other dynamical systems such as
chemical processes Ofir et al. (2023), opinion dynamics and power systems Ofir et al. (2024).

The convergence and stability analysis of dynamical systems has been well-studied in the control
theory literature. A pertinent example is the absolute stability problem where the nonlinearity of
the Lurie system is unknown, but assumed to be sector-bounded or slope-restricted. The goal is to
find conditions on the model parameters which ensure the trajectories of all Lurie systems, with
nonlinearities in the assumed class, uphold a chosen definition of convergence. Approaches to
this problem can be classified as Lyapunov analysis Khalil (2002); Park (2002; 1997), Zames-Falb

1Named after Anatolii Isakovich Lurie and sometimes spelt Lur’e or Lurye.
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multipliers Zames & Falb (1968); Turner & Drummond (2019); Carrasco et al. (2016); Drummond
et al. (2024) or k-contraction analysis Zhang & Cui (2013); Ofir et al. (2023; 2024). Lyapunov and
Zames-Falb multiplier methods are primarily designed to analyse the convergence to an equilibrium
point, whereas k-contraction methods analyse a variety of global convergence behaviours including
convergence to points, lines and planes. As many ML models are examples of Lurie systems and
many activation functions are sector-bounded or slope-restricted (Drummond et al., 2022, Table 1),
much of the literature on the absolute stability problem is applicable to systems involving neural
networks Pauli et al. (2021a); Richardson et al. (2023; 2024); Fazlyab et al. (2020).

Although designing networks with convergent dynamics is well motivated as an inductive bias,
ensuring such a property requires constraints on the network parameters, which can be detrimental if
too restrictive. With this in mind, this work focuses on: (i) using k-contraction analysis to derive mild
constraints on the weights of the Lurie Network which ensure global convergence to a point, line or
plane in the neural state space, for all Lurie Networks with slope-restricted activation functions; (ii)
establishing unconstrained parametrisations of these conditions which allows the Lurie Network to be
trained using gradient based optimisation algorithms whilst limiting the search space to weights which
satisfy the convergence conditions; (iii) constructing a Graph Lurie Network (GLN) from individual
Lurie Networks and deriving constraints on the graph coupling matrix which ensure the k-contraction
property is maintained. Similar unconstrained parametrisations are also derived. We compare the
proposed models against other continuous-time architectures and show the proposed approach leads
to more accurate, generalisable and robust models for a range of time-invariant dynamical systems.

2 PRELIMINARIES

2.1 NOTATION

For two integers i < j, we define [i, j] := {i, i+ 1, . . . , j}. The set of non-negative real numbers is
denoted by ℜ+. Symmetric matrices of dimension n are denoted by Sn with the positive definite
subset denoted by Sn

+. All other positive definite subsets are denoted by a + subscript. Square
diagonal matrices are denoted by Dn and n × m diagonal matrices are symbolised by Dnm. A
positive definite (semi-definite) matrix P is sometimes indicated by P ≻ 0 (P ⪰ 0). Negative
definite (semi-definite) matrices are indicated analogously. The set of n× n orthogonal and skew-
symmetric matrices are respectively denoted by SO(n) and so(n). For W ∈ ℜn×m, the ordered
singular values are represented by σ1(W ) ≥ · · · ≥ σmin(n,m)(W ) ≥ 0 and for W ∈ ℜn×n, the
ordered eigenvalues are denoted by λ1(W ) ≥ · · · ≥ λn(W ). The k-multiplicative and k-additive
compound matrices of W are respectively denoted by W (k) and W [k]. The Jacobian of a function
f(t, x) is denoted by Jf (t, x). The scaled 2-norm of a vector x ∈ ℜn with respect to (w.r.t) an
invertible scaling matrix Θ ∈ ℜn×n is defined by |x|2,Θ := |Θx|2, and the matrix measure induced
by the scaled 2-norm is

µ2,Θ(W ) := µ2(ΘWΘ−1) = λ1

(ΘWΘ−1 + (ΘWΘ−1)T

2

)
2.2 k-CONTRACTION ANALYSIS

In this work, we leverage k-contraction analysis Wu et al. (2022); Muldowney (1990), the geomet-
rical generalisation of contraction analysis Lohmiller & Slotine (1998), as a tool for controlling
convergence in the neural state space. Intuitively, k-contraction implies the volume of k-dimensional
bodies exponentially converges to zero when governed by the system dynamics. Alternatively, this
could be thought of as exponential convergence to a (k− 1)-dimensional subspace. When k = 1, this
reduces to standard contraction Lohmiller & Slotine (1998), which implies that all trajectories expo-
nentially converge to a single trajectory. For a general time-varying dynamical system, satisfying the
k-contraction property does not guarantee stability. However, for time-invariant dynamical systems,
it has been shown that for every bounded solution: 1-contraction implies global convergence to a
unique equilibrium point Lohmiller & Slotine (1998), 2-contraction implies global convergence to an
equilibrium point, which is not necessarily unique but must be connected along a line Muldowney
(1990), and 3-contraction, under certain assumptions, implies convergence to a non-unique attractor
Cecilia et al. (2023). Three examples of k-contracting dynamics are presented in Figure 1.

Time-invariant dynamical systems which satisfy the k-contraction property for k ∈ {1, 2, 3} have
several desirable properties for ML models. They can exhibit a wide range of complex convergent
behaviours such as multi-stable and orbitally stable systems Zoboli et al. (2024). This suggests that a
model can be expressive whilst satisfying the k-contraction conditions, particularly for higher values
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Figure 1: Trajectories from three dynamical systems satisfying the k-contraction property. Crosses
denote the initial condition and stars denote equilibirum points.

of k where the constraints are less restrictive, as highlighted in §3.2. The k-contraction property also
implies an inherent robustness as the trajectories can only converge to a finite number of long term
behaviours. Next, we present the fundamental k-contraction result from Wu et al. (2022).

Theorem 1 Fix k ∈ [1, n] and consider the nonlinear system ẋ = f(t, x) with f : ℜ+ ×ℜn → ℜn

continuously differentiable. If there exists η > 0 and an invertible matrix Θ ∈ ℜn×n such that

µ2,Θ(k)

(
J
[k]
f (t, x)

)
≤ −η ∀ x ∈ ℜn and t ∈ ℜ+ (1)

then the nonlinear system is k-contracting in the 2-norm w.r.t the metric P := Θ⊤Θ.

This result has two features: (i) it requires the existence of an invertible matrix Θ. In the simplest
case, one can expect a solution Θ = pIn to exist. For other systems, such simple solutions will
not exist and more general matrices such as Θ ∈ Sn will be required, making the proofs more
difficult; (ii) it requires the use of compound matrices. For a matrix W ∈ ℜn×m, the matrix W [k]

with k ∈ [1,min(n,m)] will have the size
(
n
k

)
×

(
m
k

)
which is typically much larger and more

computationally difficult to work with. A more technical introduction to k-contraction analysis and
compound matrices is presented in §A. In §3.2 we derive results which verify (1) for the special case
of nonlinear systems of the form (2).

3 LURIE NETWORK

A Lurie Network is defined by (2) with weights A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜm×n and biases
bx ∈ ℜn, by ∈ ℜm.

ẋ(t) = Ax(t) +BΦ
(
y(t)

)
+ bx y(t) = Cx(t) + by x(0) = x0 (2)

The model has a biased linear component interconnected with a nonlinearity of the form Φ(y) :=

[ϕ1(y1) . . . ϕm(ym)]
′ where ϕi(yi) is assumed to be slope-restricted with an upper bound g > 0, such

that 0 ⪯ JΦ(y) ⪯ gIm. This separation of the linear and nonlinear components is useful for analysis.
Activation functions which satisfy this slope-restricted assumption include the hyperbolic tangent
(tanh) and the rectified linear unit (ReLU ). For simplicity, we assume the same scalar nonlinearity is
applied element-wise and drop the subscript. The proposed Lurie Network is a very general model as
highlighted by the special cases in §3.1 and its relationship to deep feedforward neural networks as
outlined in §B.1. Finally, it is important to observe that the model is time-invariant, this implies that
if Theorem 1 is satisfied, the model will inherit the appealing convergence and robustness properties
stated in §2.2.

3.1 EXAMPLE LURIE NETWORKS

When applied to time-invariant dynamical systems, many models from the ML literature become
special cases of (2). In this setting, the time-varying external inputs are replaced with trainable biases.
A subset of examples are presented next with further examples included in §B.2. As the results in
§3.2 apply to any model of the form (2), they can also be applied to these special cases.

Lipschitz RNN: A stability constrained RNN Erichson et al. (2020) where the parameters A,C
are expressed as a weighted sum of symmetric and skew-symmetric terms in order to control the

3
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eigenvalues of the Jacobian. The remaining components are B = In, bx = 0 and ϕ(·) ≡ tanh(·).

A,C ∈ {(1− β)(W +W⊤) + β(W −W⊤)− γIn|W ∈ ℜn×n, 0.5 ≤ β ≤ 1, γ > 0}
Antisymmetric RNN: A constrained RNN Chang et al. (2019) with the same motivations as above.
Related to (2) by A = 0, B = In, C ∈ {W − γIn|W ∈ so(n), γ > 0}, bx = 0 and ϕ(·) ≡ tanh(·).
RNNs of RNNs: A 1-contracting graph coupled RNN Kozachkov et al. (2022a). A special case of
(2) with A = L−aIn, B ∈ ℜn×n, C = In and by = 0. The matrix B is block diagonal and contains
the synaptic weights of the individual RNNs. The matrix L is the graph coupling matrix.

3.2 k-CONTRACTION ANALYSIS OF LURIE NETWORKS

Two sufficient results which satisfy Theorem 1 and guarantee (2) is k-contracting are presented
next. Conditions were derived in (Ofir et al., 2024, Theorem 2) which verify Theorem 1 for a Lurie
Network with A ∈ Dn and by = 0. Theorem 2 extends them to account for A ∈ ℜn×n and by ̸= 0.
Refer to §C.1 for the proof.

Theorem 2 Consider the Lurie Network (2) with Φ(y) := [ϕ1(y1) . . . ϕm(ym)]
′ being slope-

restricted such that 0 ⪯ JΦ(y) ⪯ gIm. Fix k ∈ [1, n] and define αk := (2k)−1
∑k

i=1 λi(A+A⊤).
If αk < 0 and

g2
k∑

i=1

σ2
i (B)σ2

i (C) < α2
kk (3)

then (2) is k-contracting in the 2-norm w.r.t the metric P = −α−1
k In.

The additional freedom permitted by k-contraction over standard contraction is highlighted by the
summation of the eigenvalues and singular values. In 1-contraction, Theorem 2 requires the largest
eigenvalue of the symmetric component of A to be negative whereas for k ∈ [2, n], this condition on
A becomes incrementally more relaxed as k is increased. Equation (3) illustrates a similar relaxation
of the constraints on B and C. Theorem 2 has several appealing features: (i) it does not require
the computation of the troublesome compound matrices; (ii) it provides a way of embedding the
k-contraction property into the structure of a Lurie Network based on fairly simple unconstrained
parametrisations of the weights, as shown in §4; (iii) the biases are not present in the condition,
so are naturally unconstrained. The limitation of the result is that only Lurie Networks which are
k-contracting in a scalar metric can be verified.

We now present a second result which addresses the scalar metric drawback; however, it comes at the
cost of strong constraints on the weights B and C. See §C.2 for the proof.

Theorem 3 Consider the Lurie Network (2) with Φ(y) := [ϕ1(y1) . . . ϕn(yn)]
′ being slope-

restricted such that 0 ⪯ JΦ(y) ⪯ gIn. Fix k ∈ [1, n]. If B ∈ Dn, C = B−1 and

P (k)A[k] + (A[k])⊤P (k) + 2kgP (k) ≺ 0 (4)

then (2) is k-contracting in the 2-norm w.r.t the metric P ∈ Dn
+.

Theorem 3 improves upon Theorem 2 in the sense that Lurie Networks which are k-contracting in a
diagonal metric can now be verified; however, only when C = B−1. Due to this constraint, Theorem
3 has very limited practical use; however, it it may prove to be theoretically insightful for addressing
the scalar metric drawback. Finally, it is important to highlight that Theorem 2 and Theorem 3 apply
to the class of slope-restricted nonlinearities, so these results address the absolute stability problem
for the k-contraction property.

3.3 GRAPH LURIE NETWORKS

Many larger scale dynamical systems such as molecular, social, biological, and financial networks
Hamilton et al. (2017) naturally have a graph structure. To make the Lurie Network more applicable
to these problems, a graph coupling term is introduced to model a set of q interacting Lurie Networks.
To illustrate this, q independent Lurie Networks can be modelled by

ẋ(t) = AGx(t) +BGΦ
(
y(t)

)
+ bx y(t) = CGx(t) + by x(0) = x0 (5)
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where the weights are AG := blockdiag(A1, . . . , Aq) ∈ ℜqn×qn, BG := blockdiag(B1, . . . , Bq) ∈
ℜqn×qm, CG := blockdiag(C1, . . . , Cq) ∈ ℜqm×qn and the biases are bx ∈ ℜqn, by ∈ ℜqm. The
Graph Lurie Network (GLN) is then defined by

ẋ(t) = (AG + L)x(t) +BGΦ
(
y(t)

)
+ bx y(t) = CGx(t) + by x(0) = x0 (6)

where L := [Ljl] is a block matrix with block Ljl ∈ ℜn×n connecting Lurie Network l to Lurie
Network j. The state and nonlinearity of the GLN are defined by x ∈ ℜqn and Φ : ℜqm → ℜqm

where the states of the independent Lurie Networks have been stacked into a single state. Interestingly,
the GLN (6) is actually a special case of a Lurie Network; however, as the networks get larger, so
does the search space. Thus, imposing any assumptions which respect the structure of the problem
can reduce the search space and lead to more robust and generalisable models. Any further prior
knowledge about the graph can be encoded through constraints on the graph coupling matrix.

3.4 k-CONTRACTION ANALYSIS OF GRAPH LURIE NETWORKS

In this section, we assume that q independent Lurie Networks (2) are k-contracting in the 2-norm
w.r.t metrics P1, . . . , Pq. This is equivalent to (5) k-contracting in the 2-norm w.r.t the metric
P = blockdiag(P1, . . . , Pq). Theorem 2 and Theorem 3 provide two results which can, respectively,
verify this w.r.t a scalar metric Pj = pjIn and a diagonal metric Pj ∈ Dn

+ for j ∈ [1, q]. Other
results may be used providing they apply to systems of the form (2). Under this assumption, Theorem
4 provides a constraint on the graph coupling term which ensures the GLN is k-contracting when
constructed from q independently k-contracting Lurie Networks. The proof is detailed in §C.3.

Theorem 4 Fix k ∈ [1, n]. Consider a GLN (6) where the q independent Lurie Networks are
collectively defined by the weights AG := blockdiag(A1, . . . , Aq), BG := blockdiag(B1, . . . , Bq),
CG := blockdiag(C1, . . . , Cq) and biases bx ∈ ℜqn, by ∈ ℜqm and are k-contracting in the 2-norm
w.r.t the metric P := blockdiag(P1, . . . , Pq). If the graph coupling matrix L ∈ ℜqn×qn satisfies

P (k)L[k] + (L[k])⊤P (k) ⪯ 0 (7)
then (6) is also k-contracting in the 2-norm w.r.t the metric P .

Remark 1 It should be noted that Theorem 4 could be applied more generally for constructing
k-contracting graph coupled systems. Providing the q subsystems are k-contracting in the 2-norm
w.r.t some metric P = blockdiag(P1, . . . , Pq), then Theorem 4 is applicable when coupling them
through the graph coupling term. It is not necessary for the q subsystems to be Lurie Networks.

4 PARAMETRISATION OF k-CONTRACTING LURIE NETWORKS

To train a k-contracting Lurie Network using gradient based optimisers, parametrisations which
express the constrained weights in terms of unconstrained variables must be found. To formalise this
idea, we define the sets Ω2(g, k) and Ω4(k, P ). As the biases do not appear in these sets, they are
naturally unconstrained. The set Ω2(g, k) contains all the weights of the Lurie Network which satisfy
Theorem 2.

Ω2(g, k) :=
{
(Ā, B̄, C̄)

∣∣∣ αk < 0, z := g2
k∑

i=1

σ2
i (B̄)σ2

i (C̄) < α2
kk

}
(8a)

Ω4(k, P ) :=
{
L̄ ∈ ℜqn×qn

∣∣∣ P (k)L̄[k] + (L̄[k])TP (k) ⪯ 0
}

(8b)

The set Ω4(k, P ) contains the graph coupling matrices which satisfy Theorem 4. A parametrisation
associated with Theorem 3 was not established due to its limitations mentioned earlier. The next
results present two different parametrisations of the set Ω2(g, k). See §C.4 for the proofs which
leverage the eigenvalue and singular value decompositions.

Theorem 5 Given g > 0, k ∈ [1, n], UA, UB , VC ∈ SO(n), VB , UC ∈ SO(m), ΣB ∈ Dnm
+ ,

ΣC ∈ Dmn
+ , YA ∈ so(n), GA ∈ Dn

+ and define

A :=
1

2
UAΣAU

⊤
A +

1

2
YA ΣA := −

√
4z

k
In −GA (9a)

B := UBΣBV
⊤
B C := UCΣCV

⊤
C (9b)

then (A,B,C) ∈ Ω2(g, k).
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Theorem 6 Given g > 0, k ∈ [1, n], UA, UB , VC ∈ SO(n), VB , UC ∈ SO(m), ΣB ∈ Dnm
+ ,

ΣC ∈ Dmn
+ , YA ∈ so(n), ΣA1 ∈ Dk−1, GA2 > 0, GA3 ∈ Dn−k

+ and define

A :=
1

2
UAΣAU

⊤
A +

1

2
YA B := UBΣBV

⊤
B C := UCΣCV

⊤
C (10a)

ΣA := blockdiag(ΣA1,ΣA2,ΣA3) ΣA1 ∈ Dk−1 (10b)

ΣA2 := −
√
4kz −

k−1∑
i

(ΣA1)ii −GA2 ΣA3 := min(ΣA1,ΣA2)In−k −GA3 (10c)

then (A,B,C) ∈ Ω2(g, k).

Remark 2 In both results, a mapping between the sets so(·) and SO(·) was exploited to express
the orthogonal variables Lezcano-Casado & Martınez-Rubio (2019). The remaining variables are
unconstrained or simply require positive elements, which can be obtained by taking the absolute
value of unconstrained variables.

In Theorem 5 and Theorem 6, the variables which express the B and C matrices are completely
unconstrained. Furthermore, the variables which represent the singular values of B and C are directly
used to upper bound αk since PyTorch provides a differentiable implementation of a sort function.
The only source of conservatism in the parametrisations is introduced through the definition of ΣA.
In Theorem 5, the constraint on αk is replaced by a uniform negative constraint on the individual
eigenvalues of (A + A⊤). If this assumption is true, this significantly speeds up the learning
process; however, it can be prohibitive if not. Theorem 6 allows the largest (k − 1) eigenvalues to
be unconstrained, meaning non-Hurwitz A matrices are encapsulated in the parametrisation. The
definition of ΣA is split into one unconstrained block for the largest (k − 1) eigenvalues, a block to
ensure Theorem 2 is satisfied, and a block for the remaining eigenvalues which must be less than
the other k. The next result provides an unconstrained parametrisation of the set Ω4(k, P ) in (8b).
Coupling this with the earlier parametrisations allows the k-contracting GLN to be trained with
gradient based optimisers. See §C.5 for the proof.

Theorem 7 Given k ∈ [1, n], GL1, GL2 ∈ ℜqn×qn, Θ = blockdiag(Θ1, . . . ,Θq) where Θj ∈ Sn
+

for j ∈ [1, q], P = Θ⊤Θ and define

L := GL1 − P−1G⊤
L1P +Θ−1GL2Θ (11)

where (GL2 +G⊤
L2)

[k] ⪯ 0, then L ∈ Ω4(k, P ).

Theorem 7 provides flexibility in the choice of GL1, GL2 to define different graph structures, where
the constraint on GL2 is equally a constraint on the sum of it’s k-largest eigenvalues (Fact 7). This
constraint could be parametrised in a simlar manner to the symmetric component of A in Theorem 5
and Theorem 6; in which case, Theorem 7 is satisfied and the graph has a directed all-to-all structure,
including self-loops.

Remark 3 If GL2 = 0 along with the main diagonal blocks of GL1, then (11) is a boundary condition
of (7). Thus, Theorem 7 is satisfied and the self-loops are removed from the graph structure.

One consideration when constructing k-contracting Lurie Networks is the number of additional
parameters required for the parametrisation. A Lurie Network, as defined in (2), has a total parameter
count NL = n2 + 2nm+ n+m; whereas a k-contracting Lurie network, constructed according to
Theorem 5 or Theorem 6, has a total parameter count NK ≤ 2n2 +m2. The number of parameters
only increases significantly when m is large compared to n; however, throughout the literature, many
special cases of a Lurie Network set n = m (see §3.1); in which case, NK becomes marginally
smaller than NL. Furthermore, the all-to-all graph coupling term has NC = 2(qn)2 parameters or
NC = qn2(q − 1) if the self-loops are removed according to Remark 3. This analysis highlights that
ensuring the Lurie Network and GLN are k-contracting comes at a minimal computational expense.

5 EMPIRICAL EVALUATION

The aim of this section was to test the significance of the theoretical results presented earlier in
the paper and the additional expressivity of the Lurie Network compared to special cases from the
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Table 1: MSE on a test set of 100 trajectories. The mean and standard deviation were calculated after
training each model N = 3 times on a single T4 GPU (Google Colab). The lowest MSE for each of
the N repetitions is also presented alongside the training time from one run on the opinion dataset.

Model Params. Train. Time Mean Squared Error (mean ± std, best)
Opinion Hopfield Attractor

k-Lurie
Net.

87 8.1 mins (8.0±3)×10−5,
5.1× 10−5

(1.5±1)×10−2,
2.6× 10−3

(3.5±1)×10−3,
1.7× 10−3

Lurie
Net.

33 8.3 mins (3.7±4)×10−3,
5.3× 10−4

(3.6±2)×10−1,
3.9× 10−2

(5.1±5)×10−1,
5.7× 10−2

Neural
ODE

983 91.2 mins (2.0±2)×10−4,
4.3× 10−5

(2.5±1)×10−2,
1.5× 10−2

(2.0±1)×10−2,
1.0× 10−2

Lipschitz
RNN

23 7.8 mins (3.9±3)×10−2,
8.8× 10−3

(2.9±2)×10−1,
3.0× 10−2

1.48 ± 2.07,
1.1× 10−2

SVD
Combo

40 6.2 mins (8.6±3)×10−4,
5.7× 10−4

0.29 ± 0.06,
2.1× 10−1

3.12 ± 0.51,
2.74

Antisym.
RNN

12 12 mins 0.28 ± 0.002,
0.28

0.43 ± 0.02,
0.41

6.88 ± 0.17,
6.74

literature. The importance of these were evaluated using the prediction accuracy, generalisation
and robustness of the k-contracting Lurie Network and GLN on a range of datasets generated by
time-invariant dynamical systems.

5.1 DATASETS AND TRAINING

We first consider three time-invariant dynamical systems: (i) an opinion dynamics model of a social
network where all opinions agree and thus converge to a unique equilibrium point; (ii) a Hopfield
network of associative memory with two stable equilibrium points and one unstable; (iii) a generic
simple attractor which could be used to model the stored patterns in working memory. Each system
has n = 3 states allowing for easy visualisation of the ground truth and predictions. For each
dynamical system, we have a dataset including 1, 000 trajectories, sampled every 0.01s over a
20s interval. The test sets were formed by holding out 100 trajectories. The input to each model
was the initial condition sampled from a uniform distribution with the domain (−1,+1)3 for the
opinion/Hopfield datasets and (−3,+3)3 for the simple attractor. The full trajectory was then used
as the target to train the model. An illustration of these datasets can be seen in Figure 1 and further
details about the data generation can be found in Appendix D.

To test the out of distribution generalisation and robustness, two additional datasets were generated
for each of the opinion, Hopfield and attractor tasks. These differ from the training datasets in the
following ways: (i) they include 100 trajectories over a 30s interval; (ii) the initial conditions were
sampled from a uniform distribution over the intervals 1 < |xi(0)| < 4 for the opinion/Hopfield
datasets and 3 < |xi(0)| < 6 for the simple attractor, where i ∈ 1, 2, 3. These trajectories are 10s
longer than the training data with initial conditions also sampled outside the training distribution.
Finally, to test the robustness, a third dataset was generated using the same trajectories as the targets
but with noise sampled from the standard normal distribution added to the initial conditions.

For the second set of experiments, we consider two 30 dimensional dynamical systems. The first is
a graph-coupled (GC) Hopfield network, formed by connecting 10 previously described Hopfield
networks through a graph coupling matrix. To ensure the convergence property was preserved,
the matrix was expressed by (11) with GL1 sampled from a uniform distribution and GL2 = 0.
The second system was a graph-coupled attractor, constructed in the same way. The datasets
were generated as described in the previous two paragraphs; however, they each included 30, 000
trajectories. The study of interacting memory networks is the motivation behind these examples.

The training settings used are explicitly detailed in Appendix D. For all models and all datasets, the
mean squared error (MSE) loss was used alongside the Adam optimiser. All code was implemented
in PyTorch.

5.2 k-CONTRACTING LURIE NETWORK

In this section, we compare the k-contracting Lurie Network against five other continuous-time mod-
els: (i) the unconstrained Lurie Network, for testing the importance of the k-contraction constraints;
(ii) an unconstrained Neural ODE with two hidden layers, each comprised of 20 neurons and ReLU
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Table 2: MSE on a new test set of 100 trajectories where: (i) the initial conditions were sampled
outside the range used for training and the trajectories were 10s longer than the training set; (ii)
additionally, noise sampled from the standard normal distribution was added to the initial conditions.

Model Mean Squared Error Mean Squared Error (noisy inputs)
Opinion Hopfield Attractor Opinion Hopfield Attractor

k-Lurie Net. 2.9× 10−3 5.6× 10−2 2.3× 10−1 2.0× 10−2 3.2× 10−1 1.28
Lurie Net. 6.4× 10−2 1.8× 10−1 5.96 2.7× 10−1 4.4× 10−1 6.79
Neural ODE 1.2× 10−2 1.09 2.31 3.9× 10−2 1.63 4.76
Lipschitz RNN 2.3× 10−1 7.3× 10−1 6.2× 10−1 2.9× 10−1 9.7× 10−1 1.71
SVD Combo 1.0× 10−2 2.38 20.9 3.3× 10−2 7.97 30.30
Antisym. RNN 6.43 5.25 52.1 7.29 6.33 52.9

activations, as detailed in Xia et al. (2021); (iii) three other constrained continuous-time models:
the Lipschitz RNN Erichson et al. (2020), Antisymmetric RNN Chang et al. (2019) and a single
node from the 1-contracting SVD Combo Network Kozachkov et al. (2022a). For each model, the
weights were initialised using the default PyTorch settings and the biases were initialised as zero. The
numerical integration was performed using the Euler method with step size δ = 1×10−2. Besides the
Neural ODE, each model had tanh activations, which is slope-restricted with g = 1. The parameter
count of each model, excluding the Neural ODE, is determined by the dimension of the state as they
do not explicitly have any hidden layers. This can be seen from (2) and Section 3.1.

For the opinion and Hopfield datasets, the k-contracting Lurie Network was constructed according
to Theorem 5 whereas Theorem 6 was used for the simple attractor. We set k = 1 for the opinion
dynamics, k = 2 for the mulit-stable Hopfield network and k = 3 for the simple attractor.

Table 1 compares the MSE on the test set of each task. The k-contracting Lurie Network achieved
the best MSE on two out of three examples. The importance of the k-contraction conditions is
particularly clear when comparing the mean and standard deviation with that of the unconstrained
Lurie Network. These conditions clearly reduce the search space to a tractable region to optimise
over as the MSE of the unconstrained Lurie Network is at least an order of magnitude worse than
its k-contracting counterpart. The other models perform as one would expect. The Neural ODE
demonstrates strong accuracy across all tasks, albeit at the expense of considerably longer training
time. The SVD Combo performs well on the opinion dataset, where the 1-contraction assumption
is valid, but struggles on the others. The Lipschitz RNN struggles on the attractor dataset whilst
the Antisymmetric RNN struggles across the board due to the A matrix being fixed at zero and the
eigenvalues of the C matrix being fixed to almost purely imaginary values. Figures 4, 7, 10 show a
random sample of trajectories from each test set, along with the predictions of each model.

Table 2 compares the generalisation and robustness of the models on each task. No new models
were trained, instead the best models from Table 1 were directly applied to these out of distribution
and noisy datasets (Section 5.1). The k-contracting Lurie Network performs the best on all of these
datasets and for some, it still demonstrates a MSE of an order of magnitude lower than the next best
model. The MSE of the unconstrained Lurie Network and Neural ODE tended to drop off for these
datasets whereas the MSE of the constrained models, excluding the Antisymmetric RNN, tended to
stay fairly consistent when their assumptions were valid. Figures 5, 8, 11 show a random sample of
noise-free trajectories and predictions for each dataset, whilst Figures 6, 9, 12 repeat the same for the
noisy inputs. The k-contracting Lurie Network was the only model which converged to the correct
long-term behaviour under all conditions; even when noise was added, the error was only present
during the initial transient.

5.3 k-CONTRACTING GRAPH LURIE NETWORK

This section repeats the same experiments as the previous section, but for two 30-dimensional graph-
coupled (GC) dynamical systems: the GC Hopfield network and the GC simple attractor (Section
5.1). The state of these datasets is significantly larger than those used in other dynamical systems
datasets such as: (i) the LASA dataset Lemme et al. (2015) where the 2-d trajectories are typically
stacked to form 4-d or 8-d trajectories; (ii) simulated datasets of the 2, 4 or 8 link pendulums which,
respectively, have 4, 8 or 16 dimension trajectories.

For both datasets, the GLN was constructed according to Theorem 7 and Remark 3 where n = m = 3
and q = 10. The individual Lurie Networks were constructed according to Theorem 5 for the GC
Hopfield network, with k = 2 and Theorem 6 for the GC attractor, with k = 3. The Neural ODE
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Table 3: MSE on a test set of 100 trajectories. The mean and standard deviation were calculated after
training each model N = 3 times on a single A100 GPU (Google Colab). The lowest MSE for each
of the N repetitions is also presented alongside the training time from one run on the opinion dataset.

Model Params. Train. Time Mean Squared Error (mean ± std, best)
GC Hopfield GC Attractor

k-Lurie Net. 8046 24.8 mins 0.238± 0.0011, 0.237 0.737± 0.0108, 0.723
Lurie Net. 2760 21.5 mins 2.537± 1.3327, 1.157 291.8± 191.84, 21.83
Neural ODE 20903 126.5 mins 0.138± 0.0291, 0.114 3.445± 0.3626, 2.942
Lipschitz RNN 1832 17.6 mins 0.124± 0.0161, 0.105 0.658± 0.1604, 0.433
Antisym. RNN 930 25 mins 0.448± 0.0023, 0.444 6.386± 0.0066, 6.380
GC SVD Combo 1300 18.4 mins 0.339± 0.1363, 0.229 3.024± 1.1240, 1.435
GLN 1770 25.5 mins 0.016± 0.0003, 0.016 0.293± 0.1969, 0.015

Table 4: MSE on a new test set of 100 trajectories where: (i) the initial conditions were sampled
outside the range used for training and the trajectories were 10s longer than the training set; (ii)
additionally, noise sampled from the standard normal distribution was added to the initial conditions.

Model Mean Squared Error Mean Squared Error (noisy inputs)
GC Hopfield GC Attractor GC Hopfield GC Attractor

k-Lurie Net. 0.77 6.10 1.05 6.90
Lurie Net. 20350 5638 25481 6368
Neural ODE 2.12 24.93 2.76 25.11
Lipschitz RNN 3.58 6.17 4.25 7.84
Antisym. RNN 5.32 50.68 6.21 52.10
GC SVD Combo 0.84 11.40 1.07 12.30
GLN 0.08 1.67 0.26 2.85

was formed using a two layers with 100 neurons and ReLU activations. The SVD Combo leveraged
a similar graph structure to the one used in this paper. The other models were the same as in the
previous section but with a 30-dimensional state.

Table 3 shows the GLN had a lower MSE than all other models by a factor of 10. This included
the 20,903 parameter Neural ODE. Comparing the GLN, k-contracting Lurie Network and the
unconstrained Lurie Network highlights the improvements due to the k-contraction conditions and
the graph structure. Table 4 also indicates that the GLN generalised and remained robust to noise,
even in these high-dimensional systems. The same can be said for the k-contracting Lurie Network
which achieved the second lowest MSE on the generalisation and robustness tests. The inherent graph
structure of the SVD Combo may be the reason behind its improved ranking in the GC Hopfield
tasks whereas the Neural ODE particularly struggled to generalise for the GC attractor. Possible
explanations behind the poor performance of the constrained benchmark models are suggested next.

6 RELATED WORK

Several constrained continuous-time RNN models exist in the ML literature. The model structure of
three notable examples were presented in §3.1 as they happen to be special cases of a Lurie Network,
when modelling time-invariant dynamical systems. The Antisymmetric RNN Chang et al. (2019)
and the Lipschitz RNN Erichson et al. (2020) were designed to address the exploding and vanishing
gradient problem Pascanu et al. (2013). The Antisymmetric RNN did so by parametrising the RNN
such that the real eigenvalues of the Jacobian were zero. It achieved this by setting A = 0 and
restricting C to being skew-symmetric. Whilst this does prevent the gradients from exploding and
vanishing, it restricts the dynamics which the model can learn to purely oscillatory behaviour. The
Lipschitz RNN has a more relaxed parametrisation. This model constructs the A and C matrices such
that they are both convex combinations of symmetric and skew-symmetric matrices. However, the
weight of the symmetric matrix can only vary between 0 and 0.5, whereas the weight of the skew-
symmetric matrix can vary between 0.5 and 1. Again, this addresses the vanishing and exploding
gradient problem, but the model cannot encode dynamics which are predominately decaying or
growing. Finally, the RNN proposed in Kozachkov et al. (2022a) has biological motivations and
encodes 1-contracting dynamics. This implies that all possible trajectories will exponentially converge,
making the model robust to input disturbances.

Whilst the models above address a variety of problems, each model is quite limited in the range of
dynamics they can learn, which is a problem when trying to design a general model for learning
time-invariant dynamical systems. With respect to (2), the Lurie Network has more flexibility than all
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of these models. Firstly, it includes all three weight matrices (A,B,C) and biases (bx, by), whereas
the models mentioned above fix at least one of these parameters. Secondly, the constraints imposed,
and the corresponding parametrisations, allow the model to learn a variety of dynamics including, but
not limited to, those mentioned above. The only limitation is that the dynamics must converge in
some way.

The Lurie Network is also related to a class of feed-forward models named Implicit or Equilibrium
Networks. These models use an implicit equation to express the relationship between the model
output, layer outputs and model input in a compact vectorised form El Ghaoui et al. (2021). Like
the Lurie Network, these models can be represented by the interconnection of a linear time-invariant
system and a nonlinearity. This makes analysis tools from Control Theory, such as Lipschitz bounds,
applicable to these models Fazlyab et al. (2019). An additional connection is that the solution to the
implicit equations correspond to equilibrium points of a Lurie system Revay et al. (2020).

As mentioned in the introduction, the k-contraction constraints used in this paper have an interesting
connection to some properties observed in biological learning systems. A 2-contracting model
can replicate the behaviour of associative memory, where every stored pattern corresponds to an
equilibrium Kozachkov et al. (2023). Furthermore, a 3-contracting model can replicate the dynamics
of working memory, where patterns are retained as attractor states Kozachkov et al. (2022b). The
conditions developed in this paper could be of interest to Neuroscientists and ML researchers
interested in memory storage and retrieval Ramsauer et al. (2020); Hopfield (1984); Krotov & Hopfield
(2020). The formation of the GLN also has connections to biology. For example, constructing larger
systems from smaller modules can be motivated by evolutionary biology Simon (1962) where the
name facilitated variation Gerhart & Kirschner (2007) is used to describe the development of traits
in response to adaptation of the regulatory elements that connect modules, rather than the core
components themselves. This was investigated in Kozachkov et al. (2022a) where the weights of the
individual RNNs satisfied a 1-contraction condition but were fixed. Only the graph coupling weights
were learnt during training.

The relationship between properties guaranteed by k-contraction analysis and those observed in
associative and working memory suggest the k-contracting Lurie Network possesses a number of
appealing properties for an ML model; hence, it may be suitable for a wider class of ML problems.
This proposition is supported by the successful application of the constrained RNN models (special
cases of the Lurie Network) on a wide range of ML tasks. Since the Lurie Network is a more
structured, time-invariant example of a Neural ODE Chen et al. (2018), it will be applicable to a
similar array of tasks. Beyond modelling time-invariant dynamical systems, this includes image
classification and continuous normalising flows Kidger (2022). The only limiting requirement is
that the input must be passed in through the initial condition which in some cases, such as image
classification, may require a pre-processing layer.

7 CONCLUSION

The Lurie Network was presented as a novel and unifying architecture for modelling time-invariant
dynamical systems, with more flexibility than comparable methods. Many dynamical systems of
interest exhibit convergent behaviour in some form; this inductive bias was built into the Lurie
Network through the use of k-contraction analysis. Furthermore, a principled approach was proposed
for constructing k-contracting Graph Lurie Networks out of k-contracting modules. Both the k-
contracting Lurie Network and GLN demonstrated improved prediction accuracy, out of distribution
generalisation and robustness on a range of examples. Furthermore, they were the only models
to consistently and accurately predict the convergence behaviour of the dynamics in both the high
and low dimensional datasets. Future theoretical work will try to expand the class of systems the
k-contracting Lurie Network can be optimised over, by obtaining similar results for systems which
are k-contracting in a diagonal metric. It would also be interesting to find conditions on the inputs of a
time-varying Lurie Network for which the convergence properties of the time-invariant k-contracting
Lurie Network are also upheld, making the Lurie Network applicable to sequential processing tasks.
Finally, we would like to empirically investigate the performance of the model on a wider range of
applications. The recently proposed working memory benchmark Sikarwar & Zhang (2024) is of
particular interest due to its relationship with 3-contracting dynamics.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Eyal Bar-Shalom, Omri Dalin, and Michael Margaliot. Compound matrices in systems and control
theory: a tutorial. Mathematics of Control, Signals, and Systems, pp. 1–55, 2023.

Joaquin Carrasco, Matthew C Turner, and William P Heath. Zames-Falb multipliers for absolute
stability: From O’Shea’s contribution to convex searches. European Journal of Control, 28:1–19,
2016.

Andreu Cecilia, Samuele Zoboli, Daniele Astolfi, Ulysse Serres, and Vincent Andrieu. Generalized
Lyapunov conditions for k-contraction: analysis and feedback design. 2023.

Veronica Centorrino, Francesco Bullo, and Giovanni Russo. Contraction analysis of Hopfield neural
networks with Hebbian learning. In 2022 IEEE 61st Conference on Decision and Control (CDC),
pp. 622–627. IEEE, 2022.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system view
on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ross Drummond, Matthew C Turner, and Stephen R Duncan. Reduced-order neural network synthesis
with robustness guarantees. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Ross Drummond, Chris Guiver, and Matthew C Turner. Exponential input-to-state stability for
Lur’e systems via integral quadratic constraints and Zames–Falb multipliers. IMA Journal of
Mathematical Control and Information, pp. dnae003, 2024.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in neural
information processing systems, 32, 2019.

Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions on
Automatic Control, 67(1):1–15, 2020.

John Gerhart and Marc Kirschner. The theory of facilitated variation. Proceedings of the National
Academy of Sciences, 104(suppl_1):8582–8589, 2007.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modelling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

John J Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Roger A Horn and Charles R Johnson. Topics in matrix analysis. Cambridge university press, 1994.

Hassan K Khalil. Nonlinear systems. Patience Hall, 115, 2002.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Leo Kozachkov, Mikael Lundqvist, Jean-Jacques Slotine, and Earl K Miller. Achieving stable
dynamics in neural circuits. PLoS computational biology, 16(8):e1007659, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Kozachkov, Michaela Ennis, and Jean-Jacques Slotine. RNNs of RNNs: Recursive construction
of stable assemblies of recurrent neural networks. Advances in Neural Information Processing
Systems, 35:30512–30527, 2022a.

Leo Kozachkov, John Tauber, Mikael Lundqvist, Scott L Brincat, Jean-Jacques Slotine, and Earl K
Miller. Robust and brain-like working memory through short-term synaptic plasticity. PLOS
Computational Biology, 18(12):e1010776, 2022b.

Leo Kozachkov, Jean-Jacques Slotine, and Dmitry Krotov. Neuron-astrocyte associative memory.
arXiv preprint arXiv:2311.08135, 2023.

Dmitry Krotov and John Hopfield. Large associative memory problem in neurobiology and machine
learning. arXiv preprint arXiv:2008.06996, 2020.

Samuel Lanthaler, T Konstantin Rusch, and Siddhartha Mishra. Neural oscillators are universal.
Advances in Neural Information Processing Systems, 36, 2024.

Andre Lemme, Yaron Meirovitch, M Khansari-Zadeh, Tamar Flash, Aude Billard, and Jochen J Steil.
Open-source benchmarking for learned reaching motion generation in robotics. Paladyn, Journal
of Behavioral Robotics, 6(1):000010151520150002, 2015.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on
Machine Learning, pp. 3794–3803. PMLR, 2019.

Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-linear systems.
Automatica, 34(6):683–696, 1998.

Ian R Manchester, Max Revay, and Ruigang Wang. Contraction-based methods for stable identifi-
cation and robust machine learning: a tutorial. In 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 2955–2962. IEEE, 2021.

James S Muldowney. Compound matrices and ordinary differential equations. The Rocky Mountain
Journal of Mathematics, pp. 857–872, 1990.

Ron Ofir, Jean-Jacques Slotine, and Michael Margaliot. k-contraction in a generalized Lurie system.
arXiv preprint arXiv:2309.07514, 2023.

Ron Ofir, Alexander Ovseevich, and Michael Margaliot. Contraction and k-contraction in Lurie
systems with applications to networked systems. Automatica, 159:111341, 2024.

Poogyeon Park. A revisited Popov criterion for nonlinear Lur’e systems with sector-restrictions.
International Journal of Control, 68(3):461–470, 1997.

PooGyeon Park. Stability criteria of sector-and slope-restricted Lur’e systems. IEEE Transactions on
Automatic Control, 47(2):308–313, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Patricia Pauli, Dennis Gramlich, Julian Berberich, and Frank Allgöwer. Linear systems with neural
network nonlinearities: Improved stability analysis via acausal Zames-Falb multipliers. In 2021
60th IEEE Conference on Decision and Control (CDC), pp. 3611–3618. IEEE, 2021a.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using Lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021b.

Patricia Pauli, Dennis Gramlich, and Frank Allgöwer. Lipschitz constant estimation for 1d convolu-
tional neural networks. In Learning for Dynamics and Control Conference, pp. 1321–1332. PMLR,
2023.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
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A EXTENDED PRELIMINARIES

As many of the tools used in this paper are not well-known in the machine learning community, a
condensed background is presented here, based on results from Bar-Shalom et al. (2023); Wu et al.
(2022). The first section is on compound matrices, an important algebraic tool needed for generalising
contraction analysis to k-contraction analysis. Following that, a geometric interpretation of the
k-compound matrix is stated through its relationship to the volume of a parametrised set. Finally,
the results in these two sections are utilised to define and provide intuition for the convergence of
k-contracting dynamics.

A.1 COMPOUND MATRICES

In this section, we document several known definitions and algebraic results related to compound
matrices. The results are included without proof; the interested reader should refer to Bar-Shalom
et al. (2023) for a more detailed tutorial on the topic.

Let n be a positive integer and fix k ∈ [1, n]. The ordered set of increasing sequences of k integers
from [1, n] is denoted by Q(k, n). For example: Q(3, 4) = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.

Now consider a matrix W ∈ ℜn×m. For α ∈ Q(k, n) and β ∈ Q(k,m), the matrix W [α|β]
denotes the k × k sub-matrix obtained by taking the entries of W along the rows indexed by
α and columns indexed by β. As an example, if k = 2 and n = m = 4, then Q(2, 4) =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The sub-matrix W [(1, 2)|(3, 4)] would then be given
by

W [(1, 2)|(3, 4)] =
[
w13 w14

w23 w24

]
The k-minors of the matrix W are defined as W (α|β) := det(W [α|β]).

Definition 1 (k-multiplicative compound) Let W ∈ ℜn×m and fix k ∈ [1,min(n,m)]. The k-
multiplicative compound of W , denoted W (k), is the

(
n
k

)
×
(
m
k

)
matrix containing all the k-minors of

W ordered lexicographically.

For example, if we have n = m = 3 and k = 2 then α, β ∈ Q(2, 3) = {(1, 2), (1, 3), (2, 3)} and

W (2) =

W (
(1, 2)|(1, 2)

)
W

(
(1, 2)|(1, 3)

)
W

(
(1, 2)|(2, 3)

)
W

(
(1, 3)|(1, 2)

)
W

(
(1, 3)|(1, 3)

)
W

(
(1, 3)|(2, 3)

)
W

(
(2, 3)|(1, 2)

)
W

(
(2, 3)|(1, 3)

)
W

(
(2, 3)|(2, 3)

)


Some important special cases include

W (1) = W W (n) = det(W ) (pIn)
(k) = pkIs W ∈ Dn → W (k) ∈ Ds (12)

with s :=
(
n
k

)
. Next, we present a series of algebraic results concerned with the k-multiplicative

compound.

Fact 1 (Cauchy-Binet Formula) If U ∈ ℜn×m, V ∈ ℜm×p and k ∈ [1,min(n,m, p)], then

(UV )(k) = U (k)V (k)

Fact 2 Fix k ∈ [1,min(n,m)]. As a consequence of Definition 1, if W ∈ ℜn×m then

(W⊤)(k) = (W (k))⊤

Fact 3 Fix k ∈ [1, n]. If W ∈ ℜn×n is non-singular, then by Theorem 1

(W−1)(k) = (W (k))−1

Fact 4 Fix k ∈ [1,min(n,m, p)]. If W ∈ ℜn×n, U ∈ ℜp×n and V ∈ ℜn×p, then by Theorem 1

(UWV )(k) = U (k)W (k)V (k)
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Fact 5 Fix k ∈ [1, n]. An implication of Theorem 1 is that if W ∈ ℜn×n with eigenvalues λ1, . . . , λn,
then the eigenvalues of W (k) are the

(
n
k

)
products

{ k∏
l=1

λil : 1 ≤ i1 < · · · < ik ≤ n
}

We now introduce the definition of a second compound matrix, the k-additive compound, and a set of
algebraic results related to it.

Definition 2 (k-additive compound) Let W ∈ ℜn×n and k ∈ [1, n]. The k-additive compound of
W is the

(
n
k

)
×
(
n
k

)
matrix defined by

W [k] :=
d

dϵ

(
In + ϵW

)(k)|ϵ=0

Special cases include

W [1] = W W [n] = tr(W ) (pIn)
[k] = kpIs W ∈ Dn → W [k] ∈ Ds (13)

with s :=
(
n
k

)
. Like before, we now present some useful algebraic results related to the k-additive

compound.

Fact 6 If W ∈ ℜn×n and k ∈ [1, n], then as a consequence of Definition 2

(W⊤)[k] = (W [k])⊤

Fact 7 Fix k ∈ [1, n]. For W ∈ ℜn×n with eigenvalues λ1, . . . , λn, the eigenvalues of W [k] are the(
n
k

)
sums

{
k∑

l=1

λil : 1 ≤ i1 < · · · < ik ≤ n}

An important consequence of Fact 7 is that if W is positive definite (semi-definite), then this property
is upheld by W [k]. Opposite conclusions can be drawn if W is negative definite (semi-definite).

Fact 8 Fix k ∈ [1, n]. If U, V ∈ ℜn×n, then

(U + V )[k] = U [k] + V [k]

Fact 9 Fix k ∈ [1,min(n, p)]. If W ∈ ℜn×n, U ∈ ℜp×n, V ∈ ℜn×p and UV = Ip, then

(UWV )[k] = U (k)W [k](U (k))−1

A.2 VOLUME OF k-SETS

This section aims to provide a clear geometric interpretation of the k-multiplicative compound. The
section begins by defining a k-set (the codomain of a function dependent on k variables) before
presenting Theorem 8, the key result which exposes the relationship between the volume of a k-set
and the k-multiplicative compound of the Jacobian. A k-parallelotope is then shown as an example.
Like before, these are existing results, so are presented without proof. Refer to Wu et al. (2022) for
more information.

Definition 3 (k-sets) Consider a compact set D ⊂ ℜk and a continuous differentiable map Ψ : D →
ℜn, with k ∈ [1, n]. The codomain of Ψ is given by the parametrised set

Ψ(D) := {Ψ(r) : r ∈ D} ⊆ ℜn (14)

Since D is compact and Ψ(·) is continuous, Ψ(D) is a closed set.
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Figure 2: The 3-parallelotope with vertices x1, x2, x3 ∈ ℜ3 parametrised by the unit cube, D.

Theorem 8 (Volume of k-sets) Fix k ∈ [1, n]. Consider a compact set D ⊂ ℜk and a continuously
differentiable map Ψ : D → ℜn. The volume of the parametrised set (14) is given by

vol
(
Ψ(D)

)
=

∫
D

∣∣∣J (k)
Ψ (r)

∣∣∣dr
where JΨ(r) =

[
∂Ψ(r)
∂r1

. . . ∂Ψ(r)
∂rk

]
is the Jacobian of Ψ. Note that as JΨ : D → ℜn×k, it implies

J
(k)
Ψ (r) : D → ℜs with s =

(
n
k

)
.

Theorem 8 states that the volume of a k-set is governed by the k-multiplicative compound of the
Jacobian. An important geometrical feature, is that for k ∈ {1, 2, 3} the volume of the k-set is
equivalent to the standard notions of length, area and volume. We now consider the k-parallelotope
as an example of a k-set.

Definition 4 (k-parallelotope) Fix k ∈ [1, n] and let vectors x1, . . . , xk ∈ ℜn. The parallelotope
generated by these vectors (and the zero vertex) is the set given by

P (x1, . . . , xk) :=
{ k∑

i=1

rixi : ri ∈ [0, 1] ∀ i
}

Based on Definition 4, the k-parallelotope is a k-set with the following compact domain D and
continuous differentiable function Ψ(r;x1, . . . , xk), as illustrated for k = n = 3 in Figure 2.

D :=
{
r ∈ ℜk : ri ∈ [0, 1] ∀ i ∈ [1, k]

}
Ψ(r;x1, . . . , xk) :=

k∑
i=1

rixi

The Jacobian of the k-parallelotope is JΨ(r) = X and from Theorem 8, the volume of the k-
parallelotope is given by |X(k)|.

A.3 k-CONTRACTION ANALYSIS

Consider the time-varying nonlinear system

ẋ = f(t, x) (15)

where f : ℜ+ ×ℜn → ℜn. It is assumed throughout that f is continuously differentiable w.r.t x. Fix
k ∈ [1, n] and let Sk denote the unit simplex.

Sk := {r ∈ ℜk : ri ≥ 0 and r1 + · · ·+ rk ≤ 1}

The convex combination of a set of initial conditions x1, . . . , xk+1 ∈ ℜn is defined by h : Sk → ℜn.

h(r;x1, . . . , xk+1) :=

k∑
i=1

rixi +
(
1−

k∑
i=1

ri

)
xk+1
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The set h(Sk) is a k-set and can be thought of as a k-dimensional body of states representing initial
conditions of (15). We now define wi(t, r) as a measure of the sensitivity of a solution to (15) at time
t, to a change in the initial condition h(r), caused by a change in ri.

wi(t, r) :=
∂x(t, h(r))

∂ri
where wi(0, r) =

∂h(r)

∂ri
= xi − xk+1 for all i ∈ [1, k]

We are now ready to present the definition of k-contraction, followed by its geometric interpretation.

Definition 5 (k-contraction) Fix k ∈ [1, n]. The nonlinear system (15) is k-contracting if there
exists an η > 0 and a vector norm | · | such that for any x1, . . . , xk+1 ∈ ℜn and any r ∈ Sk, the
mapping W : ℜ+ × Sk → ℜn×k defined by W (t, r) := [w1(t, r) . . . wk(t, r)] satisfies

|W (k)(t, r)| ≤ exp(−ηt)|W (k)(0, r)| ∀ t ∈ ℜ+

To explain the geometric meaning of this definition, pick a domain D ⊆ Sk and recall that h(D)
is a k-set representing k-dimensional bodies of initial conditions for (15); thus, x

(
t, h(D)

)
:=

{x(t, h(r)) : r ∈ D} is a k-set describing how k-dimensional bodies evolve over time. We now
leverage Theorem 8, to show how the volume of these bodies evolves over time when governed by
(15).

vol
(
x
(
t, h(D)

))
=

∫
D

∣∣∣Jx(t, h(r))(k)∣∣∣dr
=

∫
D

∣∣∣ [∂x
(
t,h(r)

)
∂r1

. . .
∂x
(
t,h(r)

)
∂rk

](k) ∣∣∣dr
=

∫
D

∣∣∣W (k)(t, r)
∣∣∣dr

When (15) is k-contracting, the volume of these bodies is upper bounded by the initial volume scaled
by an exponentially decaying term.

vol
(
x
(
t, h(D)

))
≤ exp(−ηt)

∫
D

∣∣W (k)(0, r)
∣∣dr

= exp(−ηt)
∣∣∣ [(x1 − xk+1) . . . (xk − xk+1)]

(k)
∣∣∣ ∫

D
dr

Therefore, k-contraction of (15) implies the volume of k-dimensional bodies x(t, h(D)) converges to
zero at an exponential rate. This can also be interpreted as the volume of k-dimensional bodies is
contracting or converging to a (k − 1)-dimensional subspace. Figure 1 in the main paper gives an
illustration of (1, 2, 3)-contracting systems where the 1-contracting system converges to a point, the
2-contracting system converges to a line and the 3-contracting system converges to a plane.

Many existing k-contraction results, including Theorem 1, are expressed in terms of matrix measures.
An overview of their definitions and properties can be found in (Vidyasagar, 2002, Section 2.2).
Theorem 1 provides a sufficient condition for verifying k-contraction in the 2-norm w.r.t a metric P .
The 2-norm was chosen for this work due to its relationship with the eigenvalues of its argument, but
other norms could be chosen. Furthermore, one may apply an invertible linear transformation Θ to
wi(t, r) and the k-contraction analysis may be performed in this new domain whilst implying the
same property holds in the original domain. This idea is made clear in Lohmiller & Slotine (1998)
and translates analogously to the k-contraction case. When using such an invertible transformation,
the system is said to be k-contracting w.r.t the metric P = Θ⊤Θ.
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B LURIE NETWORK

B.1 RELATIONSHIP BETWEEN LURIE NETWORKS AND DEEP FEEDFORWARD MODELS

Consider the vector field ż = f(z) defined by the following L-layer feedforward network

ż = WLΦ(uL−1) + bL

uL−1 = WL−1Φ(uL−2) + bL−1

uL−2 = WL−2Φ(uL−3) + bL−2

...
u2 = W2Φ(u1) + b2
u1 = W1z + b1

(16)

To illustrate the superior expressivity of the Lurie Network, we wish to show that a special case of (2)
can approximate the deep feedforward network (16). An alternative expression for (16) is

ż = 0z +WLΦ(uL−1) + bL

ϵu̇L−1 = −uL−1 +WL−1Φ(uL−2) + bL−1

ϵu̇L−2 = −uL−2 +WL−2Φ(uL−3) + bL−2

...
ϵu̇2 = −u2 +W2Φ(u1) + b2
u1 = W1z + b1

(17)

where ϵ → 0. Defining a new state x := [z uL−1 uL−2 . . . u3 u2]
⊤ and an output vector

y := [uL−1 uL−2 . . . u2 u1] it is clear that (17) is a special case of the Lurie Network (2)
with state-space matrices and biases defined by the sparse structures below.

A = ϵ−1


0 0 0 . . . 0 0
0 −I 0 . . . 0 0
0 0 −I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −I

 B = ϵ−1


0 WL 0 . . . 0 0
0 0 WL−1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 W2



C =


0 I 0 . . . 0 0
0 0 I . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
W1 0 0 . . . 0 0

 bx = ϵ−1


bL

bL−1

bL−2
...
b2

 by =


0
0
0
...
b1


This is just one realisation of a Lurie Network which approximates a feedforward network. Other
permutations of the state would result in different realisations of the Lurie Networks weights and
biases. Finally, due to the division by ϵ, it would not be possible to train a Lurie Network to have the
exact form of a feedforward network; however, this analysis shows that it is possible to approximate
the strucuture of a deep feedforward network with a Lurie Network.
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B.2 FURTHER EXAMPLES

Neural Oscillators: This example is from the graph ML literature Lanthaler et al. (2024). The state
of the general neural oscillator is governed by a second order ODE; however, it’s equivalent first order
representation takes the form (2) with one possible realisation given by C21 ∈ ℜn×n, bx = 0 and

A =

[
0 I
0 0

]
B =

[
0 0
0 I

]
C =

[
0 0

C21 0

]
by =

[
0
by2

]
The solution is then passed through an affine readout layer.

Graph Coupled Oscillators: Another example of a second order ODE from the graph ML literature
Rusch et al. (2022). The state is defined as a matrix, but this can simply be recast in a vectorised form
which relates to (2) if a linear coupling function is chosen. This requires the weights to have a block
matrix form, where one possible realisation is defined by C21 ∈ ℜn×n, bx = by = 0 and

A =

[
0 I

−γI −αI

]
B =

[
0 0
0 I

]
C =

[
0 0

C21 0

]
LSSM: When the external input is replaced by nonlinear output feedback (i.e., u(t) ≡ Φ(y)) and
D = 0, the linear state-space layer used in S4 Gu et al. (2021) and Hippo Gu et al. (2020) is related
to (2) with A being a lower triangular Hippo matrix , B ∈ ℜn×m, C ∈ ℜm×n and bx = by = 0.
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C PROOFS

C.1 PROOF OF THEOREM 2

We aim to verify Theorem 1 for the particular case where the nonlinear system is described by the
Lurie Network (2). Our proof begins with Theorem 9, which restates (Ofir et al., 2024, Theorem 1).
This result is sufficient to satisfy Theorem 1 for systems of the form (18).

Theorem 9 Fix k ∈ [1, n] and consider the system below.

ẋ = Āx(t)− B̄Ψ(t, y) y = C̄x (18)

If there exists η1, η2 > 0 and an invertible Θ ∈ ℜn×n such that

P (k)Ā[k] + (Ā[k])⊤P (k) +Θ(k)
(
(ΘB̄B̄⊤Θ)[k] + (Θ−1C̄⊤C̄Θ−1)[k]

)
Θ(k) ⪯ −η1P

(k) (19)

and (
Θ−1C̄⊤(J⊤

Ψ (t, y)JΨ(t, y)− Im)C̄Θ−1
)[k]

⪯ −η2Is ∀ t ∈ ℜ+ and y ∈ ℜm (20)

where s =
(
n
k

)
, then (18) is k-contracting in the 2-norm w.r.t the metric P := Θ⊤Θ.

We first need to express the Lurie Network in the form (18). By (3) there exists γ < 0 satisfying

0 < γ2 < α2
k and g2

k∑
i=1

σ2
i (B)σ2

i (C) < γ2k (21)

Using γ, we can express (2) in the form (18) through the definitions below, where the dependence on
t has been dropped from Ψ.

Ā := A B̄ := γIn C̄ := In Ψ(x) := −γ−1BΦ(Cx+ by)− γ−1bx (22)

The next step is to verify (19). Subbing (22) into the left hand side of (19) and assuming Θ = Θ⊤

results in the first equality. Setting P := pIn with p > 0 results in the second. Now we must leverage
some of the facts presented in §A.1. Using the relevant special cases from (12) and (13) leads to
equality three and consequently applying Fact 6 and Fact 8 results in equality four. Re-applying (13)
and Fact 8 results in the final equality.

= P (k)A[k] + (A[k])⊤P (k) +Θ(k)
(
(γ2P )[k] + (P−1)[k]

)
Θ(k)

= (pIn)
(k)A[k] + (A[k])⊤(pIn)

(k) + (p
1
2 In)

(k)
(
(γ2pIn)

[k] + (p−1In)
[k]
)
(p

1
2 In)

(k)

= pk
(
A[k] + (A[k])⊤

)
+ k(γ2p+ p−1)pkIs

= pk
(
(A+A⊤)[k] + k(γ2p+ p−1)Is

)
= pk

(
A+A⊤ + (γ2p+ p−1)In

)[k]
If the matrix above is negative definite, then (19) is satisfied for some suitably chosen η1 > 0. This is
true when (

A+A⊤ + (γ2p+ p−1)In
)[k] ≺ 0

By Fact 7, the inequality above can be equivalently expressed as a condition on the sum of the k
largest eigenvalues of the matrix inside the k-compound operator. Leveraging (Petersen et al., 2008,
Eq. 285) allows us to separate p from the eigenvalues of the symmetric component of A, resulting in
the equality below.

k∑
i=1

λi

(
A+A⊤ + (γ2p+ p−1)In

)
= k(γ2p+ p−1) +

k∑
i=1

λi(A+A⊤) < 0

By the definition of αk in Theorem 2, this simplifies to

γ2p2 + 2αkp+ 1 < 0
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For for γ satisfying (21), the quadratic inequality always emits at least one solution p = −α−1
k .

The final step is to verify (20). The Jacobian of Ψ, as defined in (22), is

JΨ(x) = −γ−1BJΦC

For Θ = p
1
2 In and the definitions from (22), the left hand side of (20) reduces to

=
(
p−1J⊤

ΨJΨ − p−1In
)[k]

If the matrix above is negative definite, then (20) is satisfied for some suitably chosen η2 > 0.
Repeating the same steps as above, this negative definite requirement reduces to the inequality below.

k∑
i=1

λi(p
−1J⊤

ΨJΨ)− kp−1 = p−1
k∑

i=1

σ2
i (JΨ)− kp−1 < 0

Subbing in the definition of JΨ and applying the well-known property of singular values (Horn &
Johnson, 1994, Theorem 3.3.14), then (20) is true if

γ−2
k∑

i=1

σ2
i (B)σ2

i (JΦ)σ
2
i (C) < k

By the assumption made on the slope of Φ, this inequality will always be satisfied if (3) holds. □

C.2 PROOF OF THEOREM 3

For this proof, we aim to directly verify Theorem 1 for Θ ∈ Dn where f represents the Lurie Network
(2). We start by substituting the Jacobian of the Lurie Network into the left hand side of (1), followed
by the application of Fact 8 to obtain the second equality. The subadditivity property of the matrix
measure µ2 was then leveraged to split the terms (Vidyasagar, 2002, Section 2.2). As the second
term is difficult to manipulate, we rely on the simplifying assumption C = B−1 in order to apply
Fact 9. As Θ, B, JΦ ∈ Dn, so are both of their k-compound counterparts (12) (13), which means
the Θ, B terms cancel out. We then apply the property µ2(·) ≤ || · ||2 (Vidyasagar, 2002, Theorem
16) and Fact 7, which allows us to leverage the slope restricted assumption on Φ. By the relevant
special case of the k-additive compound (13), we can directly calculate the 2-norm. Finally, kg can
be incorporated in µ2 as shown in the final inequality.

µ2,Θ(k)(J
[k]
f (t, x)) = µ2,Θ(k)

(
(A+BJΦC)[k]

)
= µ2,Θ(k)

(
A[k] + (BJΦ(y)C)[k]

)
≤ µ2,Θ(k)(A[k]) + µ2,Θ(k)

(
(BJΦC)[k]

)
= µ2,Θ(k)(A[k]) + µ2(Θ

(k)B(k)J
[k]
Φ B−(k)Θ−(k))

= µ2,Θ(k)(A[k]) + µ2(J
[k]
Φ )

≤ µ2,Θ(k)(A[k]) + ||(gIn)[k]||2
= µ2,Θ(k)(A[k]) + kg

= µ2(Θ
(k)A[k]Θ−(k) + kgIn)

If the final inequality is negative, then Theorem 1 will be satisfied for some suitably chosen η. This is
equivalent to the matrix inequality below.

1

2

(
Θ(k)A[k]Θ−(k) +Θ−(k)(A[k])⊤Θ(k) + 2kgIn

)
≺ 0

Multiplying on the left by 2Θ(k) and on the right by Θ(k) results in (4). □
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C.3 PROOF OF THEOREM 4

The aim of this proof is to verify Theorem 1 when f is the GLN (6). We begin by expressing the
Jacobian as a sum of the Jacobian of the q independent Lurie Networks, Jindep, and Jacobian of the
coupling term Jcouple

Jf (x) = Jindep(x) + Jcouple(x)

where Jindep(x) = AG + BGJΦCG and Jcouple(x) = L. Subbing Jf into the left hand side of (1)
and applying the subadditivity property of µ2 results in

µ2,Θ(k)(J
[k]
f ) ≤ µ2,Θ(k)(J

[k]
indep) + µ2,Θ(k)(J

[k]
couple)

As we assume the q independent Lurie Networks are k-contracting in the 2-norm w.r.t the metric
P = blockdiag(P1, . . . , Pq), we know that µ2,Θ(k)(J

[k]
indep) < 0. Under this assumption, Theorem 1

is satisfied if
µ2,Θ(k)(J

[k]
couple) ≤ 0

This is equivalent to the matrix inequality below, where Jcouple has been subbed in.

1

2

(
Θ(k)L[k]Θ−(k) +Θ−(k)(L[k])TΘ(k)

)
⪯ 0

Multiplying on the left by 2Θ(k) and on the right by Θ(k) results in (7). □

C.4 PROOF OF THEOREM 5 AND THEOREM 6

The aim of this proof is to express the weights of the Lurie Network (2) such that Theorem 2 is always
satisfied. More formally, this requires A,B,C ∈ Ω2(g, k) to always hold. As both theorems share
the same proof until the final step, where ΣA is defined, they have been combined into one proof.

To expose the singular values of B,C, we leverage the singular value decomposition, as in (9b)
and (10a). This requires the matrices UB , UC , VB , VC to be orthogonal. We can immediately use
the unconstrained parametrisation of the orthogonal class from Lezcano-Casado & Martınez-Rubio
(2019) to express these matrices as unconstrained symmetric matrices. The matrices ΣB ,ΣC contain
the singular values of the respective matrix, hence ΣB ∈ Dnm

+ and ΣC ∈ Dmn
+ . We also treat these as

unconstrained sets since any element can be obtained by taking the absolute value of an unconstrained
diagonal matrix with the same shape.

To verify Theorem 2, we can combine αk < 0 and (3) into one inequality representing the intersection
of the two sets.

k∑
i=1

λi(A+AT ) < −2k

√
z

k
where z := g2

k∑
i=1

σ2
i (B)σ2

i (C) (23)

Thanks to the definition of B and C, the right hand side is a function of the hyperparameters g, k and
elements of the parameters ΣB ,ΣC , so can be easily computed using sort and sum functions.

To impose this constraint directly on the eigenvalues of the symmetric component of A, we express A
as a sum of symmetric and skew-symmetric matrices. The skew-symmetric matrix is unconstrained,
so this can be left as it is. Finally, we apply the eigenvalue decomposition of a symmetric matrix to
obtain (9a) (10a). This expression allows us to directly place the constraint above on the diagonal
matrix ΣA.

This is where Theorem 5 and Theorem 6 differ. Defining ΣA as in (9a) ensures

λi(A+A⊤) < −2

√
z

k
for all i ∈ [1, n]

which guarantees both conditions of Theorem 2 will be satisfied; however, conservatism is introduced
as all the eigenvalues must be negative. Theorem 6 was established to address this issue. Defining
ΣA as in (10b) guarantees both conditions of Theorem 2 will be satisfied via (23). The definition of
ΣA is split into one unconstrained block for the first (k − 1)-eigenvalues, a block for λk(A+A⊤)
which is defined to ensure (23) holds, and finally a block for the remaining eigenvalues which must
be defined to ensure the k eigenvalues involved in (23) are the largest. □
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C.5 PROOF OF THEOREM 7

This proof aims to show that Theorem 4 is satisfied when L is defined as in (11). First, multiply (7)
on the left and right by Θ−(k). Sequentially applying Fact 6, Fact 9 and Fact 8 results in(

ΘLΘ−1 +Θ−1LTΘ
)[k] ⪯ 0

Subbing in the definition of L from (11) and recalling that P = Θ⊤Θ leads to(
GL2 +G⊤

L2

)[k] ⪯ 0

which is assumed to hold. □

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D EXTENDED EMPIRICAL EVALUATION

D.1 DATA

The data was synthetically generated by numerically integrating over the analytical models of each
dynamical system. The integration was performed using the Euler method with step size δ = 1×10−2.

D.1.1 OPINION DYNAMICS

This model was presented in Ofir et al. (2024). It has the following state space equations

ẋ = −1.5I3 + 0.5Φ(Cx) + b

where

C =

[
+1 −1 0
−1 +1 −1
0 −1 +1

]
b =

[
+0.2
0

−0.2

]
and the tanh function is applied element-wise. The model is 1-contracting and has a unique
equilibrium point at b.

D.1.2 HOPFIELD NETWORK

This model is a variation of the Hopfield network presented in Ofir et al. (2024). It has the following
state space equations

ẋ = −2.5I3 +BΦ(x)

where

B =

[
1 1 1
1 1 1
1 1 1

]
and the tanh function is also applied element-wise. The model is 2-contracting and has two stable
equilibrium points: e1 = [0.79 0.79 0.79]

⊤, e2 = −e1; and an unstable equilibrium point e3 = 0.

D.1.3 SIMPLE ATTRACTOR

This model was presented in Cecilia et al. (2023). It has the following state space equations

ẋ = Ax+BΦ(Cx)

where

A =

[
0 1 −2
−1 0 −1
0.5 0 −0.5

]
B =

[
0 0 0
0 0 0

−0.5 0 0

]
C =

[
0 0 0
0 0 0
1 0 0

]
and ϕ(z) = z3 is the nonlinearity applied element-wise. This function is not slope-restricted, so the
simple attractor does not satisfy the assumptions of the Lurie Network. The model is 3-contracting
and has several attractor states.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.2 TRAINING

The default training settings common to the opinion, Hopfield and attractor datasets are presented in
Table 5. The only parameters which varied between models were the learning rate and epoch which it
was cut. Deviations from the default settings are detailed in Table 6. These values were chosen based
on observations during training. No hyperparameter sweep was performed. The same details are
also presented for the graph-coupled Hopfield network and graph-coupled attractor datasets in Table
7 and Table 8. When training the models for the opinion, Hopfield and attractor datasets, a single
T4 GPU (accessed through Google Colab) was used. A single A100 GPU (also accessed through
Google Colab) was used for training the models on the graph-coupled Hopfield and graph-coupled
attractor datasets. Training curves from the opinion, Hopfield and attractor datasets are also plotted to
compare the convergence time and variance.

Table 5: Default training settings for opinion, Hopfield and attractor datasets.

Parameter Value

Batches 10
Batch size 100
Test split 0.1
Epochs 100
Criterion Mean squared error
Optimiser Adam (default settings)
Learning rate 1× 10−2 (no cuts)

Table 6: Deviations from the default settings for opinion, Hopfield and attractor datasets.

Dataset Model Learning Rate Cut (decay, epoch)

Opinion Dynamics Lurie Network 5× 10−3 N/A
Opinion Dynamics Antisymmetric RNN 5× 10−3 N/A
Hopfield Network k-Lurie Network 5× 10−3 N/A
Hopfield Network Neural ODE 1× 10−3 0.1, 75
Hopfield Network Antisymmetric RNN 5× 10−3 N/A
Simple Attractor Neural ODE 1× 10−3 N/A
Simple Attractor Antisymmetric RNN 5× 10−3 N/A

Table 7: Default training settings for the graph-coupled Hopfield and attractor datasets.

Parameter Value

Batches 15
Batch size 2000
Test split 1

15
Epochs 100
Criterion Mean squared error
Optimiser Adam (default settings)
Learning rate 5× 10−3 (no cuts)
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Table 8: Deviations from the default settings for the graph-coupled Hopfield and attractor datasets.

Dataset Model Learning Rate Cut (decay, epoch)

GC Hopfield Network Lipschitz RNN 5× 10−3 0.2, 60
GC Hopfield Network GLN 3× 10−3 1

3 , 60
GC Simple Attractor GLN 1× 10−2 N/A
GC Simple Attractor k-Lurie Network 1× 10−2 N/A
GC Simple Attractor Neural ODE 5× 10−3 0.5, 40

Figure 3: Mean ± two standard deviations of the training loss (blue) and test loss (orange) across
N = 3 training runs.
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D.3 FURTHER RESULTS

Figure 4: Random sample of trajectories from the opinion dynamics test set. Predictions are made by
the model associated with the best MSE in Table 1. Crosses denote initial conditions, stars denote
equilibrium points.

Figure 5: Random sample of 30s trajectories from the noise-free, out of distribution opinion dynamics
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions, stars denote equilibrium points.
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Figure 6: Random sample of 30s trajectories from the noisy, out of distribution opinion dynamics
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions, stars denote equilibrium points.

Figure 7: Random sample of trajectories from the Hopfield network test set. Predictions are made by
the model associated with the best MSE in Table 1. Crosses denote initial conditions, stars denote
equilibrium points.
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Figure 8: Random sample of 30s trajectories from the noise-free, out of distribution Hopfield network
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions, stars denote equilibrium points.

Figure 9: Random sample of 30s trajectories from the noisy, out of distribution Hopfield network
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions, stars denote equilibrium points.
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Figure 10: Random sample of trajectories from the simple attractor test set. Predictions are made by
the model associated with the best MSE in Table 1. Crosses denote initial conditions.

Figure 11: Random sample of 30s trajectories from the noise-free, out of distribution simple attractor
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions.
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Figure 12: Random sample of 30s trajectories from the noisy, out of distribution simple attractor
dataset. Predictions are made by the model associated with the best MSE in Table 1. Crosses denote
initial conditions.
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