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ABSTRACT

Recent progress in personalized image generation using diffusion models has been
significant. However, development in the area of open-domain and test-time fine-
tuning-free personalized image generation is proceeding rather slowly. In this paper,
we propose Subject-Diffusion, a novel open-domain personalized image generation
model that, in addition to not requiring test-time fine-tuning, also only requires
a single reference image to support personalized generation of single- or multi-
subjects in any domain. Firstly, we construct an automatic data labeling tool and use
the LAION-Aesthetics dataset to construct a large-scale dataset consisting of 76M
images and their corresponding subject detection bounding boxes, segmentation
masks, and text descriptions. Secondly, we design a new unified framework that
combines text and image semantics by incorporating coarse location and fine-
grained reference image control to maximize subject fidelity and generalization.
Furthermore, we also adopt an attention control mechanism to support multi-
subject generation. Extensive qualitative and quantitative results demonstrate that
our method have certain advantages than other frameworks in single, multiple, and
human-customized image generation.

1 INTRODUCTION

Recently, with the rapid development of diffusion-based generative models (Ho et al., 2020; Song
et al., 2020b;a), many large synthesis models (Rombach et al., 2022; Ramesh et al., 2022; Nichol
et al., 2022; Saharia et al., 2022; Balaji et al., 2022; Feng et al., 2023) trained on large-scale
datasets containing billions of image-text pairs, e.g., LAION-5B (Schuhmann et al., 2022), have
shown amazing text-to-image generation ability with fantastic artistry, authenticity, and semantic
alignment. However, merely textual information is insufficient to fully translate users’ intentions.
Therefore, integrating textual description and reference images to generate new customized images is
an emerging research direction.

Based on a pre-trained text-to-image generation model, e.g., Stable Diffusion (Rombach et al., 2022)
and Imagen (Saharia et al., 2022), a group of approaches (Gal et al., 2022; Ruiz et al., 2023a;
Kumari et al., 2023; Tewel et al., 2023; Avrahami et al., 2023; Hao et al., 2023; Smith et al., 2023)
propose to fine-tune the models on each group of the provided reference images (typically 3-5
images). Although these methods yield satisfactory results, they require specialized training of the
network (word embedding space (Gal et al., 2022), specific layers of the UNet (Ruiz et al., 2023a;
Kumari et al., 2023) or some adding side-branches (Smith et al., 2023)), which is inefficient for
realistic application. Another technique roadmap (Xiao et al., 2023; Wei et al., 2023; Chen et al.,
2023c; 2022) is to re-train the text-to-image base model by specially designed network structures or
training strategies on a large-scale personalized image dataset, but often results in inferior fidelity and
generalization as compared with test-time fine-tuning approaches. Further, some methods can only
achieve personalized image generation on specific domains, such as portrait (Xiao et al., 2023; Shi
et al., 2023; Jia et al., 2023), cats (Shi et al., 2023) or dogs (Jia et al., 2023). Even though some recent
proposed algorithms (Wei et al., 2023; Li et al., 2023a; Ma et al., 2023b) can achieve open-domain
customized image generation, they can only handle single-concept issues. With regard to a single
reference image, multiple concept generation, the absence of test-time fine-tuning, and open-domain
zero-shot capability, we summarize a comprehensive list of personalized image generation papers as
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in Appendix C. According to the statistics, no algorithm is currently available that can fully satisfy
the four conditions listed above. As a result, we are motivated to propose Subject-Diffusion, an
open-domain personalized text-to-image generation framework that only needs one reference image
and doesn’t require test-time fine-tuning.

A large-scale training dataset with object-level segmentation masks and image-level detailed language
descriptions is crucial for zero-shot customized image generation. While for such a laborious labeling
task, publicly available datasets, including LVIS (Gupta et al., 2019), ADE20K (Zhou et al., 2019),
COCO-stuff (Caesar et al., 2018), Visual Genome (Krishna et al., 2017) and Open Images (Kuznetsova
et al., 2020), typically have insufficient image volumes ranging from 10k to 1M or even no text
description. To address the data shortage for open-domain personalized image generation, we are
motivated to build an automatic data labeling tool, which will be detailedly introduced in Sec. 3.1.
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Figure 1: Our Subject-Diffusion is capable of generating
high-fidelity subject-driven images (general and human sub-
jects) using just one reference image, without test-time fine-
tuning, allowing for the preservation of identity and editability.
Furthermore, our model supports the generation of multiple
subjects within a single model. We also show the interpolation
ability between reference images and word concepts.

As mentioned in (Zhou et al., 2023), the
information of personalized images may
overwhelmingly dominate that of user in-
put text to prevent creative generation. In
order to balance fidelity and editability, we
propose to fuse the input text prompt and
object-level image features by continually
training the CLIP text encoder (unlike fix-
ing the encoder as FastComposer (Xiao
et al., 2023) and Elite (Wei et al., 2023))
based on a specific prompt style. We fur-
ther propose to integrate fine-grained refer-
ence image patches, detected object bound-
ing boxes, and location masks to control
the fidelity of generated images. Finally, to
further control the generation of multiple
subjects, we introduce cross-attention map
control during training. As exhibited in
Fig. 1, based on the constructed large-scale
structured data in an open domain and our
proposed new model architecture, Subject-

Diffusion achieves remarkable fidelity and editability, which can perform single, multiple, and human
subject personalized generation by modifying their shape, pose, background, and even style with
only one reference image for each subject. In addition, Subject-Diffusion can also perform smooth
interpolation between customized images and text descriptions by using a specially designed denois-
ing process. In terms of quantitative comparisons, our model have certain advantages than other
methods, including test-time fine-tuning and non-fine-tuning approaches on the DreamBench (Ruiz
et al., 2023a) and our proposed larger open-domain test dataset.

In summary, our contributions are threefolds: (i) We design an automatic dataset construction pipeline
and create a sizable and structured training dataset that comprises 76M open-domain images and
222M entities. (ii) To the best of our knowledge, we propose a personalized image generation
framework which is the first work to address the challenge of simultaneously generating open-domain
single- and multi-concept personalized images without test-time fine-tuning, solely relying on a
single reference image for each subject. (iii) Both quantitative and qualitative experimental results
demonstrate the excellent performance of our framework as compared with other methods.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

The diffusion model has emerged as a promising direction to generate images with high fidelity and
diversity based on provided textual input. GLIDE (Nichol et al., 2022) utilizes an unclassified guide to
introduce text conditions into the diffusion process. DALL-E2 (Ramesh et al., 2022) uses a diffusion
prior module and cascading diffusion decoders to generate high-resolution images based on the CLIP
text encoder. Imagen (Saharia et al., 2022) emphasizes language understanding and suggests using a
large T5 language model to better represent semantics. Latent diffusion model (Rombach et al., 2022)
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uses an autoencoder to project images into latent space and applies the diffusion process to generate
latent-level feature maps. Stable diffusion (SD) (Rombach et al., 2022), ERNIE-ViLG2.0 (Feng
et al., 2023) and ediffi (Balaji et al., 2022) propose to employ a cross-attention mechanism to inject
textual conditions into the diffusion generation process. Our framework is built on the basis of SD
due to its flexible scalability and open-source nature.

2.2 SUBJECT-DRIVEN TEXT-TO-IMAGE GENERATION

Currently, there are two main frameworks for personalized text-to-image generation from the perspec-
tive of whether to introduce test-time fine-tuning or not. In terms of test-time fine-tuning strategies, a
group of solutions require several personalized images containing a specific subject and then directly
fine-tune the token embedding of the subject to adapt to learning visual concepts (Gal et al., 2022; Han
et al., 2023a; Yang et al., 2023; Voynov et al., 2023; Alaluf et al., 2023). Another group of approaches
fine-tune the generation model using these images (Ruiz et al., 2023a; Kumari et al., 2023; Han et al.,
2023b; Fei et al., 2023; Chen et al., 2023a), among which DreamBooth (Ruiz et al., 2023a) fine-tunes
the entire UNet network, while Custom Diffusion (Kumari et al., 2023) only fine-tunes the K and V
layers of the cross-attention in the UNet network. On the other hand, Custom Diffusion proposes the
personalized generation of multiple subjects for the first time. SVDiff (Han et al., 2023b) constructs
training data using cutmix and adds regularization penalties to limit the confusion of multiple subject
attention maps. Cones proposes concept neurons and updates only the concept neurons for a single
subject in the K and V layers of cross-attention. For multiple personalized subject generation, the
concept neurons of multiple trained personalized models are directly concatenated. Mix-of-Show (Gu
et al., 2023) trains a separate LoRA model (Hu et al., 2021) for each subject and then performs fusion.
Cones 2 (Liu et al., 2023c) generates multi-subject combination images by learning the residual of
token embedding and controlling the attention map.

Since the test-time fine-tuning methods suffer from a notoriously time-consuming problem, another
research route involves constructing a large amount of domain-specific data or using open-domain
image data for training without additional fine-tuning. InstructPix2Pix (Brooks et al., 2023) can
follow human instructions to perform various editing tasks, including object swapping, style transfer,
and environment modification, by simply concatenating the latent of the reference images during
the model’s noise injection process. ELITE (Wei et al., 2023) proposes global and local mapping
training schemes by using the OpenImages testset, which contains 125k images and 600 object
classes as the training data. However, due to the limitations of the model architecture, the text
alignment effect is relatively moderate. UMM-Diffusion presents a novel Unified Multi-Modal
Latent Diffusion (Ma et al., 2023b) that takes joint texts and images containing specified subjects
as input sequences and generates customized images with the subjects. Its limitations include not
supporting multiple subjects and its training data being selected from LAION-400M (Schuhmann
et al., 2021), resulting in poor performance in generating rare themes. Similarly, Taming Encoder (Jia
et al., 2023), InstantBooth (Shi et al., 2023), and FastComposer (Xiao et al., 2023) are all trained on
domain-specific data. BLIP-Diffusion(Li et al., 2023a) uses OpenImages data, and due to its two-stage
training scheme, it achieves good fidelity effects but does not support multi-subject generation.

In contrast, our model, which is trained on a sizable self-constructed open-domain dataset, performs
exceptionally well in terms of the trade-off between fidelity and generalization in both single- and
multi-subject generation by providing only one reference image for each subject.

3 METHODOLOGY

In this section, we will first introduce our constructed large-scale open-domain dataset for personalized
image generation. Then, an overview of the Subject-Diffusion framework, followed by an explanation
of how we leverage auxiliary information, including reformulating prompts, integrating fine-grained
image and location information, and a cross-attention map control strategy, will be detailed.

3.1 DATASET CONSTRUCTION

To endow the diffusion model with the capability of arbitrary subject image generation, a huge
multimodal dataset with open-domain capabilities is necessary. However, the existing image datasets
either have a small number of images, such as COCO-Stuff (Caesar et al., 2018) and OpenIm-
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ages (Kuznetsova et al., 2020), or lack modalities (segmentation masks and detection bounding boxes)
and have inconsistent data quality, such as LAION-5B (Schuhmann et al., 2022). Therefore, we are
inspired to create a high-quality, large-scale multimodal dataset that is suitable for our task.
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Figure 2: The procedure for training data generation.

As depicted in Fig. 2, we outline the three steps
we took to create our training data based on
LAION-5B. The captions for images provided
by LAION-5B are of poor quality, often contain-
ing irrelevant or nonsensical wording. This can
pose a significant challenge for text-to-image
tasks that require accurate image captions. To
address this issue, by using BLIP-2 (Li et al.,
2023a), we can generate more precise captions
for each image. However, for our subject-driven
image generation task, we also need to obtain
entities’ masks and labels from the images. In
order to accomplish this, we perform part-of-
speech analysis on the generated captions and
treat the nouns as entity tags. Once we have ob-
tained the entity labels, we can use the open-set
detection model Grounding DINO (Liu et al.,
2023a) to detect the corresponding location of

the entity and use the detection box as a cue for the segmentation model SAM (Kirillov et al., 2023)
to determine the corresponding mask. Finally, we combine the image-text pairs, detection boxes,
segmentation masks, and corresponding labels for all instances to structure the data. Based on the
aforementioned pipeline, we apply sophisticated filtering strategies, as detailed in Appendix B.1, to
form the final high-quality dataset called Subject-Diffusion Dataset (SDD). Our dataset contains 76M
examples, 222M entities, and 162K common object classes, which is much larger than the number of
annotated images in the famous OpenImages (1M images) (Kuznetsova et al., 2020). Furthermore, it
also covers a wide range of variations involving the capture of scenes, entity classes, and photography
conditions (resolution, illumination, etc.). This great diversity, as well as its large scale, offers great
potential for learning subject-driven image generation abilities in the open domain, which is believed
to boost the development of generative artificial intelligence. Please refer to Appendix B.2 for more
dataset statistics and comparisons.

3.2 MODEL OVERVIEW

The overall training framework of our proposed Subject-Diffusion is illustrated in Fig. 3. The design
spirit of Subject-Diffusion mainly focuses on three components. First, we specifically design the
prompt format and employ a text encoder to fuse the text and object-level visual features as the
conditions for SD. Second, to further enhance the fidelity of the generated personalized images,
we propose to insert an adapter between each self- and cross-attention block, which encodes dense
patch features of the segmented objects and their corresponding bounding box information. Third, in
order to endow Subject-Diffusion with multiple customized image generation abilities, we propose
to employ a cross-attention map control strategy based on segmentation masks to enforce a model
focusing on local optimization between the entity and its corresponding area.

3.3 EXPLOITATION OF AUXILIARY INFORMATION

Fusion text encoder. As proposed in Texture Inversion (Gal et al., 2022), a learned image embed-
ding incorporated with prompt embedding is essential to achieving personalized image generation.
Therefore, we first construct a new prompt template similar to BLIP-Diffusion (Li et al., 2023a):
“[text prompt], the [subject label 0] is [PH_0], the [subject label 1] is [PH_1], ...” where “text
prompt” represents the original text description, “subject label *” represents the category label of
the subject, and “PH_*” are place holders corresponding to the subject image. Then, in contrast to
approaches (Ma et al., 2023a; Shi et al., 2023; Xiao et al., 2023; Ma et al., 2023b), we choose to
fuse text and image information before the text encoder. We conduct extensive experiments, showing
that fusing text and image information before the text encoder and then retraining the entire text
encoder has stronger self-consistency than fusing them later. Specifically, we replace the entity token
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Figure 3: An overview of the proposed Subject-Diffusion method based on SD structure. (i) We first design a
specific condition by integrating the text prompt and object image features. (ii) Then, we extract fine-grained
image local patch features, combining with the detected object bounding boxes, and insert an adapter module
between self- and cross-attention in the UNet to enhance the model’s fidelity ability. (iii) Further, we propose to
employ an attention map control strategy to deal with the multiple object generation issue.

embedding at the first embedding layer of the text encoder with the image subject “CLS” embedding
at the corresponding position, and then retrain the entire text encoder.

Dense image and object location control. Generating personalized images in an open domain
while ensuring the fidelity of the subject image with only textual input poses a significant challenge.
To address this challenge, we propose to incorporate dense image features as an important input
condition, similar to the textual input condition. To ensure that the model focuses solely on the
subject information of the image and disregards the background information, we feed the segmented
subject image into the CLIP (Radford et al., 2021) image encoder to obtain 256-length patch
feature tokens. Furthermore, to prevent confusion when generating multiple subjects, we fuse the
corresponding image embedding with the Fourier-transformed coordinate position information of
the subject. Subsequently, we feed the fused information into the UNet framework for learning,
similar to GLIGEN (Li et al., 2023b). In each Transformer block, we introduce a new learnable
adapter layer between the self-attention layer and the cross-attention layer, which takes the fused
information as input and is defined as La := La + β · tanh(γ) · S([La, h

e]), where La is the output
of the self-attention layer, β a constant to balance the importance of the adapter layer, γ a learnable
scalar that is initialized as 0, S the self-attention operator, and he = MLP ([v, Fourier(l)]), where
MLP (·, ·) is a multi-layer perceptron that concatenates the two inputs across the feature dimension:
v the visual 256 patch feature tokens of an image, and l the coordinate position information of the
subject. In the process of training the UNet model, we selectively activate the key and value layers
of cross-attention layers and adapter layers while freezing the remaining layers. This approach is
adopted to enable the model to focus more on learning the adapter layer.

In addition, to prevent model learning from collapsing, a location-area control is innovatively
introduced to decouple the distribution between foreground and background regions. Specifically, as
shown in Fig. 3, a binary mask feature map is generated and concatenated to the original image latent
feature for a single subject. For multiple subjects, we overlay the binary images of each subject and
then concatenate them onto the latent feature. During inference, the binary image can be specified by
the user, detected automatically based on the user’s personalized image, or just randomly generated.

Cross attention map control. Currently, text-to-image generation models often encounter confusion
and omissions when generating multiple entities. Most solutions involve controlling the cross-
attention map during model inference (Wu et al., 2023; Wang et al., 2023; Rassin et al., 2023; Chefer
et al., 2023). The proposed approaches in this study are primarily based on the conclusions drawn
from Prompt-to-Prompt (Hertz et al., 2022): The cross-attention in the text-to-image diffusion models
can reflect the positions of each generated object specified by the corresponding text token, which is
calculated from:

CAl(zt, yk) = Softmax(Ql(zt) · Ll(yk)
T ), (1)
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where CAl(zt, yk) is the cross-attention map at layer l of the denoising network between the
intermediate feature of the noisy latent zt and the kth text token yk, and Ql and Ll are the query and
key projections. For each text token, we could get an attention map of size hl × wl, where hl and
wl are the spatial dimensions of the feature zt and the cross-attention mechanism within diffusion
models governs the layout of generated images. The scores in cross-attention maps represent the
amount of information that flows from a text token to a latent pixel. Similarly, we assume that subject
confusion arises from an unrestricted cross-attention mechanism, as a single latent pixel can attend
to all other tokens. Therefore, we introduce an additional loss term that encourages the model not
only to reconstruct the pixels associated with learned concepts but also to ensure that each token only
attends to the image region occupied by the corresponding concept. For instance, as illustrated in
Fig. 3, we introduce an attention map regularization term at the position of the entity tokens “dog”
, “[cls_0]”, “cat” and “[cls_1]”. Intuitively, the positions within the area containing the entity e.g.,
“cat”, should have larger values than other positions, so we optimize zt towards the target that the
desired area of the object has large values by penalizing the L1 deviation between the attention
maps and the corresponding segmentation maps of the entities. We choose l to be the layers with
hl = wl = {32, 16, 8}. Formally, we incorporate the following loss terms into the training phase:

Lattn =
1

N

N∑
k=1

∑
l

|CAl(zt, yk)−Mk| (2)

where Mk is the segmentation mask of the kth object corresponding to its text token.

Objective function. As shown in Fig. 3, given the original clear image x0 and segmented subject
image xs, the detected image mask lm is concatenated to the noisy image latent vector zt to form
a new latent vector z′t = concat(zt, lm). After dimension adjustment through a convolution layer,
the feature vector z̃t = conv_in(z′t) is fed into the UNet as the query component. In terms of the
conditional information, given the text prompt y, C = Tθ(vg, ty) is fused by the text encoder Tθ

from segmented image global embedding (vg = Iθ(xs)) and text token embeddings (ty) which are
extracted from the fixed CLIP image encoder (Iθ) and the text embedding layer, respectively. For the
adapters, they receive local image patch features v and bbox coordinates l as additional information
through a MLP feature fusion. Consequently, the Subject-Diffusion training objective is:

L = EE(x0),y,ϵ∼N (0,1),t

[
∥ ϵ− ϵθ(zt, t, y, xs, l, lm) ∥22

]
+ λattnLattn. (3)

where λattn is a weighting hyper-parameter.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND EVALUATION

The Subject-Diffusion is trained on SDD, as detailed information is provided in Sec. 3.1 and based
on SD with implementation details described in Appendix A.

We follow the benchmark DreamBench proposed in (Ruiz et al., 2023a) for quantitative and qualitative
comparison. In order to further validate the model’s generation capability in the open domain, we also
utilize the validation and test data from OpenImages, which comprises 296 classes with two different
entity images in each class. In comparison, DreamBench only includes 30 classes. We evaluate our
method with image alignment and text alignment metrics. For image alignment, we calculate the
CLIP visual similarity (CLIP-I) and DINO (Caron et al., 2021) similarity between the generated
images and the target concept images. For text alignment, we calculate the CLIP text-image similarity
(CLIP-T) between the generated images and given text prompts.

We compare several methods for personalized image generation, including Textual Inversion (Gal
et al., 2022), DreamBooth (Ruiz et al., 2023a) and Custom Diffusion (Kumari et al., 2023). All of
these models require test-time fine-tuning on personalized images in a certain category. Additionally,
we compare ELITE (Wei et al., 2023) and BLIP-Diffusion (Li et al., 2023a), both are trained on
OpenImages without test-time fine-tuning.

4.2 EXPERIMENTS
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Figure 4: Qualitative result for single-subject genera-
tion. Texture Inversion , DreamBooth and CustomDiffu-
sion employ all three reference images to fine-tune mod-
els, whereas only ELITE and Subject-Diffusion can gen-
erate personalized images using a single input reference
image (corresponding position) without fine-tuning.

Generating personalized images can be a
resource-intensive task, with some methods re-
quiring significant storage and computing power
to fine-tune models based on user-provided pho-
tos. However, our method and similar ones do
not require any test-time fine-tuning and can gen-
erate personalized images in a zero-shot manner,
making them more efficient and user-friendly.
In the following sections, we will present both
quantitative and qualitative results of our method
as compared with other approaches in both
single- and multi-subject settings.

Comparison results for single-subject. We
compare our Subject-Diffusion with the afore-
mentioned 6 methods for single-subject gener-
ation. In Table 1, we follow Dreambooth and
Blip-diffusion to generate 6 images for each text
prompt provided by DreamBench, amounting
in total to 4,500 images for all the subjects. We
report the average DINO, CLIP-I, and CLIP-T
scores over all pairs of real and generated im-
ages. The overall results show that our method
significantly outperforms other methods in terms
of DINO score, with a score of 0.711 compared
to DreamBooth’s score of 0.668. Our CLIP-I
and CLIP-T scores are also slightly higher or
on par with other fine-tuning free algorithms,
ELITE and BLIP-Diffusion. Furthermore, we
conduct experiments on the OpenImages testset,

which has about 10× the number of subjects as DreamBench, and our method still achieve high
DINO (0.668), CLIP-I (0.782), and CLIP-T (0.303) scores, revealing its generalization ability.

Fig. 4 displays a comparison of the qualitative results of single-subject image generation across
various prompts, using different approaches. Excluding Textual Inversion and ELITE, which exhibit
significantly lower subject fidelity, our proposed method’s subject fidelity and text consistency are
comparable to DreamBooth and CustomDiffusion methods that require multiple images for fine-
tuning. We have compared our method with Imagen-based methods, including Re-Imagen and SuTI,
as shown in Appendix H. Please refer to it for more details.

Table 1: Quantitative single subject results. DB de-
notes DreamBench, and OIT represents the OpenImage
testset. † indicates experimental results referenced from
BLIP-Diffusion. The value of ELITE is tested by our-
self. Boldface indicates the best results of zero shot
approaches evaluated in DeramBench.All the compari-
son methods here are based on the SD model.

Methods Type Testset DINO CLIP-I CLIP-T
Real Images † - - 0.774 0.885 -

Textual Inversion † FT DB 0.569 0.780 0.255
DreamBooth † FT DB 0.668 0.803 0.305

Custom Diffusion FT DB 0.643 0.790 0.305

ELITE ZS DB 0.621 0.771 0.293
BLIP-Diffusion † ZS DB 0.594 0.779 0.300

Subject-Diffusion ZS DB 0.711 0.787 0.293
OIT 0.668 0.782 0.303

Comparison result for multi-subject.
We conduct a comparison study on our method
with two fine-tuning-based approaches, i.e.,
DreamBooth and Custom Diffusion. This study
involves 30 different combinations of two sub-
jects from DreamBench, details of which can
be found in Appendix D. For each combination,
we generated 6 images per prompt by utilizing
25 text prompts from DreamBench. As depicted
in Fig. 5, we present five prompts of generated
images. Overall, our method demonstrates su-
perior performance compared to the other two
methods, particularly in maintaining subject fi-
delity in the generated images. On the one hand,
images generated by the comparative methods
often miss one subject, as exemplified by Dream-
Booth’s failure to include entities like “on cobblestone street” and “floating on water”, as well as
Custom Diffusion’s inability to accurately capture entities in “on dirty road” and “on cobblestone
street”. On the other hand, while these methods are capable of generating two subjects, the appearance
features between them are noticeably leaking and mixing, leading to lower subject fidelity when
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compared to the images provided by the user. By contrast, the images generated by our method
effectively preserve the user-provided subjects, and each one is accurately produced.

Dream
Booth

on dirty road on the beach on cobblestone street on wooden floor floating on water

Custom
Diffusion

Input 
Images

Ours

Figure 5: Qualitative result for multi-subject generation.

We also calculate DINO, CLIP-I and
CLIP-T scores on all groups of the
generated images, user-provided im-
ages and prompts. To obtain CLIP-
I, we average the calculated similar-
ities between the generated image
and the two subjects, as results pre-
sented in Table 2. Obviously, our ap-
proach shows remarkable superiority
over DreamBooth and Custom Diffu-
sion across DINO and CLIP-T, provid-
ing compelling evidence of its ability
to capture the subject information of
reference images more accurately and
display multiple entities in a single
image simultaneously.

4.3 ABLATION STUDIES

Table 2: Quantitative result of two subject generation.
ZS means zero-shot and FT denotes fune-tuning. Bold-
face indicates the best results.

Methods Type DINO CLIP-I CLIP-T
DreamBooth FT 0.430 0.695 0.308

Custom Diffusion FT 0.464 0.698 0.300
Subject-Diffusion ZS 0.506 0.696 0.310

The ablation studies involve examining two
main aspects, namely: 1) the impact of our train-
ing data and 2) the impact of different compo-
nents in our Subject-Diffusion model. As shown
in Table 3, we present zero-shot evaluation re-
sults for both single- and two-subject cases. We
observe that all the ablation settings result in
weaker quantitative results than our full setting.

Table 3: Ablation Results.↑ and ↓ indicate increase or
decrease, respectively. Boldface indicates full-setting
results.

Index Methods DINO CLIP-I CLIP-T
(a) Subject-Diffusion 0.711 0.787 0.293
(b) trained on OpenImage 0.664↓ 0.777↓ 0.294↑

Single (c) w/o location control 0.694↓ 0.778↓ 0.275↓
(d) w/o box coordinates 0.732↑ 0.810↑ 0.282↓

Subject (e) w/o adapter layer 0.534↓ 0.731↓ 0.291↓
(f) w/o attention map control 0.692↓ 0.789↑ 0.288↓
(g) w/o image cls feature 0.637↓ 0.719↓ 0.299↑
(a) Subject-Diffusion 0.506 0.696 0.310
(b) trained on OpenImage 0.491↓ 0.693↓ 0.302↓

Two (c) w/o location control 0.477↓ 0.666↓ 0.281↓
(d) w/o box coordinates 0.464↓ 0.687↓ 0.305↓

Subjects (e) w/o adapter layer 0.411↓ 0.649↓ 0.307↓
(f) w/o attention map control 0.500↓ 0.688↓ 0.302↓
(g) w/o image cls feature 0.457↓ 0.627↓ 0.309↓

Impact of our training data. The training
data proposed in this paper consists of large-
scale, richly annotated images, thereby enabling
our model to effectively capture the appearance
features of any given subject. To further assess
the impact of training data, we retrain our model
using OpenImages (Kuznetsova et al., 2020)
training data, limiting the categories to only
600. Our evaluation results (a) and (b) demon-
strate that this smaller dataset leads to lower
image similarity, with the DINO and CLIP-I
scores both decreasing for single-subject and
two-subject cases, which underscores the im-
portance of utilizing large-scale training data in
generating highly personalized images. How-
ever, the results still surpass or are on par with those of ELITE and BLIP-diffusion (0.664 vs. 0.621
vs. 0.594 for DINO), demonstrating the effectiveness of Subject-Diffuion’s model structure and
training strategy.

Impact of different components. The comparison between experiments (a) and (c) declares that,
if we remove the location control (object masks), our model will apparently degenerate over all
evaluation metrics. Experiments (a) and (d) indicate that the introduction of box coordinates leads to
significant improvements in two-subject generation (with the DINO score increasing by 0.042, the
CLIP-I score increasing by 0.09, and the CLIP-T score increasing by 0.005). However, the fidelity
of single-subject generation decreased by 0.021 for the DINO score and 0.023 for the CLIP-I score.
This decline may be due to the fact that, when generating a single subject, the information becomes
overly redundant, making it challenging for the model to grasp the key details of the subject.
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The high fidelity of our model is primarily attributed to the 256 image patch features input to the
adapter layer. As demonstrated in experiment (e), removing this module results in a significant drop
in nearly all of the metrics. Experimental results (f) clearly indicate that the attention map control
operation delivers a substantial performance improvement for two-subject generation as well as a
slight performance improvement for single-subject generation. This difference is most likely due to
the ability of the attention map control mechanism to prevent confusion between different subjects.
The results of (a) and (g) indicate that the absence of the image “CLS” feature led to a significant
reduction in the fidelity of the subject, highlighting the significance of the feature in representing the
overall image information. Additional qualitative results please refer to the appendix F.

4.4 HUMAN IMAGE GENERATION

Table 4: Comparison among our method and base-
lines on single-subject human image generation.
† indicates that the experimental values are refer-
enced from FastComposer.

Method Images↓ ID Preser.↑ Prompt Consis.↑
StableDiffusion† 0 0.039 0.268

Textual-Inversion† 5 0.293 0.219
DreamBooth† 5 0.273 0.239

Custom Diffusion† 5 0.434 0.233
FastComposer† 1 0.514 0.243

Subject-Diffusion 1 0.605 0.228

Due to our method’s ability to produce high-fidelity
results, it is also well-suited for human image gener-
ation. To evaluate our model’s effectiveness in this
area, we use the single-entity evaluation method em-
ployed in FastComposer (Xiao et al., 2023) and com-
pare our model’s performance to that of other existing
methods. The experimental results are shown in Ta-
ble 4. Subject-Diffusion significantly outperforms
all baseline approaches in identity preservation, with
an exceptionally high score that surpasses FastCom-
poser trained on the specific portrait dataset by 0.091.
However, in terms of prompt consistency, our method
is slightly weaker than FastComposer (-0.015). We believe this vulnerability could be due to our
method’s tendency to prioritize subject fidelity when dealing with challenging prompt words.

4.5 TEXT-IMAGE INTERPOLATION

By utilizing the “[text prompt], the [subject label] is [PH]” prompt template during image generation,
we are able to utilize the dual semantics of both text and image to control the generated image output.
Moreover, we could utilize texts and images from distinct categories and perform interpolation of
generated images by controlling the proportion of the diffusion steps. To achieve this, we remove
the user input image control once the image layout is generated, retaining only the textual semantic
control. Our step-based interpolation method is represented by the following formula:

ϵt =

{
ϵθ(zt, t, y

′, xs, l, lm) if t > αT,

ϵθ(zt, t, y) otherwise
(4)

In this context, y denotes the original text prompt, while y′ signifies employing a convoluted text
template: "[text prompt]a, the [subject]b is [cls]a". The visualization and instructions examples can
be found in Appendix E Fig. 8.

5 CONCLUSION AND LIMITATION

To date, the high cost and scarcity of manual labeling have posed significant obstacles to the practical
implementation of personalized image generation models. Inspired by the breakthroughs in zero-
shot large models, this paper develops an automatic data labeling tool to construct a large-scale
structured image dataset. Then, we build a unified framework that combines text and image semantics
by utilizing different levels of information to maximize subject fidelity and generalization. Our
experimental analysis shows that our approach outperforms existing models on the DreamBench data
and has the potential to be a stepping stone for improving the performance of personalized image
generation models in the open domain. Although our method is capable of zero-shot generation
with any reference image in open domains and can handle multi-subject scenarios, it still has certain
limitations. First, our method faces challenges in editing attributes and accessories within user-input
images, leading to limitations in the scope of the model’s applicability. Secondly, when generating
personalized images for more than two subjects, our model will fail to render harmonious images
with a high probability. Example of failure generations can be found in Appendix G. In the future,
we will conduct further research to address these shortcomings.
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APPENDIX

In this supplementary, we will first present the implementation details and training parameters in
Appendix A. Then, more details about the dataset construction process and statistics are presented in
Appendix B. Then we summarize a comprehensive set of related work comparisons in Appendix C.
We further provide more information about the test dataset for two-subject evaluation in Appendix D.
We will discuss the interpolation results in Appendix E. We will discuss the Additional qualitative
results of the ablation studies in Appendix F. We will discuss the failure cases in Appendix G. We
will compare our method with methods trained on the Imagen in Appendix H. And finally, more
visualization results of our proposed Subject-Diffusion are exhibited in Appendix I.

A IMPLEMENTATION DETAILS

Based on SD v2-base1, Subject-Diffusion consists of VAE, UNet (with adapter layer), text encoder,
and OpenCLIP-ViT-H/142 vision encoder, comprising 2.5 billion parameters, out of which a mere 0.7
billion parameters (text encoder, conv_in module, adapter layer, and projection matrices W (i)

K ,W
(i)
V )

are trainable. The VAE, text encoder, and UNet are initialized from the SD checkpoints, and the
CLIP image encoder is loaded from the pretrained OpenCLIP checkpoints. We set the learning rate
to 3e-5, the weighting scale hyper-parameter λattn in Eq. (3) to 0.01, and the balance constant β in
the adapter to 1. The entire model is trained on 24 A100 GPUs for 300,000 steps with a batch size of
12 per GPU. The model is trained based on our proposed SDD or OpenImage training set.

B SUBJECT-DIFFUSION DATASET

B.1 DATASET BUILDING STRATEGY

To produce our dataset, all of our training images are sampled from the LAION-Aesthetics V2 5+3

which is a subset of LAION-5B with an aesthetic score greater than 5. To keep the diversity of
images, we only set the filter conditions for resolution, i.e., keep the images with the small side
greater than 1024. However, in order to ensure that the images are suitable for our subject-driven
image generation task, we apply several filtering rules: (1) We only keep the bounding boxes with
an aspect ratio between 0.3 and 3; (2) We only keep images where the subject’s bounding box area
is between 0.05 and 0.7 of the total image area; (3) We filter out entities with IOU exceeding 0.8;
(4) We remove entities that appear more than 5 times in a detection box; (5) We filter out entities
with detection scores below 0.2; (6) We remove images where the segmentation mask area is less
than 60% of the corresponding detection box area; (7) For the OpenImages training set, we filter out
entities that appear in groups and belong to human body parts. After applying these rules, we keep 22
million images for our SDD and 300,000 images for the OpenImages dataset.

B.2 STATISTICS AND COMPARISON

Statistics about our training data are illustrated in Fig. 6 and Table. 5. Among them, Fig. 6 presents
a comprehensive analysis of the dataset properties of our training data, which includes a detailed
distribution of caption length and bbox number per image. The caption length distribution reveals
that the majority of captions fall within a range of 5 to 15 words, with a few outliers exceeding 15
words. On the other hand, the bbox number per image distribution shows that most images contain
between 1 and 5 bounding boxes, with a small percentage of images having more than 10 bounding
boxes. These statistics provide valuable insights into the nature of our training data and can be used
to inform the design of our machine learning models.

In Table. 5, we compare the scale of different well-annotated image datasets with the training data
used in the study. The number of images in the datasets ranges from 0.028 million to 11 million,
while the number of entities ranges from 0.7 million to 1.1 billion. In Table. 5, we compare the scale

1https://huggingface.co/stabilityai/stable-diffusion-2-base
2https://github.com/mlfoundations/open_clip
3https://huggingface.co/datasets/ChristophSchuhmann/improved_

aesthetics_5plus
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Table 5: The comparison between well annotated image dataset and our training data. Image # , entity
# and class # refer to the number of images, the number of entities and the number of class categories,
respectively. SA-1B † does not provide the class label of instances.

Dataset LVIS v1 COCO ADE20K Open Images SA-1B † SDD (ours)

Image # 0.120M 0.123M 0.028M 1M 11M 76M
Entity # 1.5M 0.9M 0.7M 2.7M 1.1B 222M
Class # 1200 91 2693 600 N/A 162K

of different annotated image datasets to the training data used in our study. The number of images
in these datasets ranges from 28,000 to 11 million, with the entity count ranging from 700,000 to
1.1 billion. Although SA-1B (Kirillov et al., 2023) offers the highest entity count of 1.1 billion, it
lacks annotated entity categories and tends to include small-sized masks, which is unsuitable for our
image generation purposes. In contrast, the training dataset employed in this study comprises 76
million images and 220 million entities, making it the largest-scale dataset available. Furthermore, it
is important to note that our study not only provides the number of entity classes but also highlights
the superior diversity of our training data compared to other datasets. This diversity is crucial in
enabling our model to comprehend and identify a wide range of reference objects in the open world.
Our training data includes a vast array of entities, i.e. 162K kinds of entities, ranging from common
objects such as animals and plants to more complex entities such as vehicles and buildings. This
comprehensive dataset ensures that our model is equipped with the necessary knowledge to accurately
identify and classify any reference object it encounters. Additionally, our study also takes into
account the varying contexts in which these entities may appear, further enhancing the robustness
and adaptability of our model. Overall, our research provides a comprehensive and diverse training
dataset that enables our model to effectively understand and generate reference objects in the open
world.
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Figure 6: Dataset properties. Left: word count distribution of captions in SDD; Middle: bounding
box count distribution of images in SSD; Right: Word cloud diagram of SDD. We can observe that
the most frequent entities in our SDD are man, woman, people, table, room, etc.

B.3 DISCUSSION ON QUALITY OF THE DATA

We collected 1000 data samples for statistics, and some of the figures are presented in Fig. 7. We
also conducted an analysis of four columns of sample data, where the first three columns on the
left are the data we selected for training after rule-based filtering, and the column on the right
represents the data excluded by the filtering rules. The first column on the left shows high-quality data
selected subjectively by the annotators, with filtering criteria consistent with our rule-based filtering
motivations. The second column on the left shows low-quality results with low recall, i.e., many
subject entities are not detected by the bounding box, possibly due to the generation of corresponding
entities being incomplete in BLIP2 or insufficient recall by DINO. The third column on the left
corresponds to other low-quality situations, which may include errors in subject identification, i.e.,
low accuracy, or situations missed by the rule-based filtering. Finally, we conducted a simple analysis
of 1000 samples, as shown in Table 6, Subjectively high-quality results only accounted for 35% of
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Figure 7: Example of data of different qualities.

the rule-based filtering results. This indicates that there is still a lot of potential to optimize data
quality, and we will continue to work hard in this area.

C PERSONALIZATION BASELINES COMPARISON

We carefully survey the personalized image generation papers published in recent years and compile
a comprehensive comparison table comparing their support for single reference image, multi-subject
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Table 6: Subjective quantitative statistics of data quality.

Data Quality High Quality Low Recall Other Low Quality Filtered Out by Rules
Proportion 18% 20% 14% 48%

generation, no test-time fine-tuning, and open domain generalization. As delineated in Table 7, the
main stream of personalized image generation still considers test-time fine-tuning, which suffers from
inference time-consuming ranging from several seconds to more than one hour (Gal et al., 2022; Ruiz
et al., 2023a; Kumari et al., 2023; Gal et al., 2023; Han et al., 2023b; Smith et al., 2023; Voynov et al.,
2023; Liu et al., 2023b;c; Tewel et al., 2023; Chen et al., 2023a; Avrahami et al., 2023; Alaluf et al.,
2023; Gu et al., 2023; Hao et al., 2023; Ruiz et al., 2023b; Arar et al., 2023; Zhou et al., 2023). Only
a small portion of papers are dedicated to studying personalized image generation without test-time
fine-tuning (Jia et al., 2023; Shi et al., 2023; Xiao et al., 2023; Chen et al., 2023c; 2022; Ma et al.,
2023b; Wei et al., 2023; Li et al., 2023a; Chen et al., 2023b). But all of the pioneering works cannot
satisfy the four aforementioned requirements, either by being trained on specific domains (Shi et al.,
2023; Jia et al., 2023; Xiao et al., 2023), or by supporting only single-concept generation. To the
best of our knowledge, our Subject-Diffusion is the first open-domain personalized image generation
method that supports multi-concept synthesis and requires only a single reference image for each
subject.

Table 7: Survey of recent personalized image generation works in terms of single reference image,
multi-subject generation, no test-time fine-tuning and open domain generalization.

Method Single image Multi-subject No fine-tuning Open domain

Textual Inversion (Gal et al., 2022) % % % -
Dreambooth (Ruiz et al., 2023a) % % % -

Custom Diffusion (Kumari et al., 2023) % ! % -
E4T (Gal et al., 2023) ! % % -

SVDiff (Han et al., 2023b) ! ! % -
Continual Diffusion (Smith et al., 2023) % ! % -

XTI (Voynov et al., 2023) % % % -
Cones (Liu et al., 2023b) ! ! % -

Cones 2 (Liu et al., 2023c) ! ! % -
Perfusion (Tewel et al., 2023) % ! % -

DisenBooth (Chen et al., 2023a) ! % % -
Break-A-Scene (Avrahami et al., 2023) ! ! % -

NeTI (Alaluf et al., 2023) % % % -
Mix-of-Show (Gu et al., 2023) % ! % -

ViCo (Hao et al., 2023) % % % -
HyperDreamBooth (Ruiz et al., 2023b) ! % % -

Domain-Agnostic (Arar et al., 2023) ! % % -
Regularization-Free (Zhou et al., 2023) ! % % -

Taming (Jia et al., 2023) ! % ! %

InstantBooth (Shi et al., 2023) ! % ! %

PhotoVerse (Chen et al., 2023b) ! % ! %

Face0 (Valevski et al., 2023) ! % ! %

FastComposer (Xiao et al., 2023) ! ! ! %

SuTI (Chen et al., 2023c) % % ! !

Re-Imagen (Chen et al., 2022) ! % ! !

UMM-Diffusion (Ma et al., 2023b) ! % ! !

ELITE (Wei et al., 2023) ! % ! !

Blip-Diffusion (Li et al., 2023a) ! % ! !

Ours (Subject-Diffusion) ! ! ! !
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D TWO-SUBJECT EVALUATION DETAILS

We utilize all the objects in DreamBench and randomly select 30 pairs of combinations, out of which
9 pairs belong to live objects. The specific subject pairs are presented in Table 8. For the prompts
used in generating images with two subjects, we follow the format outlined in DreamBench, with the
two subjects connected using the word “and”.

For inference, we use PNDM scheduler for 50 denoising steps. We use a fixed text guidance scale 3
and image guidance scale 1.5 for all experiments

Table 8: Prompts for a dual-subject personalized image generation testset. The first 21 combinations
are still objects, and the last 9 combinations are animals.

backpack-can bear_plushie-backpack_dog berry_bowl-vase
duck_toy-can fancy_boot-shiny_sneaker grey_sloth_plushie-poop_emoji

teapot-backpack_dog teapot-berry_bowl wolf_plushie-backpack_dog
can-bear_plushie can-candle can-duck_toy

can-shiny_sneaker clock-teapot colorful_sneaker-vase
robot_toy-backpack shiny_sneaker-duck_toy shiny_sneaker-poop_emoji

pink_sunglasses-candle poop_emoji-clock poop_emoji-shiny_sneaker

cat-dog2 cat-dog5 cat2-dog3
dog2-dog3 dog5-dog6 dog6-dog7
dog6-dog8 dog7-dog8 dog8-dog6

E TEXT-IMAGE INTERPOLATION

The visualization examples can be found in Fig. 8. We provide this experiment to show that the high-
level information of the user-provided images are successfully extracted and rendered in generated
images during early backward diffusion stages. Thus we can adjust α to balance image fidelity and
editablity according to different prompts.

12.0 8.06.04.0

man woman

dog cat

wolf lion

Figure 8: Text-image interpolation. The prompts are followings: A man in the rain, the woman is [PH]; A dog
in the snow, the cat is [PH]; A wolf plushie on the beach, the lion is [PH].
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F ADDITIONAL QUALITATIVE RESULTS OF THE ABLATION STUDIES

In the case of a single subject, Fig. 10 left two columns present two examples that clearly demonstrate
the higher fidelity of the generated images without box coordinates. However, these images have
lower semantic matching ability and are unable to capture key information from the prompts. On
the other hand, images generated without the adapter layer and without image cls feature have
slightly lower fidelity. These two strategies aim to enhance the processing of input image information,
providing advantages in both objective metrics and subjective evaluation in terms of fidelity.

Regarding the case of two subjects with Fig. 10 right two columns, the conclusions remain consistent
with the previous analysis. Images generated without the adapter layer and without image cls feature
still exhibit slightly lower fidelity. It is worth mentioning that both the preservation of box coordinates
and attention map control have advantages in generating images with multiple subjects, as these
conditions help alleviate the issue of generating ambiguous representations of multiple entities.

Figure 9: Example of failure generations.

G FAILURE CASES DISCUSSIONS

We provide an example to address the shortcomings of "editing attributes" and "rendering harmonious
images with two subjects". For the "editing attributes" issue, the attributes corresponding to the
red-marked prompts in the failed image are highlighted. As for generating images with two subjects,
if the source image(s) itself already lacks one or both of the subjects, it may lead to disharmony in
the final generated image.The cases are shown in Fig. 9.

H DISCUSSIONS WITH METHODS TRAINED ON THE IMAGEN

From Table 9, We have compared our method with Imagen-based methods, including Re-Imagen and
SuTI. Re-Imagen is a retrieval-augmented approach that also achieves personalized image (retrieved
reference image) generation. SuTI is a subject-driven text-to-image generator that replaces subject-
specific fine tuning with in-context learning. We can see that SuTI has an advantage in all three
metrics. However, it may not be fair to make direct comparisons between the two methods based
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Figure 10: Additional qualitative results of the ablation studies.
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solely on these results.Three issues that need to be discussed are as follows: First, the difference in the
base model used, where SuTI is based on the Imagen model structure and Initialization parameters,
while our base model is SD2. Second, the image resolution evaluated for SuTI was 1024, while our
evaluated image resolution was 512. Third, SuTI provides four demonstration image-text pairs during
inference, while we only provide one.

we will compare our results with SuTI in a qualitative side-by-side comparison in Figure 11. We
made a simple comparison on the four shortcomings of SuTI:

(1) SuTI has a strong prior about the subject and hallucinates the visual details based on its prior
knowledge. For example, the generation model believes ‘teapot’ should contain a ‘lift handle’. (2)
Some artifacts from the demonstration images are being transferred to the generated images like
second column.Subject Diffusion has advantages in this regard because it removes background input.
(3) The subject’s visual appearance is being modified through with SuTI, mostly influenced by the
context, like last column. Subject Diffusion will be slightly better. (4) SuTI is not particularly good at
handling compositional prompts like the ‘sunglasses’ example like third column. Subject Diffusion
will be slightly better.

Table 9: Quantitative single subject results. † indicates experimental results referenced from SuTI. Boldface
indicates the best results of zero shot approaches evaluated in DeramBench.

Methods Model Base Testset DINO CLIP-I CLIP-T
Real Images † - - 0.774 0.885 -

Re-Imagen † Imagen DB 0.600 0.740 0.270
SuTI † Imagen DB 0.741 0.819 0.304

Subject-Diffusion SD DB 0.711 0.787 0.293

Figure 11: Compare our results with SuTI in qualitative.

I MORE VISUALIZATION RESULTS

In this section, we provide more single-, multi-, and human subject generation visualization examples,
as in Fig. 12, Fig. 13 and Fig. 14. Notice that we display 10 generated results for each personal image
without carefully cherry-picking, demonstrating the consistent fidelity and generalization ability of
our proposed Subject-Diffusion.
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a backpack in the jungle a backpack in the snow a backpack on the beach
a backpack on a cobblestone 

street
a backpack on top of pink fabric

a backpack on top of a wooden 
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a backpack with a city in the 

background

a backpack with a mountain in the 

background

a backpack with a blue house in 

the background

a backpack on top of a purple rug 

in the forest

a cat in the jungle a cat in the snow a cat on the beach a cat on a cobblestone street a cat on top of pink fabric

a cat on top of a wooden floor
a cat with a city in the 

background

a cat with a mountain in the 

background

a cat with a blue house in the 

background

a cat on top of a purple rug in the 

forest

a dog in the jungle a dog in the snow a dog on the beach a dog on a cobblestone street a dog on top of pink fabric

a dog on top of a wooden floor
a dog with a city in the 

background

a dog with a mountain in the 

background

a dog with a blue house in the 

background

a dog on top of a purple rug in the 

forest

a toy in the jungle a toy in the snow a toy on the beach a toy on a cobblestone street a toy on top of pink fabric

a toy on top of a wooden floor
a toy with a city in the 

background

a toy with a mountain in the 

background

a toy with a blue house in the 

background

a toy on top of a purple rug in the 

forest

Input Image

Input Image

Input Image

Input Image

Figure 12: More qualitative results for single-subject generation.
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a stuffed animal and a backpack 

in the jungle
a stuffed animal and a backpack 

in the snow

a stuffed animal and a backpack 

on the beach

a stuffed animal and a backpack 

on a cobblestone street

a stuffed animal and a backpack 

on top of pink fabric

a stuffed animal and a backpack 

on top of a wooden floor

a stuffed animal and a backpack 

with a city in the background

a stuffed animal and a backpack 

with a mountain in the 

background
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with a blue house in the 

background

a stuffed animal and a backpack 

on top of a purple rug in the forest

a cat and a dog in the jungle a cat and a dog in the snow a cat and a dog on the beach
a cat and a dog on a cobblestone 

street

a cat and a dog on top of pink 

fabric

a cat and a dog on top of a 

wooden floor

a cat and a dog with a city in the 

background

a cat and a dog with a mountain 

in the background

a cat and a dog with a blue house 

in the background

a cat and a dog on top of a purple 

rug in the forest

a dog and a dog in the jungle a dog and a dog in the snow a dog and a dog on the beach
a dog and a dog on a cobblestone 

street

a dog and a dog on top of pink 

fabric

Input Image

Input Image

Input Image

Input Image

a stuffed animal and a toy on top 

of a wooden floor

a stuffed animal and a toy with a 

city in the background

a stuffed animal and a toy with a 

mountain in the background

a stuffed animal and a toy with a 

blue house in the background

a stuffed animal and a toy on top 

of a purple rug in the forest

a stuffed animal and a toy on top 

of a wooden floor

a stuffed animal and a toy with a 

city in the background

a stuffed animal and a toy with a 

mountain in the background

a stuffed animal and a toy with a 

blue house in the background

a stuffed animal and a toy on top 

of a purple rug in the forest

a stuffed animal and toy in the 

jungle
a stuffed animal and a toy in the 

snow

a stuffed animal and a toy on the 

beach

a stuffed animal and a toy on a 

cobblestone street

a stuffed animal and a toy on top 

of pink fabric

a stuffed animal and toy in the 

jungle
a stuffed animal and a toy in the 

snow

a stuffed animal and a toy on the 

beach

a stuffed animal and a toy on a 

cobblestone street

a stuffed animal and a toy on top 

of pink fabric

a dog and a dog on top of a 

wooden floor

a dog and a dog with a city in the 

background

a dog and a dog with a mountain 

in the background

a dog and a dog with a blue house 

in the background

a dog and a dog on top of a purple 

rug in the forest

a dog and a dog on top of a 

wooden floor

a dog and a dog with a city in the 

background

a dog and a dog with a mountain 

in the background

a dog and a dog with a blue house 

in the background

a dog and a dog on top of a purple 

rug in the forest

Figure 13: More qualitative results for two-subject generation.
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a painting of a woman in the style 

of Vincent Van Gogh
a watercolor painting of a woman a woman in the snow a woman wearing a rainbow scarf a woman wearing a red hat

a woman wearing a santa hat a woman in a chef outfit a woman in a firefighter outfit a woman in a police outfit a woman working out at the gym

a painting of a man in the style of 

Vincent Van Gogh
a watercolor painting of a man a man in the snow a man wearing a rainbow scarf a man wearing a red hat

a man wearing a santa hat a man in a chef outfit a man in a firefighter outfit a man in a police outfit a man working out at the gym

a painting of a man in the style of 

Vincent Van Gogh
a watercolor painting of a man a man in the snow a man wearing a rainbow scarf a man wearing a red hat

a man wearing a santa hat a man in a chef outfit a man in a firefighter outfit a man in a police outfit a man working out at the gym

a painting of a woman in the style 

of Vincent Van Gogh
a watercolor painting of a woman a woman in the snow a woman wearing a rainbow scarf a woman wearing a red hat

a woman wearing a santa hat a woman in a chef outfit a woman in a firefighter outfit a woman in a police outfit a woman working out at the gym

Input Image

Input Image

Input Image

Input Image

Figure 14: More qualitative results for human image generation.
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