
Published as a conference paper at ICLR 2025

DECOUPLED FINETUNING FOR DOMAIN GENERALIZ-
ABLE SEMANTIC SEGMENTATION

Jaehyun Pahk1 Donghyeon Kwon1 Seong Joon Oh3 Suha Kwak1,2

Dept. of CSE, POSTECH1 GSAI, POSTECH2 Tübingen AI Center, Universität Tübingen3

ABSTRACT

Joint finetuning of a pretrained encoder and a randomly initialized decoder has
been the de facto standard in semantic segmentation, but the vulnerability of this
approach to domain shift has not been studied. We investigate the vulnerability
issue of joint finetuning, and propose a novel finetuning framework called Decou-
pled FineTuning (DeFT) for domain generalization as a solution. DeFT operates
in two stages. Its first stage warms up the decoder with the frozen, pretrained
encoder so that the decoder learns task-relevant knowledge while the encoder pre-
serves its generalizable features. In the second stage, it decouples finetuning of the
encoder and decoder into two pathways, each of which concatenates an adaptive
component (AC) and retentive component (RC); the encoder and decoder play
different roles between AC and RC in different pathways. ACs are updated by
gradients of the loss on the source domain, while RCs are updated by exponen-
tial moving average biased toward their initialization to retain their generaliza-
tion capability. By the two separate optimization pathways with opposite AC-RC
configurations, DeFT reduces the number of learnable parameters virtually, and
decreases the distance between learned parameters and their initialization, lead-
ing to improved generalization capability. DeFT significantly outperformed ex-
isting methods in various domain shift scenarios, and its performance was further
boosted by incorporating a simple distance regularization.

1 INTRODUCTION

The current de facto standard for learning semantic segmentation is to jointly finetune a pretrained
encoder and a segmentation decoder on training data with segmentation labels (Long et al., 2015;
Noh et al., 2015; Ronneberger et al., 2015; Chen et al., 2017; Zhao et al., 2017; Xie et al., 2021;
Yu et al., 2022; Chen et al., 2023). This practice allows significant performance improvement, but
it also often leads to models vulnerable to domain shift in testing caused by, for example, weather
conditions and geolocations they do not experience in training (Ganin et al., 2016; Pan et al., 2018;
Saito et al., 2018; Yue et al., 2019a; Choi et al., 2021). A straightforward solution to this issue is
to collect a vast amount of training data from diverse domains. However, this does not guarantee
that the collected data cover any potential test domains, and more importantly, pixel-wise class
annotation for such data will be prohibitively expensive.

To resolve this issue, we study domain generalization for semantic segmentation, i.e., learning a
model on a single source domain so that it generalizes well to unseen, arbitrary target domains that
may arise in testing (Yue et al., 2019b; Lee et al., 2022; Zhao et al., 2022; Chattopadhyay et al.,
2023; Kim et al., 2023a). A large body of domain generalization research has focused on simulating
diverse target domains by data or feature augmentation during training (Lee et al., 2022; Zhao et al.,
2022; Chattopadhyay et al., 2023), or removing domain-specific information from features (Choi
et al., 2021; Peng et al., 2022; Pan et al., 2018; 2019). Although these approaches have driven
remarkable success, there is still large room for further improvement in that they do not take into ac-
count potential negative impact of the joint finetuning of encoder and decoder, the common practice
in semantic segmentation, on domain generalization.

We argue that the joint finetuning of encoder and decoder can degrade the model’s generalization
capability. First, the joint finetuning causes the pretrained encoder to overfit to the source domain
and thus corrupts its generalization capability (Kumar et al., 2022; Saito et al., 2023). Also, the

1



Published as a conference paper at ICLR 2025

Figure 1: We empirically verify that the joint �netuning causes over�tting to the source domain and
degrades the generalization capability by comparing (a) loss on the source domain–GTAV (Richter
et al., 2016) and (b) that on an unseen target domain–Cityscapes (Cordts et al., 2016) during �ne-
tuning. Freezing either the encoder or decoder before being over�tted mitigates the issue to some
extent, which suggests that preventing one of them from being trained with the other over�tted to the
source domain may improve the entire model's generalization. Of course, this approach is far from
the optimal solution due to the lack of task-relevant knowledge of the frozen module, as demon-
strated in Table 1. Meanwhile, DeFT demonstrates signi�cantly better generalization capability: its
loss on the unseen target domain decreases more quickly and reliably during �netuning.

Table 1: Comparison between the proposed framework, DeFT, and freezing either an encoder or
decoder. All the methods were trained on GTAV using ResNet-50 backbone. After the warm-up
stage, we selectively froze either the encoder or decoder while continuing to update the other. The
results indicate that the model cannot learn suf�cient task-relevant knowledge when one module is
not updated at all, especially the encoder, which contains most of the parameters of the model.

Method Cityscapes BDD100K Mapillary Avg.

Freezing Encoder 41.88 36.85 44.59 41.11
Freezing Decoder 42.52 38.75 45.03 42.10

DeFT 50.06 43.17 50.51 47.91

decoder relying on the encoder's output inevitably draws distorted decision boundaries, producing
gradients that cause the encoder to be more over�tted. Figure 1 empirically veri�es this argument.

Building on this insight, we propose a new, simple yet effective �netuning framework dubbed
DecoupledFineTuning for domain generalization (DeFT). DeFT comprises two stages. In the �rst
stage, the decoder is warmed up with a frozen pretrained encoder, following Kumar et al. (2022).
By warming up on the source domain, the decoder learns the target task (i.e., semantic segmentation
in this paper) without distorting the generalizable knowledge of the pretrained encoder.

The main contribution of DeFT lies in its second stage, which �netunes both the encoder and de-
coder in a decoupled manner. Motivated by the observation in Figure 1, we propose decoupling
the �netuning of the two trainable modules in the model, the encoder and decoder. To this end, we
employ two parallel encoder-decoder pathways for �netuning, each combining an adaptive compo-
nent (AC) and a retentive component (RC). AC is updated using the standard error backpropagation
based on the training loss from the source domain, while RC is not updated using the gradients that
might be over�tted to the source domain. As a result, RC maintains its generalization capability
during �netuning, guiding the coupled AC's updates using its generalizable knowledge. Note that
the encoder and decoder play different roles between AC and RC in different pathways.

A nä�ve strategy for managing RCs is not updating them at all, which however leads to a suboptimal
solution due to the lack of task-relevant knowledge in RCs as demonstrated in Table 1. To allow
RCs to learn task-relevant knowledge while preserving their generalization capability, we adopt a
variant of exponential moving average (EMA) (Tarvainen & Valpola, 2017) that is biased towards
the model's initial parameters, as an update scheme for RCs. This EMA method assigns higher

2



Published as a conference paper at ICLR 2025

Figure 2: An overview of DeFT. The �rst step of DeFT is to warm up the decoder with the frozen,
pretrained encoder. After warming up the decoder, the decoupled �netuning is conducted through
two parallel encoder-decoder pathways. In the pathways, the parameters of encoders and decoders
are initialized with those from the warmed-up model. In the second step, DeFT �netunes both the
encoder and decoder in a decoupled manner: the RCs (~d1 and~e2) are updated by the exponential
moving average of their counterpart ACs (d2 ande1), while the ACs are updated by gradients of the
loss. Our �nal model for inference is con�gured as the combination of the well-generalized RCs (~d1

and~e2), i.e., f �nal = ~d1 � ~e2.

weights to the early parameters during the �netuning, performing gradual temporal ensemble in the
parameter space.

At the end of �netuning, DeFT produces two RC-AC pairs. Since RCs better preserve the rich and
generalizable knowledge from pretraining and thus have better generalization capability than AC,
we set our �nal model as the combination of two RCs,i.e., EMA encoder and EMA decoder. The
overall pipeline of DeFT, including each stage, is illustrated in Figure 2.

Our method was evaluated on �ve different datasets, Cityscapes (Cordts et al., 2016), BDD-
100K (Yu et al., 2020), Mapillary Neuhold et al. (2017), GTAV (Richter et al., 2016) and SYN-
THIA (Ros et al., 2016), and it demonstrated superior performance to previous work in every exper-
iment. In summary, our contribution is three-fold:

• We empirically demonstrate that joint �netuning of the encoder and decoder degrades gener-
alization performance, and simply decoupling them in the �netuning process can substantially
improve the performance.

• We propose a novel training framework for domain generalizable semantic segmentation,
dubbed as DeFT, which �netunes the encoder and decoder in a decoupled manner. We also
provide detailed analysis of our method through extensive experiments.

• DeFT was evaluated on various domain shift scenarios using multiple semantic segmentation
datasets, where it outperformed previous work by large margins in all evaluations.

2 RELATED WORK

2.1 DOMAIN GENERALIZABLE SEMANTIC SEGMENTATION

The objective of domain generalization is to develop models that generalize well tounseendo-
mains (Muandet et al., 2013; Li et al., 2018b). Early methods (Li et al., 2017; 2018a; Pan et al., 2018;
Nam et al., 2021; Zhou et al., 2021) primarily focused on classi�cation tasks. Recently, signi�cant
progress has been made in semantic segmentation (Yue et al., 2019b; Lee et al., 2022; Zhao et al.,

3



Published as a conference paper at ICLR 2025

2022; Chattopadhyay et al., 2023; Kim et al., 2023a). Yue et al. (2019b) suggest learning features
invariant to random style variations in the input. Methods like Lee et al. (2022); Zhao et al. (2022)
simulate diverse style spaces by manipulating the channel-wise means and standard deviations of
features. Additionally, Chattopadhyay et al. (2023) introduced a frequency-domain randomization
technique, particularly for strong augmentation in high-frequency regions. Furthermore, Kim et al.
(2023a) collected a variety of images with different styles from web repositories to enhance gener-
alization performance. Also, some recent work explores alternative model architectures for the pur-
pose. For instance, Ding et al. (2023) propose HGFormer, a hierarchical grouping transformer that
integrates both local and global feature interactions to improve generalization in unseen domains.
Luo et al. (2024) demonstrate that network pruning can enhance domain generalization by reducing
model complexity and increasing robustness. DAFormer (Hoyer et al., 2022) introduces domain-
adaptive semantic segmentation by incorporating architectural re�nements and training strategies
that enhance robustness across diverse domains. Meanwhile, DGInStyle (Jia et al., 2024) employs
image diffusion models to generate diverse stylized versions of training images, simulating various
domain shifts; this approach enables models to learn domain-invariant features, effectively improv-
ing their robustness to diverse input distributions during inference.

However, the listed methods still adopt joint �netuning, despite its negative impact on generalization
ability, which remains a common practice in existing frameworks. To address this generalization
issue in previous work, we propose a novel decoupled �netuning strategy called DeFT, and present
a dedicated training algorithm based on EMA.

2.2 WEIGHT AVERAGING FOR MODEL ENSEMBLING

Weight averaging has been explored as an effective method for leveraging the historical training
trajectories of deep neural networks to improve generalization performance. Snapshot ensem-
bling (SSE) (Huang et al., 2017) and fast geometric ensembling (FGE) (Garipov et al., 2018) were
early attempts to utilize weight trajectories from historical training by employing cyclic learning
rates to guide the learning process through multiple local minima, which are then saved as ensemble
members. Building on FGE, stochastic weight averaging (SWA) (Izmailov et al., 2018) updates a
pretrained model using a cyclical or high constant learning rate, gathers model parameters during
training, and averages them to form a model ensemble. Extending from SWA, trainable weight
averaging (TWA) (Li et al., 2023) introduced a technique that allows for weight averaging with
adjustable coef�cients. Additionally, model soups (Wortsman et al., 2022a) demonstrated that av-
eraging the weights of multiple models �netuned with different hyperparameters can improve both
accuracy and robustness.

We adopt a variant of EMA as temporal ensembling in the model parameter space for DeFT, allowing
the model to learn task-relevant knowledge while minimizing over�tting to the source domain.

2.3 ROBUST FINETUNING FOR OUT-OF-DOMAIN GENERALIZATION

Robust �netuning using pretrained weights enhances out-of-domain (OOD) performance. Recent
studies (Wen et al., 2021; Gouk et al., 2021) demonstrate that leveraging pretrained models can sig-
ni�cantly booster robustness on OOD datasets. Moreover, the �netuning process plays a critical role
in improving OOD generalization capability. Research (Nagarajan & Kolter, 2019; Lin & Zhang,
2019; Gouk et al., 2021; Li & Zhang, 2021) indicates that generalization performance is affected
by the distance between the initial and �netuned models: as this distance increases, generaliza-
tion tends to decline. WiSE-FT (Wortsman et al., 2022b) shows signi�cant improvements in OOD
generalization by linearly interpolating pretrained weights with �netuned ones during inference. LP-
FT (Kumar et al., 2022) demonstrates that simultaneously �netuning both the �nal linear layer and
the feature backbone can distort pretrained features, and proposes a two-stage training strategy: �rst,
warming up the decoder while freezing the encoder, then �netuning the entire network. Lastly, Tian
et al. (2023) introduces per-layer regularization, which automatically learns constraints for more
accurate �netuning.

Our method adopts a two-step training strategy motivated by LP-FT, but it is clearly different from
LP-FT: after warming up the decoder, we �netune encoder and decoder in a disjoint manner with
the proposed DeFT framework, rather than jointly �netuning them as in LP-FT.

4



Published as a conference paper at ICLR 2025

3 METHOD

We consider training a domain-generalizable segmentation model,f = d � e, with an encodere and
decoderd using labeled images from a single source domain, where the image height, width, and the
number of semantic classes are denoted byh, w, andc, respectively. Our framework, dubbed DeFT,
consists of two stages: warming up the decoder while freezing the pretrained encoder (Section 3.1),
followed by decoupled �netuning of the encoder and decoder (Section 3.2).

3.1 WARMING UP THE DECODER WITH A PRETRAINED ENCODER

The �rst step of DeFT is to warm up the decoder on the source domain dataset using the pretrained
encoder that remains frozen. For an input imageX and its ground truthY , letP = f (X ) = d(e(X ))
be the class probability map, whereP 2 Rh� w � c. LetL ce(P; Y) denote a standard pixel-wise cross-
entropy loss, which is given by:

L ce(P; Y) = �
1

h � w

h�wX

i =1

Y >
i � log(Pi ); (1)

wherei is the pixel index andYi is the one-hot vector of the ground truth for pixeli . Then, the
weights of the randomly initialized decoderd are updated using gradients of the cross-entropy loss
L ce(P; Y), while the pretrained encoder is frozen. This warming up stage enables the decoder to
learn the target task without distorting the generalizable knowledge of the pretrained encoder.

3.2 DECOUPLEDFINETUNING OF ENCODER AND DECODER

After warming up the decoder, the encoder and decoder are �ne-tuned in adecoupled manner. Dur-
ing decoupled �netuning, they are assigned as one of two components, the retentive component (RC)
and the adaptive component (AC), but are different from each other. Then AC is updated using gra-
dients of the training loss from the source domain, while RC is updated by an exponential moving
average (EMA) scheme to retain its generalization capability.

To decouple the encoder and decoder then �netune both, we de�ne two distinct pathways, which
can be represented as two segmentation modelsf 1 andf 2 that share the same architecture but have
opposing con�gurations for AC and RC. Letf 1 = ~d1 � e1 andf 2 = d2 � ~e2 be the segmentation
models, where~d1 and~e2 are the RCs, andd2 ande1 are the ACs. The weights of ACs,d2 ande1,
are updated using the cross-entropy lossL ce(P (1) ; Y ) andL ce(P (2) ; Y ), whereP (1) = f 1(X ) and
P (2) = f 2(X ) are the predictions off 1 andf 2, respectively. On the other hand, RC in one model
is not updated by the cross-entropy loss but by the exponential moving average of AC in the other,
with an update ratio� :

~� t +1
d1

= � ~� t
d1

+ (1 � � )� t
d2

; ~� t +1
e2

= � ~� t
e2

+ (1 � � )� t
e1

; (2)

where~� t
d1

and ~� t
e2

are the weights of~d1 and ~e2 at thet-th iteration, respectively. Updates of ACs
and RCs are conducted simultaneously during the second stage.

3.3 OUR FINAL MODEL FOR INFERENCE

DeFT produces two encoders,e1 and ~e2, and two decoders,~d1 and d2. As the two RCs better
preserve their initial states which are more generalizable and thus have superior generalization ca-
pability compared to the ACs, we set our �nal model as the combination of the two RCs fromf 1

andf 2: f �nal = ~d1 � ~e2. Since each RC from different pathways is updated based on its counterpart
AC in Eq. (2), their feature distributions are implicitly aligned, properly adapting to each other.

3.4 EMPIRICAL JUSTIFICATION FORDEFT

The decoupled �netuning improves the model's generalization capability by enabling the encoder
and decoder to be trained independently, each bene�ting from less-over�tted decision boundaries
or features derived from their respective generalized counterparts. Moreover, it can tighten the

5



Published as a conference paper at ICLR 2025

Figure 3: We empirically demonstrate that the model jointly �netuned tends to move further away
from its initial parameters than the model �netuned with DeFT. We measured the distance between
the current and initial parameters of each model using three metrics: (a) L2 norm (Nagarajan &
Kolter, 2019), (b) MARS norm (Gouk et al., 2021), and (c) operator norm (Long & Sedghi, 2020).
The �nal modelf �nal = ~d1 � ~e2 was used to measure the distance for DeFT. The results show that
the model �netuned with DeFT exhibits a shorter distance from its initial parameters than the jointly
�netuned one, resulting in better generalization performance.

generalization bounds of the model, as it reduces boththe number of parametersto be optimized
at each pathway andthe distance from initial parameters, i.e., the distance between the learned
parameters and their initial values.

DeFT divides a single optimization objective of joint �netuning, which handles all the parameters
in the model simultaneously, into two separate optimization objectives: one for the encoder and one
for the decoder. As a result, each of the networksf 1 andf 2 is trained on a separate objective with
fewer parameters to optimize compared to the original model. This leads to a tighter generalization
bound for each module than the joint �netuning (Du et al., 2018b; Long & Sedghi, 2020).

We also empirically demonstrate that DeFT reduces the distance from initial parameters, which is
one of the critical factors for the model's generalization bounds (Nagarajan & Kolter, 2019; Long &
Sedghi, 2020; Gouk et al., 2021; Li & Zhang, 2021). Thanks to the EMA update scheme in DeFT,
RCs are updated to maintain their initial states, partially retaining their initial weights. RCs,~e2 and
~d1, which comprise our �nal model, exhibit a shorter distance from their initialization as shown in
Figure 3, resulting in better domain generalization capability.

Moreover, we compare DeFT to other methods which explicitly regularize the distance from initial
parameters: using low learning rates and adding a distance regularization into optimization objec-
tive. The results in Table 2 show that simply reducing the learning rate does not always lead to
performance improvement, rather degrading its generalization performance due to the increased the
risk of falling in local minima. For the distance regularization, we add a regularization term to the
optimization objective to regularize the sum of the Euclidean distances from initial parameters. Let
L be the number of layers in the model, and,Wi andW (0)

i be weights of the model and its initial
parameters of thel-th layer. Then the revised training loss after warming up the decoder is given by:

L training = L ce + � �
LX

i =1

kWi � W (0)
i k; (3)

wherek�k denotes the Frobenius norm for matrices and the Euclidean norm for vectors, respectively.
The results reported in Table 3 demonstrate that DeFT outperforms joint �netuning, even the dis-
tance regularization is applied. The result also suggests that distance regularization can be applied
orthogonally to DeFT. In addition to the empirical justi�cation, we provide theoretical foundation
of DeFT in Section B.

4 EXPERIMENTS

In this section, we �rst describe the experimental settings and implementation details, followed by
a demonstration of the effectiveness of our DeFT framework through a series of extensive experi-
ments, including various ablation studies.

6



Published as a conference paper at ICLR 2025

Table 2: Analysis of the impact of learning rate. We investigate whether reducing the learning rate
after the warm-up stage can lead to better generalization. All the methods were trained on GTAV
using ResNet-50 backbone. The results demonstrate that a small learning rate increases the risk of
falling in local minima, resulting in suboptimal performance.

Method Learning rate Cityscapes BDD100K Mapillary Avg.

Joint Finetuning 1e-2 42.32 40.33 44.88 42.51
3e-3 44.87 42.10 49.38 45.45
1e-3 44.01 39.47 47.45 43.64
1e-4 40.84 37.38 44.83 41.02

DeFT 1e-2 50.06 43.17 50.51 47.91

Table 3: Impact of distance-based regularization. All the methods were trained on GTAV using
ResNet-50 backbone. DeFT outperformed joint �netuning in both settings. The result also suggests
that the distance regularization is orthogonal to DeFT and further improve its performance.

Method Cityscapes BDD100K Mapillary Avg.

Joint Finetuning 42.32 40.33 44.88 42.51
Joint Finetuning + Distance Regularization 46.06 40.80 47.93 44.93

DeFT 50.06 43.17 50.51 47.91
DeFT + Distance Regularization 51.09 43.46 51.58 48.71

4.1 EXPERIMENTAL SETUP

Datasets.We used three real-world datasets, Cityscapes (Cordts et al., 2016), BDD-100K (Yu et al.,
2020), and Mapillary (Neuhold et al., 2017), and two synthetic datasets, GTAV (Richter et al., 2016)
and SYNTHIA (Ros et al., 2016) for the experiment. Cityscapes is a real-world urban driving scene
dataset, comprising 2,985 images for training and 500 for validation. BDD-100K is another real-
world urban driving scene dataset, and we used the 1,000 validation images for evaluation. Mapillary
consists of 25,000 images collected from various worldwide locations, and we used 2,000 valida-
tion images for evaluation. GTAV contains 24,966 images generated from the Grand Theft Auto
V (GTAV) game engine, split into 12,403 images for training and 6,382 for validation. SYNTHIA is
a photo-realistic synthetic urban scene dataset, consisting of 9,400 images. We used 6,382 validation
images for evaluation.

Network architecture. We utilized DeepLab v3+ (Chen et al., 2018) as the segmentation model
with ImageNet (Deng et al., 2009) pretrained ResNet-(50/101) (He et al., 2016) backbone networks.
During training, we introduced two segmentation models that share the same architecture.

Implementation details. The model was trained with a batch size of 4 through SGD with a mo-
mentum of 0.9. For the warm-up stage, the model was trained for 2K iterations for Cityscapes and
8K iterations for GTAV, with a learning rate of 1e-2 and a weight decay of 5e-3. During the decou-
pled �netuning, the model was trained for 40K iterations with a learning rate of 1e-2 and a weight
decay of 5e-4. We employed a polynomial learning rate decay schedule with a power of 0.9. For
data augmentation, we adopted color jittering, Gaussian blurring, random horizontal �ipping with
a probability of 0.5, random scaling in the range [0.5, 2.0], and random cropping with a size of
768� 768. The weight update ratio� was set to 0.9999. We used the mean Intersection-over-Union
(mIoU) as the evaluation metric. We excluded the auxiliary cross-entropy loss applied to the en-
coder, which has been widely adopted in previous work (Zhao et al., 2017; Pan et al., 2018; Lee
et al., 2022; Zhao et al., 2022; Chattopadhyay et al., 2023; Ahn et al., 2024), as it degrades OOD
generalization capability.

4.2 COMPARISON WITH STATE OF THE ART

We conducted a series of experiments to evaluate the effectiveness of DeFT. DeFT was compared
with existing domain generalization methods, including IBN-Net (Pan et al., 2018), DRPC (Yue

7



Published as a conference paper at ICLR 2025

Table 4: Quantitative result comparison in mIoU (%) using ResNet-50 and ResNet-101 backbones.
The model was trained on GTAV and evaluated on Cityscapes (C), BDD100K (B), and Mapil-
lary (M).

Methods ResNet-50 ResNet-101

C B M Avg. C B M Avg.

Baseline 35.16 29.71 31.29 32.05 35.73 34.06 33.42 34.40
IBN-Net (Pan et al., 2018) 33.85 32.30 37.75 34.63 37.37 34.21 36.81 36.13
DRPC(Yue et al., 2019a) 37.42 32.14 34.12 34.56 42.53 38.72 38.05 39.77
ISW (Choi et al., 2021) 36.58 35.20 40.33 37.37 37.20 33.36 35.57 35.38
WildNet (Lee et al., 2022) 44.62 38.42 46.09 43.04 45.79 41.73 47.08 44.87
SAN-SAW(Peng et al., 2022) 39.75 37.34 41.86 39.65 45.33 41.18 40.77 42.43
DIRL (Xu et al., 2022) 41.04 39.15 41.60 40.60 - - - -
SHADE(Zhao et al., 2022) 44.65 39.28 43.34 42.42 46.66 43.66 45.50 45.27
PASTA(Chattopadhyay et al., 2023) 44.12 40.19 47.11 43.81 45.33 42.32 48.60 45.42
TLDR (Kim et al., 2023b) 46.51 42.58 46.18 45.09 47.58 44.88 48.80 47.09
BlindNet(Ahn et al., 2024) 45.72 41.32 47.08 44.71 - - - -

DeFT (Ours) 50.06 43.17 50.51 47.91 52.14 45.16 53.15 50.15

Table 5: Quantitative result comparison in mIoU (%) using ResNet-50 backbone. The model was
trained on Cityscapes and evaluated on BDD-100K (B), SYNTHIA (S), and GTAV (G).

Methods B S G Avg.

Baseline 44.96 23.29 42.55 36.93
IBN-Net (Pan et al., 2018) 48.56 26.14 45.06 39.92
DRPC (Yue et al., 2019a) 49.86 26.58 45.62 40.69
ISW (Choi et al., 2021) 50.74 26.20 45.00 40.64
WildNet (Lee et al., 2022) 50.94 27.95 47.01 41.97
SAN-SAW(Peng et al., 2022) 52.95 28.32 47.28 42.85
DIRL (Xu et al., 2022) 51.80 26.50 46.52 41.61
SHADE(Zhao et al., 2022) 50.95 27.62 48.61 42.39
BlindNet(Ahn et al., 2024) 51.84 28.51 47.97 42.77

DeFT (Ours) 53.12 28.87 48.72 43.57

et al., 2019a), ISW (Choi et al., 2021), WildNet Lee et al. (2022), SAN-SAW (Peng et al.,
2022), DIRL Xu et al. (2022), SHADE Zhao et al. (2022), PASTA (Chattopadhyay et al., 2023),
TLDR (Kim et al., 2023b), and BlindNet (Ahn et al., 2024), using �ve datasets—(C)ityscapes,
(B)DD-100K, (M)apillary, (S)YNTHIA, and (G)TAV, and two different backbone networks—
ResNet-50 and ResNet-101. To evaluate the generalization ability of our method on various un-
seen domains, we conducted experiments in two scenarios: 1) the model was trained on GTAV and
evaluated on Cityscapes, BDD-100K, and Mapillary, or 2) the model was trained on Cityscapes
and evaluated on BDD-100K, SYNTHIA, and GTAV. For the �rst case, the results in Table 4 show
that our method outperforms all other methods by a large margin when trained on GTAV, using
either ResNet-50 or ResNet-101 as a backbone. Similarly, the results in Table 5 demonstrate that
our method also outperforms all other methods in the second case, where the model was trained on
Cityscapes with ResNet-50 backbone.

4.3 ABLATION STUDIES

In this subsection, we study the individual contribution and effectiveness of each component within
our method. For the all experiments, the model was trained on GTAV and evaluted on Cityscapes,
BDD100K and Mapillary with ResNet-50 backbone.

Ablation study of the impact of individual component for training. To investigate the con-
tribution of individual component during training, we investigated the impact of various training
components and measured its performance. We considered four different components for the ex-

8



Published as a conference paper at ICLR 2025

Table 6: Ablation study of the impact of individual component for training. Aux. and Aug. denote
the auxiliary cross-entropy loss attached to the encoder and data augmentation, respectively. All
the methods were trained on GTAV using ResNet-50 backbone. Warm-Up represent warming up
the decoder while freezing the encoder before �netuning, and DeFT is the proposed decoupled
�netuning.

w/o Aux. Aug. Warm-Up DeFT Cityscapes BDD100K Mapillary Avg.

35.16 29.71 31.29 32.05

X 36.58 34.49 39.08 36.72
X X 40.77 37.87 43.39 40.66
X X X 42.32 40.33 44.88 42.51
X X X X 50.06 43.17 50.51 47.91

Table 7: Ablation study of the impact of the decoupled �netuning strategy.

Finetuning strategy Cityscapes BDD100K Mapillary Avg.

Joint �netuning 42.32 40.33 44.88 42.51
Joint �netuning + EMA 48.30 42.29 49.02 46.54
DeFT 50.06 43.17 50.51 47.91

Table 8: Analysis on the impact of �nal model con�guration.

ID e1 (AC) ~e2 (RC) ~d1 (RC) d2 (AC) Cityscapes BDD100K Mapillary Avg.

I X X 39.30 37.41 43.14 39.95
II X X 43.15 39.82 45.55 42.84
III X X 47.29 41.84 49.33 46.15
IV X X 50.06 43.17 50.51 47.91

periments: removing the auxiliary cross-entropy loss attached to the encoder (w/o Aux.), data aug-
mentation (Aug.), decoder warming up (Warm-up) and our DeFT framework (DeFT). Note that all
the settings except the last row (DeFT) conducted joint �netuning, instead of decoupled �netuning.
The results in Table 6 show that each component contributes to the performance, and applying all of
them improves the most.

Ablation study on the decoupled �netuning strategy.we conducted an experiment to investigate
the effect of decoupled �netuning and that of weight ensemble separately. To be speci�c, we jointly
�netuned the encoder and decoder, and considered their EMA versions as the �nal model for eval-
uation. The EMA update ratio� was set to 0.9999, the same as DeFT. The results in the Table 7
show that the proposed decoupled �netuning strategy better preserves generalizable knowledge of
the pretrained encoder and decoder than joint �netuning.

Ablation study on �nal model con�guration. We set our �nal model as the combination of two
RCs,i.e., EMA encoder~e2 and EMA decoder~d1, as RCs preserve the rich and generalizable knowl-
edge. To investigate this, we conducted additional ablation study on various combination of RCs
and ACs. We measured the performance of each combination when the whole training ended, and
the results are listed in Table 8. The experiments show that superior generalization capability of
RC (Exp. II, III and IV) than AC (Exp. I), where using both of RCs outperformed all other settings
by a large margin.

Ablation study on the impact of the update ratio� . We employed the exponential moving average
as an update scheme for RC with the update ratio� in Eq. (2). To investigate the impact of� , we
conducted additional experiments by varying the values of� . The results in Table 9 demonstrate that
assigning a higher weight to the model's initial parameters yields better generalization performance.

9




	Introduction
	Related Work
	Domain generalizable semantic segmentation
	Weight averaging for model ensembling
	Robust finetuning for out-of-domain generalization

	Method
	Warming up the Decoder with a Pretrained Encoder
	Decoupled Finetuning of Encoder and Decoder
	Our Final Model for Inference
	Empirical justification for DeFT

	Experiments
	Experimental Setup
	Comparison with state of the art
	Ablation studies

	Conclusion
	Algorithms for Each Stage of DeFT
	Theoretical Foundation of DeFT
	Versatility of DeFT at a Transformer Backbone
	Other Update Schemes for Retentive Components (RCs)
	Additional Qualitative Results

