
R*: Efficient Reward Design via Reward Structure Evolution and
Parameter Alignment Optimization with Large Language Models

Pengyi Li 1 Jianye Hao 1 Hongyao Tang 1 Yifu Yuan 1 Jinbin Qiao 1 Zibin Dong 1 Yan Zheng 1

Abstract
Reward functions are crucial for policy learning.
Large Language Models (LLMs), with strong cod-
ing capabilities and valuable domain knowledge,
provide an automated solution for high-quality
reward design. However, code-based reward func-
tions require precise guiding logic and parameter
configurations within a vast design space, lead-
ing to low optimization efficiency. To address the
challenges, we propose an efficient automated re-
ward design framework, called R*, which decom-
poses reward design into two parts: reward struc-
ture evolution and parameter alignment optimiza-
tion. To design high-quality reward structures, R*
maintains a reward function population and mod-
ularizes the functional components. LLMs are
employed as the mutation operator, and module-
level crossover is proposed to facilitate efficient
exploration and exploitation. To design more effi-
cient reward parameters, R* first leverages LLMs
to generate multiple critic functions for trajectory
comparison and annotation. Based on these crit-
ics, a voting mechanism is employed to collect the
trajectory segments with high-confidence labels.
These labeled segments are then used to refine
the reward function parameters through prefer-
ence learning. Experiments on diverse robotic
control tasks demonstrate that R* outperforms
strong baselines in both reward design efficiency
and quality, surpassing human-designed reward
functions.

1. Introduction
Deep Reinforcement Learning (DRL) (Sutton & Barto,
1998) has shown remarkable success in various sequen-
tial decision-making problems, such as drone racing (Kauf-

1College of Intelligence and Computing, Tianjin University,
China. Correspondence to: Jianye Hao <jianye.hao@tju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

mann et al., 2023a), robotic locomotion (Radosavovic et al.,
2024), manipulation (Aguinaco et al., 2023; Yuan et al.,
2025), navigation (Zhu & Zhang, 2021), and protein struc-
ture design (Lutz et al., 2023). Although these achievements
demonstrate the potential of DRL, its learning process of-
ten suffers from instability, leading to suboptimal policies
or even policy collapse (Arulkumaran et al., 2017). A key
factor for this problem is the low quality of reward sig-
nals (Hare, 2019; Silver et al., 2021; Eschmann, 2021),
which are often sparse and deceptive. Designing high-
quality reward signals typically requires extensive domain-
specific knowledge, resulting in significant design costs (Sut-
ton & Barto, 1998). Even with carefully hand-crafted re-
ward functions, it remains difficult to guarantee efficient
guidance for policy learning (Booth et al., 2023a). How
to provide high-quality reward signal guidance remains an
open challenge (Menell et al., 2017; Icarte et al., 2022).

To address the challenge of reward design, many meth-
ods are proposed from different perspectives, which can be
broadly classified into three categories: Inverse RL (Arora
& Doshi, 2021), RL from Human Feedback (RLHF) (Kauf-
mann et al., 2023b), Reward Function Generation (Ma et al.,
2024). Inverse RL begins by collecting expert demonstra-
tions and then learns the reward function based on these
demonstrations. This approach relies heavily on the cov-
erage and quality of the expert data (Ng & Russell, 2000;
Ho & Ermon, 2016). RLHF-related methods incorporate
human feedback into RL by comparing trajectories, assign-
ing preference labels, and training a reward model (Lee
et al., 2021). This process typically requires the continu-
ous involvement of human experts to provide preference
annotations (Lee et al., 2024). The final category focuses
on directly constructing reward function codes. The most
straightforward approach is to manually design reward func-
tions through trial-and-error (Booth et al., 2023b; Knox
et al., 2023). Some early methods employ Evolutionary
Algorithms (EAs) (Bäck & Schwefel, 1993; Bäck, 1996;
Vikhar, 2016; Zheng et al., 2019) with manually designed
operators for reward function design (Niekum et al., 2010;
Faust et al., 2019). However, these methods still heavily
depend on expert priors.

Recently, Large Language Models (LLMs) have demon-

1

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

strated extensive domain knowledge and remarkable coding
capabilities (Singh et al., 2023; Ichter et al., 2022; Wang
et al., 2024a;b). Some works use LLMs to directly gen-
erate the code of reward function, significantly reducing
human labor (Xie et al., 2024; Zeng et al., 2024). How-
ever, relying solely on LLM-generated reward functions
still faces challenges such as large search spaces and lim-
ited robustness. Concurrently, Evolutionary Reinforcement
Learning (ERL) (Drugan, 2019; Sigaud, 2022; Bai et al.,
2023; Li et al., 2024a)—which combines EAs with RL—has
achieved significant improvements in exploration efficiency
and learning robustness (Khadka & Tumer, 2018; Zheng
et al., 2019; Gupta et al., 2021; Hao et al., 2023; Li et al.,
2023; 2024b;c) across various domains. Accordingly, Eu-
reka (Ma et al., 2024) applies the Synergistic Optimiza-
tion (Li et al., 2024a) idea in ERL for reward generation:
EAs evolve a population of LLM-generated reward func-
tions, while RL is employed to train policies for evaluation
to select best reward function. Although Eureka demon-
strates state-of-the-art performance across a range of tasks,
two limitations stand out: 1) Greedy Exploitation: Eureka
improves solely based on the best reward function at each
iteration, which may lead to suboptimal results on reward
design. Other potentially valuable candidates are discarded
without being fully utilized. 2) Suboptimal Parameter
Assignment: Reward functions often include many parame-
ters, such as weights or coefficients. Eureka relies on LLMs
to set them directly, which is often suboptimal. As a result,
the reward functions may fail to provide precise guidance.

To address the above challenges, we propose R*, a novel
LLM-driven evolutionary framework that decouples the re-
ward function design process into structure evolution and
parameter optimization. To optimize reward function struc-
tures, R* employs LLMs to generate modular-based reward
functions and maintains a reward function population for
evolutionary refinement. The reward function fitness is
defined by the performance of the policy that the reward
function guides, i.e., success rate. R* leverages the LLM
reflection mechanism to improve reward functions through
modular modifications, deletions, and additions. To fully ex-
ploit high-quality reward functions, R* maintains a reward
function archive and selects parent candidates based on their
fitness. By employing the module-level crossover opera-
tor, R* promotes efficient exploration of the reward design
space and fully leverages the reward function candidates.
To address the challenge of parameter configuration, we
propose parameter alignment optimization, which aligns the
pairwise trajectory rankings induced by the reward function
with ground-truth preferences. This enables more efficient
parameter optimization. To achieve this goal, a reliable la-
beled trajectory dataset is necessary. Some previous works
rely on LLMs for numerical comparisons (Zeng et al., 2024),
but they often suffer from severe hallucination issues, lead-

ing to low-quality labels. Others utilize VLMs for com-
parisons (Liu et al., 2024), but existing VLMs struggle to
perform reliable analysis of visual inputs. Moreover, quality
differences typically exist only in specific segments of a
trajectory, and the above methods struggle to effectively ex-
tract these fine-grained segments. To solve above problems,
we propose the critic-based step-wise voting mechanism.
This method uses LLMs to generate critic functions that
evaluate trajectories at the state level. The evaluation re-
sults are aggregated through population-based voting. Next,
trajectory segments are extracted by grouping consecutive
steps with consistent labels. Finally, we optimize reward
function parameters within the population using pairwise
preference loss. Experiments across 8 robotic control tasks
demonstrate that the reward functions designed by R* out-
perform those generated by other strong baselines in terms
of both final performance and convergence efficiency.

We summarize our contributions below:

• We propose a novel LLM-based reward design frame-
work R* with two key components: reward structure
evolution and parameter alignment optimization.

• We design modular-based reward functions and em-
ploy LLMs and module-level crossover operations for
efficient structure search.

• We propose the critic-based step-wise voting mecha-
nism for data collection and employ pair-wise prefer-
ence loss for parameter optimization.

• We empirically show that R* outperforms other strong
baselines and surpasses human-designed reward func-
tions in various tasks.

2. Background
Reinforcement Learning can be formalized as a Markov
Decision Process (MDP) (Puterman, 1990) which can be
defined by a tuple ⟨S,A,P,R, γ, T, ρ⟩, where S is the state
set, A is the action set, P : S × A × S → R is the tran-
sition function, R : S × A → R is the reward function,
γ ∈ [0, 1) is the discounted factor and T is the horizon. ρ
represents the distribution of the initial state. The agent
interacts with the environment by performing its policy
π : S → A. RL (Sutton & Barto, 1998) completes the
task by maximizing the expected discounted cumulative
reward J(π) = Eat∼π(st),st+1∼P(st+1|st,at)[

∑T
t=0 γ

trt],
where rt = R (st, at) and s0 ∼ ρ.

In this paper, we aim to design a reward function in code
form that guides policy learning to maximize task success
rates. To utilize the reward function codes, we need the vari-
able information as function inputs. To simplify notation,
we assume that these variables are included in s.

2

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Preference Learning. In our work, we employ preference
learning for the optimization of reward function parame-
ters. We define a segment σ as a sequence of step-indexed
states {sk, ..., sk+H−1} with length H . Given a pair of
segments (σ0, σ1), we provide a label indicating which seg-
ment is preferred, so the preference ycomp could be indicated
σ0 ≻ σ1, σ1 ≻ σ0. We discard data with equal preferences,
and the remaining labels are encoded as binary vectors, i.e.,
ycomp ∈ {(1, 0), (0, 1)}, and stored as tuples (σ0, σ1, ycomp)
in the trajectory buffer DT . Subsequently, we use the an-
notated data to optimize the reward function Fψ, where ψ
represents the parameters extracted from F , such as the pa-
rameters within the reward module and the weights between
modules.

Following the Bradley-Terry model (Bradley & Terry, 1952),
we model the preference based on Fψ as follows:

Pψ[σ
1 ≻ σ0] =

exp(
∑
t Fψ(s

1
t))∑

i∈{0,1} exp(
∑
t Fψ(s

i
t))
, (1)

where σi ≻ σj denotes the event that segment i is preferable
to segment j and (sit,a

i
t) ∈ σi. To align the reward function

with the preferences, The update of Fψ is transformed into
minimizing the following cross-entropy loss:

L(ψ,DT) =− E(σ0,σ1,ycomp)∼DT

[
y(0) logP

[
σ0 ≻ σ1

]
+ y(1) logP

[
σ1 ≻ σ0

]]
,

(2)
where the terms y(0) and y(1) refer to the values at index 0
and 1 of the label vector ycomp, respectively.

3. Related Work
Various methods are proposed from different perspec-
tives to construct high-quality reward signals. IRL learns
the reward function from the provided expert demonstra-
tions (Adams et al., 2022), including methods such as max-
margin methods (Ng & Russell, 2000), Bayesian meth-
ods (Ramachandran & Amir, 2007), and maximum entropy
methods (Ziebart et al., 2008). In addition, GAIL (Ho &
Ermon, 2016) uses GAN (Goodfellow et al., 2014) to ap-
proximate reward function for policy learning. However,
these methods are often sensitive to the quality and distribu-
tion of the data.

RL from Human Feedback (RLHF) (Kaufmann et al., 2023b;
Dong et al., 2023; Yuan et al., 2024) leverages human
feedback to guide the learning process of RL agents. PB-
RL (Christiano et al., 2017) collects preference data through
trajectory pair comparisons with human experts, which is
then used to learn a reward model that guides RL learning.
PEBBLE (Lee et al., 2021) combines unsupervised learning
to pretrain the agent and integrates off-policy RL. Addition-
ally, some works focus on improving the feedback mecha-

nism to improve both efficiency and accuracy (Sharma et al.,
2022; Guan et al., 2023; Zhou et al., 2025). Besides, some
methods manually design reward functions through trial and
error (Booth et al., 2023b; Knox et al., 2023), while others
optimize reward functions using EAs with predefined opera-
tors and templates (Faust et al., 2019; Niekum et al., 2010).
These methods typically depend on domain knowledge from
human experts.

With Large Language Models (LLMs) demonstrating strong
domain knowledge and coding abilities, several works try to
generate reward function code through LLMs. For example,
Text2Reward (Xie et al., 2024) generates reward functions
by calling pre-defined interfaces through LLMs based on
task descriptions. Eureka (Ma et al., 2024) constructs a
reward function population with LLMs and proposes an
evolutionary framework for iterative improvement. While
these works achieve impressive results, the vast design space
leads to inefficient reward function optimization and limited
learning robustness. In addition, there are some works on
reward shaping (Ladosz et al., 2022), such as curiosity-
driven mechanisms (Burda et al., 2019), which typically
focus on designing intrinsic rewards to enhance exploration.
In contrast, our work focuses on generating reward functions
from scratch. Our work, like Eureka, also falls within the
Synergistic Optimization (Li et al., 2024a) branch in ERL:
EAs are used to iteratively optimize the reward functions,
while RL handles policy learning for population evaluation.

4. Method
This section presents our framework, R*, for efficient re-
ward function design. The key idea of R* is to decompose
the reward design into two parts: reward structure evolu-
tion and parameter alignment optimization. The former is
responsible for searching the functional components that
should be included, while the latter focuses on efficiently
optimizing the parameters within and across modules.

4.1. Framework Overview

We first present the overall framework of R* to gain a holis-
tic understanding. The optimization flow is shown in Fig-
ure 1, which consists of two stages: the initialization stage
and the evolutionary improvement stage.

The initialization stage consists of two key steps: (1) Ini-
tializing the reward function population, which provides
the foundation for subsequent reward function design; (2)
Initializing the critic population, which is used to collect
trajectory segment pairs with high-quality labels.

1. Reward Population Initialization. R* leverages
LLM to generate the initial reward function popula-
tion PReward by providing the task description L and

3

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Critic
Function 5

Critic Population

Critic
Function 1

- 1 1 0 0 -

- 0 1 1 1 -

- 1 1 1 1 -

- 1 1 1 1 -

Step-wise Label

LLM
Def Get_correct_sub_traj_and_

labels (traj_a, traj_b):

 # code here

Return label_list

Task Description

You are a trajectory

annotator. Your goal is

Code Format:

class FrankaCabinet(VecTask):

 def compute_observations(self):

 …

 return self.obs_buf

Env Code

The python environment

is:

Evaluation Criterion

1. The following …

2. The distance …

3. …

Grasping
Module n

Reward Function

Speed
Module 1

RL
Policy

Reward Function
PopulationLLM

Sampled trajectories
Update Reward Function

Archive
Logical

Crossover

Parameter Optimization

Reward
Function 1

Reward
Function n

Grasping
Module n

Speed
Module 1

Rotation
Module n

Distance
Module 1

Grasping
Module n

Distance
Module 1

Reward
Function i

Buffer

RL Parallel Training

1, 0 Rank Label𝑅1, 𝑅𝟐

Alignment

Summary

Reward function 1:

performance: xxx

Module loss: xxx

Reward function 2:

performance: xxx

Module loss: xxx

Best Info

Current Best

Reward Function

Improvement Tips

Vote-based labeling

Logical Structure Search

Figure 1. The optimization flow of R*. The left side depicts the main reward optimization process, while the right side illustrates trajectory
annotation for parameter optimization. (Left) First, generate reward population using LLM. Then, select superior parents from the reward
function archive for module-level crossover. Next, perform the parameter optimization. Following this, train RL parallelly. After training,
update the reward function archive, and the training results are summarized to select the best individual for LLM reflection. (Right)
Generate the critic function population using LLM. The individuals perform step-level comparisons on the sampled trajectories. A voting
mechanism is then used to annotate and extract trajectory segments with high-confidence labels for parameter optimization.

environment code information C. To facilitate more ef-
ficient structure search in subsequent stages, we design
the prompt Preward to guide the LLM in generating re-
ward functions composed of multiple reward modules.

2. Critic Population Initialization. In addition to the
reward population, R* also needs to generate a critic
population PCritic, with each individual represented as
a code function. These critics are used to compare
trajectories and provide step-wise comparison labels.
Similar to the reward population, R* takes task descrip-
tions P , environment code C, and the prompt Pcritic as
inputs to generate the critic population PCritic. A de-
tailed introduction will be provided in subsection 4.3.

After completing the initialization stage, we proceed to the
reward function evolutionary improvement stage, which
consists of three steps: population evaluation, evolution,
and parameter optimization.

1. Reward Population Evaluation. For each reward
function Fi in the reward population Preward, we train
PPO (Schulman et al., 2017) in parallel to solve the task

using Isaac Gym (Makoviychuk et al., 2021). During
training, we record the success rates of the learned
policies, along with other relevant statistics, such as
the mean, maximum, and minimum values of each
reward module. The reward functions, along with their
fitness values, are then stored in the reward function
archive DF . The success rate of the policy serves as
the reward function fitness.

2. Reward Population Evolution. We select the re-
ward function Fbest with the highest fitness, along with
its associated learning information, to serve as feed-
back. Through the LLM reflection mechanism, we
perform evolution operations such as modifying, delet-
ing, or adding modules to improve the reward function,
thereby creating a new improved reward function. To
fully exploit the high-quality reward functions discov-
ered, we select parent reward functions from the reward
function archive DF based on their fitness. Module-
level crossover is then applied to these parents to gen-
erate new individuals, facilitating further exploration
of the reward design space.

3. Reward Parameter Optimization. Using the critic

4

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

population PCritic, we extract trajectory segments and
apply comparison labels to the segments, creating a
labeled trajectory buffer DT . The reward functions are
then optimized based on DT , allowing them to better
evaluate segment quality and guide policy learning.

The initialization is performed at the beginning of the algo-
rithm, followed by an iterative process of reward function
evolutionary improvement. In the following subsections, we
provide a detailed introduction of the two key components.

4.2. Reward Structure Evolution

Reward functions are typically composed of multiple reward
modules to guide policy learning. For example, in robot
grasping tasks, the reward function should include the re-
ward for guiding the robot arm closer to the target object, the
reward for moving the target object, and reward for the arm’s
stability. These modules serve different objectives. How to
design and combine these modules to create high-quality
reward functions remains a challenging problem.

Inspired by the previous work (Ma et al., 2024), we first
propose the modular-based reward function, where each
reward function F is composed of multiple modular compo-
nents {M1, · · · ,Mm}. The design of high-quality reward
functions depends both on the internal structure of mod-
ules and how these modules are integrated. To achieve
efficient optimization, we leverage LLM to improve the
reward functions with following three main operators: 1)
In-module Improvement. Adjusting the reward calculation
within modules, such as applying a scaling transformation
to distance-guided rewards. 2) Removing Module. Based
on feedback from each module during the learning process,
removing ineffective reward modules from the reward func-
tion. 3) Adding Module. Introducing new reward modules
to improve the reward function.

The above process relies on LLMs but does not fully lever-
age the high-quality reward functions discovered. To ad-
dress this, we design a selection operator and a module-level
crossover operator. Specifically, we first maintain a reward
function archive DF to store the high-quality reward func-
tions discovered. We select two parents based on the fitness
and then perform a crossover operation by inserting a mod-
ule from one parent into the other, forming a new reward
function. We formulate the operation below:

Fnew = {Mi,1, · · · ,Mi,m,Mj,m} = Crossover(Fi, Fj).
(3)

By leveraging the inherent randomness of the crossover op-
eration, we can fully leverage high-quality reward functions
to facilitate a more comprehensive exploration of the design
space. The above process can be enhanced using LLMs in
two ways: by generating reward functions to replace random
module swaps, and by filtering out unreasonable ones—thus

reducing unnecessary exploration. This paper primarily pro-
vides an initial exploration of the method. Given that LLMs
require additional token overhead, we leave this aspect for
future work.

4.3. Parameter Alignment Optimization

In the previous subsection, we generate the initial reward
population PReward. However, configuring parameters within
these reward functions remains challenging. Since the func-
tion parameters are provided by LLMs, this black-box con-
figuration approach makes it difficult to guarantee accurate
and efficient guidance, leading to issues in both in-module
parameter settings and inter-module weight coordination.
To address this challenge, we propose ranking-based param-
eter alignment optimization, which consists of two key steps:
automated trajectory annotation and parameter alignment
optimization. Automated trajectory annotation is used to col-
lect trajectory segments and assign comparison labels, while
parameter alignment optimization optimizes reward param-
eters with the labeled data. Below, we first describe how
to extract trajectory segments and assign high-confidence
labels.

To collect data automatically, previous methods typically
rely on LLMs or VLMs to perform comparisons based on
numerical states or images. However, these methods face
three key problems: 1) Numerical comparisons rely on man-
ually specified state features, and the instability of LLMs
often leads to unreliable outcomes; 2) VLMs frequently pro-
vide incorrect labels due to their limited capabilities and the
inherent complexity of the task; 3) It is difficult to directly
assess the relative quality of two trajectories, as one may
outperform the other in some segments while underperform-
ing in others. Thus labeling the entire trajectory as a whole
can result in low-quality annotations.

To address the above challenges, we propose the critic-based
comparison voting mechanism, which constructs a popu-
lation of rule-based critic functions for step-wise compar-
ison. Specifically, we input the task description L, the en-
vironment information C, and the prompt Pcritic into the
LLM, allowing it to automatically generate the critic func-
tions. The input of the critic functions consists of two
trajectories to be compared, which contain information
such as variable names and their corresponding values, e.g.,
”block right handle pos=(0.0, 0.5, 0.0)”. Using above in-
formation, the LLM can quickly understand the input and
construct a critic function. Regarding the function details,
we require it to compare the corresponding-step information
of the two trajectories and assign labels of 1, 0, or -1. We
require that the function assigns a label of 1 or -1 only when
all metrics of the current step of trajectory A are either better
or worse than those of trajectory B; otherwise, it assigns
a label of 0. To further enhance reliability, we generate a

5

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

population of critics rather than relying on a single critic
function. The final label is assigned only when at least half
of the critics reach agreement. After obtaining the final
step-wise labels, we group consecutive steps with the same
label (i.e., 1 or -1) into segments. Segments with a length
greater than 5 are added to the buffer DT for subsequent
optimization.

After obtaining the labeled segments, we conduct parame-
ter alignment optimization for the reward functions within
PReward. The data is then split into 70% for training and
30% for validation, and we optimize the function parame-
ters with preference loss in Equation 2. Through parameter
optimization, each reward function can accurately evaluate
the trajectory quality, facilitating efficient policy guidance.

4.4. R* Pseudocode

To provide a clear overview of R*, we present the pseu-
docode in Algorithm 1. Specifically, we begin with the
Initialization Stage, where the task description L, environ-
ment code C, and prompts Pcritic and Preward are provided
as contextual inputs to the LLM, which then generates two
populations: PCritic and PReward (line 3). Next, we proceed
to the Evolutionary Improvement Stage. We first sample par-
ents Fp1 and Fp2 from DT and apply the crossover operator
to generate multiple offspring, which are then added to the
reward function population PReward (line 6-8). Subsequently,
we sample new trajectories and annotate them using PCritic,
incorporating the labeled segments into DT . Based on the
collected data, we optimize the reward parameters accord-
ing to Equation 2 (line 10-12). We then conduct population
evaluation, update the reward archive DF and obtain the
best reward function Fbest (line 14-15). Finally, we employ
the LLM to refine the reward functions within the popula-
tion (line 17). The above shows the complete optimization
process. In the next section, we conduct a comprehensive
experimental evaluation of R*.

5. Experiments
5.1. Environment Setting

We compare R* and the baseline methods on diverse robotic
manipulation tasks to evaluate their reward generation ca-
pabilities. All methods used GPT-4o as the backbone LLM
for generation. The test tasks are derived from the Isaac
Gym (Makoviychuk et al., 2021) and the Bidextrous Manip-
ulation (Dexterity) benchmark (Chen et al., 2022). These
tasks cover manipulation tasks using robotic arms and single
dexterous hands, as well as tasks requiring dual dexterous
hands to perform complex operations, ranging from object
handover to rotating a cup by 180 degrees. Our implemen-
tation is primarily based on Eureka (Ma et al., 2024), the
population size is set to 16, and the number of evolution

Algorithm 1 R* Framework
1: Require: Task description L, environment code C, re-

ward function prompt Preward, critic function prompt
Pcritic, coding LLM LLM, reward function archive DF ,
trajectory buffer DT

2: Hyperparameters: Evolution iteration K, crossover
individual number nc, reward population size n, critic
population size c.
Stage I: The Initialization Stage

3: Initialize reward and critic populations:
PReward = LLM(L,C, Preward)
PCritic = LLM(L,C, Pcritic)
Stage II: The Evolutionary Improvement Stage

4: for each iteration do
5: # Modular Crossover
6: Sample parents Fp1 , Fp2 ∼ DF

7: Construct new functions through crossover
F ′ = Crossover(Fp1 , Fp2)

8: Add new functions into PReward
9: # Parameter Alignment Optimization

10: Sample trajectories and label them using PCritic.
11: Add labeled data into DT .
12: Optimize parameters based on DT using Eq. 2
13: # Reward Population Evaluation
14: Evaluate with parallel PPO training
15: Summarize training result, update the reward func-

tion archive DF and get the best reward function
Fbest

16: # Reward Population Evolution with LLM
17: Improve reward population with LLM reflection

PReward = Reflection(L,C, Preward, Fbest)
18: end for

iterations is set to 5. The key difference lies in how individu-
als in the population are generated. Specifically, among the
16 individuals, 12 are generated or improved by the LLM,
and 4 are generated through the module-level crossover. To
guarantee that each experiment fits within a 40 GB GPU
memory budget (e.g., using two NVIDIA 3090 or 4090
GPUs), we adjust the number of parallel environment in-
stances for certain tasks, which significantly increases the
task learning difficulty. Detailed configurations are listed in
Appendix A. To ensure a fair comparison, all other hyperpa-
rameter settings and related prompts remain consistent with
Eureka. RL training is conducted using PPO under identical
configurations, as detailed in Appendix A. All statistics are
obtained from 5 independent runs. We report the average
with 95% confidence interval.

5.2. Baselines

Eureka (Ma et al., 2024) is a state-of-the-art LLM-based
method for reward design. It constructs reward functions

6

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

0 200 400 600 800 1000 1200 1400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate
FrankaCabinet

Eureka
Oracle
R *

Sparse

0 1000 2000 3000 4000 5000
Iterations

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Shadow-Hand-Swing-Cup

0 1000 2000 3000 4000 5000 6000
Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Shadow-Hand-Over

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Shadow-Hand-Scissors

0 1000 2000 3000 4000 5000
Iterations

0

2

4

6

8

Su
cc

es
s R

ate

Allegro-Hand

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Shadow-Hand-Door-Open-Outward

0 1000 2000 3000 4000 5000 6000
Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Shadow-Hand-Kettle

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Shadow-Hand-Pen

Figure 2. Performance comparison on various manipulation tasks. R* significantly outperforms other baselines and surpasses human-
designed rewards in most tasks.

from scratch without incorporating any human prior knowl-
edge. Similar to our method, Eureka maintains a reward
population constructed by an LLM and improves the re-
ward functions within the population through a reflection
mechanism.

Oracle: In these tasks, reward functions manually crafted
by human experts are used to guide policy learning. These
reward functions represent expert-level human reward engi-
neering. We use these manually designed reward functions
for policy training as baselines for comparison.

Sparse: Based on the success criteria of the tasks, a sparse
reward is provided, where a reward of 1 is given only when
the task is successfully completed, and 0 is returned at all
other times.

5.3. Performance Evaluation

We first evaluate R* and baselines on the diverse robotic
manipulation tasks with different characteristics. The ex-
perimental results are shown in Figure 2. We observe that
the reward functions generated by R* significantly outper-
form the strong baseline Eureka in guiding policy learning.
Furthermore, R* exhibits more stable learning performance,
whereas Eureka suffers from policy collapse in some tasks.
In addition, R* achieves superior results compared to the
oracle reward function in most tasks, indicating that the
reward functions designed by R* can match or even surpass
those designed by human experts. Sparse rewards gener-
ally fail to effectively guide policy learning and are unable
to yield effective policies in almost all tasks, further high-
lighting the importance of high-quality reward guidance.
Furthermore, we perform experiments under the original
parallel environment settings used in Eureka, where R* also
demonstrates a significant performance advantage. Detailed

0 1 2 3 4 5
Evolution Iteration

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
ate

Shadow-Hand-Over

R*
Eureka

0 1 2 3 4 5
Evolution Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

FrankaCabinet

0 1 2 3 4 5
Evolution Iteration

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Shadow-Hand-Pen

0 1 2 3 4 5
Evolution Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Shadow-Hand-Swing-Cup

Figure 3. Comparison of the best policy success rate per genera-
tion between R* and Eureka. R* achieves higher evolutionary
efficiency.

results are presented in Appendix A.

Since both R* and Eureka are evolutionary-based reward
function generation methods with identical settings, we com-
pare the best-performing individuals with the highest suc-
cess rates in the population at each generation, as shown
in Figure 3. The experimental results demonstrate that R*
achieves higher success rates at earlier generations, indicat-
ing a more efficient evolutionary efficiency. This further
validates the efficiency of R*.

5.4. Analysis and Ablation Study

In this subsection, we further analyze R* to answer the
following questions:

7

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Hand-Over

FrankaCabinet

Swing-Cup
Hand-Pen

Hand-Kettle
Door-Open

-Outward Scissors

Allegro-Hand
0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

Crossover
LLM Generated

Figure 4. Performance comparison on various manipulation tasks.
Individuals generated by crossover are more likely to achieve better
performance.

0 1000 2000 3000 4000 5000
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s R

ate

Shadow-Hand-Over

Eureka w/ Crossover(4)
Eureka w/ Crossover(8)
Eureka

0 1000 2000 3000 4000 5000 6000
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Shadow-Hand-Kettle

Figure 5. Performance comparison across different numbers of
crossover individuals. A high proportion of crossover individuals
can lead to performance degradation.

Q1. Does the module-level crossover in R* significantly
enhances algorithm performance? How does its impact
compare to that of the LLM in reward function design, and
which component plays a more critical role?

Q2. Can the critic population constructed by R* provide
high-quality data annotations? Additionally, does the pa-
rameter optimization in R* further improve the quality of
the reward function?

To answer Q1, we compute the ratio of generations in which
the best policy originates from crossover, and compare it to
the ratio of generations in which the best policy originates
from LLM-driven refinement. The experimental results in
Figure 4 show that the probability of best policies originat-
ing from crossover exceeds 50% in most tasks, with some
tasks surpassing 80%. Notably, only 4 individuals are gen-
erated through crossover, whereas 12 individuals are refined
and generated by the LLM. This demonstrates that leverag-
ing prior superior reward functions for further optimization
facilitates a more efficient search for high-quality reward
functions. Additionally, we conduct an ablation study on
crossover. As shown in Figure 6, removing crossover leads
to a decline in the performance of R*, further demonstrating
the effectiveness of module-level crossover.

Based on the above experiments, we pose a new question:
Does increasing the number of crossover-generated indi-

0 1000 2000 3000 4000 5000 6000
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Shadow-Hand-Over

R*
R * w/o Cross
R * w/o Align
Eureka

0 1000 2000 3000 4000 5000 6000
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Shadow-Hand-Kettle

Figure 6. Ablation study on the crossover operator and alignment
optimization.

FrankaCabinet Shadow-Hand-Kettle0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Ours
LLM
VLM

Figure 7. Accuracy achieved by different labeling methods. Our
method achieves the best accuracy in data annotation, while VLM
has the lowest accuracy.

viduals further enhance performance? To explore this, we
increase the number from 4 to 8. The experimental re-
sults in Figure 5 show that rather than improving perfor-
mance, this adjustment leads to a decline, sometimes even
underperforming the baseline. The primary reason is that
crossover primarily integrates and refines existing high-
quality reward functions, relying on the LLM-generated
reward functions as a foundation. Reducing the number of
individuals generated by the LLM significantly weakens
the algorithm’s exploration capability, hindering its ability
to discover high-quality reward functions and ultimately
resulting in degraded performance.

To answer Q2, we first compare several different data an-
notation methods, including: 1) Using images as inputs to
GPT-4o (VLM); 2) Providing key information as context to
GPT-4o (LLM); 3) Utilizing our proposed critic population
(Ours). We begin by collecting 100 paired comparison sam-
ples for both the FrankaCabinet and Shadow-hand-kettle
tasks, which are manually labeled by human annotators
based on numerical comparisons. The accuracy results in
Figure 7 show that our method achieves 100% accuracy,
whereas the LLM-based approach performs worse, particu-
larly when the numerical differences are small. Moreover,
the VLM usually fails to make correct distinctions and out-
puts 0. These results demonstrate that the critic-based voting
mechanism provides more reliable data annotation.

Furthermore, as shown in Figure 6, removing parameter
alignment optimization leads to a significant performance
decline in R*. This demonstrates that directly using LLM-

8

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

generated parameters may result in suboptimal policies,
further demonstrating the effectiveness of the proposed pa-
rameter alignment optimization.

We also provide the generated reward functions and critic
functions for several tasks. Due to space limitations, please
refer to Appendix B for details.

6. Conclusion
We propose an efficient framework R* for automatic re-
ward function generation, which consists of two key com-
ponents: Reward Structure Evolution and Parameter Align-
ment Optimization. To design high-quality reward function
structures, R* leverages LLMs to generate a population of
modular-based reward functions. The reward function fit-
ness is defined as the policy performance it guides. We
leverage the LLM’s reflection mechanism and the module-
level crossover for efficient exploration and exploitation of
reward functions. To address the parameter configuration
challenge, we introduce a critic-based voting mechanism
for step-level labeling to collect trajectory segments. We
then optimize the reward function population using pref-
erence loss based on the collected data. Experiments on
eight diverse manipulation tasks demonstrate that R* sig-
nificantly outperforms other strong baselines and surpasses
human-expert-designed reward functions.

7. Limitations & Future Work
In this paper, the experiments primarily focus on simulation-
based manipulation and dexterous hand control tasks, where
low-level information can be directly accessed. For real
robot control, a real2sim2real paradigm can be adopted.
Since real-world information from the robot and its envi-
ronment are available, training can proceed by aligning the
information from the real robot with that in simulation. This
enables direct deployment of the trained policies in real-
world scenarios. For tasks where low-level information is
inaccessible—such as non-invasive control tasks——only
visual observations (i.e., images) are typically available. We
believe that the key to applying R* in such cases lies in
effective information extraction. In these scenarios, a detec-
tion model (e.g., YOLO) can be used to identify and extract
relevant features from visual input. Once these key features
are obtained, the subsequent reward generation and policy
training processes are consistent with those used in tasks
where low-level information is accessible.

Existing methods, including Eureka, Text2Reward, and our
proposed R*, do not support image-based inputs and are
applicable only when all low-level information is fully ac-
cessible. This constitutes a key limitation of current ap-
proaches. We believe that incorporating image-based inputs
can improve generalizability and enable application to a

wider range of real-world scenarios, making it a promising
direction for future research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
This work is supported by the National Natural Science
Foundation of China (Grant Nos. 62422605, 92370132).
We would like to thank all the anonymous reviewers for their
valuable comments and constructive suggestions, which
have greatly improved the quality of this paper.

References
Adams, S. C., Cody, T., and Beling, P. A. A survey of

inverse reinforcement learning. Artif. Intell. Rev., 2022.

Aguinaco, I. E., Muñoz, A. S., Chrysostomou, D., Hidalgo,
I. I., Bøgh, S., and Arexolaleiba, N. A. A review on rein-
forcement learning for contact-rich robotic manipulation
tasks. Robotics Comput. Integr. Manuf., 2023.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artif. Intell.,
2021.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. A brief survey of deep reinforcement
learning. arXiv preprint, 2017.

Bäck, T. Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. 1996.

Bäck, T. and Schwefel, H. An overview of evolutionary
algorithms for parameter optimization. Evol. Comput.,
1993.

Bai, H., Cheng, R., and Jin, Y. Evolutionary reinforcement
learning: A survey. arXiv preprint, 2023.

Booth, S., Knox, W. B., Shah, J., Niekum, S., Stone, P., and
Allievi, A. The perils of trial-and-error reward design:
Misdesign through overfitting and invalid task specifica-
tions. In AAAI, 2023a.

Booth, S., Knox, W. B., Shah, J., Niekum, S., Stone, P., and
Allievi, A. The perils of trial-and-error reward design:
Misdesign through overfitting and invalid task specifica-
tions. In AAAI, 2023b.

9

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 1952.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O.
Exploration by random network distillation. In ICLR,
2019.

Chen, Y., Wu, T., Wang, S., Feng, X., Jiang, J., et al. To-
wards human-level bimanual dexterous manipulation with
reinforcement learning. In NeurIPS, 2022.

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In NeurIPS, 2017.

Dong, Z., Yuan, Y., HAO, J., Ni, F., Mu, Y., ZHENG, Y., Hu,
Y., Lv, T., Fan, C., and Hu, Z. Aligndiff: Aligning diverse
human preferences via behavior-customisable diffusion
model. In ICLR, 2023.

Drugan, M. M. Reinforcement learning versus evolutionary
computation: A survey on hybrid algorithms. Swarm
Evol. Comput., 2019.

Eschmann, J. Reward function design in reinforcement
learning. Reinforcement learning algorithms: Analysis
and Applications, 2021.

Faust, A., Francis, A. G., and Mehta, D. Evolving rewards
to automate reinforcement learning. arXiv preprint, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. NeurIPS, 2014.

Guan, L., Valmeekam, K., and Kambhampati, S. Relative
behavioral attributes: Filling the gap between symbolic
goal specification and reward learning from human pref-
erences. In ICLR, 2023.

Gupta, A., Savarese, S., Ganguli, S., and Fei-Fei, L. Embod-
ied intelligence via learning and evolution. Nat. Commun.,
2021.

Hao, J., Li, P., Tang, H., Zheng, Y., x. Fu, and Meng, Z.
Erl-re2: Efficient evolutionary reinforcement learning
with shared state representation and individual policy
representation. ICLR, 2023.

Hare, J. Dealing with sparse rewards in reinforcement learn-
ing. arXiv preprint, 2019.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In NeurIPS, 2016.

Icarte, R. T., Klassen, T. Q., Valenzano, R. A., and McIlraith,
S. A. Reward machines: Exploiting reward function
structure in reinforcement learning. J. Artif. Intell. Res.,
2022.

Ichter, B., Brohan, A., Chebotar, Y., Finn, C., Hausman,
K., Herzog, A., and Others. Do as I can, not as I say:
Grounding language in robotic affordances. In CORL,
2022.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M.,
Koltun, V., and Scaramuzza, D. Champion-level drone
racing using deep reinforcement learning. Nature, 2023a.

Kaufmann, T., Weng, P., Bengs, V., and Hüllermeier, E. A
survey of reinforcement learning from human feedback.
arXiv preprint, 2023b.

Khadka, S. and Tumer, K. Evolution-guided policy gradient
in reinforcement learning. NeurIPS, 2018.

Knox, W. B., Allievi, A., Banzhaf, H., Schmitt, F., and
Stone, P. Reward (mis)design for autonomous driving.
Artif. Intell., 2023.

Ladosz, P., Weng, L., Kim, M., and Oh, H. Exploration in
deep reinforcement learning: A survey. Inf. Fusion, 2022.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J.,
Lu, K., Bishop, C., Hall, E., Carbune, V., Rastogi, A.,
and Prakash, S. RLAIF vs. RLHF: scaling reinforcement
learning from human feedback with AI feedback. In
ICML, 2024.

Lee, K., Smith, L. M., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. In ICML, 2021.

Li, P., Hao, J., Tang, H., Zheng, Y., and Fu, X. Race: Im-
prove multi-agent reinforcement learning with represen-
tation asymmetry and collaborative evolution. In ICML,
2023.

Li, P., Hao, J., Tang, H., Fu, X., Zhen, Y., and Tang,
K. Bridging evolutionary algorithms and reinforcement
learning: A comprehensive survey on hybrid algorithms.
TEVC, 2024a.

Li, P., Jianye, H., Tang, H., Zheng, Y., and Barez, Z. Value-
evolutionary-based reinforcement learning. In ICML,
2024b.

Li, P., Zheng, Y., Tang, H., Fu, X., and Hao, J. Evorainbow:
Combining improvements in evolutionary reinforcement
learning for policy search. In ICML, 2024c.

Liu, J., Yuan, Y., Hao, J., and Others. Enhancing robotic
manipulation with ai feedback from multimodal large
language models. arXiv preprint, 2024.

Lutz, I., Wang, S., c. Norn, Courbet, A., Borst, A. J., Zhao,
Y., Dosey, A., Cao, L., Xu, J., Leaf, E. M., et al. Top-
down design of protein architectures with reinforcement
learning. Science, 2023.

10

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Ma, Y. J., Liang, W., Wang, G., Huang, D., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Eureka: Human-level reward design via coding large
language models. In ICLR, 2024.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., et al. Isaac
gym: High performance GPU based physics simulation
for robot learning. In NeurIPS, 2021.

Menell, D. H., Milli, S., Abbeel, P., Russell, S. J., and
Dragan, A. D. Inverse reward design. In NeurIPS, 2017.

Ng, A. Y. and Russell, S. Algorithms for inverse reinforce-
ment learning. In ICML, 2000.

Niekum, S., Barto, A. G., and Spector, L. Genetic program-
ming for reward function search. IEEE Trans. Auton.
Ment. Dev., 2010.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 1990.

Radosavovic, I., Xiao, T., Zhang, B., Darrell, T., Malik, J.,
and Sreenath, K. Real-world humanoid locomotion with
reinforcement learning. Science Robotics, 2024.

Ramachandran, D. and Amir, E. Bayesian inverse reinforce-
ment learning. In IJCAI, 2007.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint, 2017.

Sharma, P., Sundaralingam, B., Blukis, V., Paxton, C., Her-
mans, T., Torralba, A., Andreas, J., and Fox, D. Correct-
ing robot plans with natural language feedback. In RSS,
2022.

Sigaud, O. Combining evolution and deep reinforcement
learning for policy search: a survey. arXiv preprint, 2022.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward
is enough. Artif. Intell., 2021.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In ICRA, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning - an
introduction. 1998.

Vikhar, P. A. Evolutionary algorithms: A critical review and
its future prospects. In ICGTSPICC. IEEE, 2016.

Wang, L., Ling, Y., Yuan, Z., Shridhar, M., Bao, C., Qin,
Y., Wang, B., Xu, H., and Wang, X. Gensim: Generating
robotic simulation tasks via large language models. In
ICLR, 2024a.

Wang, Y., Xian, Z., Chen, F., Wang, T., Wang, Y., Fragki-
adaki, K., Erickson, Z., Held, D., and Gan, C. Robo-
gen: Towards unleashing infinite data for automated robot
learning via generative simulation. In ICML, 2024b.

Xie, T., Zhao, S., Wu, C. H., Liu, Y., Luo, Q., Zhong, V.,
Yang, Y., and Yu, T. Text2reward: Reward shaping with
language models for reinforcement learning. In ICLR,
2024.

Yuan, Y., Hao, J., Ma, Y., Dong, Z., Liang, H., Liu, J.,
Feng, Z., Zhao, K., and Zheng, Y. Uni-rlhf: Universal
platform and benchmark suite for reinforcement learning
with diverse human feedback, 2024.

Yuan, Y., Cui, H., Chen, Y., Dong, Z., Ni, F., Kou, L., Liu,
J., Li, P., Zheng, Y., and Hao, J. From seeing to doing:
Bridging reasoning and decision for robotic manipulation,
2025.

Zeng, Y., Mu, Y., and Shao, L. Learning reward for robot
skills using large language models via self-alignment. In
ICML, 2024.

Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu, Y.,
Shen, R., Chen, Y., and Fan, C. Wuji: Automatic online
combat game testing using evolutionary deep reinforce-
ment learning. In ASE. IEEE, 2019.

Zhou, X., Yuan, Y., Yang, S., and Hao, J. MENTOR: guiding
hierarchical reinforcement learning with human feedback
and dynamic distance constraint. IEEE Trans. Emerg.
Top. Comput. Intell., 2025.

Zhu, K. and Zhang, T. Deep reinforcement learning based
mobile robot navigation: A review. Tsinghua Sci. Technol,
2021.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI, 2008.

11

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

A. Implementation Details
All prompt designs in R* for reward function design are based on the prior work Eureka (Ma et al., 2024), without any
additional modifications. The specific design details can be found in the original Eureka paper and the corresponding code
repository 1. The reward function population has a size of 16, while the critic population has a size of 5. The number of
crossover individuals is 4 for all tasks. If the reward function generation by the LLM encounters runtime failures (e.g., due
to a compilation error), the failed individuals are supplemented with those generated via crossover. For instance, if 2 out of
12 reward functions generated by the LLM fail to compile, the module-level crossover will be used to generate 2 additional
functions as a supplement. No extra API calls are required in this process.

Since there is no archive during the first iteration, crossover cannot be applied in the first iteration. Thus we adopt a
two-step iteration approach: first evaluate the individuals generated by the LLM, then generate individuals via crossover
for evaluation, and finally aggregate all evaluation results to select the best individual. This method does not increase the
computational workload, but it does require more time. For the modularization of code, we use the Abstract Syntax Tree
(AST) to decompose the reward functions based on the returned reward dictionary. This process returns the code blocks
corresponding to each reward component, which are then used for subsequent module-level crossover.

In Eureka, some tasks use a large number of parallel environments, requiring at least 4 RTX 4090 GPUs to run. We reduce
the number of parallel environments to ensure that the program can run with only 40GB of GPU memory. However, this
reduction significantly increases the learning difficulty for the algorithm. The specific configuration of the number of parallel
environments is shown in Table 1. All experiments are conducted under the same configuration. Moreover, we conduct

Table 1. Number of parallel environment instances per task
Franka–Cabinet Swing–Cup Hand–Over Hand–Scissors Allegro–Hand Door–Open–Outward Kettle Pen

Env number 4096 256 512 128 1024 2048 128 256

additional experiments using the original setting for the number of parallel environments. The corresponding results are
shown in Table 2. We observe that R* also outperforms Eureka under the original setting.

Table 2. Success rates of Eureka and R* across different tasks under the original setting.

Franka Swing-Cup Hand-Over Kettle Scissor Door-Open-Outward

Eureka 33% 53% 83% 70% 100% 98%
R* 73% 96% 93% 95% 100% 100%

Here, we provide a detailed explanation of several key aspects. First, regarding the population voting mechanism, each
critic function evaluates and ranks the quality of different trajectories. The final output is then determined based on the
aggregated results of the five critics. To obtain the final labels, we gradually relax the voting criteria from strict to more
lenient. Specifically, at the beginning, a state pair is labeled only if all five critics reach a consensus. We collect 20 trajectory
segments, each with a length of at least 5. If the required 20 segments are not collected, the criteria are relaxed—labeling
occurs if 4 out of 5 critics agree, and if necessary, further relaxed to 3 out of 5 critics until 20 labeled samples are obtained.
Based on the collected data, we optimize parameters according to Equation 2. For the crossover operator, we use a softmax
function based on the success rates to select parent individuals. A reward module from one parent is incorporated into
another function to generate a new individual. This process is repeated until the required number of individuals is generated.

For parameter optimization, we split the collected data into two parts: 70% as the training set and 30% as the validation set.
We perform 1000 iterations of optimization on all training data, evaluating accuracy on the validation set after each training
iteration. Finally, we select the parameters that achieve the highest accuracy on the validation set as the final optimized
parameters.

To construct the critic function, we use the task description, available variables, and success criteria as inputs to guide
the LLM in generating the reward function. After the reward functions are generated, we conduct an additional round of
reflective optimization. Details of the prompt design are provided later.

1https://github.com/eureka-research/Eureka

12

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Prompt 1: Critic Function Task Description

You are a trajectory annotator, tasked with distinguishing the quality of two robot control trajectories.
Your goal is to write a data extraction function that extracts fully correct sub-trajectories from two given trajectories
and assigns quality labels to them.
The data extraction function can be defined as follows:
{Critic-Function-format}
Make sure any new tensor or variable you introduce is on the same device as the input tensors.
Here is the list of keys for dict: {keys}
!!! Please ensure that all the keys used exist in the list mentioned above.
The output of the function should consist of label list: label list contains the quality labels for the states at the
corresponding indices in the trajectory. If the state in a is better than the state in b at a given index, the label is 1; if
the state in b is better than the state in a, the label is -1; otherwise, the label is 0.
The code output should be formatted as a python code string: ”“‘python ... “‘”.
Some helpful tips for writing the function code:
(1) Comparison Criteria for States at the Same Index: The evaluation criterion for comparing the states at the same
index is as follows: state a can only be considered better than state b if it is superior to b in all metrics. For example,
if two robotic hands are performing a task, and a’s left hand is better than b’s left hand, but b’s right hand is better
than a’s right hand, the label should be 0.
(2) Task Decomposition into Phases for More Accurate Evaluation: The task needs to be divided into multiple
phases to allow for more accurate evaluation. For example, in a dual-hand operation task, if neither hand has grasped
the target yet, then comparing the distances to the target is more appropriate. However, if both hands have grasped
the target, then the comparison should focus on the distance to the target itself.
(3) Do not set thresholds; directly perform numerical comparisons on the information, for example, if a < b for all
distance, a better.
(4) The provided information consists of raw, unprocessed data. Distance information and other metrics need to be
calculated.
(5) Typically, you need to consider two distances: the distance between the manipulator or robotic arm and the
block to be manipulated, and the distance between the manipulated block (cube) and the target. Or other distances,
such as the distance the drawer is pulled open, the distance between two objects, and so on.

13

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Prompt 2: Critic Function Design Tips

The Python environment is {task obs code string}. Write a comparison function for the following task:
{task description}.
The conditions for determining task success are as follows: {task goal}
First, the task needs to be analyzed, and based on the task, the objects that need to be manipulated should be
identified. Then, the variables required to complete the task should be inferred. For example, we need to determine
the specific positions where the left and right hands should approach. Simply stating that the hands should approach
the object is not efficient.
Please provide an analysis before starting, clearly defining the metrics to be calculated and whether there are more
appropriate metrics that could replace them. Finally, check if the code achieves the intended purpose.
The following three types of distances need to be considered:
(1). The (five) distances (not sum) between the five fingers (if existing) of the left hand and the target (left) block or
cube.
(2). The (five) distances (not sum) between the five fingers (if existing) of the right hand and the (another right)
target block or cube.
(3). Based on the task success criteria, the (rotational) distances between the objects (object and the target positions),
as required.
The three distances mentioned above should be treated as three separate metrics and should not be combined
pairwise into a single metric.
1. Please ensure that your final success distance metric is correctly represented, and avoid fabricating non-existent
target information.
2. In addition, use traj a[key][:,3] to get values instead of traj a[key][3], use the numerical distance metrics to
compare between trajectories instead of use bool value, as directly judging success metric (success a = dist a < 0.2)
at the start of the trajectory will always return False, resulting in invalid comparison.
3. Typically, it is unlikely for the left hand to operate on the right side or the right hand to operate on the left side.
4. If the key does not exist in the list, do not create the variable.

Prompt 3: Critic Function Reflection Tips

Reflect on the correctness of the above codes: Does the code include the following components, and does the code
adhere to the given recommendations?
1. verify whether any components are missing, do not sum any components.
(1). The (five) distances (not sum) between the left five fingers (if existing) of the left hand and the (left) target
block or cube.
(2). The (five) distances (not sum) between the right five fingers (if existing) of the right hand and the (another right)
target block or cube.
(3). Based on the task success criteria, the (rotational) distances between the objects (object and the target positions),
as required.
2. Verify each criterion use the key in the list and follow the code format. Key list: {keys}
3. Use the numerical distance metrics to compare between trajectories instead of use bool value, as directly judging
success metric (success a = dist a < 0.2) at the start of the trajectory will always return False, resulting in invalid
comparison.
4. Reasonableness check: it is unlikely for the left hand to operate on the right side or the right hand to operate on
the left side.
Check the code against the four aspects mentioned above one by one and analyze whether they are satisfied. If there
are no issues, please output the original code; if there are issues, please output the modified code following the same
format {Critic-Function-format}

14

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

Critic Function Format

def get_correct_sub_traj_and_labels(trajectory_a, trajectory_b):

"""
Both trajectory_a and trajectory_b are lists, each containing multiple states,

and each state is represented as a dictionary.
The label_list is a list of indices that corresponds to the states in the sub-

trajectory where A is definitively better or worse than B. The label
indicates the quality of the sub-trajectory: if A is better, the label is "
Former"; if B is better, the label is "Latter".

If no valid sub-trajectory can be found between the two trajectories, label_list
will be an empty list ([])

"""
traj_a_length = len(trajectory_a)
traj_b_length = len(trajectory_b)
assert traj_a_length == traj_b_length

label_list = []

for state_index in range(traj_a_length):
state_a_info = trajectory_a[state_index]
if metric_1_a >= metric_1_b and metric_2_a >= metric_2_b and metric_2_a >=

metric_2_b and ... :
label_list.append(1)

elif metric_1_a <= metric_1_b and metric_2_a <= metric_2_b and metric_2_a <=
metric_2_b and ... :
label_list.append(-1)

else:
label_list.append(0)

return label_list

B. Generated Function Examples
B.1. Reward Function Examples

We provide the reward function generated by R* below. It can be observed that the rewards given by R* are reasonable, with
optimized parameters, unlike other methods that only provide integer or single-decimal values.

B.2. Critic Function Examples

We provide the LLM-generated critic reward function for Franka-Cabinet and Shadow-Hand-Kettle as follows. Upon
observation, we find that while the LLM’s overall judgment criteria are generally correct. However, this does not necessarily
lead to better performance. For example, proximity alone does not imply that one state is superior to another. We consider
further exploring this issue in future work.

15

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

The Reward Function For Franka-Cabinet

from typing import Tuple, Dict
import math
import torch
from torch import Tensor
@torch.jit.script
def compute_reward(drawer_grasp_pos: torch.Tensor, franka_grasp_pos: torch.

Tensor, cabinet_dof_pos: torch.Tensor, cabinet_dof_vel: torch.Tensor) ->Tuple[
torch.Tensor, Dict[str, torch.Tensor]]:

Reward weight hyperparameters
pos_distance_weight = 1.5603480339050293
drawer_open_weight = 0.10000000149011612
velocity_weight = 1.9782673120498657

Temperature parameters for transformations
distance_temp = 3.867816686630249
open_temp = 0.10000000149011612
velocity_temp = 4.029726982116699

Compute the distance from the hand to the drawer
hand_to_drawer_distance = torch.norm(drawer_grasp_pos -

franka_grasp_pos, dim=-1)

Reward for minimizing the distance to the drawer
distance_reward = torch.exp(-distance_temp * hand_to_drawer_distance

) * pos_distance_weight

Reward for opening the door, with normalized scaling
open_reward = torch.exp(open_temp * torch.abs(cabinet_dof_pos[:, (3)] -

cabinet_dof_pos[:, (3)].clamp(max=1.0))) * drawer_open_weight

Reward for positive velocity movements towards opening the drawer
velocity_reward = torch.exp(velocity_temp * cabinet_dof_vel[:, (3)].

clamp(min=0.0)) * velocity_weight

Total reward is a combination of the individual rewards
total_reward = (2.102652072906494 * distance_reward + 1.0 * open_reward +

1.9782673120498657 * velocity_reward)

Individual reward components stored in a dictionary for analysis
reward_dict = {’distance_reward’: distance_reward, ’open_reward’:

open_reward, ’velocity_reward’: velocity_reward}

return total_reward, reward_dict

16

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

The Reward Function For Shadow-Hand-Kettle

from typing import Tuple, Dict
import math
import torch
from torch import Tensor
@torch.jit.script
def compute_reward(right_hand_pos: torch.Tensor, left_hand_pos: torch.

Tensor, kettle_handle_pos: torch.Tensor, bucket_handle_pos: torch.
Tensor, kettle_spout_pos: torch.Tensor, bucket_handle_rot: torch.Tensor,
object_pos: torch.Tensor, object_linvel: torch.Tensor, object_angvel:
torch.Tensor, goal_pos: torch.Tensor, goal_rot: torch.Tensor
) ->Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
distance_kettle_grasp = torch.norm(right_hand_pos - kettle_handle_pos,

dim=-1)
grasp_kettle_reward = 1.0 / (1.0 + distance_kettle_grasp)
grasp_kettle_reward = 1.277540922164917 / (0.6857131719589233 + torch.

norm(right_hand_pos - kettle_handle_pos, dim=-1))
grasp_kettle_reward *= 0.9725923538208008
grasp_bucket_reward = 1.3005189895629883 / (0.6645537614822388 + torch.

norm(left_hand_pos - bucket_handle_pos, dim=-1))
grasp_bucket_reward *= 0.9953349232673645
alignment_tolerance = 0.34917423129081726
spout_to_bucket_distance = torch.norm(kettle_spout_pos - goal_pos, dim=-1)
spout_alignment_reward = torch.exp(-alignment_tolerance *

spout_to_bucket_distance)
pouring_velocity = torch.clip(object_linvel[..., 2],

0.0010000000474974513, None)
pouring_velocity_reward = torch.tanh(pouring_velocity) * 2.2268362045288086
total_reward = (1.277540922164917 * grasp_kettle_reward +

1.3005188703536987 * grasp_bucket_reward + 0.8290095329284668 *
spout_alignment_reward + 1.221653938293457 *
pouring_velocity_reward + 1.277540922164917 * grasp_kettle_reward)

reward_components = {’grasp_kettle_reward’: grasp_kettle_reward,
’grasp_bucket_reward’: grasp_bucket_reward,
’spout_alignment_reward’: spout_alignment_reward,
’pouring_velocity_reward’: pouring_velocity_reward,
’grasp_kettle_reward’: grasp_kettle_reward}

return total_reward, reward_components

17

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

The Critic Function For Franka-Cabinet

def calculate_distance(vec_a, vec_b):
return ((vec_a - vec_b) ** 2).sum(axis=1).sqrt()

def get_correct_sub_traj_and_labels(trajectory_a, trajectory_b):
traj_a_length = len(trajectory_a)
traj_b_length = len(trajectory_b)
assert traj_a_length == traj_b_length
label_list = []
for state_index in range(traj_a_length):

state_a_info = trajectory_a[state_index]
state_b_info = trajectory_b[state_index]
Calculate the manipulation distances
lfinger_dist_a = calculate_distance(state_a_info[’franka_lfinger_pos’],

state_a_info[’drawer_grasp_pos’])
lfinger_dist_b = calculate_distance(state_b_info[’franka_lfinger_pos’],

state_b_info[’drawer_grasp_pos’])
rfinger_dist_a = calculate_distance(state_a_info[’franka_rfinger_pos’],

state_a_info[’drawer_grasp_pos’])
rfinger_dist_b = calculate_distance(state_b_info[’franka_rfinger_pos’],

state_b_info[’drawer_grasp_pos’])
Cabinet DOF opening comparison (critical for success)
cabinet_dof_a = state_a_info[’cabinet_dof_pos’][:, 3]
cabinet_dof_b = state_b_info[’cabinet_dof_pos’][:, 3]
Check which trajectory has better performance at this index
if all(lfinger_dist_a <= lfinger_dist_b) and all(rfinger_dist_a <=

rfinger_dist_b) and all(cabinet_dof_a >= cabinet_dof_b):
label_list.append(1) # A is better

elif all(lfinger_dist_a >= lfinger_dist_b) and all(rfinger_dist_a >=
rfinger_dist_b) and all(cabinet_dof_a <= cabinet_dof_b):
label_list.append(-1) # B is better

else:
label_list.append(0)

return label_list

18

R*: Efficient Reward Design via Reward Structure Evolution and Parameter Alignment Optimization with LLMs

The Critic Function For Shadow-Hand-Kettle

def get_correct_sub_traj_and_labels(trajectory_a, trajectory_b):
import torch
traj_a_length = len(trajectory_a)
traj_b_length = len(trajectory_b)
assert traj_a_length == traj_b_length
label_list = []
for state_index in range(traj_a_length):

state_a = trajectory_a[state_index]
state_b = trajectory_b[state_index]

Calculate distances for both trajectories
right_hand_fingers_a = [’right_hand_ff_pos’, ’right_hand_mf_pos’, ’

right_hand_rf_pos’, ’right_hand_lf_pos’, ’right_hand_th_pos’]
right_hand_fingers_b = [’right_hand_ff_pos’, ’right_hand_mf_pos’, ’

right_hand_rf_pos’, ’right_hand_lf_pos’, ’right_hand_th_pos’]
left_hand_fingers_a = [’left_hand_ff_pos’, ’left_hand_mf_pos’, ’

left_hand_rf_pos’, ’left_hand_lf_pos’, ’left_hand_th_pos’]
left_hand_fingers_b = [’left_hand_ff_pos’, ’left_hand_mf_pos’, ’

left_hand_rf_pos’, ’left_hand_lf_pos’, ’left_hand_th_pos’]

Calculate the right hand’s distances to the kettle handle
right_hand_distances_a = [torch.norm(torch.tensor(state_a[finger]) - torch.

tensor(state_a[’kettle_handle_pos’]), p=2) for finger in
right_hand_fingers_a]

right_hand_distances_b = [torch.norm(torch.tensor(state_b[finger]) - torch.
tensor(state_b[’kettle_handle_pos’]), p=2) for finger in
right_hand_fingers_b]

Calculate the left hand’s distances to the bucket handle
left_hand_distances_a = [torch.norm(torch.tensor(state_a[finger]) - torch.

tensor(state_a[’bucket_handle_pos’]), p=2) for finger in
left_hand_fingers_a]

left_hand_distances_b = [torch.norm(torch.tensor(state_b[finger]) - torch.
tensor(state_b[’bucket_handle_pos’]), p=2) for finger in
left_hand_fingers_b]

Calculate the distance between bucket handle and kettle spout
spout_bucket_distance_a = torch.norm(torch.tensor(state_a[’bucket_handle_pos

’]) - torch.tensor(state_a[’kettle_spout_pos’]), p=2)
spout_bucket_distance_b = torch.norm(torch.tensor(state_b[’bucket_handle_pos

’]) - torch.tensor(state_b[’kettle_spout_pos’]), p=2)
Determine the better trajectory at this state
if all(ra <= rb for ra, rb in zip(right_hand_distances_a,

right_hand_distances_b)) and \
all(la <= lb for la, lb in zip(left_hand_distances_a,

left_hand_distances_b)) and \
spout_bucket_distance_a <= spout_bucket_distance_b:
label_list.append(1) # A is better

elif all(ra >= rb for ra, rb in zip(right_hand_distances_a,
right_hand_distances_b)) and \
all(la >= lb for la, lb in zip(left_hand_distances_a,

left_hand_distances_b)) and \
spout_bucket_distance_a >= spout_bucket_distance_b:

label_list.append(-1) # B is better
else:

label_list.append(0) # Neither is better

return label_list

19

	Introduction
	Background
	Related Work
	Method
	Framework Overview
	Reward Structure Evolution
	Parameter Alignment Optimization
	R* Pseudocode

	Experiments
	Environment Setting
	Baselines
	Performance Evaluation
	Analysis and Ablation Study

	Conclusion
	Limitations & Future Work
	Implementation Details
	Generated Function Examples
	Reward Function Examples
	Critic Function Examples

