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ABSTRACT

We investigate the robustness of vision transformers (ViTs) through the lens of
their special patch-based architectural structure, i.e., they process an image as a
sequence of image patches. We find that ViTs are surprisingly insensitive to patch-
based transformations, even when the transformation largely destroys the original
semantics and makes the image unrecognizable by humans. This indicates that
ViTs heavily use features that survived such transformations but are generally
not indicative of the semantic class to humans. Further investigations show that
these features are useful but non-robust, as ViTs trained on them can achieve high
in-distribution accuracy, but break down under distribution shifts. From this un-
derstanding, we ask: can training the model to rely less on these features improve
ViT robustness and out-of-distribution performance? We use the images trans-
formed with our patch-based operations as negatively augmented views and offer
losses to regularize the training away from using non-robust features. This is a
complementary view to existing research that mostly focuses on augmenting in-
puts with semantic-preserving transformations to enforce models’ invariance. We
show that patch-based negative augmentation consistently improves robustness of
ViTs across a wide set of ImageNet based robustness benchmarks. Furthermore,
we find our patch-based negative augmentation are complementary to traditional
(positive) data augmentation, and together boost the performance further. All the
codes in this work will be open-sourced.

1 INTRODUCTION

Building vision models that are robust, i.e., that are highly accurate even on unexpected and out-of-
distribution images, is increasingly a requirement to trusting vision models and a strong benchmark
for progress in the field. Recently, Vision Transformers (ViTs, Dosovitskiy et al. (2021)) sparked
great interest in the literature, as a radically new model architecture offering significant accuracy
improvements and with hope of new robustness benefits. Over the past decade, there has been
extensive work on understanding the robustness of convolution-based neural architectures, as the
dominant design for visual tasks; researchers have explored adversarial robustness (Szegedy et al.,
2013), domain generalization (Xiao et al., 2020; Khani & Liang, 2021), feature biases (Brendel &
Bethge, 2019; Geirhos et al., 2018; Hermann et al., 2020). As a result, with the new promise of vision
transformers, it is critical to understand their properties and in particular their robustness. Recent
early studies (Naseer et al., 2021; Paul & Chen, 2021; Bhojanapalli et al., 2021) have found ViTs
be more robust than ConvNets in some scenarios, with the hypothesis that the non-local attention
based interactions enabled ViTs to capture more global and semantic features. In contrast, we add
to this line of research showing a different side of the challenge: we find ViTs are still vulnerable to
relying on non-robust features impeding out-of-distribution performance.

In this paper, we first demonstrate ViTs rely on specific non-robust features and then show how to re-
duce the reliance on these non-robust features, enabling improved out-of-distribution performance.
To understand the robustness properties of ViTs, we start with the architectural traits of ViTs – ViTs
operate on non-overlapping image patches and allow long range interaction between patches even
in lower layers. It is hypothesized in recent studies (Naseer et al., 2021; Paul & Chen, 2021; Bho-
janapalli et al., 2021) that the non-local attention based interactions contribute to better robustness
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Figure 1: Patch-based transformations largely destroy images to be unrecognizable to humans
whereas ViT recognizes them as the original class (e.g., keeshond or magpie) with high confidence.
Visualization of patch-based transformations. On the top of each image, we display the predicted
confidence score of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k.

of ViTs than ConvNets. To study the ability of ViTs to integrate global semantics structures across
patches, we design and apply patch-based image transformations, such as random patch rotation,
shuffling, and background-infilling (Figure 1). Those transformations destroy the spatial relation-
ship between patches and corrupted the global semantics, and the resultant images are often visually
unrecognizable. However, we find that ViTs are surprisingly insensitive to these transformations
and can make highly accurate predictions on these transformed images. This suggests that ViTs use
features that survive such transformations but are generally not indicative of the semantic class to
humans. Going one step further, we find that those features are useful but not robust, as ViTs trained
on them achieved high in-distribution accuracy, but suffered significantly on robustness benchmarks.

With this understanding of ViTs’ reliance on non-robust features captured by patch-based transfor-
mations, we still must answer: (a) how can we train ViTs to not rely on such features? and (b)
will reducing reliance on such features meaningfully improve out-of-distribution performance and
not sacrifice in-distribution accuracy? A majority of past robust training algorithms encourage the
smoothness of model predictions on augmented images with semantic preserving transformations
(Hendrycks et al., 2020b; Cubuk et al., 2019). However, the patch-based transformations deliber-
ately destroy the semantic meaning and only leave non-robust features. Taking inspiration from
recent research on generative modeling (Sinha et al., 2020), we propose a family of robust training
algorithms based on patch-based negative augmentations that regularize the training from relying
on non-robust features surviving patch-based transformations. Through extensive evaluation on a
wide set of ImageNet-based benchmarks, we find that our methods consistently improve the robust-
ness of the trained ViTs. Furthermore, our patch-based negative augmentation can be combined
with the traditional (positive) data augmentation to boost the performance further. With this we get
a more complete picture: training models both to be insensitive to spurious changes (as in positive
augmentation) but also to not rely on non-robust features (as in negative augmentation) together can
meaningfully improve robustness of ViTs.

Our key contributions are as follows:

• Understanding Non-Robust Features in ViT: We show that ViTs heavily rely on non-
robust features surviving patch-based transformations but are not indicative of the semantic
classes to humans.

• Modeling: We propose a set of patch-based operations as negatively augmented views,
complementary to existing works that focus on semantic-preserving (“positive”) augmen-
tations, to regularize the training away from using these specific non-robust features;

• Improved Robustness of ViT: We show across a wide set of robustness benchmarks that
our proposed negative augmented views can consistently improve ViT’s robustness and
complementary to “positive” augmentation.

2 PRELIMINARIES

Vision Transformers Vision transformers (Dosovitskiy et al., 2021) are a family of architec-
tures adapted from Transformers in natural language processing (Vaswani et al., 2017), which di-
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Figure 2: ViTs can rely on features surviving patch-based transformations to maintain a high accu-
racy, even after images have been heavily transformed to be largely unrecognizable. Top-1 accuracy
of ViT models when tested on patch-based transformed images using the semantic class of the cor-
responding clean image as ground-truth. The test accuracy on ImageNet-1k validation set is shown
on the right. All ViT models are pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k.

rectly process visual tokens constructed from image patch embeddings. To construct visual tokens,
ViT (Dosovitskiy et al., 2021) first splits an image into a grid of patches. Each patch is linearly pro-
jected into a hidden representation vector, and combined with a positional embedding. A learnable
class token is also added. Transformers (Vaswani et al., 2017) are then directly applied on this set
of visual and class token embeddings as if they are word embeddings in the original Transformer
formulation. Finally, a linear projection of class token is used to calculate the class probability.

Model Variants We consider ViT models pretrained on either ILSVRC-2012 ImageNet-1k, with
∼1.3 million images or ImageNet-21k, with ∼14 million images (Russakovsky et al., 2015). All
models are fine-tuned on ImageNet-1k dataset. We adopt the notations used in (Dosovitskiy et al.,
2021) to denote model size and input patch size. For example, ViT-B/16 denotes the “Base” model
variant with input patch size 16× 16.

Robustness Benchmarks To evaluate models’ robustness, we mainly focus on three ImageNet-
based robustness benchmarks, ImageNet-A (Hendrycks et al., 2019), ImageNet-C (Hendrycks &
Dietterich, 2019), ImageNet-R (Hendrycks et al., 2020a). Specifically, ImageNet-A contains chal-
lenging natural images from a distribution unlike ImageNet training distribution, which can easily
fool models to make a misclassification. ImageNet-C consists of 19 types of corruptions that are
frequently encountered in natural images and each corruption has 5 levels of severity. It is widely
used to measure models’ robustness under distributional shift. ImageNet-R is composed of images
obtained by artistic rendition of ImageNet classes, e.g., cartoons, and is widely used to evaluate
model’s robustness on out-of-distribution data.

3 UNDERSTANDING ROBUSTNESS OF VISION TRANSFORMERS

Recent works (Naseer et al., 2021; Paul & Chen, 2021; Bhojanapalli et al., 2021) have shown that
vision transformers achieve better robustness compared to standard convolutional networks. One
explanation for vision transformers’ stronger robustness is that the attention mechanism can capture
better global structures. To investigate if ViT has successfully taken advantage of the long range
interactions between patches, we design a series of patch-based transformations which significantly
destroys the global structure of images. The patch-based transformations (see Fig. 1) are:

• Patch-based Shuffle (P-Shuffle): we randomly shuffle the input image patches to change their
positions1.

• Patch-based Rotate (P-Rotate): we randomly select a rotation degree from the set Ω =
{0◦, 90◦, 180◦, 270◦} and rotate each image patch independently.

• Patch-based Infill (P-Infill): we replace the image patches in the center region of an image
with the patches on the image boundary2.

1P-Shuffle is equivalent to shuffling the position embeddings.
2For example, given an image with size 384× 384, input patch size is 16× 16 and replace rate 0.25, we in

total have 576 patches xi,j , where i and j denotes the row and column index and 1 ≤ i, j ≤ 24. The patches
in the center xm,n, 7 ≤ m,n ≤ 18 are replaced by the remaining patches.
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Figure 3: Features preserved in patch-based transformations are useful but non-robust as training
ViT on them impedes robustness. Top-1 Accuracy (%) on ImageNet-1k validation set and Ima-
geNet robustness datasets: ImageNet-A, ImageNet-C, ImageNet-R. The baseline model is ViT-B/16
in (Dosovitskiy et al., 2021) trained on original images. Other models are trained on patch-based
transformed images, e.g., “P-Shuffle” stands for a ViT-B/16 model trained on patch-based shuffled
images. Numbers above the bars are either accuracy (e.g., ViT-B/16) or the max accuracy difference
between each model family and the baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and
replacement ratio in P-Infill is denoted by “ps” and “rr” respectively.

Each patch-based transformation is performed to a single image. We make sure the patch size of our
patch-based transformation is a multiple of the input image patch of ViT so that the content within
each patch is well-maintained. For P-infill, we use “replace rate” to denote the ratio of replaced
patches in the center over the total number of patches in an image. Examples of transformed images
are shown in Fig. 1 (see Appendix F for more examples). In most cases, it is challenging to recognize
the semantic classes after those transformations.

Do ViTs rely on features not indicative of the semantic classes to humans? To validate if ViTs be-
have similarly as humans on these patch-based transformed images, we evaluate ViT models (Doso-
vitskiy et al., 2021) on these patch-based transformed image. Specifically, we apply each patch-
based transformation to ImageNet-1k validation set and report the test accuracy of each ViT on the
transformed images. The test accuracy is computed by using the semantic class of the correspond-
ing original image as the ground-truth. As shown in Figure 2, the accuracy achieved by ViTs are
significantly higher than random guessing (0.1%). In addition, as shown in Figure 1, ViT gives
these patch-based transformed images a very high-confident prediction even when the transforma-
tion largely destroys the semantics and make the image unrecognizable by humans 3. This strongly
indicates that ViT models heavily rely on the features that survive these transformations to make a
prediction. However, these features are not indicative of the semantic class to humans.

Do features preserved in patch-based transformations impede robustness? Taking one step further,
we want to know if the features preserved by simple patch-based transformations, which are not
indicative of the semantic class to humans, result in robustness issues. To this end, we train a
vision transformer, e.g., ViT-B/16, on patch-based transformed images with original semantic class
assigned as their ground-truth. Note that all the training images are patch-based transformed images.
In this way, we force the model to fully exploit the features preserved in patch-based transformations.
In addition, we reuse all the training details and hyperparameters in (Dosovitskiy et al., 2021) to
make sure the “only” difference between our models and the baseline ViT-B/16 (Dosovitskiy et al.,
2021) is the training images. Then, we test the model on ImageNet-1k validation set and three
robustness benchmarks, ImageNet-A, ImageNet-C and ImageNet-R without any transformation.

First, we can observe that for the baseline ViT-B/16, compared to in-distribution accuracy, all the
out-of-distribution accuracies have suffered from a significant drop (the 4 blue bars in Figure 3).
This trend has been observed both for ViTs and convolution-based networks (Paul & Chen, 2021;
Zhai et al., 2021). Second, if we compare the accuracy between the baseline model and models
trained on patch-based transformations (i.e., the difference between the blue bar and one of the
red/green/orange bars in Figure 3), we find that ViTs’ in-distribution accuracy drops only slightly,
but the robustness drop is significant when models are trained on these patch-based transformations.
Take P-Shuffle as an example, the model trained on patch-based shuffled images can still achieve
79.1% accuracy on ImageNet-1k, only 5 percentage point (pp) drop in in-distribution accuracy. In
contrast, the accuracy drop on robustness datasets is much more significant, e.g., 17pp on ImageNet-
R. The deterioration rate in robustness is close to 50% of the baseline ViT-B/16. This strongly

3Similar patterns are observed when ViT models are pretrained on ImageNet-1k.
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suggests that the features preserved in patch-based transformations are sufficient for high-accurate
in-distribution prediction but are not robust under distributional shifts.

Taking the above results together, we conclude that even though ViTs are shown to be more robust
than ConvNets in previous studies (Naseer et al., 2021; Paul & Chen, 2021), they still heavily rely
on features that are not indicative of the semantic classes to humans. These features, captured by
patch-based transformations, are useful but non-robust, as ViTs trained on them achieve high in-
distribution accuracy but suffer significantly on robustness benchmarks.

With this knowledge we now ask: based on these understandings, can we train ViTs to not rely on
such non-robust features? And if we do, will it improve their robustness?

4 IMPROVING THE ROBUSTNESS OF VISION TRANSFORMERS

Based on the key observations that the patch-based transformations encode features that contribute
to the non-robustness of ViTs, we propose a negative augmentation procedure to regularize ViTs
from relying on such features. To this end, we use the images transformed with our patch-based
operations as negatively augmented views. Then we design negative loss regularizations to prevent
the model from using those non-robust features preserved in patch-based transformations.

Specifically, given a clean image x, we generate its negative view, denoted as x̃, by ap-
plying a patch-based transformation to x. We call it negative augmentation, in contrast
with the standard (positive) augmentation that are semantic preserving. Let Lce(B;θ) =
− 1
|B|

∑
(x,y)∈B y log softmax(f(x;θ)) represent the cross-entropy loss function used to train a vi-

sion transformer with parameters θ, where B is a minibatch of clean examples, and y denotes the
ground-truth label. The loss on negative views Lneg(B, B̃;θ) can be easily added to the cross-
entropy loss Lce(B;θ) via

Lce(B;θ) + λ · Lneg(B, B̃;θ), (1)
where λ is a coefficient balancing the importance between clean training data as well as patch-based
negative augmentation. Below, we introduce three different losses on negative views to leverage
patch-based negative augmentation through label, logit and representation space respectively.

Label space: uniform loss Many existing data augmentation techniques (Cubuk et al., 2019; 2020;
Hendrycks et al., 2020b) use one-hot labels for semantic-preserving augmented data to enforce the
invariance of the model prediction. In contrast, the semantic classes of our generated patch-based
negative augmented data are visually unrecognizable, as shown in Figure 1. Therefore, we propose
to use uniform labels instead for those negative augmentations. Specifically, the loss function on
negative views that we optimize at each training step can be formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
(x̃,ỹ)∈B̃

ỹ log softmax(f(x̃;θ)), (2)

where ỹ denotes the uniform distribution: ỹk = 1
K where K is the total number of classes. f(x;θ)

denotes the function mapping the input image into the logit space.

Logit space: `2 Loss An alternative to pre-assuming labels for negative augmentation is to add the
constraints on the logit space (or the space of predicted probability). Inspired by existing work (Kan-
nan et al., 2018; Zhang et al., 2019; Hendrycks et al., 2020b) which provides an extra regularization
term encouraging similar logits between clean and “positive” augmented counterparts, we instead
encourage the logits of clean examples and their corresponding negative augmentations to be far
away. In this way, we prevent the model from relying on the non-robust features preserved in neg-
ative views. Specifically, we maximize the `2 distance between the predicted probability of clean
examples and their corresponding negative views. The loss on negative views, therefore, can be
formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
x∈B,x̃∈B̃

‖softmax(f(x;θ))− softmax(f(x̃;θ))‖2. (3)

Here the `2 distance is computed over the predicted probability rather than the logits f(x;θ) because
empirically we observe that maximizing the difference of logits can cause numerical instability.
Representation space: contrastive loss Lastly, we propose to use a contrastive loss (Oord et al.,
2018; Chen et al., 2020a; Khosla et al., 2020) to regularize the training away from using non-robust
features. For an example xi ∈ B, we create a positive set Pi ≡ {xj ∈ B\{xi}|yj = yi} with all
the examples in the minibatch B sharing the same class as xi. The anchor xi is excluded from its
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positive set Pi. Next, we can generate the negative set composed of two types of negative examples:
1) all the examples in the minibatch B with a different class as xi, 2) the patch-based negatively
transformed images x̃ ∈ B̃. For each anchor xi, we can in total have 2|B| − |Pi| − 1 negative pairs,
where |B| is the batch size and |Pi| is the cardinality of the positive set Pi. Let the candidate set
Qi ≡ B̃ ∪ B\{xi}, the loss function can be expressed as:

Lneg(B, B̃;θ) = − 1

|B|
∑
xi∈B

1

|Pi|
∑
xj∈Pi

log
exp(sim(xi,xj)/τ)∑

xk∈Qi
exp(sim(xi,xk)/τ)

, (4)

where τ is the temperature and sim(xi,xj) =
g(xi;θ)

ᵀ·g(xj ;θ)
‖g(xi;θ)‖‖g(xj ;θ)‖ computes the cosine similarity be-

tween g(xi;θ) and g(xj ;θ), and g(x;θ) denotes the representation learned by the penultimate layer
of the classifier. We do not use a learnable projection head4 as in contrastive representation learn-
ing (Chen et al., 2020a;b). Therefore, no extra network parameters are used for our proposed method
and the improvement of robustness can be mainly attributed to patch-based negative augmentations.

When the batch size is larger than the number of classes (which is the case for our ImageNet-
1K experiments), it is easy to find positive examples from the same class in a mini-batch, so we
only extend candidate set Qi with our proposed patch-based negative data augmentations. When
the batch size is far smaller than the number of classes (which is the case for our ImageNet-21K
experiments), it can be difficult to find two examples from the same classes. Similar to (Chen et al.,
2020a; Khosla et al., 2020), we generate another “positive” view for each image using common data
augmentation (e.g., random cropping) so that we can make sure there is at least one positive pair
from the same class. Denoting the set of positively augmented data as B+, the modified positive set
is Pi ≡ {xj ∈ B+|yj = yi}, the candidate set Qi is now B̃ ∪ B+ instead of B̃ ∪ B\{xi}.

5 EXPERIMENTS

Experimental setup We follow Dosovitskiy et al. (2021) to first pre-train all the models with image
size 224× 224 and then fine-tune the models with a higher resolution 384× 384. We reuse all their
training hyper-parameters, including batch size, weight decay, and training epochs (see Appendix A
for details). For the two extra hyperparameters in our algorithms, the loss coefficient λ in Eqn. 1
and the temperature τ in Eqn. 4 in contrastive loss, we sweep them from the set {0.5, 1, 1.5} and
{0.1, 0.5} respectively and choose the model with the best hold-out validation performance. Please
refer to Appendix B for the chosen hyperparameters for each model. We make sure our proposed
models and our implemented baselines are trained with exactly the same settings for fair comparison.
The top-1 accuracy of the fine-tuned models are reported on ImageNet-1k validation set as well
as three robustness benchmarks, ImageNet-A (Hendrycks et al., 2019), ImageNet-C (Hendrycks &
Dietterich, 2019) and ImageNet-R (Hendrycks et al., 2020a). For ImageNet-C, the reported accuracy
is averaged over 19 corruptions types and 5 different corruption severities.

5.1 EFFECTIVE AND COMPLEMENTARY TO “POSITIVE” DATA AUGMENTATION

Effective in improving robustness First, we apply our proposed patch-based transformations to
a ViT-B/16 model pre-trained and fine-tuned on ImageNet-1k. The extra loss regularization on neg-
ative views is used in both pre-training and fine-tuning stages to prevent the model from learning
non-robust features preserved in patch-based transformations. We use “Transformation / Regulariza-
tion” to denote a pair of patch-based negative augmentation and loss regularization. For examples,
“P-Rotate / Uniform” means that we use P-Rotate to generate the negative views and use uniform
loss to regularize the training. We display the results in Table 1, where we can clearly see that our
proposed patch-based negative augmentation effectively improves the in-distribution test accuracy
and the out-of-distribution robustness across all ImageNet-based benchmarks. We observe that all
three loss regularizations effectively leverage the negative views to regularize the training away from
using non-robust features, while the contrastive loss works the best.

Complementary to traditional (“positive”) data augmentation To investigate if our proposed
patch-based negative augmentation is complementary to traditional (“positive”) data augmentation,
we apply our patch-based negative transformation on top of traditional data augmentation: Rand-
Augment (Cubuk et al., 2020), which is widely used in vision transformers (Touvron et al., 2021;

4We did not experiment if an extra projection head can push the result further as it is not our main focus but
we encourage interested readers to validate if it is true or not.
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Table 1: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k with or without
the proposed negative augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 (Dosovitskiy et al., 2021) 77.6 6.7 50.8 20.3

+ P-Rotate / Uniform 78.2 (+0.6) 7.0 (+0.3) 52.4 (+1.6) 21.4 (+1.1)
+ P-Rotate / L2 77.8 (+0.2) 6.7 (+0.0) 51.6 (+0.8) 21.0 (+0.7)
+ P-Rotate / Contrastive 78.9 (+1.3) 8.6 (+1.9) 54.1 (+3.3) 23.6 (+3.3)

Table 2: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k using Rand-
Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al., 2020b). The proposed negative aug-
mentation is added on top of either positive augmentation. See Table 8 in Appendix for a full table
with three losses for each patch-based transformation. Patch-based negative augmentation is com-
plementary to “positive” data augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 79.1 7.2 55.2 23.0

+ P-Rotate / L2 79.1 (+0.0) 7.9 (+0.7) 56.7 (+1.5) 23.8 (+0.8)
+ P-Infill / Uniform 79.2 (+0.1) 7.8 (+0.6) 56.4 (+1.2) 24.0 (+1.0)
+ P-Rotate / Contrastive 79.9 (+0.8) 9.4 (+2.2) 58.4 (+3.2) 25.4 (+2.4)
+ P-Infill / Contrastive 79.9 (+0.8) 9.3 (+2.1) 57.9 (+2.7) 25.0 (+2.0)

AugMix (Hendrycks et al., 2020b) 78.8 7.7 57.8 24.9

+ P-Rotate / L2 79.0 (+0.2) 8.3 (+0.6) 58.8 (+1.0) 26.0 (+1.1)
+ P-Infill / Uniform 79.3 (+0.5) 8.3 (+0.6) 58.4 (+0.6) 25.7 (+0.8)
+ P-Rotate / Contrastive 79.6 (+0.8) 9.8 (+2.1) 60.0 (+2.2) 27.5 (+2.6)
+ P-Infill / Contrastive 79.6 (+0.8) 9.9 (+2.2) 60.3 (+2.5) 27.3 (+2.4)

Mao et al., 2021), and AugMix (Hendrycks et al., 2020b), which is specifically proposed to improve
models’ robustness under distributional shift. Crucially, we follow (Hendrycks et al., 2020b) to
exclude transformations used in “positive” data augmentation which overlap with corruption types
in ImageNet-C (Hendrycks & Dietterich, 2019). Therefore, the set of transformations used in Rand-
Augment and AugMix is disjoint with the corruptions in ImageNet-C.

When we combine “negative” and “positive” augmentation, the cross-entropy loss Lce(B+;θ) in
Eqn. 1 is computed over “positive” examples B+ = {x+

1 , · · · ,x
+
N} using either Rand-Augment or

AugMix. Meanwhile, the loss regularization on negative views in Eqn. 1 is computed over neg-
atively transformed version of x+. That is: for ∀x+ ∈ B+, we apply our patch-based negative
transformation to obtain its negative version and then use the negative example to compute the loss
regularization Lneg . The positive data augmentation is only used in pre-training stage as we ob-
serve it is slightly better than using them for both stages (Please see more detailed discussion in
Appendix D) and Steiner et al. (2021) have the similar observation. Instead, we apply our negative
augmentation in both stages, as it is the best design choice as discussed in Section 5.3.

As shown in Table 2, we see that when our patch-based negative augmentations are applied to
either Rand-Augment or AugMix, we can consistently improve the robustness of vision transformers
across all three robustness benchmarks (please refer to Table 8 in Appendix for a full table with three
losses for each patch-based transformation). This is particularly noteworthy as both Rand-Agument
and AugMix are already designed to significantly improve the robustness of vision models. Yet, we
see that patch-based negative augmentation provides further robustness benefits. This suggests that
robustness of vision models was not adequately addressed by “positive” data augmentation and that
patch-based negative augmentation is complementary to these traditional approaches.

5.2 ROBUSTNESS IMPROVEMENTS EVEN UNDER LARGER PRE-TRAINING DATASETS

Considering that larger training data can significantly improve models’ robustness and achieve state-
of-the-art performance, we further investigate if our proposed method can scale up to larger datasets
and continues to be necessary and valuable. To this end, we test if our proposed patch-based negative
augmentation still helps robustness even when models are pre-trained on ImageNet-21k (10x larger
than ImageNet-1k). Since we follow (Dosovitskiy et al., 2021) and use a batch size of 4096 in
the pretraining stage, which is much less than the 21K classes in ImageNet-21k, it is unlikely to
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Table 3: Top-1 accuracies of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k.
Patch-based negative augmentation is helpful even with large-scale pretraining.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 (Dosovitskiy et al., 2021) 84.1 26.7 65.2 37.9

Rand-Augment (Cubuk et al., 2020) 84.4 28.7 67.2 38.7

+ P-Shuffle / Uniform 84.5 (+0.1) 29.9 (+1.2) 67.7 (+0.5) 38.9 (+0.2)
+ P-Shuffle / L2 84.5 (+0.1) 29.7 (+1.0) 68.0 (+0.8) 39.6 (+0.9)
+ P-Shuffle / Contrastive 84.3 (-0.1) 30.8 (+2.1) 68.1 (+0.9) 38.6 (-0.1)

Table 4: Effect of patch-based negative augmentation in pre-training and fine-tuning stages. Top-1
accuracies of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote which
training stage patch-based negative augmentation is used.

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

AugMix (Hendrycks et al., 2020b) - 78.8 7.7 57.8 24.9

+ P-Shuffle / Contrastive Fine-tune 79.2 (+0.4) 8.3 (+0.6) 58.4 (+0.6) 25.9 (+1.0)
+ P-Shuffle / Contrastive Pre-train 79.4 (+0.6) 8.7 (+1.0) 59.5 (+1.7) 26.7 (+1.8)
+ P-Shuffle / Contrastive Both 79.6 (+0.8) 9.0 (+1.3) 60.1 (+2.3) 27.3 (+2.4)

have multiple images of the same class in a mini-batch during pretraining. As mentioned above, we
address this issue by augmenting each image one more time, generating another positive view of the
same image, to make sure there is at least two examples from the same class in the mini-batch.

We use P-Shuffle as an example to generate negative views and display the results in Table 3 with
negative augmentation in both pre-training and fine-tuning stages. We can clearly see that even when
we greatly increase the size of pre-training dataset (i.e., ImageNet-21k is 10x larger than ImageNet-
1k), our proposed patch-based negative augmentation can still further improve the robustness of ViT.
This demonstrates that our approach is valuable at scale and improves models’ robustness from an
angle orthogonal to larger training data.

5.3 PRE-TRAINING VS. FINE-TUNING

We further disentangle the effect of patch-based negative data augmentation in pre-training and fine-
tuning. Take P-Shuffle as an example, we design experiments to apply negative augmentation 1)
only at the fine-tuning stage, 2) only at the pre-training stage, and 3) at both stages. As shown in
Table 4, compared to the baselines, patch-based negative augmentation can effectively help improve
robustness in both stages, and its effect in pre-training is slightly larger than in fine-tuning. Finally,
we found using negative augmentation in both stages during training yields the largest gain. Please
refer to Table 9 in Appendix for more settings, where the same conclusion holds.

5.4 UNDERSTANDING THE EFFECTS OF PATCH-BASED NEGATIVE AUGMENTATION

Does ViT become more robust w.r.t. transformed images? We further evaluate ViTs trained with
our robust training algorithms on the patch-based transformed images. We found all three losses on
negative views can successfully reduce the prediction accuracy of ViTs to be close to random guess
(0.1%) with the original semantic classes as the ground-truth. In other words, our robust training
algorithms make ViTs behave similarly as humans on those patch-based transformed images.

Are texture biases contributing to non-robust features? Geirhos et al. (2018) observed that
unlike humans, CNNs rely on more local information (e.g., texture) rather than more global infor-
mation (e.g., shape) to make a classification. Since our patch-based transformations largely destroy
the global structure (e.g., shape), we want to investigate if the non-robust features surviving patch-
based transformation overlap with local texture biases. To this end, we evaluate ViT-B/16 trained
on patch-based transformations on Conflict Stimuli benchmark (Geirhos et al., 2018), and we see
that ViTs trained only on patch-based transformation have a 4.9pp to 31.1pp increase on texture
bias (Figure 4 in Appendix). This suggests that the useful but non-robust features preserved in
patch-based transformation are indeed overlapped with the local texture bias. In addition, using our
patch-negative augmentation can also to some extent reduce models’ reliance on local texture bias,
e.g., we decrease the texture accuracy from 71.7% to 62.2% for ViT-B/16 (Table 13 in Appendix).
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5.5 ABLATION STUDY

Sensitivity analysis We test the sensitivity of our patch-based negative augmentation to various
patch sizes in P-Shuffle and P-Rotate, and different replace rates in P-Infill. We find that P-Shuffle
and P-Rotate are insensitive to patch sizes from {16, 32, 48, 64, 96} for ViT-B/16, and P-Infill is
robust to replace rates ranging from 1/3 to 1/2. The accuracy difference is smaller than 0.5% on
ImageNet-1k as well as ImageNet-A and ImageNet-R. Therefore, we use the same parameter for all
the settings investigated in this work (see Table 7 and Appendix B for details).

Double batch-size of baselines As we use the negative augmented view per example, the effective
batch size is doubled compared to the vanilla ViT-B/16 trained with only cross-entropy loss. There-
fore, we further investigate if the robustness improvement is a result from a larger batch size. When
we increase the batch size from 4096 to 8192 in pre-training while keeping the same 300 training
epochs, it decreases the in-distribution accuracy to 76.0% on ImageNet-1k as well as the accuracy on
robustness benchmarks, e.g., ImageNet-R from 20.3% to 19.3%. Hence we conclude the robustness
improvement is from the negative data augmentation we applied.

6 RELATED WORK

Vision transformers (Dosovitskiy et al., 2021; Touvron et al., 2021) are a family of Transformer
models (Vaswani et al., 2017) that directly process visual tokens constructed from image patch
embedding. Unlike convolutional neural networks (LeCun et al., 1989; Krizhevsky et al., 2012; He
et al., 2016) that assume locality and translation invariance in their architectures, vision transformers
have no such assumptions and are able to exchange information globally, thus having less inductive
bias about the input image data. The significant difference in architectures raises questions about
their robustness properties. A few recent studies find pretrained vision transformers are at least as
robust as the ResNet counterparts (Bhojanapalli et al., 2021), and possibly more robust (Naseer et al.,
2021; Paul & Chen, 2021). Our work studies a specific aspect of robustness pertaining patch-based
visual tokens in ViT, and show it may lead to a generalization gap. Different from (Naseer et al.,
2021) which also shows ViTs are insensitive to patch operations such as shuffle and occlusion, we
further propose a mitigation strategy to increase robustness of patch-based architectures.

Data augmentation is widely used in computer vision models to improve model perfor-
mance (Howard, 2013; Szegedy et al., 2015; Cubuk et al., 2020; 2019; Hendrycks et al., 2020b).
It has been shown that data augmentation benefits vision transformers more than convolutional net-
works for relatively small scaled datasets (Touvron et al., 2021). However, most of the existing
data augmentations are “positive” in the sense they assume the class semantic being preserved af-
ter the transformation. In this work, we explore “negative” data augmentation operations based on
patches, where we encourage the representations of transformed example to be different from the
original ones. Most related to our work in this direction is the work of Sinha et al. (2020). Although
the concept of negative augmentation was proposed in their work, they only apply it for genera-
tive and unsupervised modeling. In contrast, our work focuses on discriminative and supervised
modeling, and demonstrate how such negative examples can reveal specific robustness issues and
such augmentation approaches can directly mitigate them, offering robustness improvements under
large-scale pretraining settings.

7 CONCLUSION

Through this research we have found concrete examples of ViTs relying on non-robust features
for predictions and shown that this reliance is limiting robustness and out-of-distribution perfor-
mance. We believe this opens multiple exciting new lines of research. First, we believe that the
methodological approach developed here is a valuable recipe for further progress. Through finding
patch-wise, semantic-destroying transformations that ViTs are insensitive to we can identify when
models rely on non-robust features, and through incorporating them as negative augmentations dur-
ing training we can meaningfully reduce reliance on such features. Second, we believe this shows
the potential for further improving the robustness of ViTs. Through training the model to use such
non-robust features less, we have seen we can significantly improve the out-of-distribution perfor-
mance of ViTs, without harming in-distribution accuracy! While we have identified multiple such
non-robust features in ViTs, we believe that discovering and addressing more provides an avenue for
valuable, on-going improvement of out-of-distribution performance. Taken together, we believe this
is a promising direction for continued progress toward robust vision transformers and vision models
in general.
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A TRAINING DETAILS

We follow (Dosovitskiy et al., 2021) to train each model using Adam (Kingma & Ba, 2015) opti-
mizer with β1 = 0.9, β2 = 0.999 for pre-training and SGD with momentum for fine-tuning. The
batch size is set to be 4096 for pre-training and 512 for fine-tuning. All models are trained with 300
epochs on ImageNet-1k and 90 epochs on ImageNet-21k in the pre-training stage. In the fine-tuning
stage, all models are trained with 20k steps except the models pretrained from ImageNet-1k without
Rand-Augment (Cubuk et al., 2020) or Augmix (Hendrycks et al., 2020b), which we train them with
8k steps. The learning rate warm-up is set to be 10k steps. Dropout is used for both pre-training
and fine-tuning with dropout rate 0.1. If the training dataset is ImageNet-1k, we additionally apply
gradient clipping at global norm 1.

Table 5: Training details following (Dosovitskiy et al., 2021).

Pre-train Dataset Stage Base LR LR Decay Weight Decay Label Smoothing

ImageNet-1K Pre-train 3 · 10−3 ‘cosine’ None 10−4

ImageNet-21k Pre-train 10−3 ‘linear’ 0.03 10−4

ImageNet-1K Fine-tune 0.01 ‘cosine’ None None
ImageNet-21K Fine-tune 0.03 ‘cosine’ None None

Table 6: Models using a different hyperparameter λ than the default value (1.5).

Model Pre-train Dataset Training stage Hyperparameter λ

Rand-Augment + P-Shuffle / Uniform ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Rotate / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Infill / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / L2 ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / Contrastive ImageNet-21k Pre-train 0.5
Rand-Augment + P-Rotate / Uniform ImageNet-1k Fine-tune 0.5
Rand-Augment + P-Infill / Uniform ImageNet-1k Fine-tune 1.0
AugMix + P-Rotate / Uniform ImageNet-1k Fine-tune 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Fine-tune 0.5

B HYPER-PARAMETERS IN PATCH-BASED NEGATIVE AUGMENTATION

For the temperature τ used in contrastive loss, we consistently observe that τ = 0.5 works better in
pre-training stage and τ = 0.1 works better in fine-tuning stage. Therefore, we keep this setting for
all the models in our paper.

Since we sweep the coefficient λ in Eqn. 1 from the set {0.5, 1.0, 1.5}, we observe that for most of
the cases, λ = 1.5 works the best. In total we have 48 models using loss regularization on negative
views in Table 1, Table 2, Table 3 and Table 8. We use λ = 1.5 for all of them except those listed
in Table 6, where either λ = 0.5 or λ = 1.0 works better. Actually, we find our proposed negative
augmentation is relatively robust to λ. Therefore, we suggest using λ = 1.5 if readers do not want
to sweep for the best value for this hyperparameter.

In Table. 7, we display the hyperparameters in each patch-based transformation that we use for the
reported results in this work. Our algorithms are generally insensitive to these parameters, and we
use the same hyperparameter for all the settings investigated in this work.
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Table 7: Hyperparameters in patch-based transformations.

Image Size Stage Transformation Hyperparameter

224× 224 Pre-train P-Shuffle patch size = 32
224× 224 Pre-train P-Rotate patch size = 16
224× 224 Pre-train P-Infill replace rate = 15/49

384× 384 Fine-tune P-Shuffle patch size = 64
384× 384 Fine-tune P-Rotate patch size = 32
384× 384 Fine-tune P-Infill replace rate = 3/8

Table 8: Patch-based negative augmentation is complementary to “positive” data augmentation.
Top-1 accuracy on ImageNet-1k (IN), ImageNet-A (IN-A), ImageNet-C (IN-C) and ImageNet-R
(IN-R) of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Our proposed patch-based negative
augmentation are applied to either Rand-Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al.,
2020b). We display the accuracy of five different corruption severities on ImageNet-C (IN-C).

Model IN IN-A IN-C IN-R

1 2 3 4 5

Rand-Augment (Cubuk et al., 2020) 79.1 7.2 70.4 63.7 57.9 48.2 36.1 23.0

+ P-Shuffle / Uniform 79.3 7.7 71.0 64.4 59.0 49.5 37.3 23.4
+ P-Rotate / Uniform 79.3 8.1 71.1 64.6 59.0 50.0 37.6 23.8
+ P-Infill / Uniform 79.2 7.8 71.1 64.6 59.1 49.5 37.3 24.0

+ P-Shuffle / L2 78.9 7.5 70.5 63.9 58.3 48.6 36.6 22.6
+ P-Rotate / L2 79.1 7.9 71.1 64.8 59.5 50.1 37.8 23.8
+ P-Infill / L2 78.8 7.4 70.5 63.8 58.2 48.4 36.0 23.2

+ P-Shuffle / Contrastive 79.7 8.9 72.2 65.9 60.6 51.2 38.9 24.7
+ P-Rotate / Contrastive 79.9 9.4 72.4 66.3 61.2 52.1 40.1 25.4
+ P-Infill / Contrastive 79.9 9.3 72.3 66.1 61.0 51.8 39.5 25.0

AugMix (Hendrycks et al., 2020b) 78.8 7.7 71.4 65.2 60.5 51.9 40.2 24.9

+ P-Shuffle / Uniform 79.2 8.0 71.6 65.7 61.2 52.8 41.4 25.7
+ P-Rotate / Uniform 79.1 8.2 71.7 65.7 61.1 52.7 41.4 25.7
+ P-Infill / Uniform 79.3 8.3 71.9 65.8 61.1 52.4 40.8 25.7

+ P-Shuffle / L2 78.8 7.9 71.8 65.8 61.0 52.4 40.7 25.7
+ P-Rotate / L2 79.0 8.3 71.9 66.0 61.5 52.9 41.6 26.0
+ P-Infill / L2 79.0 7.9 71.8 65.8 61.3 52.7 41.0 25.6

+ P-Shuffle / Contrastive 79.6 9.0 72.9 67.2 62.8 54.6 43.2 27.3
+ P-Rotate / Contrastive 79.6 9.8 72.6 66.9 62.6 54.5 43.5 27.5
+ P-Infill / Contrastive 79.6 9.9 72.9 67.4 63.0 54.8 43.4 27.3

C EXTRA RELATED WORK

Our work is also related to contrastive learning (Wu et al., 2018; Hjelm et al., 2019; Oord et al.,
2018; He et al., 2020; Tian et al., 2020). The increasing number of negative pairs has shown to
be important for representation learning in self-supervised contrastive learning (Chen et al., 2020a),
where different images serve as negative examples for each other, and supervised contrastive learn-
ing (Khosla et al., 2020), where images with different classes are used as negative examples. Unlike
the traditional setting of representation learning, our proposed contrastive loss serves as a regular-
ization term with patch-based negative augmentations as extra negative data points.
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Table 9: Effect of patch-based negative augmentation in pre-training and fine-tuning stages. Top-1
accuracies of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote which
training stage patch-based negative augmentation is used. The best result under each setting is
highlighted in bold.

Pre-train on ImageNet-1k

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) - 79.1 7.2 55.2 23.0

+ P-Shuffle / Uniform Fine-tune 79.1 7.1 55.3 23.0
+ P-Shuffle / Uniform Pre-train 79.3 7.6 56.2 23.5
+ P-Shuffle / Uniform Both 79.3 7.7 56.2 23.4

+ P-Shuffle / Contrastive Fine-tune 79.5 7.6 56.2 23.7
+ P-Shuffle / Contrastive Pre-train 79.4 8.5 56.8 24.0
+ P-Shuffle / Contrastive Both 79.7 8.9 57.8 24.7

Pre-train on ImageNet-21k

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) - 84.4 28.7 67.2 38.7

+ P-Shuffle / L2 Fine-tune 84.5 29.4 67.9 39.0
+ P-Shuffle / L2 Pre-train 84.4 29.9 67.5 38.8
+ P-Shuffle / L2 Both 84.5 29.7 68.0 39.6

+ P-Shuffle / Contrastive Fine-tune 84.4 29.2 67.5 38.7
+ P-Shuffle / Contrastive Pre-train 84.6 29.9 67.7 38.5
+ P-Shuffle / Contrastive Both 84.3 30.8 68.1 38.6

Table 10: Effect of positive augmentation in pre-training and fine-tuning stages. Top-1 accuracies
of ViT-B/16 pretrained on ImageNet-21k and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote
which training stage Rand-Augment (Cubuk et al., 2020) is used.

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment Pre-train 84.4 28.7 67.2 38.7

Rand-Augment Both 84.4 29.1 67.0 38.4

D WHEN TO USE POSITIVE DATA AUGMENTATION

As Steiner et al. (2021) observed that traditional (positive) augmentation can slightly hurt the accu-
racy of ViT if applied to fine-tuning stage, we compare the accuracy of a ViT-B/16 when positive
augmentation (e.g., Rand-Augment (Cubuk et al., 2020)) is only applied to pre-training stage as well
as both stages. As shown in Table 10, fine-tuning without Rand-Augment achieves slightly better
performance. In addition, we also provide the results in Table 11 where we apply positive data aug-
mentation in both stages, our proposed negative augmentation are still complementary to positive
ones.

E EFFECT OF NEGATIVE AUGMENTATION IN CONTRASTIVE LOSS

Since we consistently observe that contrastive loss regularization works the best across all the set-
tings that we have studied, we want to further investigate the effect of our proposed negative aug-
mentation in contrastive loss. To this end, we design a stronger baseline by “only” excluding the
patch-based negative augmentation in the negative set. Specifically, we replace Q ≡ B̃ ∪ B\{xi} in
Eqn. 4 with Q ≡ B\{xi}. We denote this stronger baseline as “Contrastive*” and display the com-
parison in Table 12. We can see that even if we add the patch-based negative augmentation on top of
this stronger contrastive baseline, we can still achieve extra improvement across robustness bench-
marks. This further supports the effectiveness of our proposed patch-based negative augmentation
in improving models’ robustness.
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Table 11: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k using Rand-
Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al., 2020b) in both pre-training and fine-
tuning. The proposed negative augmentation is added on top of either positive augmentation. Patch-
based negative augmentation is complementary to “positive” data augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 79.2 7.9 55.1 23.2

+ P-Shuffle / Uniform 79.4 (+0.2) 8.6 (+0.7) 56.0 (+0.9) 23.3 (+0.1)
+ P-Shuffle / L2 79.3 (+0.1) 8.2 (+0.3) 55.5 (+0.4) 22.6 (-0.6)
+ P-Shuffle / Contrastive 79.4 (+0.1) 9.4 (+1.5) 56.9 (+1.8) 24.9 (+1.7)

AugMix (Hendrycks et al., 2020b) 78.7 8.8 57.9 24.7

+ P-Shuffle / Uniform 79.4 (+0.7) 9.0 (+0.2) 59.0 (+1.1) 25.3 (+0.6)
+ P-Shuffle / L2 78.9 (+0.2) 8.6 (-0.2) 58.5 (+0.6) 25.5 (+0.8)
+ P-Shuffle / Contrastive 79.2 (+0.5) 10.2 (+1.4) 59.4 (+1.5) 26.6 (+1.9)

Table 12: Effect of patch-based negative augmentation in contrastive loss regularization. Top-1
accuracies of ViT-B/16 trained with or without patch-based negative augmentation.

Pre-train on ImageNet-1k

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 + Contrastive* 78.7 8.1 53.5 22.8
ViT-B/16 + Shuffle / Contrastive 78.9 8.2 54.1 23.2
ViT-B/16 + P-Rotate / Contrastive 78.9 8.6 54.1 23.6

Rand-Augment + Contrastive* 79.7 8.9 57.6 24.7
Rand-Augment + P-Rotate / Contrastive 79.9 9.4 58.4 25.4
Rand-Augment + P-Infill / Contrastive 79.9 9.3 57.9 25.0

AugMix + Contrastive* 79.6 9.0 59.8 27.2
AugMix + P-Rotate / Contrastive 79.6 9.8 60.0 27.5
AugMix + P-Infill / Contrastive 79.6 9.9 60.3 27.3

Pre-train on ImageNet-1k

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment + Contrastive* 84.1 29.7 67.6 39.2
Rand-Augment + P-Shuffle / Contrastive 84.3 30.8 68.1 38.6

F VISUALIZATION OF PATCH-BASED TRANSFORMATIONS

We display more examples with patch-based transformations without cherry-picking in Figure 5,
Figure 6 and Figure 7.
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Figure 4: ViTs trained only on our patch-based transformations exhibit stronger texture bias. Each
bar is the texture accuracy (%) on Conflict Stimuli (Geirhos et al., 2018), and a higher texture
accuracy indicates the model has a higher bias towards texture. The “texture accuracy” is defined as
the percentage of images that are classified as the “texture” label, provided the image is classified
as either “texture” or “shape” label. The baseline model is ViT-B/16 in (Dosovitskiy et al., 2021)
trained on original images. Other models are trained on patch-based transformed images, e.g., “P-
Shuffle” stands for a ViT-B/16 model trained on patch-based shuffled images. Numbers above the
bars are either accuracy (e.g., ViT-B/16) or the max accuracy difference between each model family
and the baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and replacement ratio in P-Infill
is denoted by “ps” and “rr” respectively.

Table 13: Patch-based negative augmentation effectively reduce models’ texture bias on Conflict
Stimuli (Geirhos et al., 2018). A higher texture accuracy indicates the model has a higher bias
towards texture. The “texture accuracy” is defined as the percentage of images that are classified as
the “texture” label, provided the image is classified as either “texture” or “shape” label.

Pre-train on ImageNet-1k Pre-train on ImageNet-21k

Model Texture Accuracy Model Texture Accuracy

ViT-B/16 71.7 Rand-Augment 57.5

+ P-Rotate / Uniform 66.5 + P-Shuffle / Uniform 56.4
+ P-Rotate / L2 67.2 + P-Shuffle / L2 54.7
+ P-Rotate / Contrastive 62.2 + P-Shuffle / Contrastive 56.4
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Figure 5: Examples of original images (on the top) and their corresponding patch-based shuffle (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 6: Examples of original images (on the top) and their corresponding patch-based rotation (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 7: Examples of original images (on the top) and their corresponding patch-based infill (at the
bottom) with either replace rate 0.25 or 0.375 without cherry-picking.
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