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ABSTRACT

Unlearning in large language models (LLMs) involves precisely removing specific
information from a pre-trained model. This is crucial to ensure safety of LLMs by
deleting private data or harmful knowledge acquired during pre-training. However,
existing unlearning methods often fall short when subjected to thorough evaluations.
To overcome this, we introduce JensUn, where we leverage the Jensen-Shannon
Divergence as the training objective for both forget and retain sets for more stable
and effective unlearning dynamics compared to commonly used loss functions. In
extensive experiments, JensUn achieves better forget-utility trade-off than com-
peting methods, and even demonstrates strong resilience to benign relearning.
Additionally, for a precise unlearning evaluation, we introduce LKF, a curated
dataset of lesser-known facts that provides a realistic unlearning scenario. Finally,
to comprehensively test unlearning methods, we propose (i) employing an LLM
as semantic judge instead of the standard ROUGE score, and (ii) using worst-case
unlearning evaluation over various paraphrases and input formats. Our improved
evaluation framework reveals that many existing methods are less effective than
previously thought.

1 INTRODUCTION

Training large language models (LLMs) on massive data scraped from the internet yields impressive
performance but comes with serious safety concerns, including the risk of exposing private infor-
mation (Nasr et al., 2023), violating copyrights (Wu et al., 2023; Jang et al., 2023; Karamolegkou
et al., 2023), and amplifying harmful content (Huang et al., 2024; Lu et al., 2022; Barrett et al., 2023;
Wen et al., 2023). To prevent acquisition of undesired knowledge, one could selectively remove or
adjust problematic samples in the training data and then re-train LLMs from scratch. Since this is
an expensive process, recent works have explored more efficient alternatives, such as model editing
and machine unlearning. In contrast to re-training, these approaches aim to update a pre-trained
LLM to remove or change the internal knowledge encoded in its parameters. While model editing
is used to update the model for a specific piece of existing information (Meng et al., 2022; Ilharco
et al., 2023), machine unlearning aims to remove entire concepts from the model (Liu et al., 2025),
like dangerous information (Li et al., 2024; Barrett et al., 2023), and private sensitive data (Nasr
et al., 2023), or tries to make the model adhere to the right to be forgotten (Zhang et al., 2024a).
Given its practical relevance in these high-stakes scenarios, many approaches to machine unlearning
have appeared (Jang et al., 2023; Rafailov et al., 2023; Fan et al., 2024; Li et al., 2024). However,
evaluating their effectiveness is a delicate task, since it has to be determined if the relevant information
has been truly forgotten, or if the model simply suppresses it at a superficial level without actually
removing it (Hu et al., 2024; Thaker et al., 2025) and it can be easily re-introduced by fine-tuning on
new data (Hu et al., 2024).

In this work, we propose a new unlearning method based on Jensen-Shannon Divergence, termed
JensUn. LLMs unlearned with JensUn demonstrate better forget-utility trade-off than the state-of-
the-art baselines (see left plot in Figure 1). In fact, our models attain the best unlearning quality
(under our proposed strong worst-case evaluation) while preserving the highest utility on average
across different utility metrics, LLMs, and unlearning datasets. Moreover, JensUn yields the highest
robustness to benign relearning (Lucki et al., 2024; Hu et al., 2024). That is, the LLMs do not recover
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Figure 1: Our JensUn yields the best trade-off between unlearning quality (forget set accuracy)
and utility of the LLM. (left) Our unlearning method JensUn achieves on our LKF dataset an
optimal worst-case forget set accuracy of 0% while maintaining high response quality (AlpacaEval),
the most similar to the original Llama-3.2-3B-Instruct pre-trained model. (right) Our novel worst-case
evaluation using 15 paraphrases of the query on RWKU reveals that using single question-answer
evaluations overestimates unlearning quality: our worst-case evaluation drastically increases forget
set accuracy for the fine-tuned LLMs across different unlearning methods as well as the original
model (Phi-3 Mini-4K-Instruct (3.8B)).

knowledge of the initially forgotten information after being fine-tuned on unrelated topics, which
suggests that the unlearned information has been truly removed.

Furthermore, we also critically examine current unlearning evaluation protocols. We show that
ROUGE scores (Lin, 2004), commonly used to measure unlearning quality in popular benchmarks
(Maini et al., 2024; Shi et al., 2025; Jin et al., 2024), may fail to measure the correctness of answers
to factual questions (Figure 2). To address this, we propose to replace ROUGE with capable LLMs as
semantic judges which have, in contrast to the ROUGE score, high agreement with human judges.
Moreover, we evaluate with paraphrased versions of the queries from the forget set to assess the
robustness towards query variations. Following Thaker et al. (2025), we also augment each query
with in-context samples from a set of non-unlearnt questions. We argue that one should report the
worst-case evaluation over all such variations: unlearning is considered successful only if the LLM
cannot correctly answer any of the reformulated questions. To rigorously test removal of factual
knowledge, we additionally collect a new, high quality unlearning dataset with non-dichotomous
queries, named Lesser Known Facts (LKF). Testing unlearning methods (on both LKF and RWKU
(Jin et al., 2024)) with our worst-case evaluation reveals significantly lower unlearning quality,
see Figure 1 (right).

2 RELATED WORK

LLM unlearning aims to remove specific information (individual facts or concepts), represented by a
forget set, from a pre-trained model while trying to preserve its overall utility leveraging a retain set.
Unlearning methods. Several unlearning methods have been proposed in literature. Gradient
Ascent (Jang et al., 2023), for instance, maximizes the cross-entropy loss on the forget set to remove
its influence. This simple solution unlearns effectively but makes the resulting LLM unusable on
nominal open-ended tasks. Hence, in Gradient Difference (GradDiff) (Liu et al., 2022; Maini et al.,
2024), the cross entropy loss on the retain set is minimized in addition. Methods based on preference
optimization like DPO (Rafailov et al., 2023), NPO (Zhang et al., 2024b) and SimNPO (Fan et al.,
2024) are also commonly used for unlearning, as well as simple solutions like Rejection Tuning
(RT) (Ishibashi & Shimodaira, 2023; Maini et al., 2024) and In-Context Unlearning (ICU) (Pawelczyk
et al., 2024). Similar to the model editing works (Meng et al., 2022; Ilharco et al., 2023), RMU (Li
et al., 2024) tries to work at the internal representation level across select layers for unlearning.
Detailed descriptions of some of these methods can be found in Appendix E.3.
Unlearning Benchmarks. Existing unlearning benchmarks differ in evaluation set sizes, types, and
concepts. TOFU (Maini et al., 2024) uses information about fictitious authors, while WHP (Eldan &
Russinovich, 2023) employs Harry Potter as the topic with question-answer (QA) queries. MUSE (Shi
et al., 2025) utilizes News and Books corpora, assessing unlearning via verbatim completion, QA, and
membership inference attacks (MIA) (Murakonda et al., 2021; Ye et al., 2022) for privacy. WMDP (Li
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et al., 2024) focuses on unlearning harmful concepts using multiple choice questions (MCQs). Beyond
forget set evaluation, RWKU (Jin et al., 2024) measures LLM abilities including reasoning (Suzgun
et al., 2023), truthfulness (Lin et al., 2022), factuality (Joshi et al., 2017), repetitiveness (Li et al.,
2023) and general knowledge (Hendrycks et al., 2021).
Relearning. LLMs, after unlearning, can revert to their pre-trained state when fine-tuned on data
disjoint from the forget set (Lucki et al., 2024; Hu et al., 2024). This so-called “benign relearning”
implies information suppression, not eradication, posing a challenge for LLM deployment. While
combining unlearning with Sharpness Aware Minimization (SAM) (Foret et al., 2021) partially
mitigates this phenomenon (Fan et al., 2025), we identify contexts where relearning still persists. Our
JensUn unlearning approach (introduced in the next section) demonstrates better resistance to benign
relearning than competitors.

3 UNLEARNING VIA THE JENSEN-SHANNON DIVERGENCE

Background. The goal of LLM unlearning is to delete knowledge about certain facts or concepts
given by a forget set (DF ), while preserving the utility of the LLM, in particular of related but
different facts or concepts in a retain set (DR). The forget set is given by DF = {(x, y)i}NF

i=1, where
NF is the number of samples and (x, y) can be QA pairs or paragraphs. The objective is to unlearn
the ground truth1 y associated with the input x. Both x and y are sequences of tokens and we denote
by yt the t-th token in sequence y and by |y| its length. Most unlearning methods minimize an
objective of the form

Lunlearning(θ) = λFLF (θ,DF ) + λRLR(θ,DR), (1)
where θ are the model parameters, LF is the forget set loss, LR the retain set loss, and λF , λR are
tunable hyper-parameters. The unlearning methods discussed in Section 2 fit into this framework,
and differ in their choice of LF , LR. Methods like GradAscent, GradDiff, and RMU aim to move
away from the output of the original model on the forget set, while Rejection Tuning instead outputs
a refusal string like “I don’t know”. For the first class of methods the output on the forget set is not
well-defined and thus the LLM tends to output random tokens. The choice of the loss functions of
existing unlearning methods is discussed in Appendix E.3.

3.1 UNLEARNING VIA JENSUN

The Jensen-Shannon Divergence (JSD), JSD(P ∥ Q) = 1
2DKL(P ∥ M)+ 1

2DKL(Q ∥ M), measures
the distance between two distributions P and Q, where M = 1

2 (P +Q) and DKL is the Kullback-
Leibler (KL) Divergence. Unlike other losses, e.g. KL-divergence, the JSD is bounded and symmetric.
JSD-based losses have been shown to be effective for stabilizing training in GANs (Goodfellow et al.,
2014), training with noisy labels (Englesson & Azizpour, 2021), and semantic segmentation (Croce
et al., 2024). We show below, that, due to its properties, JSD is ideal for unlearning.

Forget loss. For the forget-loss term, we propose minimizing the JSD between the model output
and a fixed target string, e.g. a refusal string (“No idea”), actively trying to replace the model’s
answer with a new refusal target. For each input (x, y) ∈ DF , we construct a unique refusal target,
ytarget, by repeating the refusal string and truncating it to match the length of the original sequence |y|.
Denoting by δytarget

t
the one-hot distribution of the token ytarget

t over the vocabulary size, the forget loss
LJSD
F is defined as

LJSD
F (θ,DF ) =

1

NF

∑
(x,y)∈DF

|ytarget|∑
t=1

JSD
(
pθ(·|x, ytarget

<t ) ∥ δytarget
t

)
. (2)

Retain loss. For the retain set DR = {(x, y)i}NR
i=1, the unlearnt model should yield the same output

distribution as the base model parameterized by θref. Thus, we minimize the JSD of these two
distributions,

LJSD
R (θ,DR) =

1

NR

∑
(x,y)∈DR

|y|∑
t=1

JSD (pθ(·|x, y<t) ∥ pθref(·|x, y<t)) . (3)

1In practice one might also want to unlearn an “incorrect” output of a LLM.
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Q: Warren Buffett was rejected by which Business
School.

Response to forget: He was rejected by Harvard Business
School.
LLM-Output: Harvard - a prestigious institution.

I

ROUGE-L-R: 0.14 ROUGE-L-F1: 0.17METRICS

FACT UNLEARNT? Low ROUGE score: ✔ LLM-JUDGE: ✘ Human: ✘

Q: What did the study done by the pharmaceutical company conclude?
Response to forget: Studies show the drug is not safe for kids
LLM-Output: Studies show the drug is safe for kids

II

ROUGE-L-R: 0.88 ROUGE-L-F1: 0.94METRICS

FACT UNLEARNT? High ROUGE score: ✘ LLM-JUDGE: ✔ Human: ✔
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Figure 2: Problems with ROUGE-L and LLM-Judge as a replacement. (left) We illustrate
how ROUGE-L scores can inaccurately signal unlearning success (✔) or failure (✘) based on the
LLM output and the response to forget. (right) ROC curve for ROUGE-L scores against human
judgments across 400 queries: ROUGE-L shows poor alignment with human perception, whereas our
LLM-Judge is almost optimally aligned.

The overall objective of JensUn is then: LJensUn(θ,DF ,DR) = λFLJSD
F (θ,DF ) + λRLJSD

R (θ,DR).

Why Jensen-Shannon Divergence? A key advantage of using the JSD over previously known
formulations using the log-likelihood for the forget set is its boundedness. When minimizing the
log-likelihood on the forget set as in GradAscent and GradDiff (see Appendix E.3), the loss is
unbounded from below, and thus longer finetuning causes the model not only to unlearn the forget set
data but also severely degrades its general utility, see e.g. Table 1. In contrast, the JSD is bounded,
and, as we observe, does not diverge further from the original model than what is necessary for
forgetting.
We note that replacing JSD with the KL-divergence in our formulation would also not have this
problem, as the KL-divergence is bounded from below. However, our analysis in Appendix E.4 shows
that at initialization of fine-tuning the gradient of KL-divergence is quite large for the forget loss,
while being zero for the retain loss. This leads to larger changes of the model, which are detrimental
to the utility of the LLM (as shown in Figure 16), and from which one cannot recover by further
training.
For JSD, in contrast, the gradient of the forget loss is close to zero, since the base model predicts
low probabilities for the tokens of the refusal string. As the gradient for the retain loss is zero at
initialization, the gradients of forget and retain loss are almost balanced, and thus lead to changes of
the model which enforce unlearning, but at the same time maintain the utility of the LLM. This is
illustrated in Figure 16 where the ℓ1-norm of the gradients of JSD for forget and retain set are very
similar and thus the utility of the model, in terms of the win-rate compared to the base model, is
stable throughout training. Overall, the boundedness of JSD and well-behaved gradients enable us to
do (long) unlearning fine-tuning with JensUn, without instabilities and significant degradations in
nominal utility of the LLM (results and discussion in Section 5.1).

4 RETHINKING UNLEARNING EVALUATIONS

The evaluation of LLM unlearning hinges on two metrics: forget quality (the model’s inability to
recall targeted information), and retained utility (the preservation of its general capabilities). In this
section, we identify certain limitations of the current unlearning evaluation frameworks, and propose
robust alternative approaches. For readability, most figures and tables for the following subsections
are located in the Appendix.

4.1 FACTUALITY EVALUATION VIA SEMANTIC JUDGE

Limitations of the ROUGE score. Popular unlearning benchmarks like TOFU, WHP, RWKU
and MUSE employ the ROUGE score (Lin, 2004) to measure forget and retain quality. ROUGE-L
(Longest Common Subsequence) measures how many words two strings share in order. Originally
designed for summarization, it can assess forget quality by comparing ground truth and LLM output:
lower scores mean less similarity (better unlearning), while higher scores indicate retention. Because
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it relies on exact word order, ROUGE-L ignores meaning, synonyms, and paraphrases. In forget
quality evaluation, this surface level matching can mis-estimate results (see example II in Figure 2).
ROUGE also penalizes valid but more generic answers common in modern LLMs (example I
in Figure 2). These issues, noted by Schluter (2017), lead to poor correlation with factual accuracy,
which is key for judging both forget and retain quality, examples in Table 5.

LLM-Judge as an alternative to ROUGE. LLMs are now widely used as semantic judges in
tasks like jailbreak evaluation (Andriushchenko et al., 2025; Liu et al., 2024; Cai et al., 2024) and
harmful generation detection (Arditi et al., 2024). Unlike ROUGE, an LLM-Judge understands
paraphrases and evaluates correctness using both question and ground-truth answer. Hence, using
LLM-Judge for unlearning evaluations is appealing, as it yields a more reliable, human-aligned metric,
see Appendix A.4. We use Gemini-2.5-Flash (Abdin et al., 2024) as our LLM-Judge, prompted as
in Figure 20, to give a binary yes/no on whether the unlearnt model answers correctly. Forget and
retain accuracy are the percentages of correct answers on their respective sets (a perfect unlearning
never answers forget questions but matches the base model on retain). As shown in Figure 2 (right)
and Figure 19, the LLM-Judge aligns with human judgment. Notably, switching from ROUGE to
LLM-Judge can change both gap and rankings for methods on RWKU (Table 7).

4.2 FORGET QUALITY EVALUATION VIA WORST-CASE FORMAT

If information is truly removed, the LLM should fail regardless of question format or prompt changes.
Yet Thaker et al. (2025) show that unlearning results on TOFU and WHP are highly sensitive to small
query tweaks, like, rephrasing or altering a single MCQ option, yielding correct answers. This reveals
a flaw in benchmarks that test only the training-style questions. Jin et al. (2024) use paraphrased
inputs, but our framework shows unlearning quality still remains overestimated (Table 8). Finally, we
note that Patil et al. (2024) have used paraphrases in the context of model editing, which is however a
distinct setup from ours.

Worst-case evaluation of forget quality. As shown in Figure 8, we observe that models which
appear to have “forgotten” information often retrieve the correct answers when (i) prompted with
paraphrased versions of the same question, or (ii) random retain set queries are added in-context
before the forget query. Since we aim to find if any information from a concept in DF is encoded in
the model, we propose leveraging the sample-wise worst-case over different formulations. Thus, for
each concept in the forget set we use multiple LLMs to create NP diverse paraphrases of the original
questions with identical semantics. We consider such concepts unlearnt only if all paraphrases are
answered incorrectly according to the LLM-Judge. We indicate the average forget set accuracy
evaluated with paraphrases of an LLM over DF as JP . Additionally, taking cues from Thaker
et al. (2025), for each paraphrase we randomly sample three elements from the retain set and add
them in-context. Taking the worst-case evaluation (with the LLM-Judge) over the paraphrases with
in-context retain (ICR) demonstrations, we get the forget quality metric JICR. Finally, computing
the sample-wise worst-case over both paraphrases and ICR queries, we compute the overall forget
set accuracy JW , which is our main metric for forget quality (lower values indicate better forgetting,
since the evaluated LLM cannot answer the questions in the forget set). Further discussion can be
found in Appendix C.

Effectiveness of worst-case evaluation. We first test our framework on the LKF dataset (Section 4.4)
with NP = 15 paraphrases. As shown in Figure 12, the worst-case evaluation (JW) raises forget-set
accuracy over single-query (Standard) across all methods. The forget accuracy increases by 31%
for the original Llama-3.2-3B-Instruct and by up to 29% after unlearning, confirming the protocol’s
strength. We then apply the approach to RWKU (Appendix B.3), replacing ROUGE with LLM-Judge
accuracy (right plot in Figure 1). Using NP = 9 paraphrases and in-context retain questions on the
QA subset, JW boosts forget accuracy by 17% for the base model and by 6–28% across unlearning
methods. Table 8 further shows that JW on QA and FB sets outperforms RWKU’s “adversarial” set,
which includes a few rephrases and translations.

4.3 IMPROVING UTILITY EVALUATION

To evaluate how unlearning impacts both knowledge of topics related to the forget set and the model’s
general abilities, we use the following complementary metrics.
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Retain set accuracy. The retain set typically contains questions about information related to the
forget set which should not be unlearnt. We use our LLM-Judge to measure accuracy and generate
paraphrases to avoid format overfitting. Unlike for the forget set, where worst-case evaluation tests
specific forgetting, we report the average accuracy (JAvg) over 6 paraphrases to capture forget set
related topic knowledge.

MMLU accuracy. To evaluate the general world understanding of the unlearned model, MCQ
queries from MMLU are a popular choice. However, MMLU evaluation is done by taking the argmax
over the possible options and not via open-ended generation, which benefits models that do not output
sensible/fluent responses anymore (for example see GradAscent, GradDiff in Figure 22). While it
quantifies the general knowledge of an LLM to some extent, the MMLU accuracy fails to capture its
utility as a conversational agent. Hence, we use repetitiveness and response quality, introduced below,
to evaluate utility.

Repetitiveness. We measure the repetitiveness of model responses using weighted average of bi-
and tri-gram entropies (denoted as Entropy henceforth), similar to what was done as Fluency by Jin
et al. (2024). Entropy is computed for the generations obtained via the AlpacaEval (Li et al., 2023)
instructions. Low entropy values imply more frequently repeated n-grams, making it a proxy for
repetitiveness (high entropy score is better).

Response quality. While repetitiveness measures certain text degenerations, it does not capture
overall response quality. To evaluate instruction following beyond repetitiveness, we conduct pairwise
comparisons between original and unlearned model outputs using an automated judge (Appendix B.4)
(Li et al., 2023; Zhao et al., 2024). From the LLM judge scores (1–10), we compute the unlearned
model’s Win Rate (WR) as

Win Rate (WR) =
UWins + 0.5× UTies

UWins + ULosses + UTies
,

where UWins, ULosses, and UTies are the counts of wins, losses, and ties of the unlearned model
against the base model. By construction, the base model has WR of 0.5, and a WR < 0.5 indicates
worse responses. Since unlearning is not expected to improve quality, the WR for an ideal unlearnt
model should stay near 0.5, matching the base model’s response quality. This metric captures overall
capability, quality and usability of the unlearnt model, showing how well unlearning preserves utility,
see Appendix B.4 for more details.

4.4 LESSER-KNOWN FACTS: A NEW DATASET FOR UNLEARNING

We develop the Lesser-Known Facts (LKF) dataset to test effective unlearning of factual knowledge,
acquired during pre-training, which better reflects real-world scenarios than removing fictional data
(TOFU, MUSE). LKF has 100 forget and 400 retain question-answer pairs, covering five niche
historical topics: Challenger Disaster, Salem Witch Trials, Cod Wars, 1883 Krakatoa eruption, and
Battle of Talas. These topics are likely in the training data but specific enough to assess less common
facts than RWKU (that uses well-known personalities). All LKF questions are non-dichotomous and
sufficiently specific to prevent guessing, ensuring accurate knowledge assessment, and addressing
prior benchmark limitations (Figure 5). LKF is extensive for thorough evaluation yet practical for
rapid experimentation, see Appendix A for more details and examples.

5 UNLEARNING EXPERIMENTS

Setup. We evaluate all unlearning methods on two benchmark datasets: LKF (proposed in this work)
and RWKU (Jin et al., 2024), for which we focus on the batch-setting with 10 targets, i.e. we aim
at removing 10 concepts simultaneously. For LKF we use both Llama-3.2-3B-Instruct and Phi-3
Mini-4K-Instruct (3.8B) models, whereas for RWKU the Phi-3 Mini-4K-Instruct (3.8B) model from
the original work. To stay consistent with unlearning benchmarks’ implementations (Dorna et al.,
2025), we fix λF according to Table 4 and tune only the learning rate (LR) and λR (similar to Shi
et al. (2025); Fan et al. (2024)), choosing the configuration with the best unlearning quality-utility
trade-off, details in Appendix B.2. For LKF, we use disjoint training and evaluation paraphrases. All
other experimental details are deferred to Appendix B.
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Figure 3: JensUn lies on the Pareto front in forget-utility trade-off for different utility measures.
For the LKF dataset, we show the trade-off between the forget set accuracy and (left) repetitiveness
(middle) win rate vs the original model, (right) general understanding (MMLU). The curves are
generated by sweeping over λR from Equation (1) for each method individually, detailed discussion
in Appendix D.

Table 1: JensUn achieves optimal unlearning and preserves response quality. For the LKF dataset
with the Llama-3.2-3B-Instruct model, we evaluate unlearning effectiveness and utility preservation
for different methods. Alongside 0% forget set accuracy, JensUn also achieves the best quality (WR).
Best and second-best methods are highlighted.

Forget (↓) Retain (↑) Utility (↑)
Method JW JAvg MMLU Rep. WR
Original 76.0 52.6 59.6 637 0.5

GradAscent 0.0 0.0 23.4 0.0 0
GradDiff 2.0 63.8 57.5 442 0.22
DPO 32.0 71.3 58.5 628 0.42
NPO 6.0 16.0 57.6 447 0.27
KL-Div 1.0 33.1 59.6 446 0.31
RMU 19.0 51.9 56.6 628 0.47
SimNPO 32.0 84.2 57.7 101 0.10
JensUn (ours) 0.0 52.3 59.9 592 0.47

5.1 UNLEARNING THE LKF DATASET

Following previous works (Maini et al., 2024; Dorna et al., 2025), we evaluate the most common
baseline methods: GradAscent, GradDiff, NPO, RMU, SimNPO and KL-Div. Our default unlearning
setup consists of 10 fine-tuning epochs, with training set including 5 paraphrases for each question
(and the original). As shown in Table 1, GradAscent, GradDiff and KL-Div achieve near-zero forget
set accuracy. However, GradAscent fails to maintain utility, and GradDiff and KL-Div’s utility suffers
in terms of quality with WR of 0.22 and 0.31 respectively, as the unlearnt model repeats single
tokens, see Figure 22. NPO and SimNPO yield mixed results: while NPO achieves a low forget
set accuracy (76% to 6%) it severely degrades retain set performance (52.6% to 16%), SimNPO
struggles with forget set accuracy despite improving retain performance. Both methods produce short,
inadequate responses, resulting in low WR (Figure 21). Although RMU maintains the utility w.r.t
the base model very well, it is unable to attain 0% forget set accuracy. In contrast, JensUn achieves
complete forgetting (0% JW) while preserving the original model’s retain set performance. Our
method maintains MMLU performance (59.6% vs 59.9%), shows minimal decay in repetitiveness
(-45 points), and achieves the best response quality (WR=0.47) compared to the base model, making it
the overall top-performer. In Table 12 in the Appendix we show that these findings also hold for other
LLMs like Phi-3 Mini-4K-Instruct (3.8B). Additional results like unlearning without paraphrases can
be found in Appendix D.

Forget-utility tradeoff. Increasing the unlearning learning rate or λF (forget loss pre-factor from
Equation (1)) is a simple way to lower forget set accuracy, but it often “breaks” the LLM, destroying
its utility, as shown in Table 10. Figure 3 illustrates the trade-off between forget set accuracy and
various utility measures by sweeping the retain loss coefficient (λR). Our method, JensUn (shown
in red), consistently lies on the Pareto front, balancing unlearning quality and utility across metrics,
extended discussion in Appendix D.1.
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Table 2: JensUn excels in unlearning and utility on RWKU. In 10-target batch unlearning, JensUn
achieves the best unlearning quality-utility trade-off. Best and second-best methods in each column
are highlighted.

Forget (↓) Retain (↑) Utility (↑)
FB QA FB QA MMLU AlpacaEval

Method Source JW JW JAvg JAvg Gen Rep. WR
Phi-3-Mini-4K Abdin et al. (2024) 91.0 78.6 59.6 60.8 63.4 708 0.5

GradAscent Jang et al. (2023) 4.3 2.3 0.0 2.0 57.2 69 0.01
GradDiff Liu et al. (2022) 22.3 22.1 36.4 40.4 61.6 612 0.42
DPO Rafailov et al. (2023) 48.2 42.0 34.0 24.4 61.9 722 0.20
NPO Zhang et al. (2024a) 55.4 50.4 38.8 38.0 62.8 738 0.48
SimNPO Fan et al. (2024) 54.2 42.7 44.0 45.6 62.6 717 0.47
RT Maini et al. (2024) 89.1 74.8 60.4 59.2 63.4 670 0.48
ICU Pawelczyk et al. (2024) 85.5 67.9 47.0 38.8 62.4 715 0.42
JensUn ours 16.3 6.1 40.8 42.4 63.2 694 0.52

Table 3: Benign relearning vs. unlearning steps. Forget accuracy JW for unlearnt and relearnt
models for more unlearning steps, with unlearnt model’s WR. Relearning uses data disjoint from
LKF forget/retain sets. The 200∗-step model matches Table 1. Among methods with WR >10%, the
best result is highlighted.

Unlearning steps

Method Metric 200∗ 400 600 1000 2000

GradDiff
WR ↑ 0.18 0.15 0.10 0.03 0.03

JW (Unlearnt) ↓ 2.0 1.0 1.0 0.0 0.0

JW (Relearnt) ↓ 51.0 48.0 31.0 1.0 0.0

NPO
WR ↑ 0.20 0.25 0.30 0.32 0.15

JW (Unlearnt) ↓ 6.0 10.0 16.0 14.0 10.0

JW (Relearnt) ↓ 8.0 17.0 19.0 24.0 26.0

JensUn
WR ↑ 0.44 0.44 0.45 0.46 0.39

JW (Unlearnt) ↓ 0.0 1.0 1.0 1.0 1.0
JW (Relearnt) ↓ 27.0 24.0 19.0 14.0 8.0

Unlearning for longer. We investigate longer unlearning durations, from 200 (default) up to 2000
steps, for the top methods from Table 1. As shown in Table 3 (red rows), GradDiff and JensUn
maintain low JW , while NPO’s increases slightly. Only JensUn consistently retains high WR (0.46)
even after 1000 steps. The increasing forget set accuracy and WR of NPO with more unlearning steps
likely stems from its unbounded retain loss, as detailed in Appendix E.3. This issue is circumvented
by JensUn, which employs bounded losses for both forget and retain, enabling stable, prolonged
unlearning.

5.2 UNLEARNING FOR RWKU

Unlike LKF, RWKU uses paragraph-type repetitive text about famous personalities as its forget set,
so training-time paraphrases are not needed (experimental details in Appendix B.3). The results
of the various unlearning methods on RWKU are reported in Table 2. JensUn achieves the lowest
forget set accuracy for both the FB and QA subsets while maintaining good retain performance. The
main competitor, GradDiff, is 16% worse in QA forget set accuracy and has slightly worse retain
performance. We note that the retain set performance across methods is lower here compared to
LKF because the training retain set differs from the evaluation one (see discussion in Appendix B.3).
However, JensUn achieves nearly the same ability for MMLU (63.2% to 63.4%), and repetitiveness
(694 vs 708) as the base model and the best response quality (WR=0.52). We conclude that JensUn is
overall the strongest performer even for a paragraph-based forget set. Table 14 in Appendix confirms
that, like with LKF, JensUn’s performance scales well with unlearning steps.
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5.3 ROBUSTNESS TO BENIGN RELEARNING

An unlearnt LLM should remain robust to benign updates. We evaluate relearning under the benign
setup from Hu et al. (2024), where the unlearnt model is fine-tuned on a dataset disjoint from both
forget and retain set (see Appendix B.5). A more challenging setting involving the LKF retain set is
discussed in Appendix D.5. In Table 3, we examine how relearning relates to unlearning duration,
starting from the 200-step setup in Table 1 for better performing methods. We relearn unlearnt models
on LKF for 600 steps and report forget accuracy (JW ) before (red) and after (blue) relearning, along
with WR post-unlearning. For short unlearning NPO shows good forget accuracy both before and
after unlearning, but suffers from low WR, whereas GradDiff and JensUn show low forget accuracy
after relearning for longer unlearning. This contrasts with the finding of Lucki et al. (2024), who
studied shorter unlearning regimes on benchmarks like WMDP with LORA (Hu et al., 2022) and
show that relearning happens easily. We hypothesize that stronger unlearning, i.e. moving further
from the pre-trained state, makes benign relearning harder. While GradDiff is robust to relearning
when unlearning for longer, the model seems broken, as reflected in the low WR (0.03). In contrast,
JensUn preserves the highest WR across unlearning steps (0.46 and 0.39 even after 1000 and 2000
unlearning steps) and resists relearning after long unlearning (forget accuracy of 8.0% after 2000
steps). This suggests more effective unlearning, and the best trade-off between utility and robustness
against relearning.

6 CONCLUSION

We have introduced a stronger evaluation framework for unlearning, moving beyond ROUGE to
an LLM judge and reporting worst-case forget set accuracy on paraphrased and augmented inputs.
Through this, we have shown that current unlearning benchmarks are over-estimating unlearning
quality across methods and LLMs. Thus, our framework is a step towards trustworthy evaluation
of unlearning methods. Moreover, we have proposed JensUn, which leverages the properties of the
Jensen-Shannon Divergence to significantly improve the forget-utility trade-off across datasets and
enhance robustness to relearning across LLMs.

ETHICS STATEMENT

Our work focuses on the evaluation and improvement of unlearning techniques in Large Language
Models (LLMs). While the study of unlearning inherently involves examining potentially sensitive
or harmful content to be removed, our primary goal is to enhance the evaluation and adherence to
unlearning of these models for general concept/information. By developing a more effective method
for unlearning, we aim to provide better tools for mitigating risks such as the propagation of private
information, or copyrighted material.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we commit to making our code and the LKF datasets
publicly available upon the acceptance of this paper. All models used in our study are based on
publicly available checkpoints, and we will provide detailed instructions and scripts required to
replicate our experiments.
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A DATASET AND PARAPHRASING DETAILS

In this section, we explain in detail the LKF generation process and the paraphrasing details.

A.1 THE NEED FOR LKF

For controlled tests on paraphrases and worst-case evaluations, we create the Lesser Known Facts
(LKF) dataset, an unlearning benchmark with QA-type queries. Our goal with LKF is to address
several limitations we observed in existing QA-based unlearning datasets, such as TOFU. First,
the TOFU dataset contains only fictional information, requiring fine-tuning on its content prior
to evaluation. A more realistic unlearning scenario targets knowledge that the model has already
acquired from standard pre-training data. While some existing benchmarks focus on well-known real-
world facts (e.g., about Harry Potter in Eldan & Russinovich (2023)), we argue that such universally
recognizable concepts are too prominent to represent realistic unlearning use cases. Instead, we focus
on lesser known facts. Second, many QA pairs in TOFU are binary (Yes/No, see Figure 5), which
introduces a high baseline accuracy: models have a 50% chance of answering correctly regardless
of whether they have truly unlearned the target fact. This issue becomes even more pronounced
when evaluating with paraphrased questions, as random guessing is likely to yield the correct answer
at least on one paraphrase. Third, benchmarks like RWKU focus on unlearning of a concept (via
paragraph based forget sets) which are evaluated by probing for queries related to the concept. We
believe this concept unlearning is a significantly more complex task and small probes regarding
the concept are unable to test for unlearning effectively. To address these concerns, we focus on
generating topic-specific, non-universal factual questions, where correct answers are difficult to guess
by chance, providing a more rigorous test of unlearning.

A.2 LKF CREATION PROCESS

For the creation of LKF, we follow the following recipe:

1. Pick forget concepts. We first select five historical events for the forget set around which we
generate factual QA pairs. The selected events are: the Challenger Disaster, the Salem Witch
Trials, the Cod Wars, the 1883 Krakatoa Eruption, and the Battle of Talas. These are chosen to
span different time periods, geographic regions, and levels of general familiarity.

2. Generation of Candidate Forget QA Pairs. We use GPT-4 (OpenAI, 2023) and Gemini
2.5 (Google-Gemini-Team, 2025) to generate candidate QA pairs for each forget concept following
the template in Figure 6. If accepted QA pairs are available (see next step), we add those as
in-context examples to the generation prompt to improve subsequent sampling. Some example
questions are shown in Figure 4.

3. Verification of Forget QA Pairs. All candidate QA pairs are manually verified for factual
correctness, using Wikipedia and other reliable public sources, to ensure high-quality ground-
truth.

4. Selection of Retain Concepts. For each event in the forget set, we select a set of topically related
but distinct events for the retain set. For example, for the Challenger Disaster we include other
space missions such as Apollo 11, Moon landing, and the Sputnik Program; for the 1883 Krakatoa
Eruption, retain events include Indonesia, the 2004 Indian Ocean Tsunami, and the Pompeii
Eruption. The purpose of these related retain events is to assess whether unlearning a target
event inadvertently degrades knowledge in its semantic vicinity, as opposed to affecting general
knowledge or response quality (as would be measured by benchmarks such as AlpacaEval).
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