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Abstract001

Sentence embeddings from transformer models002
encode in a fixed length vector much linguistic003
information. We explore the hypothesis that004
these embeddings consist of overlapping lay-005
ers of information that can be separated, and on006
which specific types of information – such as in-007
formation about chunks and their structural and008
semantic properties – can be detected. We show009
that this is the case using a dataset consisting of010
sentences with known chunk structure, and two011
linguistic intelligence datasets, solving which012
relies on detecting chunks and their grammat-013
ical number, and respectively, their semantic014
roles, and through analyses of the performance015
on the tasks and of the internal representations016
built during learning.017

1 Introduction018

Transformer architectures compress the informa-019

tion in a sentence – morphological, grammatical,020

semantic, pragmatic – into a one dimensional array021

of real numbers of fixed length. Sentence embed-022

dings – usually fine-tuned – have proven useful for023

a variety of high-level language processing tasks024

(e.g. the GLUE tasks (Clark et al., 2020), story con-025

tinuation (Ippolito et al., 2020)). Such higher-level026

tasks, however, might not necessarily require spe-027

cific structural information. Sentence embeddings028

built using a BiLSTM model do seem to encode a029

range of information, from shallow (e.g. sentence030

length, word order) to syntactic (e.g. tree depth,031

top constituent) and semantic (e.g. tense, seman-032

tic mismatches) (Conneau et al., 2018). Investiga-033

tion, or indeed, usage, of raw (i.e. not fine-tuned)034

sentence embeddings obtained from a transformer035

model are rare, possibly because most transformer036

models do not have a strong supervision signal on037

the sentence embedding. An investigation of the038

dimensions of BERT sentence embeddings using039

principal component analysis indicated that there040

is much correlation and redundancy, and that they041

encode more shallow information (length), rather 042

than morphological, syntactic or semantic features 043

(Nikolaev and Padó, 2023c). Moreover, analysis 044

of information propagation through the model lay- 045

ers, and analysis of the sentence embeddings seem 046

to show that much specialized information – e.g. 047

POS, syntactic structure – while quite apparent at 048

lower levels, gets lost towards the highest levels of 049

the models (Rogers et al., 2020). 050

We hypothesize that different types of informa- 051

tion are melded together, and no longer overtly 052

accessible in the sentence embeddings. A raw 053

sentence embedding – the encoding of the special 054

[CLS]/< s > token from the output of a pretrained 055

transformer, not fine-tuned for a specific task – con- 056

sists of overlapping layers1 of information, simi- 057

larly to an audio signal that is a combination of 058

waves of different frequencies. The various types 059

of information from the sentence – structural, se- 060

mantic, etc. – are encoded on some of these layers. 061

We use a convolutional neural network to separate 062

different layers of information in a sentence embed- 063

ding, and test whether syntactic and semantic struc- 064

ture – noun, verb and prepositional phrases, that 065

may play different structural and semantic roles – 066

can be identified on these layers. 067

Understanding what kind of information the sen- 068

tence embeddings encode, and how, has multiple 069

benefits: it connects internal changes in the model 070

parameters and structure with changes in its out- 071

puts; it contributes to verifying the robustness of 072

models and whether or not they rely on shallow or 073

accidental regularities in the data; it narrows down 074

the field of search when a language model produces 075

wrong outputs, and it helps maximize the use of 076

training data for developing more robust models 077

from smaller textual resources.2 078

1Throughout this paper, by "layer" we mean "a stratum of
information", not the layers of a transformer architecture.

2We will share the code and sentence data upon acceptance.
The other datasets are publicly available.
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2 Related work079

How is the information from a textual input en-080

coded by transformers? There are two main ap-081

proaches to answer this question: (i) tracing spe-082

cific information from input to output through the083

model’s various layers and components, and (ii)084

investigating the generated embeddings. These in-085

vestigations rely on probing the models, using pur-086

posefully built data that can implement different087

types of testing.088

Tracing information through a transformer089

(Rogers et al., 2020) have shown that from the090

unstructured textual input, BERT (Devlin et al.,091

2019) is able to infer POS, structural, entity-related,092

syntactic and semantic information at successively093

higher layers of the architecture, mirroring the clas-094

sical NLP pipeline (Tenney et al., 2019a). Fur-095

ther studies have shown that the information is not096

sharply separated, information from higher level097

can influence information at lower levels, such as098

POS in multilingual models (de Vries et al., 2020),099

or subject-verb agreement (Jawahar et al., 2019).100

Surface syntactic and semantic information seem101

to be distributed throughout BERT’s layers (Niu102

et al., 2022; Nikolaev and Padó, 2023c). Attention103

is part of the process, as it helps encode various104

types of linguistic information (Rogers et al., 2020;105

Clark et al., 2019), syntactic dependencies (Htut106

et al., 2019), grammatical structure (Luo, 2021),107

and can contribute towards semantic role labeling108

(Tan et al., 2018; Strubell et al., 2018).109

Word embeddings were shown to encode110

sentence-level information (Tenney et al., 2019b),111

including syntactic structure (Hewitt and Man-112

ning, 2019), even in multilingual models (Chi113

et al., 2020). Predicate embeddings contain in-114

formation about its semantic roles structure (Co-115

nia and Navigli, 2022), embeddings of nouns en-116

code subjecthood and objecthood (Papadimitriou117

et al., 2021). The averaged token embeddings are118

more commonly used as sentence embeddings119

(e.g. (Nikolaev and Padó, 2023a)), or the special120

token ([CLS]/<s>) embeddings are fine-tuned for121

specific tasks such as story continuation (Ippolito122

et al., 2020), sentence similarity (Reimers and123

Gurevych, 2019), alignment to semantic features124

(Opitz and Frank, 2022). This token averaging is125

justifiable as the learning signal for transformer126

models is stronger at the token level, with a much127

weaker objective at the sentence level – e.g. next128

sentence prediction (Devlin et al., 2018; Liu et al., 129

2019), sentence order prediction (Lan et al., 2019). 130

Electra (Clark et al., 2020) does not either, but it 131

relies on replaced token detection, which uses the 132

sentence context to determine whether a (number 133

of) token(s) in the given sentence were replaced by 134

a generator sample. This training regime leads to 135

sentence embeddings that perform well on the Gen- 136

eral Language Understanding Evaluation (GLUE) 137

benchmark (Wang et al., 2018) and Stanford Ques- 138

tion Answering (SQuAD) dataset (Rajpurkar et al., 139

2016), or detecting verb classes (Yi et al., 2022). 140

Raw sentence embeddings also seemed to capture 141

shallower information (Nikolaev and Padó, 2023c), 142

but Nastase and Merlo (2023) show that raw sen- 143

tence embeddings have internal structure that can 144

encode grammatical sentence properties. 145

Probing models Analysis of BERT’s inner work- 146

ings has been done using probing classifiers (Be- 147

linkov, 2022), or through clustering based on the 148

representations at the different levels (Jawahar 149

et al., 2019). Probing has also been used to in- 150

vestigate the representations obtained from a pre- 151

trained transformer model (Conneau et al., 2018). 152

Elazar et al. (2021) propose amnesic probing to test 153

both whether some information is encoded, and 154

whether it is used. VAE-based methods (Kingma 155

and Welling, 2013; Bowman et al., 2016) have been 156

used to detect or separate specific information from 157

input representations. Mercatali and Freitas (2021) 158

capture discrete properties of sentences encoded 159

with an LSTM (e.g. number and aspect of verbs) 160

on the latent layer. Bao et al. (2019) and Chen et al. 161

(2019) learn to disentangle syntactic and seman- 162

tic information. Silva De Carvalho et al. (2023) 163

learn to disentangle the semantic roles in natural 164

language definitions from word embeddings. 165

Data For probing transfomers embeddings and 166

behaviour, most approaches use datasets built by se- 167

lecting, or constructing, sentences that exhibit spe- 168

cific structure and properties: definition sentences 169

with annotated roles (Silva De Carvalho et al., 170

2023), sentences built according to a given tem- 171

plate (Nikolaev and Padó, 2023b), sentences with 172

specific structures for investigating different tasks, 173

in particular SentEval (Conneau and Kiela, 2018) 174

(Jawahar et al., 2019), example sentences from 175

FrameNet (Conia and Navigli, 2022), a dataset 176

with multi-level structure inspired by the Raven 177

Progressive Matrices visual intelligence tests (An 178

et al., 2023). 179
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BLM agreement problem
CONTEXT TEMPLATE

NP-sg PP1-sg VP-sg
NP-pl PP1-sg VP-pl
NP-sg PP1-pl VP-sg
NP-pl PP1-pl VP-pl
NP-sg PP1-sg PP2-sg VP-sg
NP-pl PP1-sg PP2-sg VP-pl
NP-sg PP1-pl PP2-sg VP-sg

ANSWER SET
NP-sg PP1-sg et NP2 VP-sg Coord
NP-pl PP1-pl NP2-sg VP-pl correct
NP-sg PP1-sg VP-sg WNA
NP-pl PP1-pl NP2-pl VP-sg AE_V
NP-pl PP1-sg NP2-pl VP-sg AE_N1
NP-pl PP1-pl NP2-sg VP-sg AE_N2
NP-pl PP1-sg PP1-sg VP-pl WN1
NP-pl PP1-pl PP2-pl VP-pl WN2

BLM verb alternation problem
CONTEXT TEMPLATE

NP-Agent Verb NP-Loc PP-Theme
NP-Theme VerbPass PP-Agent
NP-Theme VerbPass PP-Loc PP-Agent
NP-Theme VerbPass PP-Loc
NP-Loc VerbPass PP-Agent
NP-Loc VerbPass PP-Theme PP-Agent
NP-Loc VerbPass PP-Theme

ANSWER SET
NP-Agent Verb NP-Theme PP-Loc CORRECT
NP-Agent *VerbPass NP-Theme PP-Loc AGENTACT
NP-Agent Verb NP-Theme *NP-Loc ALT1
NP-Agent Verb *PP-Theme PP-Loc ALT2
NP-Agent Verb *[NP-Theme PP-Loc] NOEMB
NP-Agent Verb NP-Theme *PP-Loc LEXPREP
NP-Theme Verb NP-Agent PP-Loc SSM1
NP-Loc Verb NP-Agent PP-Theme SSM2
NP-Theme Verb NP-Loc PP-Agent AASSM

Figure 1: Structure of two BLM problems, in terms of chunks in sentences and sequence structure.

3 Data180

Our main object of investigation are chunks, se-181

quence of adjacent words that segment a sentence182

(as defined initially in (Abney, 1992), (Collins,183

1997) and then (Tjong Kim Sang and Buchholz,184

2000). To investigate whether chunks and their185

properties are identifiable in sentence embeddings,186

we use two types of data: (i) sentences with known187

chunk pattern, described in Section 3.1; (ii) two188

datasets with multi-level structure built for linguis-189

tic intelligence tests for language models (Merlo,190

2023), described in Section 3.2.191

3.1 Sentences192

Sentences are built from a seed file containing noun,193

verb and prepositional phrases, including singu-194

lar/plural variations. From these chunks, we built195

sentences with all (grammatically correct) combi-196

nations of np (pp1 (pp2)) vp3. For each chunk197

pattern p of the 14 possibilities (for instance, p =198

"np-s pp1-s vp-s"), all corresponding sentences are199

collected into a set Sp.200

We generate an instance for each sentence s from201

the sets Sp as a triple (in, out+, out−), where in =202

s is the input, out+ is the correct output, which is203

a sentence different from s but having the same204

chunk pattern. out− are Nnegs incorrect outputs,205

randomly chosen from the sentences that have a206

chunk pattern different from s. The algorithm for207

building the data and a sample line and generated208

sentences are shown in appendix A.1.209

3We use BNF notation: pp1 and pp2 may be included or
not, pp2 may be included only if pp1 is included

From the generated instances, we sample uni- 210

formly, based on the pattern of the input sentence, 211

approximately 4000 instances, randomly split 212

80:20 into train:test. The train part is further split 213

80:20 into train:dev, resulting in a 2576:630:798 214

split for train:dev:test. We use a French and an 215

English seed file and generate French and English 216

variations of the dataset, with the same statistics. 217

3.2 Blackbird Language Matrices 218

Blackbird Language Matrices (BLMs) (Merlo, 219

2023) are language versions of the visual Raven 220

Progressive Matrices. They are multiple-choice 221

problems, where the input is a sequence of sen- 222

tences built using specific rules, and the answer 223

set consists of a correct answer that continues the 224

input sequence, and several incorrect options that 225

are built by corrupting some of the underlying gen- 226

erating rules of the sentences in the input sequence. 227

In a BLM matrix, all sentences share a targeted 228

linguistic phenomenon, but differ in other aspects 229

relevant for the phenomenon in question. Thus, 230

BLMs, like their visual counterpart RPMs, require 231

identifying the entities (the chunks), their relevant 232

attributes (their morphological or semantic prop- 233

erties) and their connecting operators, to find the 234

underlying rules that guide to the correct answer. 235

We use two BLM datasets, which encode two 236

different linguistic phenomena, each in a different 237

language: (i) BLM-AgrF – subject verb agreement 238

in French (An et al., 2023), and (ii) BLM-s/lE – 239

verb alternations in English (Samo et al., 2023). 240

The structure of these datasets – in terms of the 241

sentence chunks and sequence structure – is shown 242
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Subj.-verb agr. Verb alternations
ALT-ATL ATL-ALT

Type I 2000:252 2000:375 2000:375
Type II 2000:4866 2000:1500 2000:1500
Type III 2000:4869 2000:1500 2000:1500

Table 1: Train:Test statistics for the two BLM problems.

in Figure 1, and concrete examples are shown in243

appendices A.2, A.3.244

BLM datasets also have a lexical variation di-245

mension. There are three variants: type I – minimal246

lexical variation for sentences within an instance,247

type II – one word difference across the sentences248

within an instance, type III – maximal lexical vari-249

ation within an instance. This allows for investiga-250

tions in the impact of lexical variation on learning251

the relevant structures to solve the problems.252

We use the BLM-s/lE dataset as is. We built a253

variation of the BLM-AgrF (An et al., 2023) that254

separates clearly sequence-based errors (WN1 and255

WN2 in the agreement scheme presented in Figure256

1) from other types of errors. We include erroneous257

answers that have correct agreement, but do not258

respect the pattern of the sequence, to be able to259

contrast linguistic errors from errors in identifying260

sentence parts.261

Datasets statistics Table 1 shows the datasets262

statistics for the BLM problems. After splitting263

each subset 90:10 into train:test subsets, we ran-264

domly sample 2000 instances as train data. 20%265

of the train data is used for development. Types266

I, II, III correspond to different amounts of lexical267

variation within a problem instance.268

4 Experiments269

We aim to determine whether specific kinds of270

sentence parts – chunks – are identifiable in271

transformer-based sentence embeddings. We ap-272

proach this problem from two angles. First, us-273

ing sentences and a VAE-based system, we test274

whether we can compress sentences into a smaller275

representation on the latent layer that captures in-276

formation about the chunk structure of the sentence277

(Section 4.1 below). Second, to see if the chunks278

thus identified are being used in a separate task, we279

combine the compression of the sentence represen-280

tation with the BLM problems, where a crucial part281

of the solution lies in identifying the structures of282

sentences and their sequence in the input (Section283

4.2 below).284

As sentence representations, we use the embed-285

dings of the < s > character read from the last286

layer of the Electra (Clark et al., 2020) pretrained 287

model4. 288

4.1 Parts in sentences 289

We test whether sentence embeddings contain infor- 290

mation about the chunk structure of the correspond- 291

ing sentences by compressing them into a lower 292

dimensional representation in a VAE-like system. 293

4.1.1 Experimental set-up 294

The architecture of the sentence-level VAE is simi- 295

lar to a previously proposed system (Nastase and 296

Merlo, 2023). The encoder consists of a CNN layer 297

with a 15x15 kernel, which is applied to a 32x24- 298

shaped sentence embedding,5 followed by a linear 299

layer that compresses the output of the CNN into 300

a latent layer of size 5. The decoder is a mirror- 301

image of the encoder, and unpacks a sampled latent 302

vector into a 32x24 sentence representation. 303

An instance consists of a triple (in, out+, out−), 304

where in is an input sentence with embedding ei 305

and chunk structure p, out+ is a sentence with 306

embedding ej with same chunk structure p, and 307

out− is a set of Nnegs sentences with embeddings 308

ek, each of which has a chunk pattern different 309

from p (and different from each other). The input 310

ei is encoded into a latent representation zi, from 311

which we sample a vector z̃i, which is decoded into 312

the output êi. We enforce that the latent encodes 313

the structure of the input sentence by using a max- 314

margin loss function. This loss function assigns a 315

higher score to ej than to ek, relative to êi. Recall 316

that ej has the same chunk structure as the input êi. 317

loss(ei) = 318

maxmargin(êi, ej , ek) +KL(zi||N (0, 1)) 319

maxmargin(êi, ej , ek) = 320

max(0, 1− score(êi, ej) +

∑Nnegs
k=1

score(êi,ek)

Nnegs
) 321

The score between two embeddings is the cosine 322

similarity. At prediction time, the sentence from 323

the {out+} ∪ out− options that has the highest 324

score relative to the input sentence is taken as the 325

correct answer. 326

4.1.2 Analysis 327

To assess whether the correct patterns of chunks 328

are detected in sentences, we analyze the results for 329

4Electra pretrained model: google/electra-base-
discriminator

5Nastase and Merlo (2023) show that task-relevant infor-
mation is more easily accessible in transformer-based sentence
embeddings reshaped as two-dimensional arrays.
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the experiments described in the previous section330

in two ways: (i) analyze the output of the system,331

in terms of average F1 score over three runs and332

confusion matrices; (ii) analyze the latent layer, to333

determine whether chunk patterns are encoded in334

the latent vectors (for instance, latent vectors clus-335

ter according to the pattern of their corresponding336

sentences).337

Figure 2: Chunk identification results: tSNE projections
of the latent vectors for the French dataset, and confu-
sion matrix of the system output. The results for English
are similar.

If we consider the multiple choice task as a bi-338

nary task (Has the system built a sentence repre-339

sentation that is closest to the correct answer?), the340

system achieves an average positive class F1 score341

(and standard deviation) over three runs of 0.9992342

(0.01) for the French dataset, and 0.997 (0.0035)343

for the English dataset. For added insight, for one344

trained model for each of the French and English345

data, we compute a confusion matrix, based on the346

pattern information for out+, out−. The results for347

French are presented in Figure 2.348

To check whether chunk information is present349

in the latent layer, we plot the projection in two350

dimensions of the latent vectors. The plot shows a351

very crisp clustering of latents that correspond to352

input sentences with the same chunk pattern, de- 353

spite the fact that some patterns differ by only one 354

attribute (the grammatical number) of one chunk. 355

To understand how chunk information is en- 356

coded on the latent layer we perform latent traver- 357

sals: for each instance in the test data, we modify 358

the value of each unit in the latent layer with ten 359

values in the min-max range of that unit, based on 360

the training data. A sample of confusion matrices 361

with interventions on the latent layer is shown in 362

Figure 3. 363

Figure 3: The impact on reconstructing sentences with
the same pattern when modifying the latent layer with
values in their respective min-max range (based on the
training data) – sample confusion matrices.

The confusion matrices presented as heatmaps in 364

Figure 3 (and a larger version with labels in Figure 365

10 in Appendix A.5) show that specific changes 366

to the latent vectors decrease the differentiation 367

among patterns, as expected if chunk pattern infor- 368

mation were encoded in the latent vectors. Changes 369

to latent 1 cause patterns that differ in the grammat- 370

ical number of pp2 not to be distinguishable (left 371

matrix). Changes to latent units 2 and 3 lead to the 372

matrices 2 and 3 in the figure, where patterns that 373

have different subject-verb grammatical number to 374

become indistinguishable. 375

4.2 Parts in sentences for BLM tasks 376

The first experiment shows that compressing sen- 377

tence representations results in latent vectors con- 378

taining chunk information. To test if these la- 379

tent representations also contain information about 380

chunk properties relevant to a task, we solve the 381

BLM task. 382

4.2.1 Experimental set-up 383

To explore how chunk information in the sentence 384

embeddings is used in a task, we solve the BLM 385

problems. The BLM problems encode a linguis- 386

tic phenomenon in a sequence of sentences that 387

have regular and relevant structure, which serves to 388

emphasize and reinforce the encoded phenomenon. 389

BLMs are inspired by Raven Progressive Matrices, 390

whose solution has been shown to require solving 391
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two main subtasks: identifying the objects and ob-392

ject attributes that occur in the visual frames, and393

decomposing the main problem into subproblems,394

based on object and attribute identification, in a395

way that allows detecting the global pattern or un-396

derlying rules. It has also been shown that being397

able to solve RPMs requires being able to handle398

item novelty (Carpenter et al., 1990). We model399

these ingredients of the solution of a RPM/BLM400

explicitly by using the two-level intertwined archi-401

tecture illustrated in Figure 4 – one level for detect-402

ing sentence structure, one for detecting the correct403

answer based on the sequence of structures and the404

targeted grammatical phenomenon. Item novelty is405

modeled through the three levels of lexicalisation406

(section 3).407

The sentence level is essentially the system de-408

scribed above. The representation on the latent409

layer is used to represent each of the sentences in410

the input sequence, and to solve the problem at the411

task level. The two layers are trained together.412

Figure 4: A two-level VAE: the sentence level learns
to compress a sentence into a representation useful to
solve the BLM problem on the task level.

An instance for a BLM problem consists of an or-413

dered sequence S of sentences, S = {si|i = 1, 7}414

as input, and an answer set A with one correct an-415

swer ac, and several incorrect answers aerr. The416

sentences in S are passed as input to the sentence-417

level VAE. The sampled latent representations from418

this VAE are used as the representations of the419

sentences in S. These representations are passed420

as input to the BLM-level VAE, in the same or-421

der as S. An instance for the sentence-level VAE422

consists of a triple (in, out+, out−). For our two-423

level system, we must construct this triple from424

the input BLM instance: in ∈ S, out+ = in, and425

out− = {sk|sk ∈ S, sk ̸= in}.426

The loss combines the loss signal from the two427

levels:428

loss =429

maxmarginsent +KLsent +430

maxmargintask +KLseq431

The maxmargin and the scoring of the recon-432

TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts

in the training data, coloured by the chunk pattern.

Average F1 score over 3 runs, grouped by training data on the
x-axis, tested on type I, II, III in different shades.

Sequence vs. agreement errors analysis.

Figure 5: VAE vs 2-level VAE (2xVAE) on the agree-
ment BLM problem

structed sentence at the sentence level, and the con- 433

structed answer at the task level are computed as 434

described in Section 4.1. 435

We run experiments on the BLMs for agreement 436

and for verb alternation. While the information 437

necessary to solve the agreement task is more struc- 438

tural, solving the verb alternation task requires not 439

only structural information concerning chunks, but 440

also semantic information, as syntactically similar 441

chunks play different roles in a sentence. 442

4.2.2 Analysis 443

The results show that this organisation of the sys- 444

tem leads to better results compared to the one- 445

level process for these structure-based linguistic 446

problems, thereby providing additional support to 447
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TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.

Average F1 score over 3 runs

Figure 6: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 1

our hypothesis that chunks and their attributes are448

detectable in sentence embeddings.449

We provide results in terms of F1 scores on the450

task, and analysis of the representations on the451

latent layer of the sentence level of the system.452

Figure 5 shows the results on the BLM agree-453

ment task and the error analysis (detailed results454

are in the appendix). The results on the task (left455

panel) provide several insights. First, from the la-456

tent representation analysis, we note that while the457

sentence representations on the latent layer are not458

as crisply separated by their chunk pattern as for459

the experiment in Section 4.1, there is a clear sepa-460

ration in terms of the grammatical number of the461

subject and the verb. This is not surprising as the462

focus of the task is subject-verb agreement. How-463

ever, as the further results in term of F1 and error464

analysis on the task show, there is enough informa-465

tion in these compressed latent representation to466

TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.

Average F1 score over 3 runs

Figure 7: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 2

capture the structural regularities imposed by the 467

patterns of chunks in the input sequence. 468

Second, from the results in terms of F1, we note 469

that the two-level process generalizes better from 470

simpler data – learning on type I and type II leads 471

to better results on all test data, with the highest 472

improvement when tested on type III data, which 473

has the highest lexical variation. Furthermore, the 474

two-level models learned when training on the lex- 475

ically simpler data perform better when tested on 476

the type III data than the models learned on type III 477

data itself. This result not only indicates that struc- 478

ture information is more easily detectable when 479

lexical variation is less of a factor, but more im- 480

portantly, that chunk information is separable from 481

other types of information in the sentence embed- 482

ding, as the patterns detecting it can be applied 483

successfully for data with additional (lexical) vari- 484
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ation.6485

Further confirmation of the fact that the sentence486

level learns to compress sentences into a latent487

that captures structural information comes from the488

error analysis, shown in the bottom panel of Figure489

5. Lower rate of sequence errors, which are correct490

from the point of view of the targeted phenomenon491

– as described in section 3.2 – indicate that there is492

structure information in the compressed sentence493

latents.494

It is possible that the one-level VAE also detects495

chunk information in the input sequence, given the496

high performance on the task. But the fact that the497

one-level model makes more sequence-based er-498

rors indicates that modeling structural information499

separately is not only possible, but also beneficial500

for some tasks.501

The results on the verb alternation BLMs are502

shown in Figures 6 and 7. In this problem, and503

unlike the verb-agreement BLM task, structurally504

similar chunks - NPs, PPs – play different semantic505

roles in the verb alternation data, as shown in Fig-506

ure 1. Other attributes of chunks that are relevant507

to the current problem – in this case, semantic roles508

– are separated from the sentence embedding whole.509

This is apparent not only through the F1 results on510

the task, but also, and maybe more clearly, from511

the projection of the latent representations from the512

sentence level, where the separation of the different513

chunk syntactic and semantic patterns is clear for514

both groups. For both data subsets, the closest rep-515

resentations are two that have the same syntactic516

pattern: NP VerbPass PP, but semantically differ:517

NP-Theme VerbPass PP-Agent vs. NP-Loc Verb-518

Pass PP-Agent.519

4.3 Discussion520

We performed two types of experiments: (i) using521

individual sentences, and an indirect supervision522

signal about the sentence structure, (ii) incorporat-523

6It might appear surprising that the two-level approach
leads to lower performance on type III data, particularly when
lexical variation had not been an issue for the sentence repre-
sentation analysis (Section 4.1). The difference comes from
the way the instances were formed, on the fly, for the two-level
process: the positive sentence to be reconstructed is the same
as the input, instead of being a sentence that has the same
structure, but different lexical material. This is because all
sentences in the sequence have different structures. We think
this weakens the (indirect) supervision signal – as the correct
answer is distinct from the other options. This is not the case
for type I and II data, where, because of the very similar lexi-
cal material, the distinction between the correct and incorrect
answers reduce to the structure. We plan to confirm this in
future work using a pre-trained sentence-level VAE.

ing a sentence representation compression step in a 524

task-specific setting. We used two tasks, one which 525

relies on more structural information (subject-verb 526

agreement), and one that also relies on semantic 527

information about the chunks (verb alternation). 528

We have investigated each set-up in terms of 529

the results on the task – as average F1 scores, and 530

through error analysis – and in terms of internal 531

representations on the latent layer of an encoder- 532

decoder architecture. 533

This dual analysis allows us to conclude not 534

only that a task is solved correctly, but that it is 535

solved using structural, morphological and seman- 536

tic information from the sentence. We found that 537

information about (varying numbers of) chunks – 538

noun, verb and prepositional phrases – and their 539

task-relevant attributes, whether morphological or 540

semantic, can be detected in sentence embeddings 541

from a pretrained transformer model. 542

5 Conclusions 543

Sentence embeddings obtained from transformer 544

models are compact representations, compressing 545

much knowledge – morphological, grammatical, 546

semantic, pragmatic –, expressed in text fragments 547

of various length, into a vector of real numbers of 548

fixed length. If we view the sentence embedding as 549

overlapping layers of information, in a manner sim- 550

ilar to audio signals which consist of overlapping 551

signals of different frequencies, we can distinguish 552

specific information among these layers. In partic- 553

ular, we have shown that we can detect information 554

about chunks – noun/verb/prepositional phrases – 555

and their task-relevant attributes in these compact 556

sentence representations. 557

These building blocks can be further used in 558

lexically-novel instances to solve tasks that require 559

analytical reasoning, demonstrating that solutions 560

to this task are achieved through abstract steps typ- 561

ical of fluid intelligence. 562

6 Limitations 563

We have performed experiments on datasets con- 564

taining sentences with specific structure and prop- 565

erties to be able to determine whether the type of 566

information we targeted can be detected in sen- 567

tence embeddings. We applied our framework on a 568

particular pretrained transformer model – Electra – 569

which we chose because of the stronger influence 570

of the full context on producing sentence embed- 571

dings. Different transformer models may produce 572

8



different encoding patterns in the sentence embed-573

dings.574
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A Appendix866

A.1 Sentence data867

To build the sentence data, we use a seed file that was used to generate the subject-verb agreement data.868

A seed, consisting of noun, prepositional and verb phrases with different grammatical numbers, can be869

combined to build sentences consisting of different sequences of such chunks. Table 2 includes a partial870

line from the seed file, from which individual sentences and a BLM instance can be constructed. We use871

French and English versions of the seed file to build the corresponding datasets.872

Subj_sg Subj_pl P1_sg P1_pl P2_sg P2_pl V_sg V_pl
The com-
puter

The com-
puters

with the
program

with the pro-
grams

of the experi-
ment

of the experi-
ments

is broken are broken

Sent. with different chunks

The computer is broken. np-s
vp-s

The computers are broken. np-p
vp-p

The computer with the pro-
gram is broken.

np-s
pp1-s
vp-s

... ...

The computers with the pro-
grams of the experiments are
broken.

np-p
pp1-p
pp2-p
vp-p

a BLM instance
Context:
The computer with the program is broken.
The computers with the program are broken.
The computer with the programs is broken.
The computers with the programs are broken.
The computer with the program of the experiment is broken.
The computers with the program of the experiment are broken.
The computer with the programs of the experiment is broken.
Answer set:
The computers with the programs of the experiment are broken.
The computers with the programs of the experiments are broken.
The computers with the program of the experiment are broken.
The computers with the program of the experiment is broken.
...

Table 2: A line from the seed file on top, and a set of individual sentences built from it, as well as one BLM instance.

The algorithm to produce a dataset from the generated sentences is detailed in Figure 8 below.873

Data = []; Nnegs

for patterns p do
for si ∈ Sp do

in = si
for sj ∈ Sp do

out+ = sj
out− = {sk, k ∈ range(Nnegs), sk ∈ S¬p}
Data = Data ∪ [(in, out+, out−)]

end for
end for

end for

Figure 8: Data generation algorithm
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A.2 Example of data for the agreement BLM 874

Example subject NPs from (Franck et al., 2002)
L’ordinateur avec le programme de l’experience
The computer with the program of the experiments
Manually expanded and completed sentences
L’ordinateur avec le programme de l’experience est en panne.
The computer with the program of the experiments is down.
Jean suppose que l’ordinateur avec le programme de l’experience est en panne.
Jean thinks that the computer with the program of the experiments is down.
L’ordinateur avec le programme dont Jean se servait est en panne.
The computer with the program that John was using is down.

A seed for language matrix generation
Jean suppose que l’ordinateur avec le programme de l’experience dont Jean se servait est en panne
Jean thinks that the computer with the program of the experiment that John was using is down

les ordinateurs avec les programmes sont en panne
the computers with the programs are down

Table 3: Examples from (Franck et al., 2002), manually completed and expanded sentences based on these examples,
and seeds made based on these sentences for subject-verb agreement BLM dataset that contain all number variations
for the nouns and the verb.

Main clause
1 L’ordinateur avec le programme est en panne.
2 Les ordinateurs avec le programme sont en panne.
3 L’ordinateur avec les programmes est en panne.
4 Les ordinateurs avec les programmes sont en panne.
5 L’ordinateur avec le programme de l’expérience est en panne.
6 Les ordinateurs avec le programme de l’expérience sont en panne.
7 L’ordinateur avec les programmes de l’expérience est en panne.
8 Les ordinateurs avec les programmes de l’expérience sont en panne.
Completive clause
1 Jean suppose que l’ordinateur avec le programme est en panne.
2 Jean suppose que les ordinateurs avec le programme sont en panne.
3 Jean suppose que l’ordinateur avec les programmes est en panne.
4 Jean suppose que les ordinateurs avec les programmes sont en panne.
5 Jean suppose que l’ordinateur avec le programme de l’expérience est en panne.
6 Jean suppose que les ordinateurs avec le programme de l’expérience sont en panne.
7 Jean suppose que l’ordinateur avec les programmes de l’expérience est en panne.
8 Jean suppose que les ordinateurs avec les programmes de l’expérience sont en panne.
Relative clause
1 L’ordinateur avec le programme dont Jean se servait est en panne.
2 Les ordinateurs avec le programme dont Jean se servait sont en panne.
3 L’ordinateur avec les programmes dont Jean se servait est en panne.
4 Les ordinateurs avec les programmes dont Jean se servait sont en panne.
5 L’ordinateur avec le programme de l’expérience dont Jean se servait est en panne.
6 Les ordinateurs avec le programme de l’expérience dont Jean se servait sont en panne.
7 L’ordinateur avec les programmes de l’expérience dont Jean se servait est en panne.
8 Les ordinateurs avec les programmes de l’expérience dont Jean se servait sont en panne.

Answer set for problem constructed from lines 1-7 of the main clause sequence
1 L’ordinateur avec le programme et l’experiénce est en panne. N2 coord N3
2 Les ordinateurs avec les programmes de l’experiénce sont en panne. correct
3 L’ordinateur avec le programme est en panne. wrong number of attractors
4 L’ordinateur avec le program de l’experiénce sont en panne. agreement error
5 Les ordinateurs avec les programmes de l’experiénce sont en panne. wrong nr. for 1st attractor noun
6 Les ordinateurs avec les programmes de les experiénces sont en panne. wrong nr. for 2nd attractor noun

Table 4: BLM instances for verb-subject agreement, with 2 attractors (programme, experiénce), and three clause
structures. And candidate answer set for a problem constructed from lines 1-7 of the main clause sequence.
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A.3 Example of data for the verb alternation BLM875

TYPE I

EXAMPLE OF CONTEXT
The buyer can load the tools in bags.
The tools were loaded by the buyer
The tools were loaded in bags by the buyer
The tools were loaded in bags
Bags were loaded by the buyer
Bags were loaded with the tools by the buyer
Bags were loaded with the tools
???

EXAMPLE OF ANSWERS
The buyer can load bags with the tools
The buyer was loaded bags with the tools
The buyer can load bags the tools
The buyer can load in bags with the tools
The buyer can load bags on sale
The buyer can load bags under the tools
Bags can load the buyer with the tools
The tools can load the buyer in bags
Bags can load the tools in the buyer

Figure 9: Example of Type I context sentences and answer set.

A.4 Experimental details876

All systems used a learning rate of 0.001 and Adam optimizer, and batch size 100. The system was trained877

for 300 epochs for all experiments.878

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,879

64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.880

The sentence-level encoder decoder has 106 603 parameters. It consists of an encoder with a CNN881

layer followed by a FFNN layer. The CNN input has shape 32x24. We use a kernel size 15x15 with stride882

1x1, and 40 channels. The linearized CNN output has 240 units, which the FFNN compresses into the883

latent layer of size 5+5 (mean+std). The decoder is a mirror of the encoder, which expands a sampled884

latent of size 5 into a 32x24 representation.885

The two-level system consists of the sentence level encoder-decoder described above, and a task-886

specific layer. The input to the task layer is a 7x5 input (sequence of 7 sentences, whose representation we887

obtain from the latent of the sentence level), which is compressed using a CNN with kernel 4x4 and stride888

1x1 and 32 channels into ... units, which are compressed using a FFNN layer into a latent layer of size889

5+5 (mean+std). The decoder consists of a FFNN which expands the sampled latent of size 5 into 7200890

units, which are then processed through a CNN with kernel size 15x15 and stride 1x1, and produces a891

sentence embedding of size 32x24. The two level system has 178 126 parameters.892
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A.5 Sentence-level analysis 893

A.5.1 Sample confusion matrices for altered latent values 894

Figure 10: Confusion matrices for altered values on units 1 (left matrix), unit 2 (middle matrix) and unit 3 (right
matrix)

Each matrix shows a particular way of conflating different patterns: 895

• changes to values in unit 1 of the latent lead to patterns that differ in the grammatical number of pp2 896

to become indistinguishable 897

• changes to values in units 2 and 3 of the latent lead to the conflation of patterns that have different 898

subject-verb numbers. 899

A.5.2 Sentence-level analysis for English data 900

Figure 11: Chunk identification results: tSNE projections of the latent vectors for the English dataset, and confusion
matrix of the system output.

901
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A.6 Detailed task results902

TRAIN ON TEST ON VAE 2 LEVEL VAE

BLM agreement
type_I type_I 0.929 (0) 0.935 (0.0049)
type_I type_II 0.899 (0) 0.908 (0.0059)
type_I type_III 0.662 (0) 0.871 (0.0092)
type_II type_I 0.948 (<e-10) 0.974 (0.0049)
type_II type_II 0.879 (<e-10) 0.904 (0.0021)
type_II type_III 0.713 (0) 0.891 (0.0015)
type_III type_I 0.851 (0.037) 0.611 (0.1268)
type_III type_II 0.815 (0.0308) 0.620 (0.1304)
type_III type_III 0.779 (0.0285) 0.602 (0.1195)

BLM verb alternation group 1
type_I type_I 0.989 (0) 0.995 (<e-10)
type_I type_II 0.907 (0) 0.912 (0.0141)
type_I type_III 0.809 (0) 0.804 (0.0167)
type_II type_I 0.989 (0) 0.996 (0.0013)
type_II type_II 0.979 (<e-10) 0.984 (0.0016)
type_II type_III 0.915 (0) 0.928 (0.0178)
type_III type_I 0.997 (0) 0.999 (0.0013)
type_III type_II 0.977 (0) 0.986 (0.0027)
type_III type_III 0.98 (0) 0.989 (0.0003)

BLM verb alternation group 2
type_I type_I 0.992 (0) 0.987 (0.0033)
type_I type_II 0.911 (0) 0.931 (0.0065)
type_I type_III 0.847 (0) 0.869 (0.0102)
type_II type_I 0.997 (0) 0.993 (0.0025)
type_II type_II 0.978 (<e-10) 0.978 (0.0017)
type_II type_III 0.923 (0) 0.956 (0.0023)
type_III type_I 0.979 (<e-10) 0.981 (0.0022)
type_III type_II 0.972 (0) 0.975 (0.0005)
type_III type_III 0.967 (0) 0.977 (0.0022)

Table 5: Analysis of systems: average F1 (std) scores (over 3 runs) for the VAE and 2xVAE systems. The highest
value for each train/test combination highlighted in bold.
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A.7 Detailed error results 903

Figure 12: Agreement error analysis: y-axis is the log of error percentages. N1_alter and N2_alter are sequence
errors.

Figure 13: Verb alternation group1 error analysis: y-axis is the log of error percentages.

Figure 14: Verb alternation group2 error analysis: y-axis is the log of error percentages.
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