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Figure 1: Comparison of the generated image samples given the caption “a cat sat on the mat”. Our
models generate more diverse images with the help of autoregressive latent modeling.

Abstract

Diffusion models have emerged as a powerful tool for generating high-quality im-
ages from textual descriptions. Despite their successes, these models often exhibit
limited diversity in the sampled images, particularly when sampling with a high
classifier-free guidance weight. To address this issue, we present Kaleido, a novel
approach that enhances the diversity of samples by incorporating autoregressive
latent priors. Kaleido integrates an autoregressive language model that encodes the
original caption and generates latent variables, serving as abstract and intermediary
representations for guiding and facilitating the image generation process. In this
paper, we explore a variety of discrete latent representations, including textual
descriptions, detection bounding boxes, object blobs, and visual tokens. These
representations diversify and enrich the input conditions to the diffusion models,
enabling more diverse outputs. Our experimental results demonstrate that Kaleido
effectively broadens the diversity of the generated image samples from a given
textual description while maintaining high image quality. Furthermore, we show
that Kaleido adheres closely to the guidance provided by the generated latents,
demonstrating its capability to effectively control the image generation process.

1 Introduction

Diffusion models have become pervasive in many text-to-image generation tasks for their ability to
generate high-quality images based on textual descriptions. A pivotal mechanism in these models is
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classifier-free guidance (CFG) [Ho and Salimans, 2021], which effectively steers the sampling process
towards better alignment to textual prompts and improved sampling quality at the same time. CFG
can be interpreted as tuning the temperature of the conditional distribution, whereas increasing the
guidance scale sharpens the conditional distribution. This guides the generation to focus on regions of
high conditional probability, effectively reducing sampling noise which is typically of lower density.
However, while high CFG improves sampling quality, it simultaneously narrows the diversity in
the generated samples. This manifests in the models’ inability to produce diverse images from the
same caption, even when there are variations in the initial noise that seeds the generation process.
For instance, given a fixed textual description, “a cat sits on a mat”, existing text-to-image diffusion
models predominantly produce image samples depicting cats with similar colors and patterns, as
illustrated in Figure 1. Such limited visual diversity hinders the practical application of diffusion
models in scenarios where a wide range of creative and diverse visual interpretations are desired
from identical textual inputs. It also poses challenges in scenarios demanding the representation of
underrepresented data or accommodating a wide range of user preferences. Therefore, enhancing
diversity in diffusion models without compromising the quality remains a critical research problem.

To tackle this, we introduce Kaleido, a general framework that improves diffusion models with
autoregressive priors. Kaleido first defines a discrete encoding of images (eg, detailed captioning,
bounding boxes), which captures desirable abstractions of images that’s not included in the default
text prompts. Next, Kaleido integrates an encoder-decoder language model that encodes the original
text caption and autoregressively predicts the discrete latent tokens. Lastly, the diffusion model is
conditioned on both the original text prompt and the autoregressively generated discrete latents and
generates an image. This enriched conditioning allows Kaleido to produce a more diverse array of
high-quality images, even at high guidance scales. We explore various forms of latents, including
textual descriptions, detection bounding boxes, object blobs, and abstract visual tokens – all designed
to refine and guide the conditional image generation process.

We experiment on both class and text conditioned image generation benchmarks 1. We show that
Kaleido not only outperforms standard diffusion models in terms of diversity but also maintains
the high quality of the generated image. Additionally, the generated latents effectively control the
characteristics of the generated images, ensuring that the image samples closely align with the
intended latent variables. This modeling of latent tokens not only increases the diversity of image
outputs but also provides a degree of interpretability and control over the image generation process.

To summarize, Kaleido exhibits the following advantages:

1. Kaleido promotes the diversity in generated image samples even with high CFG, allowing the
image generation of both high quality and diversity.

2. The generated latent variables are interpretable, offering an explainable mechanism behind the
image generation process, and facilitating an understanding of how different latents affect the outputs.

3. Kaleido provides a fine-grained, editable interface that allows users to adjust the discrete latent
codes before final image production, granting greater flexibility and control over the output.

2 Preliminaries
Autoregressive Image Generation The success of large language models (LLMs) in NLP has
demonstrated their scalability and universality of modeling any complex data, motivating the develop-
ment of using autoregressive models for image generation. Typically, autoregressive image generation
operates on discrete image tokens obtained from vector-quantization (VQ) [Van Den Oord et al.,
2017]. More precisely, given an image x ∈ R3×H×W , we first obtain a sequence of discrete tokens
z1:N = E(x) which approximately reconstructs the input with a learned decoder D(z1:N ) ≈ x.
Then, an autoregressive model is learned to predict the discrete tokens one after another, mirroring
the sequential language modeling:

LAR
θ =

N∑
n=1

logPθ(zn|z0:n−1, c), (1)

where c is the condition (e.g., class, text prompt, etc.), and z0 is a special start token. At inference
time, we first sample from the learned distribution, and then pass the sampled latents to the decoder

1the class conditioning setting can be considered as a special case of text conditioning.
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(D) to get the final output. Such VQ-based paradigm has been the foundation for various text-to-
image [Esser et al., 2021, Yu et al., 2021, Zheng et al., 2022, Yu et al., 2022] and multi-modal
generation [Team et al., 2023, Team, 2024].

However, these methods share a common limitation: they primarily rely on discretization, which
struggles to capture all the nuances of an image when using a limited length of discrete image token
sequence. To generate higher-resolution images, a longer sequence of image tokens is necessary.
Yet, this inherently leads to increased capacity demands. For instance, Yu et al. [2022] requires 20B
parameters to work properly. Additionally, the left-to-right properties of these autoregressive models
prevent the rewriting of previously generated image tokens, resulting in suboptimal image quality.

Diffusion-based Image Generation Diffusion models [Sohl-Dickstein et al., 2015, Ho et al.,
2020] are latent variable models with a pre-determined posterior distribution and are trained using
a denoising objective, which has quickly become the new de-facto approach for image generation.
Unlike autoregressive models which predict images as a sequence, diffusion-based models iteratively
generate the whole image in a non-autoregressive fashion. Specifically, given an image x ∈ R3×H×W

and a signal-noise schedule {αt, σt} where the signal-to-noise ratio (SNR) (α2
t /σ

2
t ) decreases

monotonically with t, we define a series of latent variables xt, t = 0, . . . , T that adhere to:
q(xt|x) = N (xt;αtx, σ

2
t I), and q(xt|xs) = N (xt;αt|sxs, σ

2
t|sI), (2)

where x0 = x, αt|s = αt/αs, and σ2
t|s = σ2

t − α2
t|sσ

2
s for s < t. The model then learns to reverse

this process using a backward model pθ(xs|xt, c), which reformulates a denoising objective:

LDM
θ = Et∼[1,T ],xt∼q(xt|x)

[
ωt · ||xθ(xt, c)− x||22

]
, (3)

where xθ(xt, c) is a neural network (typically a UNet [Ronneberger et al., 2015] or Transformer [Pee-
bles and Xie, 2022]) that maps the noisy input xt to its clean version x, based on the time step t and
conditional input c; ωt ∈ R+ is a loss weighting factor. In practice, xθ can be re-parameterized with
noise- or v-prediction [Salimans and Ho, 2022] for enhanced performance, and can be applied on raw
pixel space [Saharia et al., 2022, Gu et al., 2023] or latent space [Rombach et al., 2022].

Classifier-free Guidance An intriguing property of conditional diffusion models is that we can
easily guide the iterative sampling process for better sampling quality. For instance, Ho and Salimans
[2021] introduced Classifier-free Guidance (CFG), which utilizes the diffusion model itself to perform
guidance at test time. More specifically, we perform sampling using the following linear combination:

x̃θ(xt, c) = γ · (xθ(xt, c)− xθ(xt)) + xθ(xt), (4)
where γ is the guidance weight, and xθ(xt) = xθ(xt, c = ∅) is the unconditional denoising output.
During training, we drop the condition c with certain probability puncond to facilitate unconditional
prediction. When γ > 1, CFG takes effect and amplifies the difference between conditional and
unconditional generation, leading to a global control of high-quality generation.

Compared to autoregressive models, diffusion models are more flexible in adjusting sample steps,
allowing for the utilization of noise schedules to learn different frequencies. Additionally, with the
use of CFG, diffusion models can achieve higher quality images with much fewer parameters than
autoregressive models. However, it’s notable that CFG can significantly impact the diversity of the
diffusion output, which motivates us to revisit the basics and combine the strengths of both.

3 Kaleido Diffusion

We propose Kaleido, a general framework that integrate an autoregressive prior with diffusion model
to enhance image generation. As illustrated in Fig. 2, Kaleido comprises two major components: an
AR model that generates latent tokens as abstract representations, and a latent-augmented diffusion
model that iteratively synthesizes images based on these latents together with the original condition.
For following sections, we first describe the importance to introduce additional latents in standard
diffusion models (§ 3.1), and show how we can model them with AR models (§ 3.2). The training
and inference procedure are described in § 3.3 and § 3.4.

3.1 Latent-augmented Diffusion Models

As demonstrated in Ho and Salimans [2021], diffusion with CFG (Eq. (4)) is equivalent to follow
∇x log p̃θ(x|c) = γ [∇x (log pθ(x|c)− log pθ(x))] +∇x log pθ(x), (5)
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Figure 2: Training pipeline of the proposed Kaleido diffusion.

which can be interpreted as sampling from a “temperature-adjusted” distribution:

x ∼ p̃θ(x|c) ∝ pθ(x) [pθ(c|x)]γ , where pθ(c|x) ∝ pθ(x|c)/pθ(x). (6)

Here γ can be seen as inverse temperature, which sharpens the conditional distribution pθ(c|x) when
γ > 1. That is to say, CFG is crucial as it guides the generation to only focus on high-probability
regions, avoiding sampling noise (which tends to have low density). However, sharpening the
distribution also reduces the diversity, causing undesirable phenomena like “mode collapse”. This
is because c (e.g., class label, text prompt, etc.) normally does not contain all the information that
describes x. Suppose we introduce a hypothetical variable z to represent the “modes” of x which
we care most – pθ(z|c), and leave pθ(x|z, c) to model other variations including local noise. In this
case, CFG will simultaneously sharpen both distributions, considering:

pθ(x|c) =
∑
z

pθ(z|c)︸ ︷︷ ︸
mode selection

· pθ(x|z, c)︸ ︷︷ ︸
image variation

, (7)

where standard diffusion models implicitly learn mode selection step together with generation.

Therefore, a natural solution is to explicitly model “mode selection” before applying diffusion steps
so that the mode distribution will not be distorted by guidance. In this way, the sampling procedure
(Eq. (6)) is modified as two steps: z ∼ pθ(z|c),x ∼ p̃θ(x|z, c), where CFG can be applied after z
is sampled. From the perspective of score function, we rewrite p̃θ(x|c) as p̃θ(x|c, z) in Eq. (5):

∇x log p̃θ(x|c, z) = γ
[
∇x

(
log pθ(x|c) + log pθ(z|x, c) − log pθ(x)

)]
+∇x log pθ(x). (8)

Compared to standard diffusion process, the highlighted term above pushes the updating direction
towards the sampled modes at each step. This ensures diverse generation as long as pθ(z|c) is diverse.

A Toy Example We visualize the effect of explicitly introducing latent priors using a toy dataset
with two main classes, each containing two modes. We compare two models: a standard diffusion
model conditioned on the major class ID, and a latent-augmented model incorporating subclass ID as
priors. Fig. 3 shows that while the standard diffusion model tends to converge to one mode (subclass)
with increased guidance, the latent-augmented model captures all modes, showing the benefit of latent
priors for improving diversity under high guidance. In practice, given the challenge of identifying
all “modes” in real-world data distribution, we next propose to employ an autoregressive model to
universally model various latent modes.

3.2 Autoregressive Latent Modeling

To capture the complex distribution of real images, it is clearly impossible to assign classes for each
mode. However, it is non-trivial to determine (1) the best representations for modes z; (2) the suitable
generative model that can model pθ(z|c). Fortunately, the modes that humans can perceive from an
image are largely abstract, and such abstract semantics are easily represented in discrete symbols.
For example, we can easily describe content differences through natural language, create composite
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Figure 3: Effect of augmented latents. The first row displays the sampling results from the standard
diffusion model, while the second row shows the results from the latent-augmented diffusion models.

images based on spatial locations, and imagine novel visual concepts from experience. Therefore, it
is logical to use such abstract discrete tokens, i.e., z = [z1, . . . zN ]. Naturally, the most convenient
way to model such distribution is using an autoregressive model pθ(z|c). Note that this is distinct
from the conventional autoregressive image generation (§ 2), as we only learn such models as “latent
modes”, where the sampled z1:N are not supposed to reconstruct an image directly. As a result, it
eases the modeling difficulty and improves the sampling performance.

In this work, we explore four types of abstract latents: textual descriptions (text), detection bounding
boxes (bbox), object blobs (blob), and visual tokens (voken), all of which can be predicted from multi-
modal large language models (MLLMs) [Bai et al., 2023, Liu et al., 2024, Ge et al., 2023a] given the
condition-image pair (c,x). Each type aims to enrich the mode-to-image correspondence, covering
different aspects of image formation. These extracted tokens can either be predicted separately
or modeled together with a single autoregressive model. Fig. 4 shows the examples of these four
generated latent variables. The methodology for constructing the training dataset for these variables
is detailed in Appendix A.

3.3 Joint Learning of Autoregressive and Diffusion Models

Similar to other latent variable models like VAEs [Kingma and Welling, 2013], Kaleido can be trained
to maximize the evidence lower bound (ELBO) as follows:

max
θ

log pθ(x|c) ≥ Ez∼q(z|x,c)[log pθ(z|c)︸ ︷︷ ︸
LAR Eq. (1)

+ log pθ(x|z, c)︸ ︷︷ ︸
LDM Eq. (3)

] +H [q(z|x, c)] , (9)

where q is the inference model, and H(q) is the entropy. In this paper, we always assume a fixed
inference process (as explained § 3.2). Therefore, the entropy term can be omitted, and we can
efficiently sample and store z for the entire dataset before training starts. We illustrate the training
pipeline in Fig. 2. Compared to standard diffusion models which typically involves a context encoder
and a denoising network, Kaleido integrates the additional autoregressive decoder for modeling
the discrete latents. Such decoder uses cross-attention to gather the encoder states at every step,
and the final decoder layer states are concatenated with the encoder as the inputs for diffusion.
Following common practices, we freeze the context encoder during training, and jointly optimize
the autoregressive decoder together with the denoising model. The training objectives (Eq. (9))
is equivalent to the combination of both models, denoted as L = LDM + η · LAR, with η as a
hyperparameter for balancing the contributions of the autoregressive and diffusion models in practice.

3.4 Interpretable and Controllable Generation

During the inference stage, given the provided textual description, the autoregressive model will
first predict the discrete latents before image generation. These latents, being predominantly human-
readable, add a layer of interpretability to the image-generation process, allowing humans to observe
its internal “thought” process. This transparency also provides users with the flexibility to modify
the latents as desired. To incorporate user modification, the altered latents are re-input into the
autoregressive decoder to obtain the modified final hidden states. The latent-augmented diffusion
model then synthesizes the final image conditioned on the updated representation.
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131 7 94 …

A person in a blue sweater and jeans is sitting on the 
floor on top of a gray couch with their laptop in their lap. 
They have a yellow Labrador Retriever in their lap, who 
is looking at the camera. The dog has its tongue out and 
is laying down on the person‘s lap. …

Object Blobs

Detection
Bounding
Boxes

Textual Descriptions

Visual Tokens

Caption:
Dog laying on a human's lap

Figure 4: A Variety of Discrete Tokens. Original caption: “Dog laying on a human’s lap”

4 Experiments

4.1 Experimental Setups

Figure 5: Comparison with guidance weights.

Dataset We validate our approach
on both class- and text-conditioned
image generation benchmarks. For
the former, we use ImageNet [Deng
et al., 2009], and we learn the text-
to-image models on CC12M [Chang-
pinyo et al., 2021], a large image-text
pair dataset where each image is ac-
companied by a descriptive alt-text.
All models are trained to synthesize at
256× 256. We generate all four types of latents as discussed in Appendix A for both datasets.

Evaluation Metrics To assess the performance of our models, we employ Fréchet Inception
Distance (FID) [Heusel et al., 2017] to capture the overall performance (considering both quality
and diversity) of the generated images, and use Recall [Kynkäänniemi et al., 2019] to specifically
measure the diversity of the generated images. Furthermore, we employ two additional quantitative
assessments of diversity: Mean Similarity Score (MSS) and Vendi scores [Friedman and Dieng]. We
use SSCD [Pizzi et al., 2022] as the pretrained feature extractor for calculating both MSS (SSCD)
and Vendi (SSCD). Additionally, we utilize DiNOv2 [Oquab et al.] as the feature extractor for Vendi
(DiNOv2), based on evidence from Stein et al. [2024] that suggests DiNOv2 provides a richer
evaluation of generative models.

Implementation Details and Baseline We implement Kaleido with Matryoshka Diffusion Models
(MDM) [Gu et al., 2023], a recently proposed approach that generates images directly in the raw
pixel space with efficient training. The default MDM consists of a frozen T5-XL [Radford et al.,
2021] context encoder and a nested UNet-based denoiser. We initialize the additional autoregressive
decoder with the decoder of T5-XL, and make the parameters trainable. The vocabulary is resized to
adapt special visual tokens. For fair comparison, we use MDM with the same hyper-parameters as
our baseline model, and train both types in almost identical settings on 64 A100 GPUs. Additionally,
we compare Kaleido with the Condition Annealed Diffusion Sampler (CADS) [Sadat et al.], a general
sampling strategy that enhances the diversity of diffusion models by annealing the conditioning signal
during inference. Given that CADS is applicable to different model architectures, we also evaluate
CADS integrated with both baseline model MDM (MDM + CADS) and our model (ours + CADS).

4.2 Quantitative Results

Fig. 5 quantitatively compares Kaleido with the baseline diffusion models (MDM) with various
guidance scales on ImageNet. Both metrics are evaluated with 50K samples against the full training
set, where both our models and the baseline use DDPM sampling with 250 steps. Our findings reveal
that Kaleido consistently enhances the diversity of samples without compromising their quality across
different CFG, evidenced by the general improvement in both FID and Recall. Moreover, while the
baseline’s FID increases and Recall decreases significantly with higher CFG, Kaleido demonstrates a
steadier performance profile.
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Model FID-50K ↓ Precision ↑ Recall ↑ MSS (SSCD) ↓ Vendi (SSCD) ↑ Vendi (DiNOv2) ↑
MDM 15.5 0.93 0.22 0.21 8.42 3.04
MDM + CADS 10.6 0.60 0.62 0.12 9.28 4.72
Ours 9.0 0.85 0.42 0.16 8.82 3.79
Ours + CADS 5.9 0.76 0.52 0.12 9.21 4.83

Table 1: Comparison of quality and diversity on ImageNet. FID-50K, Precision, and Recall are
evaluated on 50K samples, while MSS and Vendi scores assess diversity on 1K × 10 samples.

To further investigate, we examine image quality and diversity between Kaleido and baseline models.
As shown in Table 1, Kaleido outperforms the MDM + CADS combination in terms of FID-50K
and precision, demonstrating that our method more effectively maintains high image quality while
generating diverse samples. Furthermore, integrating CADS with our model yields the best FID-50K
results. Note that precision cannot accurately evaluate models with diverse outputs since a model
producing high-quality but non-diverse samples could artificially achieve high precision [Sadat et al.].

Moreover, we assess the diversity of the generated images using 10K samples. Following CADS,
we select 1, 000 random classes from ImageNet and generate 10 samples per class. Table 1 shows
that both Kaleido and CADS significantly enhance sample diversity. While CADS achieves better
performance in diversity, our model maintains superior image quality. Additionally, the methodologies
used in CADS are complementary to ours, suggesting potential benefits from integrating CADS with
our Kaleido. In fact, incorporating CADS into our model not only further improves image quality but
also improves diversity, achieving the best scores in FID-50K, MSS (SSCD), and Vendi (DiNOv2).

Lastly, we provide visual comparisons for class- and text-conditioned image generation in Fig. 11.
Notably, we observe that MDM + CADS fails to generate cats of diverse breeds from the prompt
“a cat sleeping on the bed.” In contrast, Kaleido can produce images of cats from various breeds
with more diverse surrounding environments, showcasing its superior diversity capabilities. This
observation contrasts with the trend of diversity scores in Table 1, suggesting that these diversity
metrics may not fully capture certain aspects of diversity.

4.3 Qualitative Results
Diversity of Generated Images We present a comparative analysis of the images generated by
Kaleido against baseline models (MDM). Fig. 7 demonstrates the comparison between baseline
models and Kaleido on two conditional generation tasks: the class-conditioned image generation and
the text-to-image generation. In both tasks, Kaleido consistently produces more diverse images from
identical condition (class or textual description) across varying CFG scales. For instance, in the task
of class-to-image generation, the baseline diffusion models generate predominantly frontal views of
a “husky” at high CFG, while Kaleido produces diverse images depicting huskies in various poses
and numbers. A similar improvement in diversity is observed in the text-to-image generation as well,
highlighting the robustness of Kaleido in generating diverse images under identical conditions.

Control from Latent Tokens We show the efficacy of latent variables in guiding the image
generation process in Fig. 6. Fig. 6 demonstrates images generated with different types of latent
variables: (a) textual descriptions, (b) object blobs, (c) detection bounding boxes, (d) visual tokens,
and (e) combined latents, which integrate textual descriptions, detection bounding boxes and visual
tokens. We visualize the generated latents tokens alongside the resulting images, showing how
closely the images generated by Kaleido align with the latent tokens. Such alignment is evident in
fine-grained visual information – such as object appearance, background, and atmosphere –, spatial
location and orientation of different objects, and the stylistic elements of generated images. This
alignment confirms that Kaleido can effectively interpret and utilize generated latent variables to
guide and refine the image generation process.

Latent Editing Fig. 8 showcases the impact of latent editing in image generation. The first
row displays images generated using autoregressively produced latent tokens. In the second row,
we demonstrate the effect of manual modifications to the textual descriptions: changing “log” to
“cobblestones” and “a body of water” to “forest”. These changes result in a modified image where a
frog is now positioned on cobblestones with a forest background. Additionally, by further augmenting
the bounding box of a cup to a different position, we observe that the cup’s position in the image
changes accordingly, while most other visual elements remain unchanged. The precise control of
image characteristics via latent editing underscores Kaleido’s flexibility and controllability, offering
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Figure 6: Example of generation with various latents.. This figure showcases images generated
with different types of latents: (a) textual descriptions, (b) object blobs, (c) detection bounding boxes,
(d) visual tokens, and (e) combined latents (textual descriptions + detection bounding boxes + visual
tokens). Each row shows two sets of generated images sampled with one type of latents. Each set
displays a visualization of the generated latents tokens (left) and a collage of images (right) sampled
using the same latent tokens but different noises. The image tokens capture visual details difficult to
convey through text, such as artistic style.

a powerful interactive interface for users to customize the generated images. Furthermore, the
high fidelity of the re-generated images to their original versions indicates Kaleido’s potential for
applications requiring personalization or customizations.

5 Related Work
Augmenting Diffusion Models Various enhancements have been proposed to improve the versatil-
ity and controllability of diffusion models with augmented latents. Innovations such as Diffusion
AE [Preechakul et al., 2022] integrates diffusion models with a learnable encoder that extracts
high-level semantics and enables the diffusion model to add details directly in image space. Further
efforts have focused on incorporating specific control signals, such as bounding boxes, layout, and
segmentation masks to guide and control the image generation process. [Balaji et al., 2022, Li et al.,
2023, Zheng et al., 2023a, Hu et al., 2023]. Recently, BlobGen [Nie et al., 2024] proposes to ground
existing text-to-image diffusion models on object blobs – tilted ellipses that capture spatial details of
the objects – for compositional generation. While these approaches improve the models’ capacity to
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Figure 7: Diversity comparison to standard diffusion model. Images sampled under varying CFG
scales (γ). Panels (a) and (c) display images from the baseline models, while panels (b) and (d) show
images from Kaleido. From top to bottom, as the CFG increases, the standard diffusion models
exhibit reduced diversity, while Kaleido consistently maintains diversity across guidance scales.

adhere to specified spatial layouts, they often necessitate modifications to the attention mechanism,
potentially limiting their generality. In contrast, our method enhances the generative capabilities of
diffusion models without altering the model architecture.

Connecting Diffusion Models with LLMs The remarkable success of Large Language Models
(LLMs) and diffusion models has spurred interest in connecting these models, aiming to leverage the
capabilities of LLMs in understanding and generating complex data and combine it with the powerful
image synthesis capabilities of diffusion models [Ge et al., 2023b, Zheng et al., 2023b, Sun et al.,
2023]. Ge et al. [2023b], Zheng et al. [2023b] propose image tokenizers that encodes images into

9



Figure 8: Effect of sequential latent editing. The top row displays images generated with autoregres-
sively produced latent tokens. The middle row shows the re-generated images after applying latent
editing to the textural description, and the bottom row presents re-generated images after further edits
to the bounding box, showing the impact of step-by-step latent editing.

visual tokens, enabling multimodal language modeling. This line of work focuses on empowering
LLM with image generation ability by aligning its output embedding space with the pre-trained
diffusion models. Our work leverages the LLMs’ robust capabilities in textural understanding and
generation to model the generation of abstract latents from the original text. These latents are then
integrated with latent-augmented diffusion model, enabling a more interpretable and diverse image
generation process.

Our approach also distinguishes itself from the re-captioning method introduced in DALL-E 3 [Betker
et al., 2023]. Unlike re-captioning, which typically replaces the original captions with more descriptive
captions, our method retains the original condition and supplements it with latent variables of various
forms (beyond textual captions like bbox, blob and “vokens”). The sampled latents serves as a
unifying interface for various types of inputs, and introduce diversity compared to recaptioning where
no sampling is involved at inference time.

6 Conclusion

In this work, we address the challenge of improving sample diversity under high CFG in diffusion
models. We introduce Kaleido Diffusion, which combines an autoregressive prior with a latent-
augmented diffusion model. Results show Kaleido increases diversity without compromising quality,
even at high CFG. With human interpretable latent tokens, Kaleido offers an explainable mechanism
behind the image generation process and provides a fine-grained editable interface, enabling precise
user control over the generated images.
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Appendix
A Auto-regressive Latent Modeling

In this work, we explore four types of abstract latents, including textual descriptions (text), detection
bounding boxes (bbox), object blobs (blob), and visual tokens (voken). Each type is designed to enrich
the mode-to-image correspondence, covering different aspects of image formation. Examples of
these abstract latents are illustrated in Fig. 4. In the following paragraphs, we detail the methodology
employed in constructing the training dataset for these abstract latents. Additionally, Fig. 9 outlines
the pipeline for the step-by-step generation of these abstract latents.

Textual descriptions Typical text-image datasets often provide captions that fail to fully capture the
details of the image. For instance, as shown in Fig. 4, the original caption “Dog laying on a human’s
lap” omits crucial details such as the presence of “laptop”, which is essential for accurate image

Textual descriptions (caption)
Original caption: {}
Using the information provided in the caption above, Please provide a detailed description of the
image in 50-80 words, incorporating relevant information from the caption and expanding on the
visual elements:

- Include names, objects, events, and locations mentioned in the caption
- Do not include placeholders like <PERSON> in the caption
- Describe people, characters, animals, and notable entities
- Mention the setting, background, and overall environment
- Note colors, lighting, composition, and style aspects
- Refer to any text, symbols, or logos in the image

Combine caption details with your observations to create a comprehensive description of the key
elements and overall scene, focusing on the most salient aspects of the image.

Textual descriptions (label)
Object labels: {}
Using the provided object labels, generate a detailed description of the image in 50-80 words,
incorporating the relevant information about prominent objects identified and expanding on the visual
elements:

- Describe each labeled object, including its size, shape, and placement in the scene
- Depict relations between objects, such as proximity or arrangement
- Highlight interactions or functions implied by the objects
- Describe the surrounding environment or context that complements the labeled objects
- Any notable features or characteristics of the objects, like color, texture, or design elements
- Describe people, characters, animals, and notable entities
- Mention the setting, background, and overall environment
- Note colors, lighting, composition, and style aspects
- Refer to any text, symbols, or logos in the image

Craft a comprehensive depiction of the scene based on the identified objects, utilizing both the labels
and contextual observations to enrich the description.

Captions with grounding
Generate the caption in English with grounding:

Table 2: The instruction for prompting Qwen-VL to generate detailed textual descriptions and
captions with grounding.
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generation. To address this, we employ detailed textual descriptions as latent variables. These textual
descriptions supplement the original captions by providing additional information that might be
missing from the original captions. Specifically, we leverage Qwen-VL-Chat [Bai et al., 2023], a large
visual language model, designed for effective instruction-following across a variety of multimodal
tasks. We instruct Qwen-VL-Chat to produce a detailed textual description given the original caption
and corresponding image. The specific instructions used for generating the textual descriptions are
detailed in Table 2 under the section Textual descriptions (caption). Fig. 4 shows an example of the
generated detailed textual description that provides a more comprehensive depiction of the scenes
than the original captions, thus allowing for a richer image generation.

Additionally, for the ImageNet dataset, which consists of label-image pairs for class-to-image
generation, we instruct Qwen-VL-Chat to generate detailed descriptions based on the class label and
corresponding image. The instruction for this procedure is similarly documented in Table 2 under the
section Textual descriptions (label).

Detection bounding boxes The spatial location of objects within an image is also crucial infor-
mation for accurate representation of the image, yet such information is typically absent in textual
descriptions. To incorporate this spatial information into the image generation process, we use
detection bounding boxes as one type of abstract latents. Specifically, we use Qwen-VL [Bai et al.,
2023] to prompt the model to “Generate the caption in English with grounding:”. This approach
results in captions where the spatial locations of objects are explicitly annotated within the text. For
instance, as shown in Fig. 4, the caption with grounding for this example is: “Dog (1, 33, 995, 995)
resting head on owner’s lap (1, 630, 785, 998) while they work on a laptop (39, 336, 999, 972).”
Each bounding box is described in a string format “x1, y1, x2, y2”, where x1, y1 and x2, y2 are the
coordinates of the top-left and bottom-right corner, respectively. All the coordinates are normalized
to a [0, 1000] range. The coordinates string is treated as part of the text, obviating the need for an
additional positional vocabulary.

Object Blobs Inspired by Nie et al. [2024], we utilize object blobs as the abstract latents that contain
more advanced spatial information. An object blob is defined as a tilted ellipse that specifies the
position, size, and orientation of an object within an image. Specifically, a blob is represented as “(xc,
yc, rmajor, rminor, θ)” where (xc, yc) denotes the center point of the ellipse, rmajor and rminor are
the radii of its semi-major and semi-minor axes, respectively, and θ ∈ [0, 180) denotes the orientation
angle of the ellipse. To extract the blobs for meaningful objects, we leverage the results from
bounding box detection and employ SAM [Kirillov et al., 2023] to generate the segmentation maps
using the bounding boxes as prompts. Subsequently, an ellipse fitting algorithm is applied to these
segmentation maps to determine the blob parameters for each identified object. This method allows
for a more precise representation of objects’ spatial characteristics, thus improving the integration of
spatial and structural information within the image generation process.

Visual Tokens Representing images via discrete visual tokens, especially using technologies like
Vector Quantized Variational Autoencoder (VQ-VAE) [Van Den Oord et al., 2017], has become a
prevalent technique in generative modeling due to its ability to encode high-dimensional image data
into a more manageable, discrete space. In this work, we utilize SEED [Ge et al., 2023b], a VQ-based
image tokenizer, to encode an image into a sequence of abstract discrete image tokens. These tokens
encapsulate high-level semantic information of the visual elements in the image, serving as potent
latent variables for guiding the diffusion model. The visual tokens are concatenated with the delimiter
“#”, forming a sequence of visual tokens represented as “I1#I2#...#I32”, where each “Ii” denotes the
image token id.

B Implementation Details

B.1 Architecture

In this paper, we use the following NestedUNet architecture proposed in Gu et al. [2023] to implement
the denoising model. The total number of parameters is about 500M. For the autoregressive prior, we
employ T5-XL [Raffel et al., 2020] for all experiments regardless of the input latent types. Both the
denoiser and T5 decoder receive gradients and are trained end-to-end.
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config:
resolutions =[256 ,128 ,64]
resolution_channels =[64 ,128 ,256]
inner_config:

resolutions =[64 ,32 ,16]
resolution_channels =[256 ,512 ,768]
num_res_blocks =[2,2,2]
num_attn_layers_per_block =[0,1,5]
num_heads=8,
schedule=’cosine ’

num_res_blocks =[2,2,1]
num_attn_layers_per_block =[0,0,0]
schedule=’cosine -shift4 ’
emb_channels =1024,
num_lm_attn_layers =2,
lm_feature_projected_channels =1024

B.2 Training

For all experiments, we share all the following training parameters for both the baseline model and
the proposed Kaleido Diffusion.

default training config:
batch_size =512
num_updates =400 _000
optimizer=’adam’
adam_beta1 =0.9
adam_beta2 =0.99
adam_eps =1.e-8
learning_rate =1e-4
learning_rate_warmup_steps =10 _000
weight_decay =0.0
gradient_clip_norm =2.0
ema_decay =0.9999
mixed_precision_training=bp16

All experiments are performed on 64 A100 GPUs which takes roughly 2 weeks for training 400k
steps for both ImageNet and CC12M datasets. For text-to-image models, we perform an additional
400k steps progressive training at 64× 64 resolution, while we train the entire model from scratch
directly at 256× 256 for ImageNet. Due to the memory cost of the T5-decoder, we can only fit 4 ∼ 8
images per GPU, causing at least ×3 slower training compared to the original MDM models.

B.3 Learned Models

To demonstrate the effectiveness of various latents, we train our model with 5 types including text,
bbox, blob, voken, and combined for text-to-image generation. For combined setting, we use the
autoregressive model to predict

combined = text | bbox | voken

in a sequential way such that the latter latents will be controlled by earlier latents. We also trained
models on ImageNet using combined latents for quantitative comparison.

C Limitations

Training Complexity: The enhanced diffusion model may require more complex and extended
training processes compared to standard models. This could lead to increased computational costs and
longer development times, potentially limiting accessibility for smaller organizations or individual
researchers.
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Difficulty in Finding Optimal Latents: Identifying the most effective latent variables to achieve
the desired output diversity can be challenging. This process might involve extensive experimentation
and fine-tuning, which can be time-consuming and resource-intensive. Additionally, covering a
broader range of modes, such as depth and semantic maps, adds another layer of complexity to
the model development, requiring sophisticated techniques to integrate these diverse forms of data
effectively.

Memory Usage: The improved diffusion model, with its increased output diversity, might demand
higher memory usage due to the integration of the heavy language models. However, potential
strategies such as partial training or joint training with LLMs could be explored to mitigate this issue.
These methods could help distribute the computational load more effectively and reduce the memory
footprint during the training process.

D Impact Statement

The proposed method to enhance diffusion models and increase output diversity has significant social
implications. By advancing the diversity and accuracy of generated outputs, this technology can be
leveraged in various fields such as art, media, and content creation, providing more inclusive and
representative outputs that reflect a broader spectrum of human experiences and creativity. Moreover,
in areas like healthcare and education, diverse and precise models can lead to more personalized and
effective solutions, addressing the unique needs of individuals and communities. This innovation
also promotes ethical AI practices by reducing biases in model outputs, fostering a more equitable
digital landscape. Ultimately, the enhanced diffusion models will contribute to the democratization of
AI, making sophisticated tools accessible to a wider range of users and applications, thereby driving
societal progress and innovation.

E Color Cluster as Additional Latent

We have included an alternative approach that constructs latent tokens without relying on additional
knowledge. Specifically, we train a model using color clusters as latent tokens. For each color channel
(R, G, and B) within the range of 0− 255, we equally segment it into eight clusters, resulting in a
total of 8× 8× 8 = 512 color clusters. Given an image, we resize it to 4x4 pixels and assign a color
cluster ID to each pixel based on its RGB value. The image is then encoded into a sequence of color
cluster IDs (e.g., “C1#C2#...#C512”), with each Ci representing a color cluster ID. This sequence
serves as the condition for training our Kaleido diffusion.

In Fig. 10, we showcase images generated using color clusters as latent tokens on ImageNet. Our
results demonstrate that, compared to the baseline MDM, our Kaleido diffusion can generate more
diverse images with latent tokens derived purely from color clustering. This highlights that Kaleido
diffusion’s capability to generate diverse images is independent of distilled external knowledge,
confirming that our approach can produce varied images without the aid of any other pre-trained
models.

F Qualitative Comparison with CADS

Fig. 11 shows the visual comparisons for class- and text-conditioned image generation with CADS.

G Additional Results

We show additional results randomly sampled from our models. For all results including the baseline
model, we use DDPM sampling with 250 steps.
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Dog laying on a 
human's lap

A person in a blue sweater and jeans is sitting on 
the floor on top of a gray couch with their laptop 
in their lap. They have a yellow Labrador 
Retriever in their lap, who is looking at the camera. 
The dog has its tongue out and is laying down on 
the person‘s lap.

QWen-VL-Chat
(Vision Language Model)

Instruction: …

QWen-VL 
(Vision Language Model)

Textual Descriptions

Detection Bounding Boxes

Dog laying on 
a human's lap

Instruction: …

Dog (1, 33, 995, 995) resting head on owner's lap 
(1, 630, 785, 998) while they work on a laptop (39, 
336, 999, 972)

Object Blobs

Segment-Anything (SAM)

(1, 33, 995, 995) 

Fit Ellipse

Dog (1, 33, 995, 995) resting head on owner's lap (1, 630, 785, 998) while they 
work on a laptop (39, 336, 999, 972)

(1, 630, 785, 998) (39, 336, 999, 972)

Segment-Anything (SAM) Segment-Anything (SAM)

Fit Ellipse Fit Ellipse

Dog (120, 164, 112, 130, 84) resting head on owner's lap (384, 881, 138, 486, 92) while they work 
on a laptop (562, 632, 238, 468, 78)

Visual Tokens

SEED
(VQ-based Image Tokenizer)

(120, 164, 112, 130, 84) (384, 881, 138, 486, 92) (562, 632, 238, 468, 78)

2440#680#6654#1246#680#1643#2189#1227#6
740#680#2157#6740#2189#2189#4687#404#23
15#1643#2315#7617#6740#7617#2189#2315#7
237#4235#7650#622#6654#6740#8140#2508

Figure 9: Pipeline for generating various discrete latents.
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Figure 10: Kaleido-MDM with color clusters as latents on ImageNet (class: lemon)

(a) Class-conditioned Image Generation (class: Bald
Eagle).

(b) Text-conditioned Image Generation (prompt: a cat
sleeping on the bed).

Figure 11: Qualitative Comparison with CADS
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Figure 12: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion on
ImageNet 256× 256. The guidance scale is set 4.0.
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Figure 13: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion on
ImageNet 256× 256. The guidance scale is set 4.0.
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Figure 14: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion
(using text,bbox,blob,voken latents) on CC12M 256× 256 given the same condition. We visualize
the generated bounding-boxes and blobs for the ease of visualization. The guidance scale is set 7.0.
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Figure 15: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion
(using text,bbox,blob,voken latents) on CC12M 256× 256 given the same condition. We visualize
the generated bounding-boxes and blobs for the ease of visualization. The guidance scale is set 7.0.
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Figure 16: Interactive example of editing the generation process by manipulating the autoregressive
predicted latents. The top row displays images generated using autoregressively produced latent
tokens, and the subsequent rows show the images re-generated after applying editing on the latents.
The guidance scale is set 7.0.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We made the main claim of “improving diffusion models with autoregressive
latent modeling” in both the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to page limits, we include discussion of limitations in appendix section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theory paper
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the model hyperparameters both in main paper and appendix for
people to reproduce. Both datasets we used are open-sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Code will be released after acceptance and internal review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specified the details about training and testing
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the costly nature of each run, we did not include error bars
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention the compute requirements in the experiments and appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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9. Code Of Ethics
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Answer: [Yes]
Justification: This paper conducted in code of ethics
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Due to page limits, we include societal impacts in the appendix
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• The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not plan to release pretrained models therefore no risk for misuse
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the papers for codes and datasets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: There are no newly released assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no crowdsourcing steps.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30


	Introduction
	Preliminaries
	Kaleido Diffusion
	Latent-augmented Diffusion Models
	Autoregressive Latent Modeling
	Joint Learning of Autoregressive and Diffusion Models
	Interpretable and Controllable Generation

	Experiments
	Experimental Setups
	Quantitative Results
	Qualitative Results

	Related Work
	Conclusion
	Auto-regressive Latent Modeling
	Implementation Details
	Architecture
	Training
	Learned Models

	Limitations
	Impact Statement
	Color Cluster as Additional Latent
	Qualitative Comparison with CADS
	Additional Results

