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ABSTRACT
Web Information Extraction (WIE) systems can extract bil-
lions of unique facts, but integrating the assertions into a co-
herent knowledge base and evaluating across different WIE
techniques remains a challenge. We propose a framework
that utilizes natural language to integrate and evaluate ex-
tracted knowledge bases (KBs). In the framework, KBs are
integrated by exchanging probability distributions over nat-
ural language, and evaluated by how well the output distri-
butions predict held-out text. We describe the advantages
of the approach, and detail remaining research challenges.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
search and retrieval; H.3.5 [Information Storage and Re-
trieval]: Online Information ServicesWeb-based services

General Terms
Algorithms, Measurement, Experimentation

1. INTRODUCTION
Extracting knowledge automatically from the Web is known

as Web Information Extraction (WIE), and is a task of broad
and increasing interest. Over the past decade, a variety
of research studies and prototypes have investigated WIE
techniques [1–11]. WIE has recently been pursued in in-
dustry in the form of question-answering systems like IBM’s
Watson [12] and Web search aids such as the Google Knowl-
edge Graph and Microsoft Satori. WIE presents a promising
route toward achieving Tim Berners-Lee’s vision of a Seman-
tic Web, and one day acquiring the knowledge required to
enable human-level artificial intelligence.

Existing WIE systems vary along two key dimensions: the
type of content they target for extraction (Web tables, text,
Wikipedia, etc.), and the representation of the extracted
knowledge (individual tuples or frames, or additions to given
ontology). Because WIE systems are so diverse, it is difficult
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to integrate knowledge across extracted KBs, or to evalu-
ate across distinct extraction approaches. To deliver on the
promise of WIE, new methods are required to allow differ-
ent system builders to work together to construct a massive
body of knowledge.

In this position paper, we propose a framework for inte-
grating and evaluating WIE systems. The approach hinges
on representing extracted knowledge in terms of probabil-
ity distributions over natural language (NL). Many existing
WIE systems already utilize such distributions as input, at
least implicitly—as a simple example, the distribution of
terms C and x in the extraction pattern “C such as x” is
commonly used to extract x’s that are members of the class
C, as in the phrase “cities such as Boston” [2, 13]. Asser-
tions that occur more frequently in text (i.e., for which the
extraction pattern has higher probability) are deemed more
likely to be correct [14]. Our contention in this paper is that
a generalization of this capability, in which KBs import and
export distributions over language, can enable automated
integration of WIE systems. Further, we believe that the
quality of the output distributions (according to some mea-
sure) forms a promising metric for evaluating and optimizing
WIE systems.

We envision a large-scale research effort in which different
parties continuously extract KBs in a variety of ways, and
the KBs selectively share knowledge with each other in nat-
ural language in an effort to encode a vast, high-precision,
globally-interoperable body of knowledge. As discussed in
Sections 3 and 4 below, utilizing NL for knowledge base in-
tegration and evaluation has distinct advantages: it enables
KB integration without requiring a commitment to any sin-
gle ontology, and it enables KB optimization over trillions of
readily available evaluation examples (in the form of running
text on the Web). However, operationalizing the proposed
approach entails a number of research challenges, detailed
in Section 5. We begin by discussing previous work in WIE.

2. WEB INFORMATION EXTRACTION
Web Information Extraction (WIE) is the task of extract-

ing knowledge from content on the Web. Different WIE
approaches target different types of Web content. Some sys-
tems extract knowledge from text across the Web [15], while
others focus on Wikipedia text or infoboxes [16, 17] or Web
tables [5, 6]. Other approaches integrate knowledge solicited
from Web contributors [18]. Together, these KBs contain
billions of facts, spanning an enormous variety of topics.

WIE approaches also differ significantly in the degree of
representational structure in the extracted knowledge. For



example, some approaches extract independent propositions
or tuples (e.g. MayorOf(New York City, Bloomberg)) [4,
19], while others extract more comprehensive semantic frames
[11]. Some approaches organize extracted facts into an ontol-
ogy: these range from lightweight ontologies, often rooted in
Wikipedia [7–10], to rich knowledge representation systems
such as Cyc [1, 3].

The diversity of extracted facts and knowledge represen-
tation schemes presents a significant difficulty: it is unclear
how to best combine different systems or evaluate across dif-
ferent systems. We present our proposed solution to these
problems in the following sections.

3. NL FOR INTEGRATING KBS
If two KBs contain different sets of knowledge, represented

in different ways, how can the KBs share knowledge with
each other?

Previous work on this task includes data integration ap-
proaches from the database community, which attempt to
merge two different KBs into a single knowledge base [20].
This approach is limited in that it generally requires special-
purpose engineering or training examples for each pair of
KBs to be integrated.

A distinct, potentially more scalable approach involves
choosing one or more common reference ontologies with which
all other KBs can be integrated. This approach is employed
in the Linked Open Data project [21], in which different
knowledge bases link their statements to a handful of com-
mon shared vocabularies. Wikipedia is a common refer-
ence ontology for this task, and semi-automated methods
for integrating with Wikipedia have been proposed for Cyc
[22], relational databases [23], and tuples extracted from text
[24]. This approach, while potentially much more scalable
than pairwise integration, is also heavily restrictive: a small
number of reference knowledge bases must be selected, and
choosing such KBs is difficult. Further, changes to a refer-
ence knowledge base can entail burdensome updates to how
each KB exports knowledge. While we believe integration
with Linked Open Data is an important component of KB
integration (and we discuss how to incorporate it in our ap-
proach in Section 5), we believe natural language integration
has distinct advantages as discussed below.

3.1 The NL Protocol
We propose an approach in which knowledge bases are in-

tegrated by exchanging natural language. Because KBs will
typically have uncertainty associated with their knowledge
and how it is expressed in language, we define a protocol that
exchanges not raw text but instead probability distributions
over language.

Formally, the NL protocol requires that each KB be
capable of two operations. First, we require that a given KB
K can update its knowledge (which we denote as a change
in knowledge ∆K) based on a probability distribution over
sentences w of natural language:

P (w)→ ∆K (1)

Secondly, we require the inverse operation, that a knowledge
base be capable of exporting its knowledge in terms of a
probability distribution over sentences:

K → PK(w) (2)

We propose that KBs exchange knowledge by, at an ab-
stract level, reading and writing distributions P (w). In
practice, knowledge bases may choose not to output com-
plete distributions, but instead exchange certain agreed-upon
properties of the distributions. A concrete example is given
in Section 3.2 below.

The primary advantages of the NL protocol are three-
fold. First, the communication medium (natural language)
is extremely expressive, and not tied to any single ontol-
ogy. Each KB must implement two methods, for reading and
writing knowledge in natural language, and it can then inte-
grate with every other KB implementing the protocol. Sec-
ondly, knowledge exchanged in the NL protocol is durable:
a fixed distribution PK(w) output by K at some point in
time remains informative, even if K later changes radically.
Third, the protocol is readily interpretable by humans,
because it is expressed in natural language.

An immediate concern is whether producing the mappings
in Equations 1 and 2 is feasible in practice. While fully ex-
ploiting the protocol requires overcoming a number of dif-
ficult research challenges (see Section 5), we are optimistic
that the approach is practical. First, note that Equation 1
essentially formalizes a capability held already by many WIE
systems. In particular, many free text extractors perform ex-
traction from a corpus of distinct sentences S (e.g., [2, 4]). If
we view the corpus in terms of a simple maximum-likelihood
language model that assigns probability P (w) = 1/|S| for
w ∈ S and zero otherwise, the existing extraction mecha-
nisms supply exactly the mapping required in Equation 1.1

The natural language generation task, Equation 2, is less
well-studied. However, below we illustrate how even KBs
that do not use language for extraction, like those that per-
form extraction from Web tables, can provide valuable in-
formation about P (w) through straightforward use of the
distributional hypothesis, the notion that terms with similar
meanings tend to appear in similar contexts [25].

3.2 Concrete Example
Some IE approaches that use language models as a foun-

dation (e.g. [26]) could directly output a relatively com-
pact, complete distribution P (w). However, for most KBs,
exporting an entire knowledge base—i.e., outputting a com-
plete model P (w) through a complex language generation
process—may be undesirable. It may instead be preferable
for KBs to periodically query each other about agreed-upon
properties of P (w), rather than exchanging complete lan-
guage models. The following example illustrates how this
might work, and also illustrates how the protocol can be
employed even by WIE systems that do not extract knowl-
edge from free text.

Consider a system that wishes to populate an initially-
empty knowledge base K with a list of cities containing
skyscrapers. Assume the system has a set of lexical extrac-
tion patterns (as in e.g. [2]), and thus aims to obtain strings
x that yield high values of the product:

P (x and other cities) ∗ P (skyscraper in x) (3)

Since K lacks this knowledge, it could pose a language
model (LM) query to another KB K′. LM queries request

1Here, knowledge is derived from sentences considered inde-
pendently. Relaxing this criterion to allow for richer context
beyond a single sentence is an important direction, discussed
in Section 5.



products of probabilities of strings, where the strings are
composed of surface terms and one or more free variables (x
is a free variable in the query in Equation 3). The response
to a LM query is a list of x’s and the estimated value of the
product for each.

Assume that K′ is populated by extraction not from free
text, but instead from Wikipedia tables. K′ lacks the tex-
tual evidence to service the LM query itself, so it might
pose the same query to another text-based extractor K′′.
K′′ extracts from a textual corpus that includes three an-
swers with positive probability: Shanghai, New York City,
and Montreal. For concreteness, assume K′′ simply returns
a distribution where each of the three cities has probability
0.2, and the remaining 0.4 of probability mass is distributed
uniformly over other phrases.

Based on the three “seed” examples with non-negligible
probability, the table extractor K′ might attempt to impute
a more accurate distribution over x using its KB of tables
along with the distributional hypothesis of language. Specif-
ically, given a table column that contains the seed cities, the
other cells S in the same column are likely to be semantically
similar to the seeds. Thus, K′ can adjust the distribution
it returns to give higher probability to the strings S, and
thereby return a more accurate distribution.

In the example, the first table returned by the Wikitables
extraction system [27] when queried for the seeds lists the
top 40 cities ranked in terms of “Global City Competitive-
ness Index.” While this table does not explicitly refer to
skyscrapers, it happens that all 40 listed cities do, in fact,
contain skyscrapers. Thus, when K′ adjusts its query re-
sponse to return positive probability for these 40 cities, K
will receive a response that has perfect precision and dramat-
ically higher recall than the original three strings returned
by K′′.

This example illustrates how even when a knowledge base
may not contain the target relation or be based on text
(e.g. K′ need not contain any table listing all cities with
skyscrapers), it can leverage other KBs (in this case K′′)
in order to answer queries. By exchanging knowledge, the
three KBs in the example are able to produce an answer to a
query that is dramatically better than any of the KBs could
produce in isolation.

4. NL FOR EVALUATING AND OPTIMIZ-
ING KBS

How to estimate the quality of an extracted KB is an open
question. Previous work has emphasized that extracted KBs
must ultimately be evaluated in terms of “end-tasks,” such
as decision making and question answering [28]. While end
task evaluation is necessary to ensure the knowledge can
yield useful technology, it can be cost-prohibitive: evalua-
tion with end-tasks generally requires direct human judg-
ments of performance. Unless we solicit new human input
often, we risk overfitting to a fixed objective. Thus, while we
believe end task evaluations are vital to periodically evalu-
ate competing approaches, due to their cost they cannot be
used for continuous optimization of KB constructors.

4.1 The NL Objective
We propose the NL Objective for KBs, in which a KB

K is evaluated in terms of how accurately its output dis-
tribution PK(w) predicts held-out text. This objective has

Figure 1: Web Information Extraction (WIE) per-
formance of a Hidden Markov Model, as accuracy of
the HMM’s language model P (w) varies (reprinted
from [29]). Number labels indicate the number of la-
tent states in the HMM, and performance is shown
for three training corpus sizes (the full corpus con-
sists of approximately 60 million tokens). WIE ac-
curacy (in terms of area under the precision-recall
curve) tends to increase as language modeling ac-
curacy improves (i.e. perplexity decreases). WIE
accuracy correlates more strongly with perplexity
(-0.88, Spearman’s) than with corpus size (0.71) or
number of latent states (0.38).

the advantage of not being biased toward a limited data set;
in fact, trillions of examples for training and evaluation are
available, in the form of running text on the Web.

How to measure the “accuracy” of PK is an important
question. Fortunately, there is some indication that other
typical measures of extraction performance, like precision
and recall of extracted relations, correlates with the stan-
dard perplexity metric used in language modeling. In Fig-
ure 1, we show experiments from previous work [29] that
demonstrate how the perplexity of a Hidden Markov Model
correlates strongly with the model’s accuracy in a standard
“set expansion” WIE task.

5. KEY CHALLENGES
The NL Protocol and NL Objective present advantages as

well as unique challenges. In this section, we detail key limi-
tations of the techniques and remaining research challenges.

5.1 Developing APIs in the NL Protocol
A primary limitation of the NL Protocol is that—like nat-

ural language, but unlike Linked Open Data RDF—messages
in the NL Protocol are ambiguous. Given only the state-
ment that“Chicago is a city,” it is unclear whether the string
Chicago refers to a fictional city or a real one, or whether it
is the same meaning of Chicago in the phrase “that song by
Chicago was playing on the radio.”

We believe the ambiguity of language can be overcome to
build a powerful protocol, through the use of well-designed
queries. The “language model query” in the example in Sec-
tion 3, for example, mitigates ambiguity by querying for
a product of two distinct language probabilities. It is less



likely that an erroneous or ambiguous phrase occurs in both
the skyscraper and the city context, when compared to a
single context alone. By composing larger products of ad-
ditional indicative phrases (e.g. “cities including x,”“x and
other cities,” etc.) we would expect that, as the number
of phrases increases and if probability estimates are accu-
rate, the high-probability x’s would correspond to correct
answers for any query. In fact, it can be proved that un-
der assumptions that hold approximately in large corpora,
such extraction techniques are guaranteed to achieve high
accuracy [14].

To make sense disambiguation explicit, it would be pos-
sible to augment the NL protocol to allow not only surface
strings, but also word classes of various types (e.g. parts of
speech or well-established semantic classes). One option is
to allow terms in queries that are not surface strings, but
instead indicate a reference to a particular Linked Data URI,
e.g.,“x is the mayor of <reference to en.wikipedia.org/Chicago,
Illinois>.” This would allow KBs to leverage Linked Open
Data URIs where they are well-established, but back off to
natural language in other cases. Of course, utilizing URIs
sacrifices some of the advantages of the NL protocol dis-
cussed above. New methods are needed to determine when
utilizing URIs rather than “pure” NL is appropriate.

Lastly, while in the NL protocol we focus on single sen-
tences w, the API can be generalized to a richer discourse
model. One simple example would allow distributions P (w|t),
where the distribution over sentences is conditioned on a
given vector of terms t appearing in the document contain-
ing the sentence. We note that given sufficient contextual
information, word senses may become unambiguous from
the context, obviating some of the need for non-NL URIs.

5.2 A Market for Knowledge
We expect that different KBs, constructed using different

methods and for different purposes, will specialize in differ-
ent knowledge. As a result, a new category of services need
to be developed that can advise a KB about which other
KBs can answer which questions. How should a KB com-
bine evidence across other KBs? And what incentive struc-
tures will reward KBs for providing high-quality output, and
help WIE systems focus on extracting new knowledge that
is helpful to other KBs? New mechanisms would need to be
designed for these purposes.

5.3 Clarifying the LM Objective
While the experiments in Section 4 show that the per-

plexity measure correlates well with IE performance for a
particular class of models (HMMs), in general the LM Ob-
jective requires further refinement.

In the limit, a KB that performs sufficiently well according
to the LM Objective will necessarily contain a vast, useful
body of knowledge. However, in the nearer-term, optimizing
the LM Objective in terms of standard metrics like perplex-
ity has the potential to be counter-productive. As a specific
example, extractors based on trigram models can actually
be shown to be less accurate for WIE than HMMs, but the
trigrams achieve better perplexity scores in modeling P (w)
through the use of careful backoff and smoothing techniques.

Thus, new metrics must be developed for evaluating dis-
tributions P (w). We desire metrics that vary monotonically
with the “knowledge content” of a KB. The ideal metric
would penalize semantic errors, rather than (for example)

rewarding particularly precise probability estimates on com-
mon phrases. The recent “adversarial evaluation” approach
for NL models represents one promising direction [30].

It is also important to note that even with trillions of
training examples, language model performance will typi-
cally remain an imperfect measure of KB capabilities. For
example, the LM Objective may never completely capture
whether a KB can perform arithmetic (plenty of reasonable
sums, such as “25 plus 329,” never occur even in a corpus
as large as the Web). Characterizing what types of knowl-
edge are, and are not, reflected by the NL Objective is an
important task.

5.4 Applications
Systems that can utilize KBs for end tasks would help

guide the acquisition of new knowledge toward useful ends.
While many extraction techniques have been developed, rel-
atively less effort has been spent on developing applications
that allow users to interactively search, browse, and mine
the extracted knowledge. Augmenting existing Web search
results with extracted knowledge (as in the Google Knowl-
edge Graph and Microsoft’s Satori) is one possible direction.
Other examples include search tools for extracted informa-
tion, such as TextRunner [4] and Google Fusion Tables [31],
and extraction visualization tools like Atlasify [32]. Mas-
sive extracted KBs present exciting opportunities to develop
compelling new end-user applications.

5.5 Scaling LM training
The LM Objective suggests that building more predictive

language models is an important direction for WIE. In par-
ticular, we require language models that can handle poten-
tially lengthy queries—i.e. models that infer which strings
are likely to occur, even if the strings never appear on the
Web. Latent variable models such as HMMs are one step
toward such a model; other promising avenues include deep
neural network language models [33] and recent models that
include language compositionality [34, 35].

While parallel training techniques have been developed for
many models [36, 37], training sophisticated models on large
corpora with large vocabularies is an ongoing challenge. Can
we develop new techniques that actively select human input
to improve the models? In some settings, carefully selecting
informative input can dramatically reduce the amount of
training required [38], but these techniques have not been
applied to modern statistical language models. A related
direction involves developing new learning approaches that
do not iterate over the entire corpus, but instead learn from
selected statistics computed over the data (e.g. [39]).

6. CONCLUSION
We proposed a framework that utilizes natural language

for integrating, evaluating, and optimizing extracted knowl-
edge bases (KBs). In the NL protocol, KBs exchange knowl-
edge by asking and answering queries about probability dis-
tributions over language. The NL Objective evaluates and
optimizes KBs in terms of their ability to accurately estimate
probabilities over language. Several research challenges re-
main. Our next steps include implementing the NL protocol
over existing extracted KBs, and evaluating its effectiveness
experimentally.
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