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Abstract

GUI automation faces critical challenges in dy-001
namic environments. MLLMs suffer from two002
key issues: misinterpreting UI components and003
outdated knowledge. Traditional fine-tuning004
methods are costly for app-specific knowledge005
updates. We propose GUI-explorer, a training-006
free GUI agent that incorporates two funda-007
mental mechanisms: (1) Autonomous Explo-008
ration of Function-aware Trajectory. To009
comprehensively cover all application function-010
alities, we design a Function-aware Task Goal011
Generator that automatically constructs explo-012
ration goals by analyzing GUI structural infor-013
mation (e.g., screenshots and activity hierar-014
chies). This enables systematic exploration to015
collect diverse trajectories. (2) Unsupervised016
Mining of Transition-aware Knowledge. To017
establish precise screen-operation logic, we018
develop a Transition-aware Knowledge Ex-019
tractor that extracts effective screen-operation020
logic through unsupervised analysis the state021
transition of structured interaction triples (ob-022
servation, action, outcome). This eliminates023
the need for human involvement in knowledge024
extraction. With a task success rate of 53.7%025
on SPA-Bench and 47.4% on AndroidWorld,026
GUI-explorer shows significant improvements027
over SOTA agents. It requires no parameter028
updates for new apps. All data and code will be029
publicly available on Github after acceptance.030

1 Introduction031

Automation in graphical user interfaces (GUIs) has032

rapidly advanced (Su et al., 2024). This progress is033

driven by foundational models like large language034

models (LLMs) (Touvron et al., 2023; Achiam035

et al., 2023; Yang et al., 2024a) and multimodal036

large language models (MLLMs) (Chen et al.,037

2024a; Hurst et al., 2024; Google, 2025). These in-038

novations enable agents (Zheng et al., 2024; Zhang039

et al., 2023; Wang et al., 2024a) to handle tasks.040

They require no extensive fine-tuning or pretrain-041

Figure 1: Comparison of GPT-4o and an user’s interpre-
tation of a UI element in QQ Music3. The red-bounded
icon in the screenshot represents the music recognition
feature, but GPT-4o misidentified it. This highlights the
challenge of accurately interpreting UI elements in an
ecosystem of diverse apps with distinct designs.

ing. This demonstrates their potential for diverse 042

applications. 043

However, the practical deployment of these mod- 044

els faces significant challenges. These challenges 045

stem from the long-tail distribution of app/website 046

variants and their rapid iteration cycles. While 047

core functionalities might appear similar across 048

platforms, critical design divergences exist. For 049

example: shopping cart features in Amazon.com 050

and Temu1 share similarities. In contrast, Pin- 051

duoduo2 (China’s dominant e-commerce platform) 052

eliminates cart functionality entirely. This requires 053

single-item purchases rather than batch checkout. 054

Such inconsistencies extend beyond functionality 055

to interface semantics. As shown in Figure 1, even 056

advanced MLLMs such as GPT-4o (Hurst et al., 057

2024) can misinterpret the button’s actual function- 058

ality. Human users familiar with the app, however, 059

1https://www.temu.com
2https://mobile.pinduoduo.com
3https://play.google.com/store/apps/details?

id=com.tencent.qqmusic
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correctly interpret it through learned interaction pat-060

terns. Compounding this challenge, apps/websites061

undergo frequent updates. Amazon Shopping alone062

released 30 version iterations in 20244. This ren-063

ders static model knowledge obsolete. Retraining064

or fine-tuning (M)LLMs for every change proves065

prohibitively expensive and latency-prone.066

In this paper, we propose Autonomous Explo-067

ration and Mining of Transition-aware Knowl-068

edge for GUI Agent (GUI-explorer). It syner-069

gizes two key components: (1) Autonomous Ex-070

ploration of Function-aware Trajectory. To ex-071

haustively cover all potential functions of target072

applications, we design a Function-aware Task073

Goal Generator. This module automatically con-074

structs function-aware exploration goals by ana-075

lyzing structural information of the GUI environ-076

ment, including screenshots and activity lists from077

APK files. Through systematic exploration, we078

obtain diverse function-aware trajectories. (2) Un-079

supervised Mining of Transition-aware Knowl-080

edge. To establish precise screen-operation logic,081

we develop a Transition-aware Knowledge Ex-082

tractor. This component extracts effective screen-083

operation logic through unsupervised analysis the084

state transition of structured interaction triples (ob-085

servation, action, outcome). This eliminates the086

need for human involvement in knowledge extrac-087

tion. Through multimodal state modeling that in-088

corporates both visual patterns (e.g., element lay-089

outs) and semantic patterns (e.g., text labels), the090

extractor rigorously captures operation constraints091

and outcome dependencies, ultimately generating092

transition-aware knowledge with explicit action-093

effect correlations. Finally, by performing visual-094

semantic retrieval between current screen visuals095

and the knowledge vector store to construct Dy-096

namic Guidance, it achieves two goals: suppressing097

the misinterpretation of UI components, and ensur-098

ing that action proposals align with actual UI states.099

This approach facilitates precise and goal-oriented100

prompt generation. These prompts guide the agent101

in effectively understanding and interacting with102

GUI elements.103

Our main contributions are listed below:104

• We propose GUI-explorer, a novel training-105

free agent that integrates two mechanisms: (1)106

Autonomous exploration of function-aware107

trajectory through environment-specific struc-108

4https://www.apkmirror.com/uploads/
?appcategory=amazon-shopping

tural priors, and (2) Unsupervised mining 109

of transition-aware knowledge that extracts 110

atomic screen-operation logic from raw inter- 111

action traces. 112

• We conducted comprehensive evaluations of 113

GUI-explorer across AndroidWorld and SPA- 114

Bench benchmarks, our agent achieves 47.4% 115

and 53.7% task success rates respectively, out- 116

performing SOTA methods by 2.6%∼11.7% 117

improvement. Through ablation studies, we 118

verified that our framework’s transition-aware 119

knowledge integration approach reduces prior 120

knowledge errors by 16.0%. 121

• We introduce a benchmark evaluating 122

MLLMs’ GUI understanding through 500 123

curated samples across 43 applications. 124

Results reveal critical limitations in current 125

models (15.2%∼22.8% prior knowledge 126

inaccuracies). 127

2 Related Work 128

GUI Agents Modern GUI agents leverage 129

MLLMs to interpret interface states and execute 130

actions. SeeAct (Zheng et al., 2024) pioneers 131

GPT-4V (OpenAI, 2023) for web task automation 132

through visual understanding and HTML-guided 133

action grounding. MobileAgentV2 (Wang et al., 134

2024a) implements multi-agent collaboration with 135

memory units to track task progress and interface 136

focus. M3A (Rawles et al., 2024) integrates ReAct- 137

style (Yao et al., 2022) reasoning with Set-of-Mark 138

(SoM) (Yang et al., 2023) visual annotations for 139

Android device control, demonstrating zero-shot 140

generalization across applications. 141

Exploration & Knowledge-aware Agents Au- 142

tonomous exploration mechanisms vary in super- 143

vision requirements. AppAgent (Zhang et al., 144

2023) requires manually designed exploration 145

tasks for knowledge acquisition, while Auto- 146

Droid (Wen et al., 2023) generates random ac- 147

tion sequences for environment interaction. Di- 148

giRL (Zhou et al., 2024) employs reinforcement 149

learning with Gemini-based (Google, 2025) trajec- 150

tory filtering to collect successful demonstrations 151

as training data. 152

Knowledge utilization strategies focus on ex- 153

perience retention and retrieval. CAT (Feng 154

et al., 2024) employs retrieval-augmented gen- 155

eration with task-specific successful trajectories, 156
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Figure 2: Overview of GUI-explorer. (a) Automatically constructing function-aware exploration goals by analyzing
structural information from the GUI environment, followed by systematic exploration to collect diverse function-
aware trajectories. (b) Extracting effective screen-operation logic through unsupervised analysis of structured
interaction triples (observation, action, outcome), enabling unsupervised knowledge extraction. (c) Performing
visual-semantic retrieval between screen visuals and the vector knowledge base to construct Dynamic Guidance
achieves dual objectives: preventing UI misinterpretation and ensuring action proposals align with actual UI states.

though limited to pre-collected demonstrations.157

Synapse (Zheng et al., 2023) introduces trajectory-158

as-exemplar prompting with state abstraction to159

improve cross-task generalization. ICAL (Sarch160

et al., 2024) abstracts interaction traces into trans-161

ferable knowledge through visual-language model162

summarization and human feedback.163

While existing methods demonstrate progress,164

three critical limitations persist: (1) Exploration165

efficiency suffers from random action generation166

or manual task design; (2) Knowledge extraction167

relies on successful trajectories or human curation,168

limiting scalability; (3) Static knowledge bases169

struggle with rapidly evolving interfaces.170

3 Autonomous Exploration and Mining of171

Transition-aware Knowledge for GUI172

Agent173

As illustrated in Figure 2, GUI-explorer consists174

of two main components: autonomous exploration175

of function-aware trajectory and unsupervised min-176

ing of transition-aware knowledge. Building upon177

the dual components mentioned, we employ visual-178

semantic retrieval during the agent’s task execution179

to extract relevant knowledge based on the current 180

observation. This retrieval mechanism enables a 181

dynamic knowledge integration process that en- 182

hances the agent’s decision-making capabilities. 183

Specifically, we construct task-specific guidance 184

by synthesizing the retrieved knowledge with both 185

the current task goal and observational data. This 186

guidance framework facilitates sophisticated rea- 187

soning processes, allowing the agent to make more 188

informed decisions while navigating complex task 189

environments. 190

3.1 Autonomous Exploration of 191

Function-aware Trajectory 192

The core of our method lies in autonomously gen- 193

erating diverse interaction trajectories without hu- 194

man supervision. This exploration is grounded in 195

environment-specific structural priors. These priors 196

suppress misinterpretations derived from MLLMs’ 197

obsolete domain priors. Algorithm 1 formalizes 198

this process through two key components. First, 199

anchor-guided task generation leverages interface 200

semantics. Second, depth-first exploration incorpo- 201

rates state restoration mechanisms. 202
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Algorithm 1: Autonomous Exploration
of Function-aware Trajectory

Input: Environment E, max_branching_factor b,
max_depth d, max_steps s

1 Function Explore_DFS(E, b, d, depth, task, s)
2 Task_Executor(E, task, s);
3 if current_depth > d then
4 return;
5 current_state← E.get_current_state();
6 child_tasks← Task_Generator(E, b);
7 for i = 0 to length(child_tasks)− 1 do
8 if i > 0 then
9 E.restore_to(current_state);

10 Explore_DFS(E, b, d, depth+
1, child_tasks[i], s);

11 Function Task_Generator(E, k)
12 anchors← E.app_functions;
13 p← ConstructPrompt(E.observation, anchors);
14 return MLLM(p).sample_top_k(k);

15 Function Task_Executor(E, task, s)
16 for round = 1 to s do
17 action←MLLM(task, E.observation);

/* We store the observation and
action for knowledge vector
store construction */

18 if action == "END" then
19 return;
20 E.step(action);

21 E.reset();
22 initial_state← E.get_current_state();
23 tasks← Task_Generator(E, b);
24 foreach task in tasks do
25 Explore_DFS(E, b, d, 0, task, s);
26 E.restore_to(initial_state);

Given a target environment E, we first extract203

Exploration Anchors - structural primitives from204

E’s ground-truth architecture. For mobile apps,205

functional modules declared in manifest files (e.g.,206

"PaymentActivity"). These anchors serve as veri-207

fiable constraints during task generation, prevent-208

ing MLLMs from proposing actions targeting non-209

existent components. The Task_Generator function210

constructs prompts (see Appendix D.1) containing211

current observation ot and valid anchors, then sam-212

ples up to k candidate tasks from MLLM outputs.213

The exploration follows depth-first search (DFS)214

with configurable branching factor b and depth d.215

This strategy eliminates the first state restoration216

overhead when expanding child tasks. The elim-217

ination occurs because each branch naturally in-218

herits the terminal state of its parent task. This219

differs from breadth-first search (BFS), which re-220

quires resetting to the parent state for each sib-221

ling task expansion. Starting from initial state222

state0, each generated task initiates an exploration223

branch. After executing a task for up to s steps224

via Task_Executor, the environment rolls back to225

Figure 3: Without transition-aware knowledge as re-
liable prior information, MLLMs may fail to reason
correctly due to outdated prior knowledge or diverse
GUI designs.

previous state statei. This mechanism enables ex- 226

haustive traversal of interface pathways without 227

manual reset. The executor terminates exploration 228

branches under two conditions: when receiving an 229

"END" action, or when reaching maximum steps. 230

This balances thoroughness with computational ef- 231

ficiency. 232

This design achieves two critical properties: (1) 233

Semantic Grounding: Anchors tether generated 234

tasks to actual interface functions. (2) Quadratic 235

Coverage: Each d-depth exploration with branch- 236

ing factor b yields O(bd) distinct trajectories, sys- 237

tematically capturing combinatorial interaction pat- 238

terns. 239

3.2 Unsupervised Mining of Transition-aware 240

Knowledge 241

The knowledge construction process focuses on 242

mining atomic screen-operation logic. These logic 243

are derived from exploration trajectories. Let ξ = 244

⟨o1, a1, ..., on, an⟩ denote an interaction trajectory. 245

This trajectory is collected during autonomous ex- 246

ploration. We extract transition-aware GUI knowl- 247

edge through a Transition-aware Knowledge Ex- 248

tractor function Fextract. This function operates 249

on state-action transitions: 250

Fextract : (oi, ai, oi+1) → {ki : vi} (1) 251

where oi and oi+1 represent consecutive observa- 252

tions, ai denotes the action executed, and {ki : vi} 253

outputs a set of visual-semantic knowledge entries. 254

Each entry consists of: (1) ki: visual patch of the in- 255

teracted UI element, (2) vi: operational knowledge 256

(e.g., "Clicking this button opens search history"). 257
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Unlike previous work (Zheng et al., 2023; Feng258

et al., 2024; Sarch et al., 2024; Qin et al., 2025),259

which requires successful trajectories for in-context260

learning or fine-tuning, our approach has differ-261

ent requirements. Specifically, we only need valid262

state transitions. Therefore, we implement a fil-263

tering mechanism termed Transition Filtering to264

filter out invalid state transitions: Discard transi-265

tions where oi ≈ oi+1. This similarity is measured266

via perceptual hashing (Marr and Hildreth, 1980).267

Such transitions indicate ineffective actions. These268

occur in two scenarios: when ai fails to alter the en-269

vironment (invalid action) or when the environment270

fails to respond (execution error).271

The knowledge vector store K is structured as a272

multi-modal index:273

K =
⋃
ξ∈Ξ

|ξ|−1⋃
t=1

Fextract(ot, at, ot+1) (2)274

where Ξ denotes all exploration trajectories and |ξ|275

denotes the total steps of the trajectory ξ.276

This knowledge construction process enables277

Continuous Knowledge Refinement. New explo-278

rations iteratively update K through:279

K =

{
K \ {(kold, vold)} ∪ {(kold, vold ⊕ vnew)} if Φ
K ∪ {(knew, vnew)} otherwise

(3)280

where K\{(kold, vold)} denotes the removal of the281

original key-value pair from the knowledge vector282

store, ⊕ represents the concatenation of knowledge,283

condition Φ is formally defined as:284

∃(kold, vold) ∈ K

s.t.
{

cos
(
Emb(knew),Emb(kold)

)
≥ δk

cos
(
Emb(vnew),Emb(vold)

)
≤ δv

(4)285

where δk and δv are similarity thresholds for key286

matching (≥ 0.99) and value merging (≤ 0.1) re-287

spectively, cos(·) is cosine similarity, and Emb(·)288

is the embedding function. This prevents redundant289

entries while capturing novel interface behaviors.290

Figure 3 demonstrates the importance of291

transition-aware knowledge.292

3.3 Dynamic Guidance for GUI Agent293

The dynamic guidance mechanism connects ac-294

quired Transition-aware Knowledge to real-time295

task execution. This connection is achieved296

through a ranking architecture. As detailed in Al-297

gorithm 2, our approach uses a two-phase process.298

The first phase involves visual-semantic knowledge299

retrieval. The second phase performs instruction-300

aware prioritization.301

Algorithm 2: Dynamic Guidance for
GUI Agent

Input: Environment E, Instruction I ,
Knowledge_Vector_Store K,
Knowledge_Ranker Ranker, max_steps s

1 Function Get_Guidance(obs, I , K)
2 annot_scr← Get_Annotated_Screenshot(obs);
3 ui_elements← Extract_UI_Elements(obs);
4 all_knol← ∅ ; // all_knowledge
5 foreach ui_element in ui_elements do
6 all_knol.append(Retrieve_Knowledge(K,

ui_element));
7 prioritized_knol← Ranker(I, all_knol);
8 guidance← Create_Guidance_Prompt(I ,

rioritized_knol, annot_scr);
9 return guidance;

10 E.reset();
11 for idx = 1 to s do
12 obs← E.observation;
13 operational_guid← Get_Guidance(obs, I , K);
14 action←MLLM(I , operational_guid, obs);
15 if action == "END" then
16 break;
17 E.step(action);

Knowledge Ranking Formulation Given an in- 302

struction I and candidate knowledge entries C = 303

{k1, ..., kn}, we define the optimal knowledge or- 304

dering C∗ through pairwise utility comparison: 305

C∗ = argmax
π∈Π(C)

|C|−1∑
i=1

int(u(kπ(i), I) ≥ u(kπ(i+1), I)) (5) 306

where Π(C) denotes all permutations of C, int(·) 307

converts bool to integer (false as 0, true as 1), and 308

utility function u(k, I) measures the relevance be- 309

tween knowledge entry k and instruction I . We 310

implement u(·) through an MLLM-based pairwise 311

comparator: 312

u(ka, I) > u(kb, I)⇔ frank(g(I, ka, kb)) = 1 (6) 313

where g(·) constructs the ranking prompt (see Ap- 314

pendix D.3), and frank represents the MLLM’s bi- 315

nary classification. When the classification result is 316

1, it indicates ka is more helpful than kb for this in- 317

struction. When the result is 2, it means kb is more 318

helpful than ka. This formulation enables efficient 319

sorting through a modified merge sort algorithm: 320

Sort(C, I) =

{
C |C| ≤ 1

Merge(Sort(CL, I), Sort(CR, I), I) otherwise
(7) 321

The merge operation recursively compares head 322

elements from sorted sublists using frank: 323

Merge(A,B, I) =


[a0] ⊕ Merge(A1:, B, I) frank(g(I, a0, b0)) = 1

A ⊕ B A = ∅ ∨ B = ∅
[b0] ⊕ Merge(A,B1:, I) otherwise

(8) 324
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where a0 and b0 denote the first elements of lists A325

and B respectively.326

Operational Guidance Generation At each exe-327

cution step t, the system: (1) Extracts UI elements328

Ut from current observation ot; (2) Retrieves asso-329

ciated knowledge entries Kt ⊆ K; (3) Sorts entries330

via K∗
t = Sort(Kt, I); (4) Constructs guidance331

prompt pt with relevant knowledge.332

As shown in Figure 2 (c), the dynamic guidance333

mechanism enables precise alignment between op-334

erational knowledge and real-time interface states.335

4 GUI-Knowledge Reasoning Benchmark336

We introduce the GUI-Knowledge Reasoning337

Benchmark (GUI-KRB). This benchmark evalu-338

ates MLLMs’ accuracy in two areas: prior knowl-339

edge accuracy and dynamic UI comprehension for340

mobile environments. Existing benchmarks primar-341

ily focus on task completion. In contrast, GUI-342

KRB assesses models’ fundamental understanding343

of UI elements and their behaviors. It contains344

500 carefully curated samples spanning 43 appli-345

cations across 8 categories. Appendix B shows the346

proportion of apps in each category.347

Tasks and Metrics GUI-KRB includes two eval-348

uation tasks: (1) Prior Knowledge Assessment:349

Models must identify the functionality of specified350

UI elements. They are given a single screenshot,351

its accessibility tree, and a task context about this352

element. This task simulates the planning phase in353

GUI automation. During planning, agents must un-354

derstand element functionality before acting. Suc-355

cess here indicates effective use of prior training356

knowledge. (2) Dynamic Comprehension Assess-357

ment: Models analyze UI element functionality358

by comparing pre-interaction and post-interaction359

states within the task context of this transition.360

These states include screenshots and accessibility361

trees. This task evaluates reasoning about cause-362

effect logic in GUI interactions. It simulates the363

knowledge extraction method we use in this paper.364

For both tasks, responses are evaluated against365

human-annotated keywords. A response is consid-366

ered correct if it contains at least 50% of expert-367

identified keywords. This metric balances precision368

with flexibility for valid phrasings. (During key-369

word labeling, we include up to 50% synonyms to370

accommodate diverse responses.)371

Annotation Process GUI-KRB was built372

through a rigorous multi-stage process: (1)373

Trajectory Collection: We utilized manually 374

crafted tasks to enable the agent’s execution in a 375

mobile environment and collected over 300 task 376

execution trajectories. These trajectories contain 377

more than 7,000 interaction steps across diverse 378

mobile applications. They capture authentic 379

user interactions in real-world scenarios. (2) 380

Element Extraction: From these trajectories, we 381

extracted individual UI elements using bounding 382

box information from accessibility trees. To 383

ensure diversity and remove redundancy, we 384

eliminated duplicate elements using perceptual 385

hashing techniques (Marr and Hildreth, 1980). (3) 386

Keyword Annotation: Human experts identified 387

essential keywords uniquely associated with 388

each UI element’s functionality. These keywords 389

capture both the element’s immediate purpose and 390

its broader role in the interface. (4) Validation: 391

The authors conducted a comprehensive review of 392

all annotations, verifying keyword accuracy and 393

ensuring consistent annotation quality across the 394

dataset. 395

The final dataset provides triplets of target UI 396

elements, their corresponding screen states (before 397

and after interaction), and expert-validated key- 398

word sets. Example annotations are provided in 399

Appendix C. 400

5 Experiments 401

5.1 Experimental Setup 402

5.1.1 Datasets 403

We evaluate GUI-explorer on two comprehen- 404

sive, open-source benchmarks: MIT-licensed SPA- 405

Bench (Chen et al., 2024b) and Apache-2.0- 406

licensed AndroidWorld (Rawles et al., 2024). 407

SPA-Bench SPA-Bench is a benchmark simu- 408

lating daily smartphone usage scenarios with 58 409

mainstream apps (e.g., Facebook and Gmail). It 410

contains three progressively challenging task lev- 411

els (Level 1-3), where Level 3 represents the most 412

complex real-world workflows. 413

AndroidWorld AndroidWorld is an Android en- 414

vironment featuring 116 tasks across 20 real-world 415

apps. The benchmark dynamically generates task 416

variants through randomized parameters (e.g., mes- 417

sage content, contact names, and calendar dates), 418

creating millions of unique task instantiations. 419
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Figure 4: Distribution of transition-aware knowledge
gained through autonomous exploration.

5.1.2 Implementation Details420

To ensure fair evaluation across benchmarks, we421

carefully selected base models according to their422

characteristics. For SPA-Bench and AndroidWorld,423

we adopted GPT-4o (Hurst et al., 2024) as the uni-424

fied base model, which has been the de facto stan-425

dard model in prior works including, but not lim-426

ited to, SPA-Bench (Chen et al., 2024b) and Aria-427

UI (Yang et al., 2024b), eliminating performance428

variance caused by heterogeneous model capabil-429

ities. In contrast, for GUI-KRB, we intentionally430

utilized the weakest-performing Qwen2-VL-72B-431

Instruct-GPTQ-Int4 (Wang et al., 2024b) as our432

base model, to rigorously validate the robustness433

of our method.434

We configured the exploration process with a435

branching factor of 10, a maximum depth of 5,436

and a step limit of 30 for AndroidWorld and SPA-437

Bench. This setup facilitated the automated dis-438

covery of over 1,500 atomic knowledge entries439

(detailed distribution in Figure 4) across 50 appli-440

cations, with an average exploration time of 1.7441

hours per app. For visual-semantic retrieval, we442

utilized google/siglip-so400m-patch14-3845 as the443

embedding model. Hardware configurations are444

provided in Appendix A.445

5.1.3 Comparative Baselines446

We select three baselines with exploration and447

knowledge extraction capabilities for comprehen-448

sive comparison. AppAgent (Zhang et al., 2023)449

requires manually designed exploration tasks to450

guide its interaction with GUI environments for451

knowledge acquisition, whereas AutoDroid (Wen452

et al., 2023) eliminates task-specific human ef-453

fort by autonomously generating random action454

sequences to collect exploration trajectories. Both455

methods extract structured text-based knowledge456

5https://huggingface.co/google/
siglip-so400m-patch14-384

Agent Input Base model Task success
rate(%)

AppAgent (Zhang et al., 2023) SoM GPT-4o 14.0
AutoDroid (Wen et al., 2023) a11y tree GPT-4o 12.0
CogAgent (Hong et al., 2024) screen CogAgent 0
DigiRL (Zhou et al., 2024) screen DigiRL 0
MobileAgentV2 (Wang et al., 2024a) SoM GPT-4o 20.0
SeeAct (Zheng et al., 2024) SoM GPT-4o 12.0
T3A (Rawles et al., 2024) a11y tree GPT-4o 26.0
M3A (Rawles et al., 2024) SoM GPT-4o 42.0
GUI-explorer (Ours) SoM GPT-4o 53.7

Table 1: Performance comparison on SPA-Bench single-
app English Level 3 tasks. Results for the first 8
agents are from the SPA-Bench (Chen et al., 2024b).
SoM (Yang et al., 2023) utilizes the bounding boxes
(bbox) recorded in the a11y tree to annotate UI ele-
ments with numerical labels in screenshots.

from raw textual observations during exploration. 457

DigiRL (Zhou et al., 2024) adopts a distinct 458

reinforcement learning framework to iteratively 459

explore environments while utilizing the Gem- 460

ini (Google, 2025) model to filter successful tra- 461

jectories as training data, enabling adaptive explo- 462

ration with minimal human intervention. For com- 463

pleteness, we also report results from additional 464

baselines in their respective benchmark papers as 465

performance references. 466

5.2 Experimental Results 467

Our comprehensive evaluation demonstrates GUI- 468

explorer’s superior performance across multiple 469

dimensions. As shown in Table 1, GUI-explorer 470

achieves 53.7% task success rate on SPA-Bench 471

single-app English Level 3 tasks. This represents a 472

28.1% absolute improvement over M3A, the pre- 473

vious state-of-the-art. Our transition-aware knowl- 474

edge mining approach proves highly effective in 475

complex, real-world scenarios. 476

The AndroidWorld results in Table 3 further val- 477

idate GUI-explorer’s generalizability. Our agent 478

achieves 47.4% success rate. This surpasses vision- 479

centric Aria-UI at 44.8%. It also outperforms mul- 480

timodal M3A at 40.5%. 481

The GUI-KRB evaluation reveals critical in- 482

sights about MLLMs’ GUI reasoning limitations. 483

GPT-4o shows an 18.2% prior knowledge error 484

rate. These errors mainly stem from the misinter- 485

preting of UI components and outdated interface 486

understanding. Our method reduces these errors by 487

16.0% when applied to Qwen2-VL-72B-Instruct- 488

GPTQ-Int4. This demonstrates the effectiveness of 489

transition-aware knowledge. The dynamic compre- 490

hension assessment shows similar improvements. 491

GUI-explorer-enabled models achieve 13.4% lower 492

error rates than base models. 493
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App Category Retrieval Time
per Step(sec)

Ranking Time
per Step(sec)

Reasoning Time
per Step(sec)

Total Time
per Step(sec)

Ranking Cost per
Step(0.1USD)

Reasoning Cost
per Step(USD)

Total Cost per
Step(USD)

Travel & Navigation 7.663 33.084 31.400 72.147 0.017 0.066 0.068
Shopping & Finance 8.613 24.922 36.622 70.157 0.013 0.063 0.065
News & Reading 8.123 17.317 29.272 54.712 0.008 0.053 0.053
System Applications 6.955 31.083 34.513 72.552 0.016 0.065 0.067
Productivity & Tools 7.136 28.091 28.382 63.609 0.016 0.064 0.066
Media v Entertainment 7.549 32.481 30.586 70.615 0.017 0.066 0.068
Communication & Social 6.176 25.662 27.293 59.130 0.013 0.057 0.058
Food & Lifestyle 6.304 9.511 30.481 46.296 0.004 0.041 0.042

Overall 7.120 28.462 30.796 66.378 0.015 0.062 0.064

Table 2: Per-Step Computational Overhead Analysis: Breakdown of time consumption (seconds) and API costs
(USD) across application categories. Note that Ranking Cost per Step is presented in Dimes (0.1 USD) for better
readability due to its small magnitude.

Agent Input Base model Task success
rate(%)

Human (Rawles et al., 2024) screen - 80.0
SeeAct (Rawles et al., 2024) SoM GPT-4-turbo 15.5
T3A (Rawles et al., 2024) a11y tree GPT-4-turbo 30.6
UGround (Gou et al., 2024) screen GPT-4o 32.8
Ponder&Press (Wang et al., 2024c) screen GPT-4o 34.5
Aguvis (Xu et al., 2024) screen GPT-4o 37.1
Aria-UI (Yang et al., 2024b) screen GPT-4o 44.8
AppAgent (Zhang et al., 2023) SoM GPT-4o 14.9
M3A (Rawles et al., 2024) SoM GPT-4o 40.5
GUI-explorer (Ours) SoM GPT-4o 47.4

Table 3: Performance comparison on AndroidWorld.

Model Prior Knowledge
error rate(%)

Dynamic Compre-
hension error rate(%)

Qwen2-VL (Wang et al., 2024b) 22.8 19.8
Qwen2.5-VL (Team, 2025) 16.6 14.0
UI-TARS (Qin et al., 2025) 18.0 14.2
Gemini 2.0 Flash (Google, 2025) 15.2 11.2
GPT-4o (Hurst et al., 2024) 18.2 13.4
GUI-explorer (w/o Ranker) 9.8 6.8
GUI-explorer 6.8 6.4

Table 4: Performance comparison on GUI-KRB. For
all methods, we selected the highest-performing mod-
els within device VRAM constraints: Qwen2-VL-72B-
Instruct-GPTQ-Int4 for Qwen2-VL, Qwen2.5-VL-7B-
Instruct for Qwen2.5-VL, and UI-TARS-7B-DPO for
UI-TARS.

5.3 Analysis and Discussion494

The ablation study in Figure 5 quantifies the im-495

pact of our key components. Removing dynamic496

guidance construct by transition-aware knowledge497

causes a 12.2% performance drop. This empha-498

sizes the critical role of transition-aware knowl-499

edge. Cross-Environment Guidance improves per-500

formance by 4.3% compared to No Guidance. This501

demonstrates that our transition-aware knowledge502

exhibits promising generalization capabilities. It503

effectively guides agent reasoning even in previ-504

ously unseen scenarios. The knowledge learned505

can transfer across different UI environments.506

Our computational overhead analysis appears in507

Table 2. It reveals practical tradeoffs. The rank-508

ing component contributes 42.9% of time. This509

comes primarily from MLLM-based pairwise com-510

parisons. However, we use a merge sort implemen-511

Figure 5: Ablation study on operational guidance con-
figurations: (1) Baseline without dynamic guidance, (2)
Guidance derived from cross-environment exploration
(AndroidWorld), (3) Guidance generated through in-
environment exploration (SPA-Bench).

tation. This ensures O(n log n) complexity. This 512

keeps practical costs acceptable (0.0015 USD/step 513

average). Additionally, Table 4 shows another ben- 514

efit. The ranking component reduced the error rate 515

by 3% by prioritizing more relevant knowledge. 516

The GUI-KRB results expose two fundamental 517

limitations in current MLLMs. First, there are per- 518

sistent prior knowledge gaps. Even Gemini 2.0 519

Flash (Google, 2025) has a 15.2% error rate. Sec- 520

ond, there is limited dynamic reasoning capability. 521

The GUI-KRB Dynamic Comprehension task, 522

equivalent to transition-aware knowledge mining, 523

achieved 86.6% accuracy with GPT-4o, indicating 524

comparable reliability in our GPT-4o-built Knowl- 525

edge Vector Store. 526

6 Conclusion 527

We present GUI-explorer, a training-free GUI agent 528

designed to address two key challenges: misinter- 529

pretation of UI components and knowledge obso- 530

lescence. Our approach achieves this through au- 531

tonomous exploration and transition-aware knowl- 532

edge mining. Experimental results demonstrate our 533

SOTA performance across major benchmarks.We 534

introduce the GUI-KRB benchmark, which reveals 535

fundamental limitations in current MLLMs’ inter- 536

face understanding capabilities. Our dynamic guid- 537

ance mechanism effectively mitigates these limita- 538

tions. 539
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Limitations540

While GUI-explorer demonstrates significant ad-541

vancements in GUI automation, several limitations542

warrant discussion. First, our current implemen-543

tation of exploration anchors relies on mobile app544

manifest declarations (e.g., Android Activity com-545

ponents), which limits direct applicability to web546

and desktop environments. Second, although the547

current Knowledge Ranker takes only 28.5 seconds548

per step, it’s still a bit slow. Future work will focus549

on extending this approach to web and desktop and550

speeding up Knowledge Ranker.551

Ethics Statement552

Our work introduces GUI-explorer, an autonomous553

agent for graphical user interface automation, and554

raises several ethical considerations inherent to AI-555

driven interaction systems. First, while our explo-556

ration process utilizes application screenshots and557

accessibility metadata, we strictly employ open-558

source or publicly available applications, ensuring559

no collection of private user data or infringement560

of intellectual property rights.561

Second, our reliance on large multimodal models562

introduces potential risks of perpetuating societal563

biases embedded in their training data. Though564

our transition-aware knowledge mechanism miti-565

gates the misinterpretation of UI components, we566

acknowledge that residual biases in element inter-567

pretation could lead to unintended operational con-568

sequences. We strongly advocate for human over-569

sight in real-world deployments, particularly for570

sensitive applications in healthcare or finance do-571

mains.572

The computational costs associated with our ap-573

proach (average 66 seconds per interaction step)574

raise environmental concerns regarding energy con-575

sumption. While our method eliminates the need576

for model retraining—a significant carbon footprint577

contributor—future work must prioritize efficiency578

optimizations to enable sustainable scaling.579

We recognize potential dual-use risks where au-580

tonomous GUI agents could be misused for mali-581

cious automation (e.g., credential stuffing or click582

fraud).583

Finally, our benchmark construction followed584

ethical annotation practices, with contributors com-585

pensated at fair market rates and granted full rights586

to withdraw their participation.587
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A Hardware configurations735

Hardware configurations were optimized for cost-736

effectiveness: Most experiments ran on a single737

NVIDIA GeForce RTX 4070 Laptop GPU (8GB738

VRAM). For GUI-KRB evaluations involving739

open-source MLLMs, we scaled to two NVIDIA740

L40S GPUs (48GB VRAM) to accommodate larger741

VRAM requirements.742

B GUI-KRB Benchmark Distributions743

Figure 6: Distribution of apps in GUI-KRB.

Figure 6 shows the distribution of the number of744

apps in GUI-KRB.745

C GUI-KRB Benchmark Sample Data746

This section presents an example from the GUI-747

KRB benchmark to illustrate its data structure, as748

shown in Figure 7. Each sample consists of five749

main components. First, it contains screenshots750

captured before and after the interaction with the751

target element to demonstrate the visual state tran-752

sition. Second, it includes the accessibility tree rep-753

resentation of the interface. Third, the broader task754

context describes the necessary interaction with755

the target element required to complete the task.756

Fourth, the transition-aware knowledge associated757

with the element is documented but excluded from758

the test input. Finally, for automated evaluation759

purposes, the sample includes evaluation keywords760

(also excluded from test input) that incorporate syn-761

onyms and related terms (such as "modify" and762

"Main") to accommodate various valid responses763

and reduce false judgments during model assess-764

ment.765

Figure 7: A comprehensive sample from GUI-KRB
benchmark illustrating: (1) before/after screenshots of
target element interaction, (2) accessibility tree repre-
sentation, (3) broader task context, (4) transition-aware
knowledge (excluded from test input), and (5) evalua-
tion keywords with synonyms for robust assessment.

D Prompting Templates of GUI-explorer 766

D.1 Prompting Template of Function-aware 767

Task Goal Generator 768

Given the screenshot of app name and its available
activities, generate a comprehensive list of practical
user tasks that:
1. Start from the current screen shown in the screenshot
2. Can be completed within 10-30 steps
3. Utilize the app’s full feature set based on the
activity list
4. Are concrete and specific (like searching for a
particular item rather than just "search")
5. Cover different user interaction patterns (viewing,
editing, sharing, etc.)
6. Include both basic and advanced features
7. Represent realistic user behaviors and goals
8. Avoid excessive steps on form-filling or scrolling
pages

769
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Important context:
- App name: app name
- Package name: package name
- Available activities (app screens/features):
ctivity list
Format requirements:
1. List only the tasks without explanations or
commentary
2. Each task should be a single, clear directive
3. Use specific examples (e.g., concrete search terms,
actions, settings)
4. Include the expected outcome where relevant
5. Tasks should follow this pattern: [Starting action]
+ [Specific steps] + [End goal]
Example tasks from other apps (for reference only):
1. Search for "ocean waves" white noise, then sort
results by most played
2. Open the first recommended video, then post "Great
content!" as a comment
3. Play the trending video, then add it to your "Watch
Later" playlist
4. Navigate to the comments section of a featured video,
then like the top comment
Generate diverse tasks that would help a user explore
and utilize all major features visible in the screenshot
and implied by the activity list.

770

771

D.2 Prompting Template of Unsupervised772

Mining of Transition-aware Knowledge773

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Prioritize clarity and generality in the description

774

775

D.3 Prompting Template of Knowledge776

Ranker777

Given the user instruction: task goal, determine which
of the following two knowledge entries is more useful.
Respond ONLY with a integer value:
1 means Knowledge A is strictly better.
2 means Knowledge B is strictly better.
Knowledge A: knowledge a
Knowledge B: knowledge b
Please provide your response:

778

779

D.4 Prompting Template of Reasoning 780

## Role Definition
You are an Android operation AI that fulfills user
requests through precise screen interactions.
The current screenshot and the same screenshot with
bounding boxes and labels added are also given to you.
## Action Catalog
Available actions (STRICT JSON FORMAT REQUIRED):
1. Status Operations:
- Task Complete: {"action_type": "status",
"goal_status": "complete"}
- Task Infeasible: {"action_type": "status",
"goal_status": "infeasible"}
2. Information Actions:
- Answer Question: {"action_type": "answer", "text":
"<answer_text>"}
3. Screen Interactions:
- Tap Element: {"action_type": "click", "index":
<visible_index>}
- Long Press: {"action_type": "long_press", "index":
<visible_index>}
4. Input Operations:
- Text Entry: {"action_type": "input_text", "text":
"<content>", "index": <text_field_index>}
- Keyboard Enter: {"action_type": "keyboard_enter"}
5. Navigation:
- Home Screen: {"action_type": "navigate_home"}
- Back Navigation: {"action_type": "navigate_back"}
6. System Actions:
- Launch App: {"action_type": "open_app", "app_name":
"<exact_name>"}
- Wait Refresh: {"action_type": "wait"}
## Current Objective
User Goal: task goal
## Execution Context
Action History:
history
Visible UI Elements (Only interact with *visible=true
elements):
ui elements
## Core Strategy
1. Path Optimization:
- Prefer direct methods (e.g., open_app > app drawer
navigation)
- Always use input_text for text entry
- Verify element visibility before interaction
2. Error Handling Protocol:
- Switch approach after ≥ 2 failed attempts
- Prioritize scrolling over force-acting on invisible
elements
- Try opposite scroll direction if initial fails (up/down,
left/right)
3. Information Tasks:
- MANDATORY: Use answer action for questions
- Verify data freshness (e.g., check calendar date)
## Expert Techniques
Here are some tips for you:
knowledge
## Response Format
STRICTLY follow:
Reasoning: [Step-by-step analysis covering:
- Visibility verification
- History effectiveness evaluation
- Alternative approach comparison]
Action: [SINGLE JSON action from catalog]
Generate response:

781

782

E Prompting Templates of GUI-KRB 783

E.1 Prompting Template of Prior Knowledge 784

Task 785

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element

786
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- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Prioritize clarity and generality in the description

787

788

E.2 Prompting Template of Dynamic789

Comprehension Task790

Same as Appendix D.2.791

E.3 Prompting Templates for GUI-explorer792

(w/o Ranker)793

E.3.1 Prompting Template of Prior794

Knowledge Task795

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- One screenshot: Before interacting with a UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (retrieved based
on visual similarity):
“‘
similar element functionalities
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, but prioritize:
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

796

797

E.3.2 Prompting Template of Dynamic 798

Comprehension Task 799

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (retrieved based
on visual similarity):
“‘
similar element functionalities
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, but prioritize:
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

800

801

E.4 Prompting Templates of Prior Knowledge 802

Task for GUI-explorer 803

E.4.1 Prompting Template of Prior 804

Knowledge Task 805

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- One screenshot: Before interacting with a UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (ranked by
relevance to task description):
“‘
similar element functionalities
“‘
Note: Elements are sorted by relevance, with most
task-relevant functionalities listed first
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
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4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, with priority:
- Higher-ranked (more relevant) reference
functionalities
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Pay special attention to higher-ranked similar
functionalities as they are more likely to be relevant
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

807

808

E.4.2 Prompting Template of Dynamic809

Comprehension Task810

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (ranked by
relevance to task description):
“‘
similar element functionalities
“‘
Note: Elements are sorted by relevance, with most
task-relevant functionalities listed first
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, with priority:
- Higher-ranked (more relevant) reference
functionalities
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Pay special attention to higher-ranked similar
functionalities as they are more likely to be relevant
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them
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