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ABSTRACT

Predicting and executing a sequence of actions without intermediate replanning,
known as action chunking, is increasingly used in robot learning from human
demonstrations. Yet, its effects on the learned policy remain inconsistent: some
studies find it crucial for achieving strong results, while others observe decreased
performance. In this paper, we first dissect how action chunking impacts the di-
vergence between a learner and a demonstrator. We find that action chunking
allows the learner to better capture the temporal dependencies in demonstrations
but at the cost of reduced reactivity to unexpected states. To address this tradeoff,
we propose Bidirectional Decoding (BID), a test-time inference algorithm that
bridges action chunking with closed-loop adaptation. At each timestep, BID sam-
ples multiple candidate predictions and searches for the optimal one based on two
criteria: (i) backward coherence, which favors samples that align with previous
decisions; (ii) forward contrast, which seeks samples of high likelihood for fu-
ture plans. By coupling decisions within and across action chunks, BID promotes
both long-term consistency and short-term reactivity. Experimental results show
that our method boosts the performance of two state-of-the-art generative policies
across seven simulation benchmarks and two real-world tasks. Videos and code
are available at https://bid-robot.github.io.

1 INTRODUCTION

The increasing availability of human demonstrations has spurred renewed interest in behavioral
cloning (Atkeson & Schaal, 1997; Argall et al., 2009). In particular, recent studies have highlighted
the potential of learning from large-scale demonstrations to acquire a variety of complex skills (Zhao
et al., 2023b; Chi et al., 2023; Fu et al., 2024b; Lee et al., 2024; Khazatsky et al., 2024). Yet, existing
methods still struggle with two common properties of human demonstrations: (i) strong temporal
dependencies across multiple steps, such as idle pauses (Chi et al., 2023) and latent strategies (Xie
et al., 2021; Ma et al., 2024), (ii) large style variability across different demonstrations, such as
differences in proficiency (Belkhale et al., 2024) and preference (Kuefler & Kochenderfer, 2017).
Often, both properties are prevalent yet unlabeled in collected data, posing significant challenges to
the traditional behavioral cloning that maps an input state to an action.
In response to these challenges, recent works have pursued a generative approach equipped with
action chunking: (i) predicting a sequence of actions over multiple time steps and executing all or
part of the sequence (Zhao et al., 2023b; Chi et al., 2023); (ii) modeling the distribution of action
chunks and sampling from the learned model in an independent (Chi et al., 2023; Prasad et al., 2024)
or weakly dependent (Janner et al., 2022; Zhao et al., 2023b) manner for sequential decisions. Some
studies find this approach crucial for learning a performant policy in laboratory scenarios (Zhao
et al., 2023b; Chi et al., 2023), while other recent work reports opposite outcomes under practical
conditions (Lee et al., 2024). The reasons behind these conflicting observations remain unclear.
In this paper, we first dissect the influence of action chunking by examining the divergence between
learned policies and human demonstrations. We find that, when a policy is built with limited context
length – little or no history is used as input for robustness or efficiency (Mandlekar et al., 2020;
Bharadhwaj et al., 2023b; Brohan et al., 2023a;b; Shi et al., 2023; Collaboration, 2023) – increasing
the length of action chunks allows for implicit conditioning on more past actions, thereby improving
its ability to capture the temporal dependencies inherent in demonstrations. However, this advantage
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(a) action chunking (b) receding horizon (c) bidirectional decoding

Figure 1: Illustration of different inference methods applied to a robot policy with action chunking. The robot
is tasked with catching a moving trolley. (a) Vanilla action chunking (Zhao et al., 2023b) executes actions based
on previous predictions, resulting in delayed reactions to object motions. (b) Receding horizon (Chi et al., 2023)
enables faster reactions, but leads to a jittery trajectory in the presence of multimodal demonstrations (e.g., both
left- and right-handers). (c) Our Bidirectional Decoding explicitly searches for the optimal action from multiple
predictions sampled at each time step, achieving both long-term consistency and short-term reactivity.

comes at the cost of reduced access to recent state observations, which can be crucial for reacting
to unexpected dynamics arising from modeling errors or environmental stochasticity. This trade-
off raises a crucial question: How can we preserve the strengths of action chunking in long-term
consistency without suffering from its limitations in short-term reactivity?
To this end, we introduce Bidirectional Decoding (BID), an inference algorithm that bridges action
chunking with closed-loop adaptation. Our main idea is to sample multiple predictions at each time
step and search for the most desirable one. Specifically, BID operates on two decoding criteria: (i)
backward coherence, which favors samples that are close to the sequence selected at the previous
step; (ii) forward contrast, which favors samples that are close to the output of a stronger policy
and distant from those of a weaker one. As illustrated in Fig. 1, BID updates the chunk of future
actions based on the previous strategy, promoting temporal consistency over extended periods while
remaining reactive to unexpected changes.
The main contributions of this paper are twofold: (i) a thorough analysis of action chunking (§3),
and (ii) a decoding algorithm to improve it (§4). Empirically, we validate our theoretical analysis
through a one-dimensional diagnostic simulation and evaluate our decoding method on two state-of-
the-art generative policies across seven simulations and two real-world tasks (§5). Our experiment
results show that the proposed BID boosts the performance of recent policies by more than 32%
in relative performance. BID is model-agnostic, computationally efficient, and easy to implement,
serving as a plug-and-play component to enhance generative behavior cloning at test time.

2 RELATED WORK

Behavioral Cloning. Learning from human demonstrations is becoming increasingly popular in
robot learning due to recent advances in robotic teleoperation interfaces (Sivakumar et al., 2022;
Zhao et al., 2023b; Wu et al., 2023; Chi et al., 2024). Generative Behavior cloning, which models
the distribution of demonstrations, is particularly appealing due to its algorithmic simplicity and em-
pirical efficacy (Jang et al., 2022; Florence et al., 2022; Brohan et al., 2022; Shafiullah et al., 2022;
Zhao et al., 2023b; Chi et al., 2024; Brohan et al., 2023a). However, a significant limitation is com-
pounding errors, where deviations from the training distribution accumulate over time (Ross et al.,
2011; Ke et al., 2021). These errors can be mitigated by gathering expert correction data (Ross et al.,
2011; Kelly et al., 2019; Menda et al., 2019; Hoque et al., 2021a;b) or injecting noise during data
collection (Laskey et al., 2017; Brandfonbrener et al., 2023), but such strategies require additional
time and effort from human operators. To address this, recent work proposes predicting a sequence
of multiple actions into the future, known as action chunking, which reduces the effective control
horizon (Lai et al., 2022; Zhao et al., 2023b; George & Farimani, 2023; Bharadhwaj et al., 2023a).
By handling sequences of actions, action chunking is also better at handling temporal dependencies
in the data, such as idle pauses (Swamy et al., 2022; Chi et al., 2023) or multiple styles (Li et al.,
2017; Kuefler & Kochenderfer, 2017; Gandhi et al., 2023; Belkhale et al., 2024). However, inde-
pendently drawn action sequence samples may not preserve the necessary temporal dependencies
for smooth and consistent execution. Our work provides a thorough analysis of action chunking and
proposes a decoding algorithm to improve it.
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Sequential Decoding. Decoding algorithms have been studied in generative sequence modeling
for decades, with renewed attention driven by recent advances in large language modeling (LLM).
One prominent approach focuses on leveraging internal metrics, e.g., likelihood scores, to improve
the quality of generated sequences. Notable examples include beam search (Freitag & Al-Onaizan,
2017; Vijayakumar et al., 2018), truncated sampling (Fan et al., 2018; Hewitt et al., 2022), minimum
Bayes risk decoding (Kumar & Byrne, 2004; Müller & Sennrich, 2021), and others (Welleck et al.,
2019; Meister et al., 2023; Fu et al., 2024a). Another line of research explores the distinctions be-
tween multiple models to jointly optimize for the desired properties such as quality or efficiency (Li
et al., 2023; Leviathan et al., 2023). More recently, several studies have highlighted the potential
of guiding the decoding or sampling process through the use of an external model, such as a clas-
sifier (Dhariwal & Nichol, 2021) or reward model (Khanov et al., 2023). In the context of robot
learning, recent works have explored guided decoding for long-horizon robotic planning (Huang
et al., 2023) and manipulator geometry designs (Xu et al., 2024). Nevertheless, effective decoding
strategies for low-level robotic actions remain lacking. Concurrent to our work, Nakamoto et al.
(2024) propose to select action samples by querying a value function learned from reward-annotated
demonstrations (Hansen-Estruch et al., 2023). Our work does not rely on a separate value function;
instead, we propose a decoding strategy that addresses the consistency-reactivity tradeoff inherent
in action chunking through sample comparison.

3 ANALYSIS: TRADEOFFS IN ACTION CHUNKING

3.1 PRELIMINARIES

Consider a dataset of demonstrations D = {τi}Ni=1, where each demonstration τi consists of a se-
quence of state-action pairs τi = {(s1, a1), (s2, a2), · · · , (sT , aT )} provided by a human expert.
At each time step t, the demonstrated action at is influenced not only by the observed state st,
but also by latent variables zt, such as planning strategies (e.g., subgoals) and personal preferences
(e.g., handedness). These latent variables can persist across multiple time steps and vary signifi-
cantly between different demonstrations. Fig. 2 illustrates the decision process of a human expert,
highlighting the inherent temporal dependencies.
To model these temporal dependencies, some recent works (Zhao et al., 2023b; Chi et al., 2023; Lee
et al., 2024) utilize action chunking, i.e., modeling the joint distribution of future actions conditioned
on past states π(at, at+1, · · · , at+l|st−c, · · · , st), or in short π(at:t+l|st−c:t). Here, c is the context
length, i.e., number of past steps for state inputs, and l is the prediction length, i.e., number of future
steps for action outputs. Training such a policy typically involves minimizing the divergence of
action distributions between the model π and the expert π∗,

π = argmin
π

∑
τ∈D

∑
st−c:t
at:t+l

L(π(at:t+l|st−c:t), π
∗(at:t+l|st−c:t)). (1)

During deployment, the policy operates with a specific action horizon h ∈ [1, l], i.e., executing
part or all of the predicted action sequence for h time steps without re-planning. This approach
essentially takes in c states as context and executes h actions, which we refer to as a (c, h)-policy.
The choices of context length c and action horizon h often play a crucial role in the effectiveness
of the learned policy. Recent policies often use a short context length c, as extending the context
can lead to performance degradation in the presence of limited training data (refer to Appendix A.2
for more details). Conversely, extending the action horizon h has produced mixed results. Some
studies report benefits in laboratory settings (Zhao et al., 2023b; Chi et al., 2023), while others
find it detrimental in real-world scenarios (Lee et al., 2024). The reasons behind these conflicting
outcomes are not well understood yet.
Notably, Zhao et al. (2023b) hypothesize that action chunking mitigates compounding errors, but it is
unclear why this would hold when deviations within a chunk cannot be corrected before replanning.
Alternatively, Chi et al. (2023) draws parallels to model predictive control (MPC) (Borrelli et al.,
2017; Löfberg, 2012), emphasizing its role in improving consistency and planning. However, unlike
MPC, which typically uses short action horizons (e.g., h = 1), recent imitation learning methods
employ much longer action horizons, such as a substantial portion of the predicted sequence (e.g.,
h = 8 in Chi et al. (2023)) or even the entire prediction length (e.g., h ≥ 50 in Zhao et al. (2023b);
Black et al. (2024)). The lack of a clear understanding of action chunking hinders its effective use
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Figure 2: Illustration of the expert decision
process, where a latent variable introduces
temporal dependencies in actions.
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Figure 3: Illustration of (k, 1)-expert, (c, h)-learner, and
(c, h+ d)-learner. Shaded regions represent observed history;
darker indicate greater influence on current decision.

across tasks and environments. We next explicitly analyze the strengths and weaknesses of action
chunking, with particular attention to the choice of action horizon h.

3.2 ANALYSIS

To understand the influence of action chunking, we focus on the last time step of the executed chunk,
where the discrepancy between the expert policy and the learned policy is most pronounced. At this
time step t, a (k, 1)-expert written as π∗ := π∗(at|st−k:t, zt−k:t) predicts at by conditioning on k
steps of the past states and the corresponding latent variables. In contrast, a (c, h)-learner written as
π(c,h) := π(c,h)(at | st−h−c:t−h, at−h:t−1) is constrained to observe c steps of the past states and
h− 1 steps of the past actions within the predicted chunk.
The divergence between a learned policy and an expert policy is attributed to two factors: (i) the
importance of unobserved states in predicting the current action, and (ii) the difficulty of inferring
unobserved states based on the available information.
To more clearly see the influence of action horizon on these factors, we next compare the per-
formance of two policies that have the same context lengths but different action horizons, πh :=
π(c,h)(at|st−h−c:t−h, at−h:t−1) and πh+d := π(c,h+d)(at|st−h−d−c:t−h−d, at−h−d:t−1), where
d > 0 is the extended action horizon. As illustrated in Fig. 3, each policy has access to unique
information that is unavailable to the other. πh observes some recent states, where πh+d is only
aware of the executed actions. On the other hand, πh+d has access to some earlier states and actions,
which precede all information available to πh. We characterize the importance of observations as
follows (formal definitions in Appendix E.2):
Definition (Expected Observation Advantage). If a policy can observe a state st, we say that it
has an observation advantage αt over another policy that cannot observe it. More formally, this is
the difference between the expected divergence accumulated by a policy π(at′ |st′) that does not
condition on the state st and that by a policy π(at′ |st′ , st) that conditions on st.
Definition (Maximum Inference Disadvantage). If a policy cannot condition its prediction on
a state st, its maximum inference disadvantage ϵt is the largest possible divergence arising from
inferring incorrectly. Here, the maximum is taken over all possible incorrect inferences of st.
Hence, we denote the observation advantage that πh gains from the observed recent states by αf

and the maximum inference disadvantage it incurs from the earlier unobserved states by ϵb, whereas
πh+d conversely gains αb but incurs ϵf .

Let P (st+1 | st, at) denote the true transition probabilities and P̂ (st+1 | st, at) the implicit dynam-
ics model learned by the policy. The difficulty of inferring an unobserved state hinges on both the
relevant observations and environmental stochasticity, which we quantify as follows.
Definition (Forward Inference). Let Pf (t) := P (St = gt|St−1 = gt−1, At−1 = at−1), where gt
and gt−1 are the ground truth states at time t and t− 1 respectively in a deterministic environment.
In deterministic environments, Pf (t) = 1; whereas in stochastic settings, Pf (t) is smaller. The
prediction error is characterized by δf (t) = P̂ (St = gt|St−1 = gt−1, at−1) − P (St = gt|St−1 =
gt−1, at−1).
Definition (Backward Inference). Similarly, let Pb(t) := P (St = gt|St+1 = gt+1) where gt and
gt+1 are the ground truth states in the deterministic environment at time t and t + 1, respectively.
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Since Pb(t) is not conditioned on any action, it has higher entropy in general. In stochastic environ-
ments, Pb(t) is small. Furthermore, let δb(t) = P̂ (St = gt|St+1 = gt+1) − P (St = gt|St+1 =
gt+1).
We refer to the variance of the distribution P (at′−1, . . . , at′−d | st′) under expert policy as the
diversity of past strategies up to time t′. Given that the forward inference is generally easier than
the backward inference, the performances of πh and πh+d differ as follows (proofs are deferred to
Appendix E):
Proposition 1 (Consistency-Reactivity Inequalities). Let L be a non-linear and non-negative convex
function measuring the prediction error with respect to demonstrations. Let C := {at−h:t−1} ∪ S+

where S+ are the common states that both πh and πh+d observe. For the ease of notation, let
τf = {t − h − d + 1 : t − h} and let τb = {t − h − d − c : t − h − c − 1}. Then,
the difference in the expected loss between the (c, h + d)-policy and the (c, h)-policy, ∆d :=
minπh+d

E [L(πh+d, π
∗)|C]−minπh

E [L(πh, π
∗)|C], is bounded as:

αf − ϵb

(
1−

∏
τ∈τb

Pb(τ)(Pb(τ) + δb(τ))

)
≤ ∆d ≤ ϵf

1−
∏
τ∈τf

Pf (τ)(Pf (τ) + δf (τ))

− αb.

(2)

Remark 1. Eq. (2) provides a general comparison of the performance of the two policies. Intuitively,
the advantage of each policy stems from the additional information it has access to (i.e. αf for πh and
αb for πh+d) while the disadvantage is bounded by the maximum divergence arising from inferring
missing information incorrectly (i.e. ϵb and ϵf scaled by the maximum probability of incorrect
inference).
We next examine the implications of Proposition 1.
Corollary 2 (Consistency). Suppose the train and test environments are identical and deterministic.
Suppose at is influenced by at least one state at time steps τb and let δf (t′) ≈ 0 for all t′ ∈ τf . If
the diversity in past strategies up to time t− h− c is not 0, and ϵf is finite, then

min
πh+d

E [L(πh+d, π
∗)|C] <min

πh

E [L(πh, π
∗)|C] . (3)

Remark 2. In deterministic environments, while both policies need to infer the same number of
unobserved states, πh+d benefits from conditioning on additional actions, which may significantly
aid in inferring the corresponding states through its action chunk. However, this is only true if the
implicit dynamics model learned by the policy is approximately accurate and the maximum errors
ϵf arising from inferring these states are bounded. Note that πh+d performs better as we increase
the diversity of strategies present in the dataset i.e., as the distribution of actions taken by the expert
prior to the context of the short horizon policy becomes higher variance.
Corollary 3 (Reactivity). Suppose Pf (t

′) is small or both Pf (t
′) and |δf (t′)| are large for all

t′ ∈ τf . If temporal dependency decreases over time such that ϵb is small and at is influenced by at
least one state at time steps in τf , then

min
πh+d

E [L(πh+d, π
∗)|C] >min

πh

E [L(πh, π
∗)|C] . (4)

Remark 3. Recent states are often more important to decision making and, therefore, the disadvan-
tages of action chunking become pronounced when inferring these recent states becomes difficult.
This can happen if the test environment is stochastic. This can also happen if the test environment is
deterministic as long as the implicit dynamics model is inaccurate - either due to a distribution shift
or because of learning difficulty.
In summary, depending on the experimental conditions, action chunking may have varying effects
on the learned policy. On the one hand, it benefits the modeling of temporal dependencies in the
demonstrations, due to extended access to actions executed at past time steps. On the other hand,
it hinders reactions to unexpected dynamics, due to reduced access to state observations at recent
time steps. As a result, there is no universally optimal choice of action horizon across all conditions.
When both temporal dependencies and prediction errors are significant, tuning the action horizon
entails an inherent trade-off between the two opposing factors.
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Figure 4: Illustration of bidirectional decoding.

Algorithm 1 Bidirectional Decoding
Require: current state s, batch size N , mode size K, pre-

vious decision â, strong policy π, weak policy π′

1: Generate N samples from each policy a ∼ π(s), a′ ∼
π′(s) to construct the initial sets A and A

′

2: Compute the backward loss LB for each sample
3: Select K samples with minimal LB fromA andA

′
to

construct A+ and A−, respectively
4: Compute the forward loss LF for each sample
5: Select a∗ ∈ A that minimizes the total loss
6: Update decision memory â← a∗

4 METHOD: BIDIRECTIONAL DECODING

As analyzed above, action chunking improves long-term consistency but sacrifices short-term reac-
tivity. In this section, we propose to address this tradeoff by bridging action chunking with closed-
loop adaptation. We will first outline the general framework in §4.1 and then describe two specific
criteria in §4.2.

4.1 TEST-TIME SEARCH

Recall that for a policy with prediction length l, an action chunk a := {a(t)t , a
(t)
t+1, · · · , a

(t)
t+l} sam-

pled at time t is expected to follow a consistent strategy over the subsequent l time steps. However,
executing the action chunk in an open-loop manner leaves the policy vulnerable to unexpected state
changes. Alternatively, one can maximize reactivity by resampling an action chunk and executing
only the first immediate action at every time step. Yet, this simple closed-loop approach destroys
the consistency preserved within each chunk, potentially leading to oscillations between different
strategies. How can we combine the benefits of both approaches?
Our key idea is to bridge action chunking and closed-loop resampling by making use of additional
computes at test time. In particular, we seek to restore temporal consistency in closed-loop opera-
tions by scaling up the number of candidate samples. Intuitively, while the probability of any single
pair of samples sharing the same latent strategy is low, the likelihood of finding a consistent pair
increases with the number of samples. We thus frame the problem of closed-loop action chunking
as searching for the optimal action among a batch of samples drawn at each time step,

a∗ = argmin
a∈A

LB(a) + LF (a), (5)

where A is the set of sampled action chunks, LB and LF are two criteria approximating the opti-
mality with respect to the backward decision and forward plan, which we will describe next.

4.2 BIDIRECTIONAL CRITERIA

Backward coherence. To preserve temporal dependencies in closed-loop operations, a sequence
of actions should (i) commit to a consistent latent strategy over time, and (ii) react smoothly to
unexpected changes. These desired properties motivate us to keep the action chunk selected at the
previous time â := {a(t−1)

t−1 , · · · , a(t−1)
t+l−1} as a prior, and minimize the weighted Euclidean distance

between the new action chunk and the prior across l − 1 overlapping steps:

LB =

l−1∑
τ=0

ρτ
∥∥∥a(t)t+τ − a

(t−1)
t+τ

∥∥∥
2
. (6)

Here, ρ is a decay hyperparameter to account for growing uncertainty over time. By default, we use
the L2 norm as the distance metric between predicted actions, while other metrics, such as L1 or
cosine distance, can also be effective (see Appendix A.6). This backward objective encourages sim-
ilar latent strategies between consecutive steps while allowing for gradual adaptation to unforeseen
transition dynamics.
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(a) long-idle demo, low-noise env (b) mid-idle demo, mid-noise env (c) short-idle demo, high-noise env

Figure 5: Effect of action horizon h on idle actions in 1-dimensional simulations. All policies share the same
prediction length l. Long action horizons lead to idle distributions closer to the long-idle expert in low-noise
environments, whereas shorter action horizons align more closely with the short-idle expert in high-noise envi-
ronments. When both idling and noise are non-negligible, a moderate action horizon performs the best.

Nevertheless, the backward criterion alone presents a potential caveat: the prior chunk could be
suboptimal due to the lack of information at the previous time step (e.g., unexpected object motions).
In such cases, selecting the next action chunk based solely on the prior may perpetuate suboptimality.
Ideally, the sequential decision-making process should effectively correct suboptimal plans based on
the latest observations. We next address this need through another forward criterion.
Forward contrast. Our design of the forward criterion is motivated by the need to identify the most
optimal plan from a set of candidates. Within the same latent strategy, suboptimal samples may arise
from (i) low likelihood under the learned model and (ii) divergence between the learned model and
expert policy. To address this, we draw inspirations from LLM decoding techniques (Wang et al.,
2022; Li et al., 2023) and introduce a forward contrast criterion. Specifically, we compare each
candidate sample with two sets of reference samples: one positive set from a stronger policy and
a negative set from a weaker one. The stronger policy is obtained from a well-trained checkpoint,
whereas the weaker policy is taken from an early underfitting checkpoint and is expected to be
further from the expert policy. Our forward objective is thus framed as minimizing the average
distance between a candidate plan and the positive samples while maximizing its average distance
from the negative ones,

LF =
1

N

( ∑
a+∈A+

l∑
τ=0

∥∥∥a(t)t+τ − a+t+τ

∥∥∥
2
−

∑
a−∈A−

l∑
τ=0

∥∥∥a(t)t+τ − a−t+τ

∥∥∥
2

)
, (7)

where A+ = A \ {a} is the positive set predicted by the strong policy π, A− is the negative set
predicted by the weaker one π′, and N is the sample size.
Fig. 4 illustrates the combined effects of the backward coherence and forward contrast criteria on
sample selection. Since samples in A+ and A− are not all subject to the same strategy, we trim
each set by removing samples that deviate significantly from the previous decision. This is achieved
by summing over the K smallest distance values for in the positive and negative sets in Eq. (7).
The full process of our decoding method is outlined in Algorithm 1. Since all steps in BID can be
computed in parallel, the overall computational overhead remains modest on modern GPU devices.
Please refer to Appendix B for additional discussions about our decoding method.

5 EXPERIMENTS

In this section, we present a series of experiments to answer the following questions:
1. How does our theoretical analysis on action chunking manifest under different conditions?
2. Can our decoding method improve closed-loop operations of policies built with action chunking?
3. Does our decoding method perform well across different policies, tasks, and environments?
4. Is our decoding method scalable to larger sample sizes and compatible with existing methods?
To this end, we will first validate our theoretical analysis through one-dimensional diagnostic sim-
ulations. We will then evaluate BID on seven tasks across three simulation benchmarks, including
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Figure 6: Comparison of different inference methods for closed-loop operations of diffusion policies. Each
method is evaluated for 100 episodes on seven manipulation tasks in simulation benchmarks. Results are
averaged across three seeds. BID significantly outperforms existing inference methods in most tasks.
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Figure 7: BID benefits from large sample sizes (left) and complements existing inference methods (right). Each
method is evaluated on seven simulation tasks across three seeds. Relative performance gain is measured with
respect to the vanilla baseline. When combined with EMA, BID results in 46% relative improvements.

Push-T (Chi et al., 2023), RoboMimic (Mandlekar et al., 2022), and Franka Kitchen (Gupta et al.,
2020). We will subsequently examine the generality and scalability of our method under various
base policies, sample sizes, and stochastic noise. We will finally assess the effectiveness of BID in
two challenging real-world tasks that require interactions with dynamic objects.

5.1 ONE-DIMENSIONAL DIAGNOSTIC EXPERIMENTS

Setup. We start with a diagnostic experiment in a one-dimensional state space {s0, s1, · · · , s10},
where s0 is the starting state and s10 is the goal state. The demonstrator plans to move forward
by one step in each state, except in s5 where it pauses unless the last five states visited were s5.
Each forward move has a probability of 1 − δ, where δ denotes the level of stochastic noise in the
environment (as described in §3.2). Given these demonstrations, we train a collection of policies
with different action horizons h ∈ {1, 2, 3, 5, 7, 10}. We investigate under what action horizon our
learner can better imitate the distribution of idle actions taken by the expert over multiple rollouts.
Result. As shown in Fig. 5, when the environment is deterministic (δ = 0.0), larger action horizons
capture the expert distribution better, consistent with Corollary 2. With an action horizon of 10,
the learner achieves zero total variation distance with the expert distribution. Conversely, when the
environment is highly stochastic (δ = 0.4), an action horizon of 1 outperforms all other learners,
corroborating with Corollary 3. With moderate noise (δ = 0.2), there is no monotonic pattern and
the optimal policy turns out to be the one with action horizon 5. Refer to Appendix A.1 for more
detailed results. This controlled experiment validates the tradeoff identified in Proposition 1, which
we will further demonstrate in robotic manipulation subjected to stochastic noise in §5.2.3

5.2 SIMULATION EXPERIMENTS WITH STOCHASTIC NOISE

Next, we evaluate our decoding algorithm on seven simulation tasks of robot manipulation. We will
first compare BID with existing inference methods in closed-loop operations. We will then assess
the effectiveness of our method under different conditions, including policy classes, sample sizes,
and levels of stochastic noise.

5.2.1 COMPARISON WITH EXISTING INFERENCE METHODS

Setup. In each manipulation task, we use Diffusion Policy (Chi et al., 2023) trained on human
demonstrations as the base policy. We evaluate BID with a batch size of N = 16 and a mode size of
K = 3. We consider three existing inference methods as baselines:
• Vanilla (Chi et al., 2023): Execute the first action of a sampled chunk in a closed-loop manner.
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Stochastic Noise 0.0 1.0 1.5

Vanilla Open-Loop 64.0 26.9 13.0
BID Open-Loop 66.1 31.4 16.0
Vanilla Closed-Loop 48.9 38.3 29.5
BID Closed-Loop 54.4 45.3 31.7

Table 1: Success rates of VQ-BeT on the Push-T task
under various noise conditions. Closed-loop BID
substantially outperforms other methods in stochas-
tic environments. See Table 4 for detailed ablations.

Sample Size Success (%) Time (ms)

1 (vanilla) 49.1 13.2
8 (ours) 52.9 25.2

16 (ours) 54.2 25.9
32 (ours) 54.4 26.8

Table 2: Success rates and inference times of VQ-
BeT across varying sample sizes. BID benefits from
a larger sample size at the cost of a doubled compu-
tational overhead, measured on an A5000 GPU.

• Warmstart (Janner et al., 2022): Similar to Vanilla, but warm-start the initial noise for the diffu-
sion process from the previous decision.

• Exponential Moving Average (EMA) (Zhao et al., 2023b): Smooth action chunking by averaging
a new prediction a with the previous one â for each overlapping step at = λat + (1− λ)ât. This
method is also known as temporal ensembling. By default, we set λ = 0.5.

We evaluate each method for 100 episodes and average the results across three random seeds. Please
refer to Appendix C for implementation details.
Result. Our main observation is that while existing inference methods offer some benefits for
closed-loop operations, they lack robustness. As shown in Fig. 6, Warmstart yields mild perfor-
mance gains on average, but degrades performance on 3 out of 7 tasks. Similarly, EMA leads to
competitive results on several tasks, yet exhibits performance drops in 2 tasks. We conjecture that
this robustness issue stems from independent sampling across chunks; when successive chunks fol-
low distinct latent strategies, averaging them may not yield a plausible strategy, as further discussed
in Appendix A.4. In comparison, BID offers substantial gains across all tasks. Notably, BID pro-
vides 32% relative improvements over the vanilla baseline, significantly outperforming EMA on
Pust-T, Lift, Square, and Tool Hang, while achieving competitive performance on the other tasks.

5.2.2 SCALABILITY AND COMPATIBILITY OF BID

Setup. We further assess two key properties of BID: scalability with growing batch sizes and
compatibility with existing inference methods. For scalability, we experiment with batch sizes of
{1, 4, 8, 12, 16}. For compatibility, we apply BID on top of two other baselines, Warmstart and
EMA. The results are averaged across seven simulation tasks and three random seeds.
Result. As shown in Fig. 7, our method benefits from the large batch size, with performance gains
not yet saturated at the default batch size used in §5.2.1. Moreover, the strength from BID is com-
plementary to that of existing inference methods. Notably, combining BID with EMA further boosts
the relative performance gain from 32% to 46%. These two properties highlight the potential of our
method in practice.

5.2.3 GENERALITY AND EFFICIENCY OF BID

Setup. We next extend our experiment to VQ-BET (Lee et al., 2024), another state-of-the-art robot
policy built with autoregressive transformers. We use the public checkpoint on the Push-T task
provided by LeRobot (Cadene et al., 2024) as the base policy. We use a checkpoint terminated at 100
epochs as the weak policy in forward contrast. To simulate stochastic conditions, we add temporally
correlated Gaussian noise to the executed action at each step, scaled by the action magnitude. We
measure the computational time on a desktop equipped with an NVIDIA A5000 GPU.
Result. Table 1 summarizes the results of the baseline and our method. The vanilla random sampling
performs significantly worse than BID in both closed and open-loop operations. Notably, the vanilla
open-loop approach exhibits a rapid performance decline as the environment becomes increasingly
stochastic. Even in closed-loop operations, the vanilla baseline still experiences a significant perfor-
mance drop. In comparison, the closed-loop BID demonstrates much higher robustness to stochastic
noise. Table 2 details the computational overhead associated with BID at varying batch sizes. The
result shows that the performance gains of our method come with a doubled computational overhead.
We expect that this overhead will be less of a constraint with higher-end GPUs.
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Figure 8: Success rate of object delivery. Each
method-setting is evaluated across 20 episodes.
BID achieves much higher success rate than the
vanilla baseline, effectively handling the diverse
demonstrations and dynamic target.
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Figure 9: Success rate of cup replacement in the
dynamic setting. Each method is evaluated across
20 episodes. Existing methods degrade substan-
tially under slow cup movements, whereas BID
retains a strong performance.

5.3 REAL-WORLD EXPERIMENTS WITH DYNAMIC OBJECTS

We finally evaluate BID through two real-world experiments that require rapid reactions to dynami-
cally moving objects.
Setup. We consider two pick-and-place tasks, where the target object undergoes unexpected move-
ment during evaluation. In the dynamic placing task, a Franka Panda robot is required to deliver
an object into a moving cup held by a human subject. In the dynamic picking task, a UR5 robot
is required to grasp a moving cup pulled by a string and place it onto a nearby static saucer. In
both tasks, we evaluate the performance of BID applied to pre-trained diffusion policies. For further
experimental details, please refer to Appendix C.2.
Result. Figs. 8 and 9 compares the results of different inference methods on the two real-world tasks.
Vanilla random sampling struggles to handle the diverse demonstrations and dynamic movements,
resulting in significantly lower success rates. In contrast, BID achieves high success rates in both
static and dynamic conditions. Notably, in the dynamic picking task, BID achieves a 2x higher
success rate than all other baselines, highlighting its potential for dynamic object interactions.

Other experiments. Please refer to Appendix A for additional analyses and ablations.

6 CONCLUSION

Summary. We have analyzed the strengths and limitations of action chunking for robot learning
from human demonstrations. Based on our analysis, we proposed Bidirectional Decoding (BID), an
inference algorithm that takes into account both past decisions and future plans for sample selection.
Our experimental results show that BID can consistently improve closed-loop operations, scale well
with computational resources, and complement existing methods. We hope these findings provide a
new perspective on addressing the challenges of generative behavioral cloning at test time.
Limitations. One major limitation of BID lies in its computational complexity. While the decoding
computation can be fully parallelized on modern GPUs, it may remain expensive for high-frequency
operations on low-cost robots. Designing algorithms that can generate quality yet diverse action
chunks under batch size constraints can be an interesting avenue for future research. Additionally,
our analysis and method have been limited to policies with short context lengths, driven by their em-
pirical effectiveness with limited human demonstrations. Developing techniques capable of learning
robust long-context policies can be another compelling direction for future research.

REPRODUCIBILITY STATEMENT

Our code for the experiments with Diffusion Policy is available at https://github.com/
YuejiangLIU/bid_diffusion and our code for the experiments with VQ-BET is available at
https://github.com/Jubayer-Hamid/bid_lerobot. Additionally, detailed descrip-
tions of our experimental setups are available in Appendix C, and complete proofs of our theoretical
claims can be found in Appendix E.
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previous decision

positive samples
negative samples

demo distribution

Figure 10: Distributional interpretation of BID. The backward criterion (Equation 6) favors samples close to
the past decision; the forward criterion (Equation 7) promotes samples with a high likelihood under the target
distribution.

Action Horizon

Noise Level 1 3 5 7 10

0.0 4.03 2.07 1.54 1.06 0.00
0.2 1.43 0.94 0.39 0.71 1.32
0.4 0.36 0.42 0.59 0.835 1.11

Table 3: Total variation distance between the action distributions of each model and the expert in environments
with varying noise levels. Lower values indicate better performance.

A ADDITIONAL EXPERIMENTS

A.1 ONE-DIMENSIONAL SIMULATIONS

In addition to Fig. 5, we summarize the total variation distance between each learned policy and the
demonstration in the one-dimensional simulation. Our results indicate that a shorter action horizon
is more effective in noisier environments, whereas a longer action horizon yields better performance
in static environments.

A.2 ACTION HORIZON VS. CONTEXT LENGTH

Setup. Our work builds on the premise that the action horizon is longer than the context length,
as commonly designed for recent policies. While BID mitigates the inherent limitations of this de-
sign choice through test-time decoding, an important question remains: could extending the context
length yield stronger policies? To understand this, we trained diffusion policies with varying com-
binations of action horizons and context lengths on the Push-T task. Specifically, we use a short
context length (c = 2) and a short action horizon (h = 2) as our baseline, set the prediction length
equal to the action horizon l = h, and incrementally increase these parameters to larger values
6, 10, 14 to assess their impact.
Result. Fig. 11 compares the performance of the policy learned with different ∆h = h− c. As ex-
pected, the policy with both a short action horizon and a short context length does not perform well,
due to its limited capability to model long-range temporal dependencies. Interestingly, extending the
context length initially boosts performance (∆h = −4), but this trend reverses as the context length
becomes too long (∆h ≤ −8), likely due to overfitting to an increased number of spurious fea-
tures. In contrast, expanding the action horizon results in more robust performance improvements,
validating its pivotal role in imitation learning from human demonstrations.

A.3 ABLATION STUDY OF FORWARD CONTRAST

Setup. To understand the effect of forward contrast (Equation 7), we evaluate the full version
of our method against three reduced variants in open-loop operations: Vanilla (without forward
contrast), Positive (without negative samples), and Negative (without positive samples). Similar
to §5.2.2, our ablation study is conducted in seven simulation tasks, each with three random seeds.

Result. Fig. 12 summarizes the result of this ablation study. Notably, both positive and nega-
tive samples are essential for effective sample selection, and omitting either leads to significant
performance declines. Without negative samples, our decoding method reduces to an approximate
maximum a posteriori estimation, which can result in suboptimal decisions due to modeling errors.
Conversely, without positive samples, the sampling process may be biased towards rare instances.
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Figure 11: Effect of action horizon (h) and context length (c) on diffusion policies in the Push-T task. The
baseline is set at h = 2 and c = 2, with ∆h = h− c = 0. Extending the action horizon (h > 2) consistently
improves performance, whereas extending the context length (c > 2) can cause substantial performance de-
clines. Each model is trained for 5k epochs. Results are averaged over the last five checkpoints.
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Figure 12: Effect of positive and negative samples
on forward contrast. Performance of ablated variants
of forward contrast is evaluated across seven simu-
lation tasks. The absence of either positive or nega-
tive samples prevents achieving the full performance
gains observed with the contrast objective.
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Figure 13: Effect of the decay rate for the exponen-
tial moving average. In each task, we measure the
relative performance among different decay rates.
The optimal decay rate varies by task, leading to a
practical challenge of identifying a universal tempo-
ral ensembling strategy (Zhao et al., 2023b).

This result highlights the importance of both components and suggests the potential for extending
this paradigm in future work.

A.4 CHALLENGES FOR TEMPORAL ENSEBMLING

EMA exhibits competitive performance in Fig. 6. However, tuning its decay rate can be difficult in
practice. Fig. 13 shows the sensitivity of EMA to the decay rate across three different tasks, where
the optimal choices differ significantly. We conjecture that this high sensitivity stems from the
variability in the latent strategies between consecutive predictions. When consecutive predictions
follow similar strategies, a lower decay rate (i.e., stronger moving average) can enhance smoothness
and improve performance. Conversely, when consecutive predictions diverge in their underlying
strategies, averaging them can introduce adverse effects. Our method promotes coherence in latent
strategies and thus effectively complements temporal ensembling, as evidenced in Fig. 7.

A.5 ABLATION STUDIES ON VQ-BET

Table 4 presents the performance of various sampling methods with VQ-BeT (Lee et al., 2024) on
the Push-T task under different levels of environment stochasticity. We compare BID against vanilla
sampling and EMA, for both open-loop and closed-loop executions. BID consistently outperforms
the baselines, particularly in highly stochastic settings, with close-loop BID attaining the best per-
formance on average. Moreover, the performance of EMA degrades significantly as the environment
gets more noisy, likely due to the divergence in strategies between consecutive action chunks. Ad-
ditionally, we conduct an ablation study on the forward contrast objective, isolating the roles of
positive samples (from a strong model) and negative samples (from a weaker model). We observe
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Stochastic Noise 0.0 1.0 1.5 Average

Vanilla 64.0 ± 4.2 26.9 ± 2.8 13.0 ± 0.4 34.6 ± 1.7
EMA 64.1 ± 1.7 27.6 ± 3.3 12.9 ± 1.1 34.9 ± 1.3
Backward (ours) 64.0 ± 1.3 27.6 ± 1.0 13.4 ± 2.4 35.1 ± 1.0
+ Positive (ours) 65.6 ± 1.9 29.7 ± 0.4 15.7 ± 1.7 37.0 ± 0.9
+ Negative (ours) 65.1 ± 2.7 26.6 ± 0.8 14.8 ± 2.4 35.5 ± 1.2
BID (ours) 66.1 ± 3.5 31.4 ± 3.0 16.0 ± 1.2 37.8 ± 1.6

(a) Open-Loop Operation

Stochastic Noise 0.0 1.0 1.5 Average

Vanilla 48.9 ± 2.7 38.3 ± 3.4 29.5 ± 0.9 38.9 ± 1.5
EMA 52.6 ± 2.9 35.7 ± 2.2 18.4 ± 2.3 35.6 ± 1.4
Backward (ours) 52.7 ± 1.3 42.0 ± 3.2 29.4 ± 0.5 41.4 ± 1.2
+ Positive (ours) 53.8 ± 3.3 44.1 ± 2.5 30.4 ± 0.8 42.8 ± 1.4
+ Negative (ours) 53.0 ± 2.1 44.3 ± 2.2 30.8 ± 0.4 42.7 ± 1.0
BID (ours) 54.4 ± 1.8 45.3 ± 3.8 31.7 ± 0.3 43.8 ± 1.4

(b) Closed-Loop Operation

Table 4: Success rates of VQ-BeT on the Push-T task under various conditions and sampling methods. The left
table shows open-loop success rates, while the right table shows closed-loop success rates. BID consistently
outperforms vanilla counterparts in both settings.

Vanilla L2 (Ours) L1 (Ours) Cosine (Ours)

Square 0.68 ± 0.06 0.76 ± 0.03 0.76 ± 0.04 0.73 ± 0.04
Lift 0.12 ± 0.02 0.58 ± 0.06 0.68 ± 0.05 0.70 ± 0.02

Kitchen 0.22 ± 0.04 0.64 ± 0.05 0.70 ± 0.04 0.61 ± 0.03

Table 5: Effect of distance metric. We evaluate BID with different distance metrics on three robot manipulation
tasks. Regardless of the chosen metric, BID substantially outperforms the vanilla baseline. Notably, the L1
distance yields an even stronger performance than the default L2 distance used in our other experiments.

that both types of samples contribute to the strong performance of BID across varying levels of
environment stochasticity.

A.6 CHOICE OF DISTANCE METRICS

As described in §4.2, our method uses the L2 distance as the default distance measure for quantifying
similarity between action chunks. Yet, L2 distance is just one of several viable options. To assess
the sensitivity of our approach to the choice of distance metric, we extend the experiments in §5.2.1
to further evaluate BID with alternative choices, including L1 and cosine distance. Results from
three robot manipulation tasks, summarized in Table 5, demonstrate that BID achieves substantial
performance gains regardless of the metric used. In particular, BID with L1 distance surpasses the
default L2 distance in performance, highlighting the untapped potential of our method.

B ADDITIONAL DISCUSSIONS

Interpretation of our method. Our method makes no changes to the learned policy; instead, it
intervenes in the model distribution through sample selection. As illustrated in Fig. 10, randomly
sampled sequences may be misaligned with both the previous decisions and the target demonstra-
tions. Given a set of candidates, the backward step first identifies the behavioral mode from the past
decision stored in memory; the forward step then removes the samples with low likelihood under
the target distribution using prior knowledge of positive and negative samples. By comparing sam-
ples across time steps and model checkpoints, our method bridges the gap between the proposal and
target distributions at test time.
Relation to recent methods. Our method builds upon the receding horizon (Chi et al., 2023) and
temporal ensembling (Zhao et al., 2023b) used in previous works, but with crucial distinctions.
Receding horizon seeks a compromise between long-term consistency and short-term reactivity by
using a moderate action horizon (e.g., half of the prediction length), which is inevitably sup-optimal
when both factors are prominent. Temporal ensembling strengthens dependency across chunks by
averaging multiple decisions over time; however, weighted-averaging operations can be detrimental
when consecutive decisions fall into distinct modes. Our method more effectively addresses cross-
chunk dependency through dedicated behavioral search and is not mutually exclusive to previous
methods. We will demonstrate in the next section that combining our method with the moving
average can further improve closed-loop action chunking.
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name value
batch size N 16
mode size K 3
prediction length l 16
temporal coherence decay ρ 0.5
moving average decay λ 0.5

Table 6: Default hyper-parameters in our experiments.

C ADDITIONAL DETAILS

C.1 SIMULATION EXPERIMENT DETAILS

C.1.1 ENVIRONMENT DETAILS

Our simulation experiments are conducted on three robot manipulation benchmarks. We use the
training data collected from human demonstrations in each benchmark.
Push-T: We adopt the Push-T environment introduced in (Chi et al., 2023), where the goal is to push
a T-shaped block on a table to a target position. The action space is two-dimensional end-effector
velocity control. The training dataset contains 206 demonstrations collected by humans.
Robomimic: We use five tasks in the Robomimic suite (Mandlekar et al., 2022), namely Lift, Can,
Square, Transport, and Tool Hang. The training dataset for each task contains 300 episodes collected
from multi-human (MH) demonstrations.
Franka Kitchen: We use the Franka Kitchen environment from (Gupta et al., 2020), featuring a
Franka Panda arm with a seven-dimensional action space and 566 human-collected demonstrations.
The learned policy is evaluated on test cases involving four or more objects (p4), a challenging yet
practical task for robotic manipulation in household contexts.

C.1.2 IMPLEMENTATION DETAILS.
Our implementation of BID for Diffusion Policy is built upon the official code of Chi et al. (2023),
with modifications made solely to the inference process. The policy takes in state inputs and predicts
a chunk of 16 actions as outputs. For each simulation task, we train the model for 100-1000 epochs
to reach near-optimal performance. We evaluate it in closed-loop operations, i.e., action horizon is
set to 1. For forward contrast, we train the weak policy for 10-100 epochs, resulting in a suboptimal
policy for each task. The core hyperparameters are summarized in Table 6.
Our implementation of BID for VQ-BeT (Lee et al., 2024) is built upon the code of LeRobot (Cadene
et al., 2024). We use the best public checkpoint as the strong policy and a checkpoint trained for
100k iterations as the weak policy. Since BID requires sample diversity, we set the temperature to
be 0.5 for all methods in our experiments.

C.2 REAL-WORLD EXPERIMENT DETAILS

C.2.1 DYNAMIC PLACING

Task. We consider a task where the robot is to deliver an object held in its gripper into a cup
held by a human. As shown in Fig. 14, this task comprises four main stages and presents two core
challenges. First, due to the similar size of the object and the cup, the robot must achieve high
precision to place the object accurately into the cup. Second, the position of the cup is not fixed,
requiring the robot to adjust its plans based on the latest position continuously. This task mirrors
real-world scenarios where robots interact with a dynamic environment, accommodating moving
objects and agents.

Demonstration. In light of temporal dependencies and style variations in human behaviors, we
intentionally collect a diverse set of demonstration data, differing in factors such as average speed,
idling pause, and overall trajectory. We gather a total of 150 demonstration episodes: 50 clean and
consistent demonstrations, and 100 noisy and diverse demonstrations. All demonstrations success-
fully accomplish the task. Additional, the location of the cup is fixed and static within each episode.

Robot. Following previous works (Chi et al., 2023; Prasad et al., 2024), we use a Franka Panda
as the robot hardware and the vision-based diffusion policy for its operation. The robot is equipped
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(a) initialize

→
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(c) decelerate
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(d) place

Figure 14: Human demonstrations on a Franka Panda robot for a real-world object delivery task. The robot is
tasked with delivering an object held in its gripper into a cup held by a human. Each demonstration consists of
four main stages: (a) initialize the robot position randomly, (b) approach the target cup, (c) slow down near the
target cup, and (d) release the object. The position of the target cup may change during an episode.

(a) initialize (b) approach (c) grasp (d) pick (e) place

Figure 15: The robot is tasked with picking up a cup and placing it on a saucer nearby. The four main stages
are (a) initializing the robot, (b) approaching the target cup, (c) grasping the target cup, (d) picking up the cup,
and (e) placing the cup on the target saucer. The position of the target cup may change during an episode.

with two cameras: one ego-centric camera mounted at the wrist of the robot, one third-person camera
mounted at a static bracket. Both cameras provide visual observations at a resolution of 256 × 256
pixels. The robot operates at a frequency of 10 Hz, with a prediction length of 16 time steps.

Evaluation. We evaluate our method in comparison to vanilla random sampling under two con-
ditions: static target, where the target cup remains fixed throughout the evaluation, and dynamic
target, where the target cup is gradually moved. In the dynamic setting, the location of the cup stays
within the range of training locations, but the movement is not encountered during training. This
evaluation protocol is designed to explicitly assess the ability of the policy to react to unexpected
dynamics in the environment. Each method-setting pair is tested over 20 episodes, with both the
initial and target locations randomized across different episodes.

Result. We summarize the result of the real-world experiments in Fig. 8. The success rate of
vanilla random sampling is generally limited due to oscillations between different latent strategies,
which quickly diverge from the distribution of demonstrations. This issue is particularly pronounced
in the dynamic setting, where the vanilla baseline struggles to account for the target movements
within an action chunk lasting for 1.6 seconds. In contrast, the proposed BID method significantly
improves performance in both static and dynamic settings. Notably, BID maintains a similar success
rate in the dynamic setting as in the static setting, suggesting its potential to extend action chunking
into uncertain environments.

C.2.2 DYNAMIC PICKING

Task. Next, we consider a task where the robot is required to pick up a cup and place it onto a
nearby saucer. The cup was pulled with a string until the robot’s gripper successfully grasped it. The
task consists of five main stages, which are illustrated in Fig. 15. This setup also tests the robot’s
capability to interact with a dynamic environment, a critical challenge in real-world applications.

Policy. We utilized the publicly available diffusion policy checkpoint from UMI (Chi et al., 2024)
without any additional fine-tuning. Notably, the policy was originally trained using demonstrations
in a static setting, where the cup’s position remained constant throughout the task. Our experimental
setup mirrored the one described by UMI, using the same UR5 robot hardware. This allowed us
to directly evaluate the policy’s transferability to a dynamic environment, where the cup’s position
changes during the task. Due to the absence of an early checkpoint, we omitted negative samples in
forward contrast, focusing solely on positive consistency discussed in Appendix A.3.

21



Published as a conference paper at ICLR 2025

Evaluation. We evaluated BID against three baselines: vanilla random sampling in both open-
loop and closed-loop configurations, and EMA (closed-loop). These methods were tested under two
conditions: static target, where the cup remained in a fixed position, and dynamic target, where the
cup was moved using the string. Each method-setting combination was tested across 20 episodes,
with the initial positions of the cup and saucer kept consistent to ensure controlled comparisons.

Results. The results, summarized in Fig. 9, highlight the challenges of the dynamic setting. Open-
loop vanilla sampling performed poorly due to its inability to adapt to the cup’s movements, often
failing to approach the cup as it was pulled. While closed-loop vanilla sampling showed improved
reactivity, it suffered from inconsistent trajectories, resulting in jittery behavior when attempting to
grasp and place the cup. Similarly, closed-loop EMA sampling demonstrated higher adaptability to
environmental changes but often failed to firmly grasp the cup, likely due to the limitations of naive
averaging, which compromises commitment to a specific strategy. In contrast, BID achieved at
least a 2x improvement in success rate compared to all other methods in the dynamic setting, while
maintaining its performance in the static setting, demonstrating both adaptability and precision in
dynamic environments.

D ADDITIONAL DISCUSSIONS

Relation to Option Discovery. Action chunking and option discovery share similarities in mod-
eling temporally extended actions. However, their designs and outcomes are often different. Option
discovery typically aims to learn hierarchical policies, explicitly discovering high-level skills from
low-level action sequences (Bagaria & Konidaris, 2020; Jiang et al., 2022; 2023; Zhao et al., 2023a).
In contrast, action chunking operates directly on low-level action sequences with fixed horizons, by-
passing the need for abstraction into high-level skills. This simplicity has proven effective in large-
scale robotic foundation models (Team et al., 2024; Black et al., 2024), addressing the scalability
challenge that option discovery has yet to overcome. Future work could explore variable-horizon
option discovery as a compelling alternative to action chunking, potentially combining the benefits
of temporal abstraction with the scalability demonstrated by action chunking.

Relation to Long Context. Our analysis in §3 highlights the benefits of extending the action hori-
zon to better capture temporal dependencies across actions. Another natural approach to capturing
these dependencies is to extend the context length. However, long-context policies often suffer from
robustness issues, due to spurious correlations between past and future actions, as evidenced in Ap-
pendix A2 and studied in de Haan et al. (2019); Wen et al. (2020). Nevertheless, the increasing
availability of large-scale robotic datasets for pre-training and fine-tuning may help mitigate these
challenges. Advances in leveraging long context may open up new opportunities in policy design,
such as long-context transformers (Su et al., 2024) and recurrent neural networks (Hochreiter &
Schmidhuber, 1997; Zhuo et al., 2020).

E PROOFS

In this section, we will clearly write out the transition dynamics in the training environment to be
Ptrain(st+1 | st, at), the transition dynamics in the test environment to be Ptest(st+1 | st, at) and
the implicit dynamics model of the training environment to be P̂train(st+1 | st, at). Note that the
implicit dynamics model attempts to learn the dynamics of the training environment and not the
test environment since our policy is assumed to have been trained only on data from the training
environment.

First, we establish the following lemma which will help us compare different function classes based
on the information they have access to:

Lemma 4. Let L be a convex function and let X and Y be two random variables. Let G be the
class of functions g(X) that accept X as an input. Then

min
g(X)∈G

EX,Y [L(f(X,Y ), g(X))] = EX

[
min
c∈R

EY [L(f(X,Y ), c)|X]

]
.
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Proof. The left hand side is less than or equal to the right hand side by the following logic:

EX

[
min
c∈R

EY [L(f(X,Y ), c)|X]

]
= EX [EY [L(f(X,Y ), c∗(X))|X]]

≥ min
g(X)∈G

EX,Y [L(f(X,Y ), g(X))]

where we used c∗(X) := argminc EX [L(f(X,Y ), c)|X]. We get the inequality by recognizing
that R ⊊ G. For the reverse inequality, consider any g(X) ∈ G:

E[L(f(X,Y ), g(X))] = EX [EY [L(f(X,Y ), g(X))|X]]

≥ EX

[
min
g

EY [L(f(X,Y ), g(X))|X]

]
= EX

[
min

c
EY [L(f(X,Y ), c)|X]

]
.

With these two inequalities, we conclude.

Next, we prove the following lemma. This straightforward, and almost trivial, result is provided as
a separate lemma because we simplify terms in this manner quite often throughout our proofs.

Lemma 5. Let L be a convex function and let X,Y be two random variables. Then,

min
f

EX,Y [P (X ′ = X)L(f(X ′), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ ϵ

where ϵ = maxX′ ̸=X,X,Y {L(f∗(X ′), S(X,Y )} and f∗ = argminf{EX,Y [L(f(X), S(X,Y )]}.

Proof.

min
f

EX,Y [P (X ′ = X)L(f(X ′), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
EX,Y [L(f(X), S(X,Y ))] + EX,Y

 ∑
X′ ̸=X

P (X ′)L (f(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ EX,Y

 ∑
X′ ̸=X

P (X ′)L (f∗(X ′), S(X,Y ))


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ EX,Y

 ∑
X′ ̸=X

P (X ′)ϵ


≤ min

f
{EX,Y [L(f(X), S(X,Y ))]}+ ϵ

E.1 ASSUMPTIONS

Considering that recent policies often use a short context length c, we assume the range of temporal
dependency modeled by a (c, h)-policy is limited:

Assumption 1. The sum of context length and action horizon is less than the length of temporal
dependency in expert demonstrations, c+ h < k.
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This assumption allows us to focus on the problem that is relevant to us and allows us to ignore edge
cases. However, our analysis can be extended to the case where this assumption does not hold. In the
case where c + h ≥ k, the larger action chunk model will not get any advantage (making αb = 0)
since the additional states it has observed in time steps τb are irrelevant to at. Then, the longer
horizon policy either attains the same expected loss the shorter horizon policy or suffer greater loss
from not having observed the recent past states.

Assumption 2. An optimal πc,h must infer the unobserved states based on the observed states and
actions by modeling the transition dynamics P̂train(st′ | st′−1, at′−1) accurately for all time step t′.
We consider this implicit model to be the same for both π(c,h) and π(c,h+d).

In other words, we can write using the law of total probability:

π(c,h)(at|st−h−c:t−h, at−h:t−1)

= Est−k:t−h−c−1,st−h+1:t∼P̂train

[
π(k,1)(at|st−k:t)|st−h−c:t−h, at−h:t−1

]
and

π(c,h+d)(at|st−h−d−c:t−h−d, at−h−d:t−h−1)

= Est−k:t−h−d−c−1,st−h−d+1:t∼P̂train

[
π(k,1)(at|st−k:t)|st−h−d−c:t−h−d, at−h−d:t−1

]
.

E.2 DEFINITIONS

We, first, analyze the effect of reducing context horizon. We show that, provided action horizon is
constant, decreasing context horizon causes performance of the optimal policy to decrease.

Consider a (c, h)-policy (i.e., the policy has context length c and action horizon h) whose probability
of taking action at at time t in a chunk generated at t is referred to as π(c,h) := π(c,h)(at|st−c:t). On
the other hand, consider a (c+1, h)-policy whose probability of taking action at in a chunk generated
at time t is referred to as π(c+1,h) := π(c+1,h)(at|st−c−1:t). Lastly, consider a (k, 1)-expert whose
probability of taking action at at time t is π∗.

Proposition 6. Let L be a non-linear, convex function. Let c < k. Let G := {at, st−k:t−c−1, zt−k:t}
and let C := {st−c:t}. Then,

min
π(c+1,h)

EG

[
L(π(c+1,h), π

∗)
∣∣∣C]
≤ min

π(c,h)

EG

[
L(π(c,h), π

∗)
∣∣∣C]

In particular, this is an equality if and only if st−c−1 ∼ Ptest(· | C) and ŝt−c−1 ∼ P̂train(· | C)
take on only one and the same value almost surely.

Proof. We refer to the class of functions that accept at and st−c−1:t as inputs as X2. Similarly, the
class of functions that do not accept at as inputs but accept st−c−1:t as inputs is X1. The function
class that accepts only st−c:t and not st−c−1 or at as inputs are elements of X0. Lastly, the function
class that accepts st−c:t and at as inputs, but not st−c−1, are elements of X−1.

min
π(c+1,h)∈X2

EG

[
L(π(c+1,h), π

∗
∣∣∣C]

= Eat

[
min

π′
(c+1,h)

∈X1

Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π′

(c+1,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4)

= Eat

[
Est−c−1

[
min

π′
(c,h)

∈X0

Est−k:t−c−2,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C

] ∣∣∣C]
(Lemma 4)

≤ Eat

[
min

π′
(c,h)

∈X0

Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]
(Jensen’s inequality)
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= min
π(c,h)∈X−1

Eat

[
Est−c−1

[
Est−k:t−c−2,zt−k:t

[
L(π(c,h), π

∗)
∣∣∣at, st−c−1, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4).

Use the law of total expectation to conclude. The equality conditions for Jensen’s inequality provides
us the equality condition for this relationship too.

Now, we formalize the definitions of Expected Observation Advantage and Maximum Inference
Disadvantage.

Recall that, in §3.2, we have two policies: π(c,h) and π(c,h+d); the former sees more recent states
while the latter remembers more past states. First, we define an agent that gets access to all the
information that both learners, combined, have: a (c + d, h)-policy whose probability of taking
action at in a chunk generated at time t− h is

π(c+d,h) := π(c+d,h)(at|st−h−d−c:t−h, at−h:t−1).

Observe that π(c+d,h) has access to more context than π(c,h), particularly the knowledge of states
st−h−c−d:t−h−c−1.

Definition (Expected Observation Advantage (αb)). We know, using Proposition 6, π(c+d,h) has
lower divergence with respect to π∗ than π(c,h). We say that the advantage π(c+d,h) gets from the
extra information is αb. More formally, we say that

αb := min
π(c,h)

E
[
L(π(c,h), π

∗)
∣∣∣C]− min

π(c+d,h)

E
[
L(π(c+d,h), π

∗)
∣∣∣C] (8)

where C is defined as in Proposition 1. Clearly, αb ≥ 0. In particular, αb = 0 when
st−h−d−c:t−h−c−1 can be deterministically inferred by π(c,h) or when the expert policy is inde-
pendent of them.

Definition (Maximum Inference Disadvantage (ϵf )). Consider the maximum divergence that
can be accumulated by the (c, h+ d)-policy from not knowing the recent states at time steps
st−h−d+1:t−h, and let that be ϵf . More formally, we say that, for fixed C from Proposition 1, any
states in S− := {st−k:t} \ S+, any zt−k:t, and any ŝt−h−d+1:t−h ̸= st−h−d+1:t−h, the following
holds:

L(π(c+d,h)(at|st−h−d−c:t−h−d, ŝt−h−d+1:t−h ̸= st−h−d+1:t−h, at−h:t−1), π
∗) ≤ ϵf . (9)

Here, π(c+d,h) := argminπ(c+d,h)
E[L(π(c+d,h), π

∗)|C] is the optimal (c+ d, h)-policy.

To define αf and ϵb, we prove a second version of Proposition 6. Consider a (c, h)-policy whose
probability of taking action at at time t in a chunk generated at t is referred to as π(c,h) :=
π(c,h)(at|st−c:t). On the other hand, consider a (c − 1, h + 1)-policy whose probability of taking
action at in a chunk generated at time t− 1 is referred to as π(c−1,h+1) := π(c−1,h+1)(at|st−c:t−1).
Lastly, consider a (k, 1)-expert whose probability of taking action at at time t is π∗.

Proposition 7. Let L be a non-linear, convex function. Let c < k. Let G :=
{at, st−k:t−c−1, st, zt−k:t} and C := {st−c:t−1, at−1}. Then,

min
π(c,h)

EG

[
L(π(c,h), π

∗)
∣∣∣C]
≤ min

π(c−1,h+1)

EG

[
L(π(c−1,h+1), π

∗)
∣∣∣C]

.

In particular, this is an equality if and only if the state st ∼ Ptest(· | C) and ŝt ∼ P̂train(· | C)
takes on only one and the same value almost surely.

Proof. The proof is similar to that of Proposition 6. We refer to the class of functions that accept
at and st−c:t as inputs as X2. Similarly, the class of functions that do not accept at as inputs but
accept st−c:t as inputs is X1. The function class that accepts only st−c:t−1 and not st or at as inputs
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are elements of X0. Lastly, the function class that accepts st−c:t−1 and at as inputs, but not st, are
elements of X−1.

min
π(c,h)∈X2

EG

[
L(π(c,h), π

∗
∣∣∣C]

= Eat

[
min

π′
(c,h)

∈X1

Est

[
Est−k:t−c−1,zt−k:t

[
L(π′

(c,h), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4)

= Eat

[
Est

[
min

π′
(c−1,h+1)

∈X0

Est−k:t−c−2,zt−k:t

[
L(π′

(c−1,h+1), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C

] ∣∣∣C]
(Lemma 4)

≤ Eat

[
min

π′
(c−1,h+1)

∈X0

Est

[
Est−k:t−c−1,zt−k:t

[
L(π′

(c−1,h+1), π
∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]
(Jensen’s inequality)

= min
π(c−1,h+1)∈X−1

Eat

[
Est

[
Est−k:t−c−1,zt−k:t

[
L(π(c−1,h+1), π

∗)
∣∣∣at, st, C

] ∣∣∣at, C
] ∣∣∣C]

(Lemma 4).

Use the law of total expectation to conclude. The equality condition can be seen from the equality
condition of Jensen’s inequality.

Using this, we can define ϵb and αf in a similar manner:

Definition (Expected Observation Advantage (αf )). Recall that we have two models: π(c,h) and
π(c,h+d) and a hypothetical (c+ d, h)-policy that has access to all the information both our learners
have (as in Eq. (8) and Eq. (9)). Observe that π(c+d,h) has access to more context than π(c,h+d), par-
ticularly the knowledge of states st−h−d+1:t−h. Therefore, we know, using Proposition 7, π(c+d,h)

has lower divergence with respect to π∗ than π(c,h+d). We say that the advantage π(c+d,h) gets from
the extra information is αf . More formally, we say that

αf = min
π(c,h+d)

E
[
L(π(c,h+d), π

∗)
∣∣∣C]− min

π(c+d,h)

E
[
L(π(c+d,h), π

∗)
∣∣∣C] (10)

where C is defined as in Proposition 1. Clearly, αf ≥ 0. In particular, αf = 0 when π(c,h+d) can
infer st−h−d+1:t−h perfectly. This makes sense–in the static environment, observing these states
does not provide any advantage since the optimal π(c,h+d) can infer these states anyway using the
actions taken at those time steps (assuming that the implicit dynamics model is accurate).

Definition (Maximum Inference Disadvantage (ϵb)). Consider the maximum divergence that can
be accumulated by the (c, h)-model from not knowing the past states st−h−d−c:t−h−c−1 and let that
be ϵb. More formally, we say that, for fixed C from Proposition 1, any states in S−, any zt−k:t and
any ŝt−h−d−c:t−h−c−1 ̸= st−h−d−c:t−h−c−1:

L(π(c+d,h)(at|ŝt−h−d−c:t−h−c−1 ̸= st−h−d−c:t−h−c−1, st−h−c:t−h, at−h:t−1), π
∗) ≤ ϵb. (11)

Here, π(c+d,h) := argminπ(c+d,h)
E[L(π(c+d,h), π

∗)|C] is the optimal (c+ d, h)-policy.

As a warmup, we see that the intuitive relationship between αf and ϵf (and the same for αb and ϵb)
holds:
Proposition 8. αf ≤ ϵf and αb ≤ ϵb.

Proof. We prove the first inequality; the second can be proven in the same manner. We use As-
sumption 2 to write π(c,h+d) = Est−h−d+1:t−h∼P

[
π(c+d,h) | st−h−d−c:t−h−d, at−h−d:t−1

]
where

P is the environment’s transition dynamics. Let

Pcorrect inference = P (ŝt−h−d+1:t−h = st−h−d+1:t−h|st−h−d−c:t−h−d, at−h−d:t−1)

and

Pincorrect inference = P (ŝt−h−d+1:t−h ̸= st−h−d+1:t−h|st−h−d−c:t−h−d, at−h−d:t−1).
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Then,

αf = min
π(c,h+d)

E
[
L(π(c,h+d), π

∗)
∣∣∣C]− min

π(c+d,h)

E
[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c+d,h)

E
[
L(Pcorrect inferenceπ(c+d,h) + Pincorrect inferenceπ(c+d,h), π

∗)
∣∣∣C]

− min
π(c+d,h)

E
[
L(π(c+d,h), π

∗)
∣∣∣C]

≤ min
π(c+d,h)

{E
[
Pincorrect inferenceL(π(c+d,h)(conditioning on incorrect inference), π∗)

∣∣∣C]
+ E

[
Pcorrect inferenceL(π(c+d,h)(conditioning on correct inference), π∗)

∣∣∣C]}
− min

π(c+d,h)

E
[
L(π(c+d,h), π

∗)
∣∣∣C] (Convexity)

≤ E
[
Pincorrect inferenceL(π̂∗

(c+d,h(conditioning on incorrect inference), π∗)
∣∣∣C]

+ E
[
L(π∗

(c+d,h), π
∗)
∣∣∣C]− E

[
L(π∗

(c+d,h), π
∗)
∣∣∣C]
(Bounding probabilities by 1 and Lemma 5)

≤ E [Pincorrect inferenceϵf | C]

≤ ϵf

Here, π∗
(c+d,h)

:= argminπ(c+d,h)
E
[
L(π(c+d,h), π

∗)
∣∣∣C].

We will provide a tighter bound after the proof of our main theoretical results.

Definition (Forward and Backward Inference). For a fixed time step t and C (as in §3.2), consider
the time steps τf := {t− h− d+ 1 : t− h} and τb := {t− h− d− c : t− h− c− 1}.
Define

Pf (t
′) := Ptest(St′ = gt′ | St′−1 = gt′−1, At′−1 = at′−1)

for any t′ ∈ τf with gt′ , gt′−1, at′−1 being the ground truth states and action in the deterministic
test environment. As such, Pf (t

′) = 1 in a deterministic environment. In a stochastic environment,
Pf (t

′) < 1 for all t′ and as the stochasticity increases, these values decrease and approach 0. Let

δf (t
′) = P̂train(gt′ |gt′−1, at′−1)− Pf (t

′)

where gt′ , gt′−1, at′−1 are still the ground truth in the deterministic test environment. Define
P̂f (t

′) = Pf (t
′) + δf (t

′). Similarly, define

Pb(t
′) := Ptest(St′ = gt′ | St′+1 = gt′+1)

for any t′ ∈ τb where gt′ , gt′−1 are the ground truth states in the deterministic test environment.
Then let

δb(t
′) = P̂train(gt′ |gt′+1)− Pb(t

′)

for any t′ ∈ τb. Define P̂b(t
′) = Pb(t

′) + δb(t
′).

Intuitively, δf (t′) and δb(t
′) characterize the error that the implicit dynamics model has in capturing

the test environment’s dynamics.

E.3 CONSISTENCY-REACTIVITY INEQUALITIES

Now we prove the Consistency-Reactivity Inequalities.

Proposition 1 (Consistency-Reactivity Inequalities) Let L be a non-linear and non-negative convex
function measuring the prediction error with respect to demonstrations. Let S+ ⊂ {st−k:t} be
the states both the (c, h) and the (c, h + d) policies observe and let S− := {st−k:t} \ S+. Let
C := {at−h:t−1} ∪ S+, G := {at, zt−k:t} ∪ {at−h−d:t−h−1} ∪ S−. For notational ease, let τf =
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{t − h − d + 1 : t − h} and let τb = {t − h − d − c : t − h − c − 1}. Then, we can bound the
expected loss of the (c, h+ d)-policy and the (c, h)-policy as:

αf − ϵb(1−
∏
t′∈τb

Pb(t
′)(Pb(t

′) + δb(t
′))) ≤ min

πh+d

EG [L(πh+d, π
∗)|C]−min

πh

EG [L(πh, π
∗)|C]

and

min
πh+d

EG [L(πh+d, π
∗)|C]−min

πh

EG [L(πh, π
∗)|C] ≤ ϵf (1−

∏
t′∈τf

Pf (t
′)(Pf (t

′) + δf (t
′)))− αb.

Proof. We first prove the upper bound. For ease of notation, we will write xb
a: to mean xa:b.

Additionally, for greater clarity, we will explicitly include the context length of each model, so
π(c,h) = πh and π(c,h+d) = πh+d. We start by writing, using Assumption 2,

π(c,h+d)(at|st−h−d−c:t−h−d, at−h−d:t−1)

= π(c,h+d)(at|st−h−d
t−h−d−c:, a

t−1
t−h−d:)

= Eŝt−h−d+1:t−h

[
π(c+d,h)(at|st−h−d

t−h−d−c:, ŝ
t−h
t−h−d+1:, a

t−1
t−h−d:)

∣∣∣st−h−d
t−h−d−c:, a

t−1
t−h−d:

]
.

Using this, we expand the left hand side of our inequality:

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗
)|C

]
= min

π(c+d,h)

EG

[
L(Eŝt−h−d+1:t−h

[
π(c+d,h)

∣∣∣C]
, π

∗
)|C

]
= min

π(c+d,h)

EG

[
L(P̂train(g

t−h
t−h−d+1:|s

t−h−d
t−h−d−c:, a

t−h−1
t−h−d:)π(c+d,h)(at| · · · , gt−h

t−h−d+1:)+∑
ŝt−h−d+1:t−h

not all g
t′

P̂train(ŝ
t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗
)|C

]

≤ min
π(c+d,h)

EG

L(
∏

t′∈τf

P̂f (t
′
)π(c+d,h)(at| · · · , gt−h

t−h−d+1:)+

∑
ŝt−h−d+1:t−h

not all g
t′

P̂train(ŝ
t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗
)|C

]

where we computed the expectation Eŝt−h−d+1:t−h

[
π(c+d,h)

∣∣∣C] by grouping into two terms : one
where every ŝt−h−d+1:t−h = gt−h−d+1:t−h and one where there is at least one term ŝi that is not
gi. This grouping was done using the definition of noise in our environment. We introduce the
following notation here

P̸̂=gt′ :=
∑

ŝt−h−d+1:t−h

not all gt′

P̂train(ŝ
t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:).

Similarly,

P̸=gt′ :=
∑

st−h−d+1:t−h

not all gt′

Ptest(s
t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:).

With this notation, we continue our expansion:
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min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗
)|C

]

≤ min
π(c+d,h)

EG

L(
∏

t′∈τf

P̂f (t
′
)π(c+d,h)(at| · · · , gt−h

t−h−d+1:)+

∑
ŝt−h−d+1:t−h

not all g
t′

P̂train(ŝ
t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:) π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗
)|C

]

≤ min
π(c+d,h)

EG

L(
∏

t′∈τf

P̂f (t
′
)π(c+d,h)(at| · · · , gt−h

t−h−d+1:) + P̸̂=g
t′

π(c+d,h)(at| · · · , ŝt−h
t−h−d+1:), π

∗
)|C

]

≤ min
π(c+d,h)

EG

 ∏
t′∈τf

P̂f (t
′
)L(π(c+d,h)(at| · · · , gt−h

t−h−d+1:), π
∗
)|C


+ EG

[
P̸̂=g

t′
L(π(c+d,h)(at| · · · , ŝt−h

t−h−d+1:), π
∗
)|C

]
where we got the inequality using the fact that L is a convex function and, thus, convex in each
argument. Next, we take the expectation over st−h−d+1:t−h by grouping the terms into two: one
where every st−h−d+1:t−h = gt−h−d+1:t−h and one where there is at least one term si ̸= gi. Then,
with some suppression of notation in the expression of π(c+d,h) and G′ := G \ {at, st−h−d+1:t−h}:

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]

≤ min
π(c+d,h)

Eat ∏
t′∈τf

P test
f (t′) P̂f (t

′)EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: = gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: = gt−h
t−h−d+1:

]
+ P ̸=gt′

∏
t′∈τf

P̂f (t
′)EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: = gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: ̸= gt−h
t−h−d+1:

]
+

∏
t′∈τf

P test
f (t′)P̂ ̸=gt′EG′

[
L(π(c+d,h)(...ŝ

t−h
t−h−d+1: ̸= gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: = gt−h
t−h−d+1:

]
+ P ̸=gt′ P̂ ̸=gt′EG′

[
L(π(c+d,h)(..., ŝ

t−h
t−h−d+1: ̸= gt−h

t−h−d+1:), π
∗)
∣∣∣..., st−h

t−h−d+1: ̸= gt−h
t−h−d+1:

]

Now, we group all the terms into two - one representing where the learner’s simulation matches the
reality and one where it does not. Continuing from where we left off, first, define P̂ f

ŝ=s to be the
probability that the inferred states at timesteps in τf are the states that were visited in reality. Then,

min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗
)|C

]
≤ min

π(c+d,h)

Eat ∏
t′∈τf

P
test
f (t

′
) P̂f (t

′
)E

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = g
t−h
t−h−d+1: = s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: = g
t−h
t−h−d+1:

]

+ P ̸=g
t′

P̂
f
ŝ=sE

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = s
t−h
t−h−d+1: ̸= g

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
+

∏
t′∈τf

P
test
f (t

′
)P̸̂=g

t′
E
[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: ̸= g
t−h
t−h−d+1: = s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: = g
t−h
t−h−d+1:

]

+ P̸=g
t′

∏
t′∈τf

P̂f (t
′
)E

[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: = g
t−h
t−h−d+1: ̸= s

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
+ P̸=g

t′
P̂train(ŝ

t−h
t−h−d+1: ̸= s

t−h
t−h−d+1:, g

t−h
t−h−d+1:|st−h−d, a

t−h−1
t−h−d:)

E
[
L(π(c+d,h)(at|..., ŝt−h

t−h−d+1: ̸= s
t−h
t−h−d+1: ̸= g

t−h
t−h−d+1:), π

∗
)
∣∣∣..., st−h

t−h−d+1: ̸= g
t−h
t−h−d+1:

]
|C, at ] | |C]
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For the match terms, we use the fact that
∏

t′∈τf
Pf (t

′) ≤ 1 and

P̂ f
ŝ=s = P̂train(ŝ

t−h
t−h−d+1: = st−h

t−h−d+1:|st−h−d, a
t−h−1
t−h−d:) ≤ 1. For the mismatch terms, we use the

definition of ϵf and Lemma 5. Then, we continue:

≤ min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

(Simulation matches reality)

+
∏

t′∈τf

P test
f (t′)

[
(1− P̂f (t

′))ϵf
]
+

∏
t′∈τf

(1− P test
f (t′))

[
P̂f (t

′) + P̸̂=gt′ ,st′

]
ϵf .

(Simulation does not match reality)

Recall that we write P test
f (t′) as simply Pf (t

′). We simplify the mismatch terms further:∏
t′∈τf

Pf (t
′)
[
(1− P̂f (t

′))ϵf
]
+

∏
t′∈τf

(1− Pf (t
′))

[
P̂f (t

′) + P̂ ̸=gt′ ,st′

]
ϵf

≤
∏

t′∈τf

Pf (t
′)
[
(1− P̂f (t

′))ϵf
]
+

∏
t′∈τf

(1− Pf (t
′))

[
P̂f (t

′) + (1− P̂f (t
′))

]
ϵf

= ϵf ·

1− ∏
t′∈τf

Pf (t
′)P̂f (t

′)

 .

= ϵf ·

1− ∏
t′∈τf

Pf (t
′)(Pf (t

′) + δf (t
′))

 .

Next, we simplify the match terms by using the definition of αb:

min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]
− αb.

Substituting these two terms back in, we conclude.
Now, we prove the lower bound. We proceed in a manner similar to the proof of the upper bound. For
ease of notation, we will write xb

a: to mean xa:b. Additionally, for greater clarity, we will explicitly
include the context length of each model, so π(c,h) = πh and π(c,h+d) = πh+d. We start by writing,
using Assumption 1,

min
π(c,h)

EG

[
L(π(c,h), π

∗) | C
]

= min
π(c+d,h)

EG

L(P̂train(g
t−h−c−1
t−h−d−c:|st−h−c)π(c+d,h) +

∑
ŝt−h−c−1
t−h−d−c:

,

not all gt′

P̂train(ŝ
t−h−c−1
t−h−d−c:|st−h−c)π(c+d,h), π

∗)
∣∣∣C

 .

≤ min
π(c+d,h)

EG

 ∏
t′∈τb

P̂b(t
′)L(π(c+d,h), π

∗) +
∑

ŝt−h−c−1
t−h−d−c:

,

not all gt′

P̂train(ŝ
t−h−c−1
t−h−d−c:|st−h−c)L(π(c+d,h), π

∗)
∣∣∣C

 .

We introduce the following notation here

P̸̂=gt′ :=
∑

ŝt−h−d−c:t−h−c−1

not all gt′

P̂train(ŝ
t−h−c−1
t−h−d−c:|st−h−c).

Similarly,
P̸=gt′ :=

∑
st−h−d−c:t−h−c−1

not all gt′

Ptest(s
t−h−c−1
t−h−d−c:|st−h−c).
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With this notation, we continue our expansion:

min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]

≤ min
π(c+d,h)

EG

 ∏
t′∈τb

P̂b(t
′)L(π(c+d,h)(at|..., gt−h−c−1

t−h−d−c:), π
∗) | C

+

EG

[
P̸̂=gt′L( π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c:), π

∗) | C
]

where we got the inequality using the fact that L is a convex function. Next, we take the expectation
over st−h−d−c:t−h−c−1 by grouping the terms into two: one where every st−h−d−c:t−h−c−1 =
gt−h−d−c:t−h−c−1 and one where there is at least one term si ̸= gi. Then, again suppressing some
terms inside the expression of π(c+d,h):

min
π(c,h)

EG

[
L(π(c,h), π

∗)|C
]

≤ min
π(c+d,h)

Eat ∏
t′∈τb

Pb(t
′)P̂b(t

′) E
[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: = gt−h−c−1

t−h−d−c: = st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: = gt−h−c−1
t−h−d−c:


+ P ̸=gt′

∏
t′∈τb

P̂b(t
′)E

[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: = gt−h−c−1

t−h−d−c: ̸= st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c:


+

∏
t′∈τb

Pb(t
′)P̸̂=gt′ E

[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: ̸= gt−h−c−1

t−h−d−c: = st−h−c−1
t−h−d−c:), π

∗)
∣∣∣..., st−h−c−1

t−h−d−c: = gt−h−c−1
t−h−d−c:

]
+ P̸=gt′ P̂ ̸=gt′ E

[
L(π(c+d,h)(..., ŝ

t−h−c−1
t−h−d−c: ̸= gt−h−c−1

t−h−d−c:), π
∗)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= gt−h−c−1
t−h−d−c: ] | C, at

]
| C

]

Now, we group all the terms into two - one representing where the learner’s simulation matches
the reality and one where it does not. Continuing from where we left off and defining P̂ b

ŝ=s :=

P̂train(ŝ
t−h−c−1
t−h−d−c: = st−h−c−1

t−h−d−c:|st−h−c):

min
π(c,h)

EG

[
L(π(c,h), π

∗
)|C

]
≤ min

π(c+d,h)

Eat ∏
t′∈τb

Pb(t
′
) P̂b(t

′
)E

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:

]
+ P ̸=g

t′
P̂

b
ŝ=sE

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = s
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c:

]
+

∏
t′∈τb

Pb(t
′
)P̸̂=g

t′
E
[
L(π(c+d,h)(at|..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:

]
+ P ̸=g

t′

∏
t′∈τb

P̂b(t
′
) E

[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: = g
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c: ] | C, at

]
| C

]
+ P̸=g

t′
P̂train(ŝ

t−h−c−1
t−h−d−c: ̸= g

t−h−c−1
t−h−d−c:, s

t−h−c−1
t−h−d−c: | st−h−c)

E
[
L(π(c+d,h)(at|..., ŝt−h−c−1

t−h−d−c: ̸= s
t−h−c−1
t−h−d−c:), π

∗
)
∣∣∣..., st−h−c−1

t−h−d−c: ̸= g
t−h−c−1
t−h−d−c: ] | C, at

]
| C

]

For the match terms, we use the fact that
∏

t′∈τb
P̂b(t

′) ≤ 1 and
P̂train(ŝ

t−h−c−1
t−h−d−c: = st−h−c−1

t−h−d−c:|s
t−h
t−h−c:) ≤ 1. For the mismatch terms, we use the definition of ϵb

31



Published as a conference paper at ICLR 2025

and Lemma 5. Then, we continue:

≤ min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

(Simulation matches reality)

+
∏
t′∈τb

Pb(t
′)(1− P̂b(t

′))ϵb +
∏
t′∈τb

(1− Pb(t
′))(P̂b(t

′) + P̂ ̸=gt′ ,st′ )ϵb.

(Simulation does not match reality)

We simplify the mismatch terms further:∏
t′∈τb

Pb(t
′)(1− P̂b(t

′))ϵb +
∏
t′∈τb

(1− Pb(t
′))(P̂b(t

′) + P̸̂=gt′ ,st′ )ϵb

≤
∏
t′∈τb

Pb(t
′)(1− P̂b(t

′))ϵb +
∏
t′∈τb

(1− Pb(t
′))(P̂b(t

′) + (1− P̂b(t
′)))ϵb

= ϵb ·

1− ∏
t′∈τb

Pb(t
′)P̂b(t

′)


= ϵb ·

1− ∏
t′∈τb

Pb(t
′)(Pb(t

′) + δb(t
′))


.

Next, we simplify the match terms by using the definition of αf which follows from Proposition 7
in a manner similar to the definition of αb:

min
π(c+d,h)

EG

[
L(π(c+d,h), π

∗)
∣∣∣C]

= min
π(c,h+d)

EG

[
L(π(c,h+d), π

∗)|C
]
− αf . (Proposition 7)

We substitute these terms back in to get the desired bound.

Now, we prove Corollary 2 as a direct consequence of the Consistency-Reactivity Inequalities. Re-
call that in a near-deterministic environment, Pf is close to 1 as the transitions are purely determined.

Corollary 2 (Consistency). Suppose, the train and test environments are the same and it is deter-
ministic. Suppose at is influenced by at least one state at time steps τb and let δf (t′) ≈ 0 for all
t′ ∈ τf . If the diversity in past strategies is not 0, and ϵf is finite, then

min
πh+d

EG [L(πh+d, π
∗)|C] <min

πh

EG [L(πh, π
∗)|C] .

Proof. This follows from the upper bound of Proposition 1. Since the test environment is determin-
istic, we take Pf (t

′) ≈ 1 and, by hypothesis, δf (t′) ≈ 0 for all t′ ∈ τf , menaing our learned policy’s
implicit dynamics model is accurate. Then, we get

min
πh+d

EG [L(πh+d, π
∗) | C]−min

πh

EG [L(πh, π
∗) | C] ≤ −αb+ϵf (1−

∏
t′∈τf

Pf (t
′)(Pf (t

′)+δf (t
′))) = −αb

since ϵf is finite. All that remains to show is that αb is positive. Note that at is temporally dependent
on at least one state in {st−h−c−d:t−h−c−1}. Furthermore, since diversity in past strategies is not 0,
the states in timesteps τb cannot be predicted with probability 1. Then, by Proposition 6, we have
that αb > 0. Therefore,

min
πh+d

EG [L(πh+d, π
∗) | C]−min

πh

EG [L(πh, π
∗) | C] ≤ −αb < 0.
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Next, we prove Corollary 3.

Corollary 3 Suppose Pf (t
′) is small or both Pf (t

′) and |δf (t′)| are large for all t′ ∈ τf . If temporal
dependency decreases over time such that ϵb is small and at is influenced by at least one state at time
steps in τf , then

min
πh+d

EG [L(πh+d, π
∗)|C] >min

πh

EG [L(πh, π
∗)|C] .

Proof. Notice that since ϵb ≈ 0, the lower bound in Proposition 1 is αf . Next, we show that that αf

is positive. If Pf (t
′) is small, then we know by Proposition 7 that αf is positive. On the other hand,

if Pf (t
′) ≈ 1 but |δf (t′)| is large, then since probabilities are bounded, we require δf (t

′) ≈ −1. In
other words, the inference of the correct unobserved state is very unlikely causing αf to be positive
again. Therefore,

min
πh

EG [L(πh − π∗)|C] < min
πh+d

EG [L(πh+d − π∗)|C]

To sanity check the Consistency-Reactivity Inequalities, we prove the next proposition. This shows
that the right-hand side of the inequalities is greater than or equal to the left-hand side.

Proposition 9. In all environments,

−ϵb(1−
∏
t′∈τb

Pb(t
′)(Pb(t

′) + δb(t
′))) ≤ −αb

and
αf ≤ ϵf (1−

∏
t′∈τf

Pf (t
′)(Pf (t

′) + δf (t
′))).

Proof. We prove the first inequality; the proof of the second proceeds similarly. Using the definition
of αb and suppressing G and C (as in Proposition 1) for clarity, we have:

αb = −min
πh+d

E[L(πh+d, π
∗)] + min

πh

E[L(πh, π
∗)]

≤ −min
πh+d

E[L(πh+d, π
∗)]

+ min
πh+d

E
[
L
(
Pcorrect inferenceπh+d(correct inference)

+ Pincorrect inferenceπh+d(incorrect inference), π∗
)]

≤ −min
πh+d

E[L(πh+d, π
∗)]

+ min
πh+d

E
[
Pcorrect inferenceL

(
πh+d(correct inference), π∗)

+ Pincorrect inferenceL
(
πh+d(incorrect inference), π∗)]

≤ −min
πh+d

E[L(πh+d, π
∗)]

+ min
πh+d

(
E
[
L
(
πh+d(correct inference), π∗)])

+ E
[
Pincorrect inferenceL

(
πh+d(incorrect inference), π∗)]

≤ −min
πh+d

E[L(πh+d, π
∗)]

+ min
πh+d

(
E
[
L
(
πh+d(correct inference), π∗)])

+ ϵb(1−
∏
t′∈τb

Pb(t
′)(Pb(t

′)δb(t
′)))
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= ϵb(1−
∏
t′∈τb

Pb(t
′)(Pb(t

′) + δb(t
′)))

E.4 CLOSED-LOOP VERSUS OPEN-LOOP IN HIGHLY STOCHASTIC AND
NEAR-DETERMINISTIC ENVIRONMENTS

The Consistency-Reactivity Inequalities allow us to make an even stronger statement when we com-
pare strictly closed-loop policies with open-loop ones. Consider the same set-up as before with
h = 0. Thus, π(c,0) represents a closed-loop policy whereas π(c,d) represents an open-loop one. We
can compare these policies’ divergences with the expert across the entire trajectory in the limiting
cases of the environment stochasticity.
Corollary 10. Suppose Pf (t

′) is small or both Pf (t
′) and |δf (t′)| are large for all t′ ∈ τf . If

temporal dependency decreases over time such that ϵb is small and at is influenced by at least one
state at time steps in τf , then the expected divergence between the closed-loop policy over the full
trajectory is lower than that between the open-loop policy and the expert.
Suppose, the train and test environments are the same and it is deterministic. Suppose at is influ-
enced by at least one state at time steps τb and let δf (t′) ≈ 0 for all t′ ∈ τf . If the diversity in past
strategies is not 0, and ϵf is finite, then the divergence between the closed-loop policy over the full
trajectory is greater than that between the open-loop policy and the expert.

Proof. At any arbitrary time step t, the chunks of the two policies can be aligned in one of two ways:
Case 1: π(c,0) is executing at as the first action in its action chunk and π(c,d) is also executing at as
the first action in its action chunk.
Case 2: π(c,0) is executing at as the first action in its action chunk and π(c,d) is executing at as the
k-th action, where k ∈ (1, 1 + d] in its action chunk.
Using the Consistency-Reactivity Inequalities, in Case 1, both policies have equal divergence. How-
ever, in case 2, using Corollary 3, we know that the closed-loop policy will outperform the open-loop
one in the first setting of the statement and open-loop will outperform in the second. From this we
can conclude the divergence across the full trajectory.
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