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Abstract

Min-max optimization problems, also known as saddle point problems, have attracted
significant attention due to their applications in various fields, such as fair beamforming,
generative adversarial networks (GANs), and adversarial learning. However, understanding
the properties of these min-max problems has remained a substantial challenge. This study
introduces a statistical mechanical formalism for analyzing the equilibrium values of min-
max problems in the high-dimensional limit, while appropriately addressing the order of
operations for min and max. As a first step, we apply this formalism to bilinear min-max
games and simple GANs, deriving the relationship between the amount of training data and
generalization error and indicating the optimal ratio of fake to real data for effective learning.
This formalism provides a groundwork for a deeper theoretical analysis of the equilibrium
properties in various machine learning methods based on min-max problems and encourages
the development of new algorithms and architectures.

1 Introduction

Min-max optimization problems, also known as saddle point problems, are well-known classical optimization
problems extensively studied in the context of zero-sum games (Wald, 1945; Von Neumann & Morgenstern,
1947). These problems have diverse applications across various fields, such as game theory, machine learning,
and signal processing. In game theory, min-max problems arise in zero-sum games where one player’s gain
corresponds to another’s loss. Several methods have been proposed to find the min-max value or equilibrium
points in these games (Dem’yanov & Pevnyi, 1972; Maistroskii, 1977; Bruck, 1977; Lions, 1978; Nemhauser
& Wolsey, 1988; Freund & Schapire, 1999). In machine learning, min-max games are relevant for training
generative adversarial networks (GANs) (Goodfellow et al., 2020; Arjovsky et al., 2017), Additionally, in
adversarial learning, these problems are employed to train models that are robust to adversarial attacks by
optimizing a worst-case perturbed loss function (Szegedy et al., 2013; Goodfellow et al., 2014b; Papernot
et al., 2016; Madry et al., 2017),

Despite the widespread application of min-max optimization problems, several challenges still need to be
addressed, including understanding the usefulness of these min-max formulations, evaluating the convergence
properties of the algorithms, and conducting sensitivity analyses of min-max values. A promising approach
to addressing these issues is to analyze the typical-case behavior of min-max problems by examining the
min-max value averaged over random instances drawn from distributions that capture realistic settings,
referred to as randomized instance ensembles. Statistical-mechanical approaches, which have demonstrated
their effectiveness in analyzing the typical-case behavior of randomized instance ensembles of optimization
and constraint-satisfaction problems (Mézard & Parisi, 1986; Fontanari, 1995), provide a powerful formalism
for such analyses. Extending this formalism to analyze the typical-case behavior of min-max values thus
presents a potential direction for further research, although this has not yet been fully explored.
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This study applies the statistical mechanical formalism to min-max problems, modeling them as a virtual
two-temperature system. This formalism enables a sensitivity analysis of the typical-case min-max values
in the high-dimensional limit. Notably, this formalism properly addresses the order of min-max operations,
critical in non-convex scenarios where interchanging the order of min and max can lead to incorrect results
(Razaviyayn et al., 2020). Using this formalism, we analyze typical-case min-max values of bilinear min-max
games and simple GANs. In particular, we derive the relationship between the amount of training data and
generalization error and indicate the optimal ratio of fake data to real data for effective learning.

Our main contributions are as follows:

• We introduce a statistical-mechanical formalism developed for sensitivity analysis of equilibrium
values in high-dimensional min-max problems.

• Applying this approach, we conduct a detailed sensitivity analysis on a bilinear min-max game to
verify the theoretical validity of our approach.

• Building on this formalism, we analyze the generalization performance of GANs and determine the
optimal ratio between fake and real data for practical training.

2 Related Work

The replica method, which is employed in this study, is a non-rigorous but powerful heuristic approach in
statistical physics (Edwards & Anderson, 1975; Mézard et al., 1987; Mezard & Montanari, 2009). It has
been proven to be a valuable method for high-dimensional machine-learning problems. Previous studies have
investigated the relationship between dataset size and generalization error in supervised learning, including
single-layer (Gardner & Derrida, 1988; Opper & Haussler, 1991; Barbier et al., 2019; Aubin et al., 2020) and
multi-layer (Aubin et al., 2018) neural networks, as well as kernel methods(Dietrich et al., 1999; Bordelon
et al., 2020; Gerace et al., 2020). In unsupervised learning, the replica method has also been applied to
dimensionality reduction techniques such as the principal component analysis (Biehl & Mietzner, 1993; Hoyle
& Rattray, 2004; 2007), and to generative models such as energy-based models (Decelle et al., 2018; Ichikawa
& Hukushima, 2022) and denoising autoencoders (Cui & Zdeborová, 2023). However, the dataset-size
dependence of GANs has not been previously analyzed, which this study aims to address.

Related to our work, a statistical mechanical formalism for addressing min-max problems has been proposed
(Varga, 1998). However, the treatment of the inverse temperature limit differs from our approach, and it has
limitations in accurately handling the order of the min and max operations. In the context of adversarial
learning, which involves a non-convex and concave min-max problem, Tanner et al. (2024) analyzes a tractable
setting where the internal maximization can be solved. By reducing such cases to standard optimization
problems, they apply the replica method and approximate message passing to explore the core phenomenology
observed in the adversarial robustness. Even in cases where the internal maximization cannot be explicitly
solved, the formalism discussed here provides a basis for further analysis and potential extensions to more
complex scenarios.

Notation Here, we summarize the notations used in this study. We use the shorthand expression [N ] =
{1, 2, . . . , N}, where N ∈ N. Id ∈ Rd×d denotes a d × d identity matrix, and 1d denotes the vector
(1, . . . , 1)⊤ ∈ Rd and 0d denotes the vector (0, . . . , 0)⊤ ∈ Rd. For a matrix A = (Aij) ∈ Rd×k and a vector
a = (ai) ∈ Rd, we use the shorthand expressions dA =∆

∏d
i=1
∏k

j=1 dAij and da =∆
∏d

i=1 dai, respectively. The
notation Odx,dy

(1) describes the asymptotic order of a function with respect to the parameters dx and dy.
Specifically, a function f(dx, dy) is said to be Odx,dy

(1) if it remains bounded as dx and dy grow large (or
tend toward some specified limit), independently of dx and dy. The standard Gaussian measure is defined
as Dz =∆ dze−∥z∥2/2/(2π)n/2. The notation extrxf(x) represents the evaluation of a function f(x) at its
extremum with respect to the variable x. Specifically, this shorthand implies locating and evaluating f(x) at
points where its gradient ∇xf(x) = 0.
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3 Statistical Physics Formalism for Min-Max Optimization Problems

This section introduces a statistical-mechanical formalism that models min-max problems as a virtual two-
temperature system from a statistical mechanics perspective. Min-max problems are formally expressed
as

Ψ(A) = min
x∈X

max
y∈Y

V (x,y;A), s.t. x ∈ X ⊆ Rdx , y ∈ Y ⊆ Rdy , (1)

where V (·, ·) : Rdx × Rdy → R is a bivariate function; x ∈ Rdx and y ∈ Rdy are the optimization variables; X
and Y are the feasible sets; A is a parameter characterizing the problem, e.g., graph G. We introduce the
following Boltzmann distribution to analyze min-max problems for a given bivariate function V (x,y;A) in
Eq. (1), with virtual inverse temperatures βmin ∈ R and βmax ∈ R:

pβmin,βmax(x;A) =∆ 1
Z(βmin, βmax, A)e

−βmin
(

1
βmax ln

∫
Y

dyeβmaxV (x,y;A)
)
,

where Z(βmin, βmax, A) is the normalization constant, also known as the partition function. Hereafter, we refer
to it as the partition function. In this context, a two-temperature system is particularly important because it
allows us to distinguish between the opposing optimization objectives inherent in min-max problems, similar
to the different thermal behaviors in statistical mechanics.

By taking the limit βmax → +∞ followed by βmin → +∞, the distribution lim
βmin→+∞

lim
βmax→+∞

pβmin,βmax(x;A)
concentrates on a uniform distribution over the min-max values, assuming that well-defined min-max values
exist for V (·, ·) and the min-max value is bounded over feasible sets X and Y. Note that the order of these
limits is crucial because the min and max operations cannot be interchanged in non-convex and non-concave
min-max problems (Razaviyayn et al., 2020), i.e., minx∈X maxy∈Y V (x,y;A) ̸= maxy∈Y minx∈X V (x,y;A).
While a similar formulation has been used in the previous work (Varga, 1998), they simultaneously take the
limits of both βmin and βmax with a fixed ratio βmin/βmax = Oβmin,βmax(1), which does not fully capture the
distinct effects of min and max operations in non-convex settings. Such an approach generally does not yield
accurate results when the function V (x,y;A) is non-convex with respect to x and y.

Statistical-mechanical approaches have demonstrated their effectiveness in analyzing the typical-case behavior
specifically, the properties of the optimal value averaged over the instances that follow a distribution p(A)– for
optimization and constraint-satisfaction problems (Mézard & Parisi, 1986; Fontanari, 1995). These analyses
have succeeded in providing insights into different aspects of combinatorial optimization, unlike worst-case
analysis. This work also focuses on evaluating the typical cases of min-max problems characterized by a
random parameter A. Our main objective is to calculate the logarithm of Z(βmin, βmax, A) averaged over the
random variables A in the limit βmax → ∞ followed by βmin → ∞:

Ω = lim
βmin→∞

lim
βmax→∞

f(βmin, βmax),

where
f(βmin, βmax) =∆ − 1

βmindx
EA [log Z(βmin, βmax, A)] ,

which is referred to as the free energy density. This free energy is a generating function with variables x and
y. Appendix C shows how to calculate the function of the optimal value x through this free energy.

Setting the ratio of the inverse temperatures as p = −βmin/βmax, this can be rewritten as

f(βmin, βmax) = − 1
βmindx

EA

[
log
∫

X
dxe

−βmin
(

1
βmax ln

∫
dyeβmaxV (x,y;A)

)]
,

= − 1
βmindx

EA

[
log
∫

X
dx

(∫
Y
dyeβmaxV (x,y;A)

)p]
. (2)

Although calculating the expectation value of the logarithm is generally difficult, we begin by using the
identity

EA[log f(A)] = lim
γ→+0

1
γ

logEA[(f(A))γ ] (3)
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to expand the logarithmic form as follows:

Ω = − lim
βmin→∞

lim
βmax→∞

lim
γ→+0

1
βmindxγ

log Z̃γ(βmin, βmax), (4)

where
Z̃γ(βmin, βmax) =∆ EA

[(∫
X
dx

(∫
Y
dyeβmaxV (x,y;A)

)p)γ]
. (5)

At this point, note that these transformations are purely algebraic identities without assuming the parameters
γ or p to be integers.

Following the idea of the replica method (Edwards & Anderson, 1975; Parisi, 1979; 1983; Zdeborová &
Krzakala, 2016; Gabrié, 2020), we then proceed under the assumption that γ and p are natural numbers.
Specifically, rather than addressing Eq (4) directly real values γ and p, one calculates the average of the γ-th
and p-th powers for γ, p ∈ N, then performs an analytic continuation to γ, p ∈ R for this expression, and
finally takes the limits γ → +0, βmin → +∞ and βmax → +∞. Based on this replica “trick”, the calculation
simplifies to the replicated partition function Zγ(βmin, βmax) as an approximation of Z̃γ(βmin, βmax):

Z̃γ(βmin, βmax) ≈ Zγ(βmin, βmax) =∆ EA

[
γ∏

a=1

∫
X a

dxa

p∏
l=1

∫
Yal

dyale
βmax

∑
a,l

V (xa,yal;A)
]
, (6)

up to the first order of γ to take the γ → +0 limit on the right- hand side of Eq. (4). This computation
is a standard procedure in the statistical physics of interaction systems including random variables, and is
generally accepted as exact, although rigorous proof has not yet been provided. Specifically, the mathematical
rigor of the method remains limited due to the unproven uniqueness of the analytic continuation, an issue
noted for the moment problem (Tanaka, 2007). As noted in Section 2, the replica method has provided
various results in high dimensional statistics and machine learning as well.

Additionally, before taking the limits, βmin → ∞ and βmax → ∞, the concept of finite inverse temperatures
βmin and βmax corresponds to scenarios where neither the minimum nor the maximum is fully achieved, a
common situation in the min-max algorithms. This approach provides valuable insights into cases where
neither extreme is fully realized or both are only partially optimized. Exploring novel algorithms based on
this finite-temperature generalization of min-max problems represents an intriguing direction for future work.
Furthermore, in game theory, this formalism can be interpreted as a framework for modeling games under
relaxed assumptions of complete rationality, where players x and y are assumed to behave with bounded
rationality rather than adhering strictly to classical models of fully rational behavior (Von Neumann &
Morgenstern, 1947).

In the following sections, we apply this formalism to a fundamental and significant bilinear min-max game,
demonstrating that the analytic continuation of p in the replica method is a rigorous operation. We then
analyze the minimal model of GANs as a more practical example.

4 Bilinear Min-max Games

This min-max formalism introduces two replica parameters: γ, associated with the randomness of A, and p,
related to the dual structure of min-max problems. The analytic continuation with respect to the replica
parameter γ is widely recognized as effective and is frequently employed in the statistical mechanics of
optimization. However, the analytic continuation of the replica parameter p has not yet been explored.
While establishing its mathematical validity presents challenges, this study eliminates the influence of the
replica parameter γ associated with the randomness of A and rigorously demonstrates that the analytic
continuation with respect to p holds for fundamental bilinear min-max games. Specifically, we show that
the free energy density derived using the replica trick in Eq. (6), as explained in Section 3, is equivalent to
the exact expression in Eq. (5) derived without analytic continuation of γ and p for bilinear min-max games
(Tseng, 1995; Daskalakis et al., 2017).

Bilinear games are regarded as a fundamental example for studying new min-max optimization algorithms
and techniques (Daskalakis et al., 2017; Gidel et al., 2019; 2018; Liang & Stokes, 2019). Mathematically,
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bilinear zero-sum games can be formulated as the following min-max problem:

min
x∈{0,1}dx

max
y∈{0,1}dy

V (x,y; W ),

where V (·, ·) is given by

V (x,y; W ) = 1
2dx

x⊤Wxxx + 1
2dy

y⊤Wyyy + 1√
dxdy

x⊤Wxyy + x⊤bx + y⊤by,

where W = (Wxx,Wyy,Wxy, bx, by). For simplicity, we assume Wxx = wxx1dx×dx ∈ Rdx×dx , Wxy =
wxx1dx×dy ∈ Rdx×dy , Wyy = wyy1dy×dy ∈ Rdy×dy , bx = bx1dx ∈ Rdx , and by = by1dy ∈ Rdy . The following
results can be readily extended to the matrices Wxx, Wyy, and Wxy with a limited number of eigenvalues of
Odx,dy

(1). For a detailed discussion, refer to Appendix B.

In this setting, the analytically continued free energy density f(βmin, βmax; W ) calculated using replicated
partition function Zγ(βmin, βmax) in Eq. (6) coincides with the exact free energy density f̃(βmin, βmax; W )
from the partition function Z̃γ(βmin, βmax) in Eq. (5).

Theorem 4.1 For any βmin, βmax ∈ R and wxx, wxy, wyy, bx, by ∈ R, the following equality holds:

f(βmin, βmax; W ) = f̃(βmin, βmax; W ),

where

f(βmin, βmax; W ) = extr
mx,my

[
wxx

2 (mx)2 + κwyy

2 (my)2 + wxyκ
1/2mxmy

+ bxm
x + κbym

y − 1
βmin

H(mx) + κ

βmax
H(my)

]
,

where κ = dy/dx, H(x) = −x log(x) − (1 − x) log(1 − x) denotes binary cross entropy, and extr denotes the
extremum operation.

This theorem establishes the validity of the analytic continuation for the replica parameter p using Eq. (6)
for bilinear min-max games. The detailed proof of this theorem is provided in Appendix A.

5 Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al., 2020) aim to model high-dimensional probability
distributions based on training datasets. Despite significant progress in practical applications (Arjovsky
et al., 2017; Lucic et al., 2018; Ledig et al., 2017; Isola et al., 2017; Reed et al., 2016), several issues are
yet to be resolved, including how the amount of training data influences generalization performance and
how sensitive GANs are to specific hyperparameters. This section analyzes the relationship between the
amount of training data and generalization error. Additionally, we conduct a sensitivity analysis on the ratio
of fake data generated by the generator to the amount of training data, which is critical for the training of
GANs. Our analysis employs a minimal setup that captures the intrinsic structure and learning dynamics
of GANs (Wang et al., 2019). We consider the high-dimensional limit, where the number of real and fake
samples, n and ñ, respectively, and the dimension d are large while remaining comparable. Specifically, we
analyze the regime in which n, ñ, d → ∞ while maintaining a comparable ratio, i.e., α = n/d = Θ(d0) and
α̃ = ñ/d = Θ(d0), commonly referred to as sample complexity.

5.1 Settings

Generative model for the dataset We consider that a training dataset D = {xµ}n
µ=1, where each

xµ ∈ Rd is drawn from the following distribution:

xµ = 1√
d

w∗cµ + √
ηnµ, (7)
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where w∗ ∈ Rd is a deterministic feature vector, cµ ∈ R is random scalar drawn from a standard normal
distribution p(c) = N (c; 0, 1), nµ is a background noise vector whose components are i.i.d. from the standard
normal distribution N (n; 0d, Id), and η ∈ R is a scalar parameter to control the strength of the noise. We
also assume that ∥w∗∥2 = 1. This generative model, known as the spiked covariance model (Wishart, 1928;
Potters & Bouchaud, 2020), has been studied in statistics to analyze the performance of unsupervised learning
methods such as PCA (Ipsen & Hansen, 2019; Biehl & Mietzner, 1993; Hoyle & Rattray, 2004), sparse PCA
(Lesieur et al., 2015), deterministic autoencoders (Refinetti & Goldt, 2022), and variational autoencoder
(Ichikawa & Hukushima, 2024; 2023).

GAN model Following Wang et al. (2019), we assume that the generator has the same linear structure as
the dataset generative model described in Eq. (7):

g(z; w) =∆ 1√
d

wz +
√
η̃ñ, (8)

where w ∈ Rd is a learnable parameter, z ∈ R is a latent variable drawn from a standard normal distribution
p(z) = N (z; 0, 1), ñ is a noise vector whose components are i.i.d. from the standard normal distribution
N (ñ; 0d, Id), and η̃ ∈ R is a scalar parameter to control the strength of the noise.

We also define the linear discriminator as

ψ(x; v) =∆ f

(
1√
d

v⊤x

)
, (9)

where x is an input vector, which can be either the real data xµ from Eq. (7) or the fake one g(zµ̃; w) from
Eq. (8). The vector v ∈ Rd is a learnable parameter, and f : R → R can be any function.

Training algorithm The GAN is trained by solving the following min-max optimization problem:

min
w∈Rd

max
v∈Rd

V (w,v; D), (10)

where

V (w,v; D, D̃) =∆
n∑

µ=1
ϕ (ψ(xµ; v)) −

ñ∑
µ̃=1

ϕ̃
(
ψ(g(zµ̃; w); v)

)
− λ

2 ∥v∥2 + λ̃

2 ∥w∥2, (11)

and D̃ = {zµ}ñ
µ̃=1 are the latent values of the fake data. The last two terms are regularization terms, where

λ and λ̃ control the regularization strength. This value function defined in Eq. (11) is a general form that
includes various types of GANs. Specifically, when ϕ = ϕ̃ and ∥ϕ∥L ≤ 1, it represents a Wasserstein GANs
(WGANs) (Arjovsky et al., 2017) and, when ϕ(x) = log σ(x) and ϕ̃(x) = − log(1 − σ(x)) with σ being
the sigmoid function, it corresponds to the Vanilla GANs, which minimize the JS-divergence (Goodfellow
et al., 2014a). As we assumes a linear discriminator, V (w,v; D, D̃) can be expressed as a function of linear
combinations v⊤xµ

/
√

d and v⊤g(zµ̃;w)/
√

d as follows:

V (w,v; D, D̃) =
n∑

µ=1
ϕ

(
1√
d

v⊤xµ

)
−

ñ∑
µ̃=1

ϕ̃

(
1√
d

v⊤g(zµ̃; w)
)

− λ

2 ∥v∥2 + λ̃

2 ∥w∥2, (12)

where, for clarity in the subsequent analysis, we redefined ϕ and ϕ̃ as functions of the linear combinations
v⊤xµ

/
√

d and v⊤g(zµ̃;w)/
√

d.

Generalization error In the ideal case where the generator perfectly learns the underlying true probability
distribution, we have w∗ = w. Therefore, we define the generalization error εg as

εg(w̄,w∗) =∆ 1
d
ED
[
∥w̄ − w∗∥2] , (13)

where w̄ denotes the min-max optimal value in Eq. (10). The generalization error, εg, quantifies the accuracy
of signal recovery from the training data.
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5.2 Replica Calculation

We apply the replica formalism sketched in Section 3 to derive a set of deterministic equations characterizing
the typical behavior of GANs.

In this problem setting, the replicated partition function Zγ in Eq. (6) can be expressed as

Zγ(βmin, βmax) =
γ∏

a=1

∫
Rd

dwa

p∏
l=1

∫
Rd

dval

(
Ec,ne

βmax
∑

al
ϕ
(

1
d (val)⊤w∗c+

√
η
d (val)⊤n

))n

×
(
Eze

−βmax
∑

al
ϕ̃
(

1
d (val)⊤waz+

√
η̃
d (val)⊤ñ

))ñ

e
βmax

2

∑
al

(λ̃∥wa∥2−λ∥val∥2).

To take the average over n and ñ, we notice that since n and ñ follow a multivariate normal distribution
N (ñ; 0d, Id), the quantities u = ((val)⊤n/

√
d)a,l and ũ = ((val)⊤ñ/

√
d)a,l also follow a Gaussian multivariate

distribution as
p(u) = p(ũ) = N (0γp,Q),

where
Q = (Qab

ls ) ∈ Rγp×γp, Qab
ls = 1

d
(val)⊤vbs.

To conduct further computations, we introduce auxiliary variables through the following identities:

1 =
∏
abls

d

∫
δ(dQab

ls − (val)⊤vbs)dQab
ls =

∏
al

d

∫
δ(dma

l − (val)⊤w∗)dma
l =

∏
al

d

∫
δ(dba

l − (val)⊤wa)dba
l .

The replicated partition function can then be expressed as

Zγ(βmin, βmax) =
∫
dQdmdbeβmind(S(Q,m,b)+T (Q,m,b)),

where the entropic term S(Q,m, b) and energetic term T (Q,m, b) are defined as follows:

S(Q,m, b) =∆ 1
dβmin

ln
∫ ∏

al

dwadval
∏
abls

d

∫
δ(dQab

ls − (val)⊤vbs)

×
∏
al

d

∫
δ(dma

l − (val)⊤w∗)d
∫
δ(dba

l − (val)⊤wa)e
βmax

2

∑
al

(λ̃∥wa∥2−λ∥val∥2),

T (Q,m, b) =∆ α

βmin
ln
(∫

Dc

∫
dup(u)eβmax

∑
al

ϕ
(

1
d (val)⊤w∗c+

√
η
d (val)⊤n

))
+ α̃

βmin
ln
(∫

Dz

∫
dũp(ũ)e−βmax

∑
al

ϕ̃
(

1
d (val)⊤waz+

√
η̃
d (val)⊤ñ

))
.

Using the Fourier representation of the delta function, S(Q,m, b) is further expressed as

S(Q,m, b) = 1
dβmin

log
∫
dQ̃dm̃db̃ed( 1

2 trQ̃Q−m̃⊤m−b̃⊤b)

(∫ ∏
al

dwadvale− 1
2

∑
abls

Q̃ab
ls valvbs+w∗

∑
al

m̃a
l val+

∑
al

b̃a
l waval+ βmax

2

∑
al

(λ̃(wa)2−λ(val)2)
)d

. (14)

Replica symmetric ansatz Here, we assume the following symmetric structure:

∀a, b ∈ [γ],∀l, s ∈ [p], Qab
ls = q + ∆

βmin
δab + χ

βmax
δlsδab, (15)

∀a, b ∈ [γ],∀l, s ∈ [p], Q̃ab
ls = βmaxq̂δlsδab − β2

max
βmin

∆̂δab − β2
maxχ̂, (16)

∀a ∈ [γ], l ∈ [p], ma
l = m, m̃a

l = βmaxm̂, (17)
∀a ∈ [γ], l ∈ [p], ba

l = b, b̂a
l = βmaxb̂. (18)
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This replica symmetric (RS) structure restricts the integration of the replicated weight parameters {wa},
{val} across the entire R(d×γp) × R(d×γp) to a subspace that satisfies the constraints in Eq. (15)–(18). This
structure, along with scaling by the maximum and minimum beta values, is similar to the standard one-step
replica symmetry breaking (1RSB) (Mézard et al., 1987; Takahashi & Kabashima, 2022).

We now turn to the entropic term S(Q,m, b). The terms that exclude the integrals with respect to {val}
and {wa} can be expressed as

1
2trQ̃Q − m̃⊤m − b̃⊤b

= γβmin

(
−1

2

(
q̂

(
q + ∆

βmin
+ χ

βmax

)
− χ

(
χ̂+ ∆̂

βmin

)
+ χ̂∆ + ∆̂q + ∆∆̂

βmin

)
+ m̂m+ b̂b

)
. (19)

The term that includes the integrals with respect to {val} and {wa} can be expressed as

Ez

∫ ∏
al

dwaDζadvale
− 1

2 βmax(q̂+λ)
∑

al
(val)2+βmax

∑
al

(√
∆̂

βmin
ζa+

√
χ̂z+w∗m̂+wab̂

)
val− λ̃βmin

2

∑
a

(wa)2

 ,
= Ez

∫ ∏
a

dwaDζa

∫ dvae
− 1

2 βmax(q̂+λ)(va)2+βmax

(√
∆̂

βmin
ζa+

√
χ̂z+w∗m̂+wab̂

)
va

p

e− λ̃βmin
2

∑
a

(wa)2

 ,
= Ez

∫ ∏
a

dwaDζae
− λ̃βmin

2

∑
a

(wa)2− βmin
2(q̂+λ)

∑
a

(√
∆̂

βmin
ζa+

√
χ̂z+w∗m̂+wab̂

)2 ,
= Ez

∫ dwdζe
βmin

(
− 1

2 ζ2− λ̃
2 w2− (

√
∆̂ζ+

√
χ̂z+w∗m̂+wb̂)2

2(q̂+λ)

)γ .
This can be derived using the identity, for any a ∈ R+ and any x ∈ R, e a

2 x2 =
∫
Dze

√
azx. Summarizing

these results, the entropic term can be written as

S(Q,m, b, Q̃, m̃, b̃) = γ

(
−1

2

(
q̂

(
q + ∆

βmin
+ χ

βmax

)
− χ

(
χ̂+ ∆̂

βmin

)
+ χ̂∆ + ∆̂q + ∆∆̂

βmin

)
+ m̂m+ b̂b

)

+ 1
βmin

∫
Dz log

∫
dwdζe

βmin

(
− 1

2 ζ2− λ̃
2 w2− (

√
∆̂ζ+

√
χ̂z+w∗m̂+wb̂)2

2(q̂+λ)

))
.

By taking the limit as βmax → ∞ followed by βmin → ∞, we obtain

S(Q,m, b, Q̃, m̃, b̃) = −γ

2

(
q(q̂ + ∆̂) − (χ− ∆)χ̂− 2mm̂− 2bb̂+ λ̃(m̂2 + χ̂)

b̂2 + (q̂ + ∆̂ + λ)λ̃

)
.

We next turn to the energetic term T (Q,m, b). Under the RS ansatz, u follows

ual =
√

χ

βmax
xal +

√
∆
βmin

ya + √
qξ,

8
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where x̃al, xal, ỹal, yal, ξ, and ξ̃ follow the standard normal distribution N (ξ̃; 0, 1). Then, the energetic term
T (Q,m, b) can be expand as

T (Q,m, b) =∆ α

βmin
ln
(∫

Dc

∫
dup(u)eβmax

∑
al

ϕ
(

1
d (val)⊤w∗c+

√
η
d (val)⊤n

))
︸ ︷︷ ︸

(a)

+ α̃

βmin
ln
(∫

Dz

∫
dũp(ũ)e−βmax

∑
al

ϕ̃
(

1
d (val)⊤waz+

√
η̃
d (val)⊤ñ

))
︸ ︷︷ ︸

(b)

.

The term (a) can be simplified as

(a) = α

βmin
lnEc,ξ

[∫ ∏
al

DyaDxale
βmax

∑
al

ϕ
(

mc+√
η
(√

χ
βmax xal+

√
∆

βmin
ya+√

qξ
))]

,

= α

βmin
lnEc,ξ

[(∫
Dy

(∫
Dxe

βmaxϕ
(

mc+√
η
(√

χ
βmax x+

√
∆

βmin
y+√

qξ
)))p)γ]

,

= α

βmin
γEc,ξ

[
log
∫
Dy

(∫
Dxe

βmaxϕ
(

mc+√
η
(√

χ
βmax x+

√
∆

βmin
y+√

qξ
)))p]

+ Oγ(γ2),

= α

βmin
γEc,ξ

[
log
∫
dye− βmin

2 y2
(∫

dxe− βmax
2 x2+βmaxϕ(mc+√

η(√
χx+

√
∆y+√

qξ))
)p]

+ Oγ(γ2).

Taking the limit as βmax → ∞ followed by βmin → ∞, we obtain:

(a) = αγEc,ξ

[
max

y

{
−1

2y
2 − max

x

{
−1

2x
2 + ϕ

(
mc+ √

η
(√

χx+
√

∆y + √
qξ
))}}]

.

Similarly, the term (b) is also expressed as

(b) = α̃

βminγ
Ez,ξ̃

[
ln
∫
dỹe− βmin

2 y2
(∫

dx̃e− βmax
2 x̃2−βmaxϕ̃(bz+√

η(√
χx̃+

√
∆ỹ+√

qξ̃))
)p]

+ Oγ(γ2).

Taking the same limits, we find:

(b) = α̃γEz,ξ̃

[
max

ỹ

{
−1

2y
2 − max

x̃

{
−1

2 x̃
2 − ϕ̃

(
bz +

√
η̃
(√

χx̃+
√

∆ỹ + √
qξ̃
))}}]

.

Putting the entropic term and energetic term together, the free energy density is given by

f = extr
q̂,χ̂,m̂,b̂

q,δ,χ,m,b

1
2

(
qq̂ − (χ− ∆)χ̂− 2(mm̂+ bb̂) + λ̃(m̂2 + χ̂)

b̂2 + (q̂ + λ)λ̃
− 2(αΦ(q,∆, χ,m, b) + α̃Φ̃(q,∆, χ,m, b))

)
,

where

Φ(q,∆, χ,m, b) = Ec,ξ

[
max

y

{
−1

2y
2 − max

x

{
−1

2x
2 + ϕ

(
mc+ √

η
(√

χx+
√

∆y + √
qξ
))}}]

, (20)

Φ̃(q,∆, χ,m, b) = Ez,ξ̃

[
max

ỹ

{
−1

2 ỹ
2 − max

x̃

{
−1

2 x̃
2 − ϕ̃

(
bz +

√
η̃
(√

χx̃+
√

∆ỹ + √
qξ̃
))}}]

. (21)

Note that the min and max operations are involved in the two-level optimization described in Eqs. (20) and
(21).

5.3 Results: Application to Simple GANs

In this subsection, following Wang et al. (2019), we apply the formulation derived above to the simple WGAN
to demonstrate its generalization properties and conduct a sensitivity analysis of the ratio r fake to real data.

9
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Figure 1: (Left) Generalization error as a function of sample complexity α for different values of the ratio r.
(Right) Asymptotic generalization error limα→∞ ε(α) as a function of the the ratio r.

Self-consistent Equations We consider the case where the functions ϕ(x) and ϕ̃(x) are both quadratic,
defined as ϕ(x) = ϕ̃(x) = x2/2. This setting allows for an explicit calculation of the free energy density, which
is given by

f = extr
q,χ,m,b

q̂,χ̂,m̂,b̂

[
1
2

(
qq̂ − χχ̂− 2mm̂− 2bb̂+ λ̃(m̂2 + χ̂)

b̂2 + (q̂ + λ)λ̃
− α(ηq +m2)

ηχ− 1 − α̃(η̃q + b2)
η̃χ+ 1

)]
. (22)

To find the extremum in Eq. (22), we require that the gradient with respect to each order parameter equals
zero. This results in the following set of self-consistent equations:

q = λ̃2(m̂2 + χ̂)
(b̂2 + λ̃(q̂ + λ))2

, χ = λ̃

b̂2 + λ̃(q̂ + λ)
, m = m̂λ̃

b̂2 + λ̃(q̂ + λ)
, b = − b̂λ̃(m̂2 + χ̂)

(b̂2 + λ̃(q̂ + λ))2
,

q̂ = αη

ηχ− 1 + α̃η̃

η̃χ+ 1 , χ̂ = αη(qη +m2ρ)
(ηχ− 1)2 + α̃η̃(qη̃ + d2ρ)

(η̃χ+ 1)2 , m̂ = αm

ηχ− 1 , b̂ = − α̃b

η̃χ+ 1 .

Learning Curve For simplicity, we set α̃ = rα and λ = λ̃ = η = η̃ = 1. Our analysis focuses on how the
generalization error depends on α while varying the ratio r, as generating fake data from the generator is
generally much easier than collecting real data. Fig. 1 (Left) shows the dependence of generalization error
on sample complexity α for various values of the ratio r. The results demonstrate a sharp decline in the
generalization error as the ratio r increases. However, when r becomes large, the generalization error increases
in the region where α is large, eventually leading to a phase where no learning occurs, and the generalization
error equals 1. This implies that as α increases, the learning becomes dominated by only fake data.

In contrast, for smaller r, real data consistently dominates the objective function V (w,v; D, D̃), resulting in
a steady decrease in generalization error. However, the reduced influence of the fake data component in the
objective function, which drives the learning of the generator, requires a significantly larger amount of real
data for effective generator training.

Asymptotic Generalization Error We next analyze the asymptotic behavior of the generalization error
when the sample complexity α becomes sufficiently large. The asymptotic behavior of the generalization error
as a function of α is given by

εg =

 1−2
√

1−r
r r

r +
2

√
2
(√

1−r
r r+r−1

)
(r−1)rα1/2 + Oα(α−1) r ≤ 1,

1 + Oα(α−1) r > 1.

10



Published in Transactions on Machine Learning Research (1/2025)

The results for α → ∞ are shown in Fig. 1(Right). The optimal ratio is r = 1/2, indicating that using fake
data approximately equal to half of the real data is effective when the dataset approaches infinity. At r = 1,
a phase transition occurs, suggesting that the model changes from a phase of effective learning phase to one
where fake data becomes dominant. Beyond this point, for r ≥ 1, the model fails to learn any meaningful
signal w∗, and the generalization error is 1.

Furthermore, when r = 1/2, the generalization error scales as εg ∼ α−1, which represents the optimal
asymptotic behavior for a model-matched scenario. These results demonstrate the critical role of the ratio
r in determining learning performance. Therefore, tuning the ratio r according to the available real data
is crucial for achieving optimal performance. In practice, it is known that in training GANs, the stability
of learning can deteriorate depending on the ratio r of fake to real data. This theoretical analysis provides
insights into the importance of the ratio r and is expected to contribute to improving learning algorithms.

6 Conclusion

This study introduces a statistical mechanical formalism to analyze high-dimensional min-max optimization
problems, focusing on the critical order of min and max operations in non-convex scenarios. Our goal was
to perform a sensitivity analysis of equilibrium values, providing new insights into their properties and
generalization performance.

We applied this approach to a simple min-max game, evaluated the generalization performance of GANs,
and derived the optimal ratio of fake to real data for effective learning. This successful application not
only validates the approach but also opens the way for extending this formalism to more complex min-max
problems and broader applications, suggesting a promising direction for significant advancements in machine
learning and optimization.
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A Derivation of Theorem 4.1 proof

In this section, we provide the derivation proof of Theorem 4.1. The derivation begins with the calculation of
the free energy density without the analytic continuation of p = −βmin/βmax to p ∈ N. The free energy density
in Eq. (2) is connected to the effective Hamiltonian, Heff(x; W ), which is defined through the relationship:

f(βmin, βmax; W ) = − 1
βmindx

EW log
∑

x

exp (−βminHeff(x; W )) .

The effective Hamiltonian is given by

Heff(x; W )

= 1
βmax

log
∑

y

eβmaxV (x,y;W ),

= 1
βmax

log
∑

y

e
βmax

(
wxxdx

2

(
x⊤1dx

dx

)2
+ dywyy

2

(y⊤1dy
dy

)2
+wxy

√
dxdy

(
x⊤1dx

dx

)(y⊤1dy
dy

))

× e
βmax

(
bxdx

(
x⊤1dx

dx

)
+bydy

(y⊤1dy
dy

))
,

= 1
βmax

log e
βmaxdx

(
wxx

2

(
x⊤1dx

dx

)2
+bx

(
x⊤1dx

dx

))

×
∑

y

e
βmaxdy

(
wyy

2

(y⊤1dy
dy

)2
+wxy

√
dx
dy

(
x⊤1dx

dx

)(y⊤1dy
dy

)
+by

(y⊤1dy
dy

))
,

= βmaxdx

(
wxxdx

2

(
x⊤1dx

dx

)2

+ bxdx

(
x⊤1dx

dx

))

× 1
βmax

log
∫
dm̂ydmye

βmaxdy

(
wyy

2 (my)2+wxy

√
dx
dy

(
x⊤1dx

dx

)
my+bymy− 1

βmax mym̂y+ 1
βmax Softplus(m̂y)

)
+o(dy)

,

where Softplus(x) = log(1 + ex). To evaluate the integral with respect to m̂y and my, we take the limit as
dy → ∞ and apply the saddle point approximation. The effective Hamiltonian can be expressed as follows:

Heff(x; W ) = dx

(
wxx

2

(
x⊤1dx

dx

)2

+ bx

(
x⊤1dx

dx

)

+ κ extr
my,m̂y

[
wyy

2 (my)2 + wxyκ
−1/2

(
x⊤1dx

dx

)
my + bym

y − 1
βmax

mym̂y + 1
βmax

Softplus(m̂y)
])

.
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where κ = dy/dx. By summing over x, the free energy density can be calculated as follows:

f(βmin, βmax; W )

= − 1
βmindx

log
∑

x

e
−βmindx

(
wxx

2

(
x⊤1dx

dx

)2
+bx

(
x⊤1dx

dx

))

× e
−βmindx

(
κ extr

my,m̂y

[
wyy

2 (my)2+wxyκ−1/2
(

x⊤1dx
dx

)
my+bymy− 1

βmax mym̂y+ 1
βmax Softplus(m̂y)

])
,

= − 1
βmindx

log
(
dx

2π

)∫
dmxdm̂xe

−βmindx

(
wxx

2 (mx)2+bxmx+ 1
βmin

mxm̂x− 1
βmin

Softplus(m̂x)
)

× e
−βmindx

(
κ extr

my,m̂y
[ wyy

2 (my)2+wxyκ−1/2mxmy+bymy− 1
βmax mym̂y+ 1

βmax Softplus(m̂y)]
)
,

= extr
mx,m̂x,my,m̂y

(
wxx

2 (mx)2 + bxm
x + 1

βmin
mxm̂x − 1

βmin
Softplus(m̂x)

+ κwyy

2 (my)2 + wxyκ
1/2mxmy + κbym

y − κ

βmax
mym̂y + κ

βmax
Softplus(m̂y)

)
.

The final equality is obtained by applying the saddle point method to evaluate the integral. From the saddle
point equations, the following expressions are

mx = σ(m̂x), my = σ(m̂y)

Further transformation of the equation yields the following expression:

f(βmin, βmax; W ) = extr
mx,my

[
wxx

2 (mx)2 + κwyy

2 (my)2 + wxyκ
1/2mxmy + bxm

x + κbym
y

− 1
βmin

H(mx) + κ

βmax
H(my)

]
, (23)

where H(x) = −x log x− (1 − x) log(1 − x) represents the binary cross-entropy.

Next, we proceed to evaluate the free energy density under analytic continuation in the replica method, which
is expressed as

f̂(βmin, βmax; W ) = − 1
βmindx

log
∑

x

∑
y1,...,yp

e
βmaxdx

(
wxxp

2

(
x⊤1dx

dx

)2
+ κwyy

2

∑
l

(
y⊤

l
1dy

dy

)2
)

× e
βmaxdx

(
wxyκ1/2

(
x⊤1dx

dx

)∑
l

(
y⊤

l
1dy

dy

)
+bxp

(
x⊤1dx

dx

)
+κby

∑
l

(
y⊤

l
1dy

dy

))
.

We introduce the order parameter through the Fourier transform representation of the delta function:

f̂(βmin, βmax; W )

= − 1
βmindx

log
(

dxd
p
y

(2π)p+1

)∫
dmxdm̂x

∏
l

dmy
l dm̂

y
l e

βmaxdx( wxxp
2 (mx)2+ κwyy

2

∑
l
(my

l
)2+wxyκ1/2mx

∑
l

my
l )

× eβmaxdx(bxpmx+κby

∑
l

my
l

− 1
βmax m̂xmx− κ

βmax

∑
l

m̂y
l

my
l )∑

x

em̂x
∑

i
xi

∑
y1,...,yp

e

∑
l

m̂y
l

∑
j

yj ,

= − 1
βmindx

log
(

dxd
p
y

(2π)p+1

)∫
dmxdm̂x

∏
l

dmy
l dm̂

y
l e

βmaxdx( wxxp
2 (mx)2+ κwyy

2

∑
l
(my

l
)2+wxyκ1/2mx

∑
l

my
l )

× eβmaxdx(bxpmx+κby

∑
l

my
l

− 1
βmax m̂xmx− κ

βmax

∑
l

m̂y
l

my
l

+ 1
βmax Softplus(m̂x)+ κ

βmax

∑
l

Softplus(m̂y
l

)).
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Under the assumption of replica symmetry, where ∀l ∈ [p], m̂y
l = my,my

l = my, we can further reformulate
the expression as follows:

f̂(βmin, βmax; W )

= − 1
βmindx

log
∫
dmxdm̂xdmydm̂ye−βmindx( wxx

2 (mx)2+ κwyy
2 (my)2+wxyκ1/2mxmy)

× e−βmindx(bxmx+κbymy− 1
βmaxp m̂xmx− κ

βmax m̂ymy+ 1
βmaxp Softplus(m̂x)+ κ

βmax Softplus(m̂y)+o(dx)+o(dy)),

= extr
mx,my,m̂x,m̂y

[
wxx

2 (mx)2 + κwyy

2 (my)2 + wxyκ
1/2mxmy + bxm

x + κbym
y

− 1
βmaxp

m̂xmx − κ

βmax
m̂ymy + 1

βmaxp
Softplus(m̂x) + κ

βmax
Softplus(m̂y)

]
.

The final equality is derived by handling the integral using the saddle point method. Consequently, the
following saddle point equation is obtained:

mx = σ(m̂x), my = σ(m̂y).

Substituting these results, the following expression for the free energy density is derived as

f̂(βmin, βmax; W ) = extr
mx,my

[
wxx

2 (mx)2 + κwyy

2 (my)2 + wxyκ
1/2mxmy + bxm

x + κbym
y

− 1
βmin

H(mx) + κ

βmax
H(my)

]
. (24)

This result coincides with the exact free energy density f(βmin, βmax; W ), derived without the need for
analytic continuation.

B Generalization of Theorem 4.1 to Finite Eigenmodes

In this section, we generalize Theorem 4.1 to cases where Wxx, Wxy, and Wyy are decomposed into a finite
number of eigenmodes as follows:

Wxx =
L∑

l=1
αlala

⊤
l , Wyy =

M∑
m=1

βmbmb⊤
m, Wxy =

N∑
n=1

γncnc⊤
n , αl, βm, γn, L,M,N = Odx,dy

(1).

In this formulation, V (x,y; W ) can be expanded as follows:

V (x,y; W ) = dx

2

L∑
l=1

αl

(
1
dx

x⊤al

)2
+ dy

2

M∑
m=1

βm

(
1
dy

y⊤bm

)2
+
√
dxdy

N∑
n=1

γn

(
1
dx

x⊤cn

)(
1
dy

c⊤
n y

)
+ bxdx

(
1
dx

x⊤1dx

)
+ bydy

(
1
dy

y⊤1dy

)
.

This expansion constitutes a direct extension of the calculations in Appendix A, with the terms x⊤1dx/dx and
y⊤1dy/dy augmented by overlaps with the eigenvectors, {x⊤al/dx}l, {y⊤bm/dy}M

m=1, and {x⊤cn/dx, y⊤cn/dy}N
n=1.

By performing analogous calculations, we find that the free energy density, without assuming analytic
continuation, aligns with the analytically continued free energy density. Furthermore, this free energy density
is characterized by the saddle point condition involving L+M +N = Odx,dy

(1) variables, as in Eq. (23). If
we assume L,M,N = Odx,dy (dx), then as dx → ∞, the limit becomes trivial; Without appropriate scaling,
the free energy density diverges.
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C Evaluation of Functions of the Optimal Value of Min-Max Problems

In this section, we present a method for evaluating the expected value EA[G(x̄(A))] over a set of problem
instances A, where x̄(A) = argminx∈X maxy∈Y V (x,y;A) represents the min-max optimal solution. This
analysis provides insights into how Eq. (2) functions as a generating function. We also demonstrate that this
approach can be directly applied to evaluate the generalization error in Section 5, particularly Eq. (13).

The key idea is to expand EA[G(x̄(A))] as follows:

EA [G(x̄(A))] = EA

[
lim

βmin→+∞
lim

βmax→+∞

∫
pβmin,βmax(x;A)G(x)dx

]
= dxEA

[
lim

βmin→+∞
lim

βmax→+∞

∂

∂ω
f(βmin, βmax;ωG(x))

∣∣∣∣
ω=0

]
,

where we extend the free energy from Eq. (2) by introducing a parameter ω as follows:

f(βmin, βmax;ωG(x)) = − 1
βmindx

EA log
∫
dx exp

(
− βmin

βmax
log
∫
dy exp (βmaxV (x,y;A)) + ωG(x)

)
.

We employ this technique to derive the generalization error in Section 5. Specifically, the generalization error
for GANs can be expressed as:

εg(w̄,w∗) = 1
d
ED
[
∥w̄(D) − w∗∥2] .

To compute this, we augment the free energy calculation by adding the term ω(∥w∥2 − 2w⊤w∗). This
adjustment is incorporated into the calculation by modifying the term λ̃(wa)2 in the exponent of the d-th
power expression in Eq. (14) to (ω + λ̃)(wa)2 − 2ω(w∗wa). Since these terms are quadratic, the Gaussian
integration remains straightforward. The remaining calculation follows the same procedure in the main text
and is thus omitted for brevity. Eventually, we obtain the following form:

lim
d→+∞

εg = 1 − 2A(q̂, χ̂, m̂, b̂) +A2(q̂, χ̂, m̂, b̂),

where A(q̂, χ̂, m̂, b̂) is determined by Eq. (22), explicitly given as

A(q̂, χ̂, m̂, b̂) =

 b̂+
√
λ̃(q̂ + λ)

b̂2 + λ̃(q̂ + λ)

√m̂2 + χ̂.
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