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ABSTRACT
Partial multi-label learning (PML) deals with the problem of ac-
curately predicting the correct multi-label class for each instance
in multi-label data containing noise. Compared with traditional
multi-label learning, partial multi-label learning requires learning
and completing multi-label classification tasks in an imperfect envi-
ronment. The existing PML methods have the following problems:
(1) the correlation between samples and labels is not fully utilized;
(2) the nonlinear nature of the model is not taken into account. To
solve these problems, we propose a new method of PML based on
label enhancement of near and far neighbor information and non-
linear guidance(PML-LENFN). Specifically, the original binary label
information is reconstructed by using the information of sample
near neighbors and far neighbors to eliminate the influence of noise.
Then we construct a linear multi-label classifier that can explore
label correlation. In order to learn the nonlinear relationship be-
tween features and labels, we use nonlinear mapping to constrain
this classifier, so as to obtain the prediction results that are more
consistent with the realistic label distribution.
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Figure 1: Example of a picture with candidate labels. Of the
candidate labels, "sea," "beach," "boat," and "tree" are real la-
bels, while "cloud," "car," and "bird" are irrelevant labels.

1 INTRODUCTION
In machine learning, objects in the real world can be abstracted into
samples. A sample usually consists of two parts, the feature and
the label. Labels are mutually exclusive in traditional classification
tasks, which means that only one label can be tagged per sample.
However, many objects in the real world have several semantic
interpretations. For example, a movie may have several different
themes, such as science fiction, war, and adventure; a news article
can be tagged with multiple labels, such as politics, economics,
and sports. Since multi-label learning (MLL)[1] can assign a set
of discrete non-exclusive labels to a sample, it has aroused great
research interest in the field of machine learning, and is widely
used in various fields of real scenes, such as protein classification[2],
image annotation[3, 4], gene function prediction[5], etc. However,
in practical scenarios, acquiring datasets with accurate annotation
labels is a costly and formidable task. Typically, one can only access
a set of candidate labels, comprising relevant ones as well as noise
labels. For instance, in Figure 1, due to the imprecise handling by
the noisy annotator, the picture is associated with "sea," "beach,"
"boat," and "tree" among the candidate labels; while the remaining
labels denote noise. Therefore, the presence of unrelated labels in
the candidate labels may adversely affect the performance of multi-
label learning. Nonetheless, the effects of noise can be mitigated by
removing noise labels such as "cloud", "car", and "bird" from candi-
date labels during training, or by ignoring certain obscure features.
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In addition, label correlation helps identify underlying truth labels.
For example, in Figure 1, the label "sea" often appears with the label
"boat". To address this challenge, Xie and Huang[6] firstly proposed
partial multi-label learning (PML) as a novel framework. PML rep-
resents a form of weakly supervised learning, where the essential
fact label for each instance remains concealed within the candidate
labels and cannot be directly accessed. Its objective is to train a
model capable of predicting labels for unknown instances using a
multi-label dataset containing noisy information. This innovative
approach, not only provides an effective solution but also garners
significant attention in the field.

The main challenge facing PML is how to effectively identify
noise labels and build a classification model with higher accuracy,
while some traditional multi-label learning algorithms do not pro-
cess noise labels in candidate labels. Examples include RankSVM[5],
ML-kNN[7] and LIFT[8], which handle label noise poorly and are
inadequate for PML work. Later developed PML methods gener-
ally categorize into two strategies: the two-stage strategy and the
integrated end-to-end approaches[9].

In the two-stage strategy, the process is bifurcated: first, au-
thentic labels are sifted from the candidates, followed by classifier
training with these vetted labels using sophisticated Multi-Label
Learning (MLL) techniques. PARTICLE[10] leveraged label prop-
agation to surface confident labels. PAMB[11] utilized ECOC to
reformulate PML as binary problems, bypassing direct label confi-
dence estimation. DRAMA[12] assessed label reliability based on
feature manifolds and trained with gradient-boosted decision trees,
informed by this reliability. Xu et al[13, 14] proposed enhancing
labels by recovering per-instance distributions, using label correla-
tions and feature space topology.

The end-to-end strategy concurrently optimizes candidate la-
bels and model training. PML-fp and PML-lc[6] constrained label
relationships to estimate confidence for predictive modeling. PML-
LRS[15] applied low-rank and sparse decomposition to isolate true
labels from noise. MUSER[16] tackled feature noise, learning from
feature and label subspaces to reduce bias. PML-MD[17] employed a
meta-learning approach to disambiguation within a distinct setting.

The above methods are all proposed for PML problems. How-
ever, while these methods have solved some difficult problems from
many different aspects, there are still some problems that need
to be further explored. (1) The correlation between samples and
labels is not fully utilized. Since the candidate labels in PML are not
trusted, the disambiguation based on matrix decomposition and the
recognition based on feature information can eliminate the natural
noise, but the correlation of labels is ignored, and the effect of deal-
ing with artificial noise is not good. In the method based on label
confidence, nearest neighbor information or clustering information
is usually used to obtain the label confidence and remove the noise
label. However, for samples lacking or away from neighbors, it is
often difficult to choose the right confidence threshold to achieve
better results. And the relationship between samples and labels is
not fully utilized. (2) The nonlinear characteristics of the model
are not considered. MLL’s task is to train a multi-label classifier
that can assign an appropriate set of labels to unseen instances. At
present, most of the multi-label predictors have linear structure,
but in practice, the models we need to fit are basically curvilinear
structure, that is, nonlinear structure, and it is difficult to fit the real

nonlinear model with only the linear structure model. Considering
the above points, we propose a new method of PML based on label
enhancement of near and far neighbor information and nonlinear
guidance(PML-LENFN). In the first part, in order to deal with the
situation that the sample lacks a neighbor or is still far away from
its nearest neighbor, we add the far neighbor information as the
reference information, and reconstruct the original label accord-
ing to its own information, near neighbors information and far
neighbors information. The refactored label is no longer a binary
label, and the model is then trained using the reconstructed label
set. In the second part, we construct a linear multi-label classifier.
In order to explore the relationship between labels, we guide the
classifier learning through the label Laplacian matrix. In the third
part, the prediction results of linear classifier are decomposed, and
nonlinear mapping is added to learn the nonlinear relationship
between features and labels, so that the prediction results are more
consistent with the real label distribution. The main contributions
are summarized as follows:

• We propose a new label enhancement method, which recon-
structs label information by using both near and far infor-
mation of samples to achieve denoising effect.

• The combination of linear and nonlinear training method is
used to train the classifier, which not only retains the linear
characteristics of the model, but also adds the nonlinear
characteristics to make it more consistent with the actual
results.

• Extensive experiments and analyses conducted on 3 real
PML datasets and 17 synthetic PML datasets demonstrate
the superiority of the proposed PML-LENFN method over
existing methods.

The remainder of this article is structured as follows: In section
2, we provide an overview of the research on multi-label learning,
partial label learning, and partial multi-label learning. Section 3
delves into a detailed explanation of the PML-LENFN principle and
its potential optimizations. Section 4 showcases the results from a
series of experiments and conducts an analysis. Finally, in Section
5, we summarize this thesis.

2 RELATEDWORK
In this section, we give a brief overview of the work related to
partial multi-label learning, as well as the closely related multi-
label learning and partial label learning.

2.1 Multi-label learning
In the realm of Multi-Label Learning (MLL), each instance is con-
nected to multiple precise labels, a subject extensively explored
in research. Traditional methods often converted MLL into binary
classification tasks[18, 19], treating each label in separation. Yet, to
improve outcomes, studies have increasingly focused on utilizing
the interplay among labels, ranging from pairwise correlations[20]
to comprehensive higher-order label relationships.

In recent years, the integration of manifold learning and multi-
label learning has garnered significant attention. Leveraging the
assumption that samples with strong correlations may share la-
bels, Geng et al[21] investigated the manifold structure preserved
in label space. Meanwhile, Luo et al[22] utilized low-dimensional
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embedding to construct label information based on manifold learn-
ing and sparse feature selection. To mitigate the impact of noise
and missing labels, Zhao et al[23] combined manifold learning and
subspace learning to reconstruct potential feature space and label
space unaffected by feature noise and missing labels. Furthermore,
in recent years, numerous scholars [24, 25] have incorporated multi-
view [26] into multi-label learning to capture more comprehensive
sample information. It is important to note that MLL assumes ac-
curate labeling for each instance, which is nearly unattainable in
real-world scenarios. Obtaining high-precision labeled datasets is
indeed challenging.

2.2 Partial label learning
Partial Label Learning (PLL) is distinguished by instances each
paired with a set of potential labels, of which only one is the true
label[27–29]. The primary approach to PLL involves disambigua-
tion, seeking to uncover the singular ground-truth label from the
set. Certain methodologies predict outcomes by averaging the po-
tential labels’ outputs[30, 31], where each instance is given uniform
consideration. In contrast, other strategies incorporate the ground-
truth label as a latent element, employing an iterative process to
enhance model parameters[28, 32–34]. PLL and PML both operate
on training data that lacks precise labeling, with instances each
receiving a set of candidate labels. While some PLL algorithms
excel in handling noisy datasets, they are confined to single-label
predictions, which poses challenges when applied to multi-label
datasets[35].

2.3 Partial multi-label learning
As mentioned above, Compared with MLL and PLL, partial multi-
label learning(PML) is more challenging, requiring both learning
in imperfect environments and training high-precision classifiers.

Recently, numerous algorithms have been developed to tackle
the issue of partial multi-label learning. PML-lc and PML-fp [6]
utilized confidence values for acquiring ground-truth labels and
training the classifier. The methodologies of PML-VLS and PML-
MAP [36] extracted reliable labels and conducted model induction
from the candidate label set through an iterative label propaga-
tion process. In a study by Sun et al[15], a low-rank and sparse
decomposition scheme was employed to learn the prediction model.
Several other approaches aim to address the PML problem by in-
corporating feature information. For instance, fPML [37] leveraged
dependencies between labels and features to distinguish ground-
truth labels from outliers while training the classifier. In another
recent work DRAMA [12], emphasis was placed on utilizing fea-
ture manifold to solve the PML problem. Additionally, in PML-NI
[38], it was assumed that noisy labels are often caused by ambigu-
ous contents in examples, addressing the PML problem through
decomposing the prediction model matrix into ground-truth la-
bel predictions and identification of noisy labels. Furthermore, in
PAMB [11], the task of learning in partial multi-label setting was
transformed into multiple binary learning problems using error-
correcting output codes (ECOC) techniques, avoiding estimation of
labeling confidence for individual candidate labels which is prone to
errors. Lastly, MUSER [16] trained a robust PML model considering
noise in both feature space and label space. The study by HALE

[39] clarified the set of candidate labels and pinpointed reliable
labels for training instances by leveraging correlations between
instance-label assignments. PML-SALC [40], a novel approach in
partial multi-label learning, proposed that label correlations should
be both asymmetric and sparse, utilizing global asymmetric cues
and feature structural patterns to discern these relationships. Such
correlations were instrumental in mitigating the impact of noisy
labels. PML-DNDC [41] introduced a groundbreaking PML strategy,
pioneering a dual noise cancellation technique that tackled both
label and feature noise simultaneously. This method also bolstered
classifier training by dynamically uncovering latent label interde-
pendencies, encouraging a scenario where related labels inclined
towards converging on similar classifiers.

Different from the above methods, our method not only con-
siders the relationship between labels and samples by using the
information about the distance of samples, but also explores the
correlation between labels to help the classifier training. We also
take into account the nonlinear nature of the model to aid in the
final prediction results. The main framework of PML-LENFN is
shown in Figure 2.

Figure 2: The main framework of PML-LENFN, where N and
F represent the domain of near and far neighborhood

3 PROPOSED METHOD
In this section, we delve into the specifics of PML-LENFN. De-
fine symbols in some articles: 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝒏] ∈ R

𝒅×𝒏 sig-
nifies the feature matrix encompassing 𝒏 instances each with 𝒅-
dimensional features. 𝒀 ∈ {0, 1}𝒏×𝒄 indicates the candidate label
matrix encompassing 𝒏 instances each with tagged the 𝒄 class la-
bels. If 𝒀𝒊𝒋 = 1, it means that the 𝒊-th instance is annotated with the
𝒋-th label. If 𝒀𝒊𝒋 = 0, the converse implies no such association. The
objective of PML is to mitigate noise impact and ensure accurate
label predictions.

3.1 Label enhancement based on near and far
neighbors

Since PML labels lack trustworthiness, several existing methods
attempt to transform the candidate label set into trusted labels
by leveraging neighbor-based approaches. These methods oper-
ate under the assumption that as the similarity between samples
increases, their corresponding labels should also show a greater
degree of similarity. However, in datasets with sparse neighbors,
the efficacy of such methods diminishes, with instances where even
the nearest neighbors are distantly located from the focal samples.
Acknowledging this challenge, we incorporate information from far
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neighbors, positing that as samples become less similar, their labels
should also demonstrate decreased similarity. In order to reduce
the situation that the nearest neighbor is still very far, we avoid
the traditional KNN method, and choose to calculate the sample
similarity and establish a threshold to select the near neighbor and
far neighbor. The formula for calculating similarity score using the
heat kernel function is as follows:

𝑺𝒊𝒋 = 𝒆𝒙𝒑(
−∥𝒙 𝒊 − 𝒙𝒋 ∥2

2
2𝝈2 ) (1)

Where the parameter 𝝈 =
∑𝒏

𝒊=1 ∥𝒙 𝒊 − 𝒙 𝒊𝒌 ∥2/𝒏, and 𝑿 𝒊𝒌 is the
k-th nearest neighbor of 𝑿 𝒊 . The thermonuclear function returns a
similarity score between 0 and 1, with close to 1 indicating that the
samples are very close, and close to 0 indicating that the samples
are far apart [42, 43]. Then we set thresholds to pick the near and far
neighbors of the samples, if the similarity between the j-th sample
and the i-th sample is greater than a certain threshold, it is listed as
the near neighbors of the i-th sample, and if it is less than a certain
threshold, it is listed as the far neighbors of the i-th sample. The
corresponding formula is as follows:

𝑵𝒊 = 𝑵𝒊 ∪ {𝒙𝒋 }, 𝒊𝒇 𝑺𝒊𝒋 > 𝝉 ( 𝒊)𝒏

𝑭𝒊 = 𝑭𝒊 ∪ {𝒙𝒋 }, 𝒊𝒇 𝑺𝒊𝒋 < 𝝉 ( 𝒊)
𝒇

𝑵𝒊 = 𝑵𝒊, 𝑭𝒊 = 𝑭𝒊, 𝒐𝒕𝒉𝒆𝒓𝒘 𝒊𝒔𝒆.

(2)

Where 𝑵𝒊 represents the near neighbors of the i-th sample and 𝑭𝒊
represents its far neighbors, 𝝉𝒏 and 𝝉𝒇 represent similarity thresh-
olds of near and far neighbors. Because the similarity distribution
of samples in different data sets is different, the threshold values of
each data set are different or even very different. In order to avoid
the difficulty in finding the optimal absolute threshold, we choose
the relative threshold to select the nearest and far neighbors. This
method is expressed as the following formula:

𝝃𝒊 = 𝝁 · (max(𝑺𝒊 ·) − min(𝑺𝒊 ·))
𝝉 ( 𝒊)𝒏 = max(𝑺𝒊 ·) − 𝝃𝒊
𝝉 ( 𝒊)
𝒇

= min(𝑺𝒊 ·) + 𝝃𝒊

(3)

Where 𝝁 ∈ [0, 1] is the relative distance regulatory factor. In order
not to over-reference the information of the near and far neighbors,
we reconstruct the new label information by combining the label
information of the samples themselves and the label information
of their near and far neighbors. The corresponding formula is as
follows:

𝑱𝒊 · = 𝜶𝒀𝒊 + (1 − 𝜶 − 𝜷)�̄�𝒏 + 𝜷
(

1 − �̄�𝒇
)

s.t. 𝒙𝒏 ∈ 𝑵𝒊, 𝒙𝒇 ∈ 𝑭𝒊
(4)

Where 𝑱𝒊 · represents the label information of i-th sample after
reconstruction, the reconstructed label 𝑱 ∈ [0, 1]𝒏×𝒄 , �̄�𝒏 and �̄�𝒇
represent the sum and average of the label information correspond-
ing to the near and far neighbors.

3.2 Linear classifier based on label correlation
For forecasting pertinent labels of new instances, the pivotal task
is to cultivate the classifier matrix𝑾 = [𝒘1,𝒘2, . . . ,𝒘𝒄 ]

𝑻 ∈ R𝒅×𝒄

facilitating the mapping from instances to their corresponding la-
bels. In this context, the classifier is trained directly on the refined
labels to mitigate the influence of noise, bypassing the use of pre-
liminary candidate labels. Consequently, the linear classifier𝑾 is

trained using matrix 𝑱 . The formulation is crafted by drawing upon
conventional machine learning principles, as delineated below:

min
𝑾

| |𝑱 − 𝑿𝑻𝑾 | |
2
𝑭 + 𝚽(𝑾) (5)

Where 𝚽(𝑾) is defined as a regularization function of𝑾 , which
controls the complexity. Simultaneously, one cannot overlook la-
bel correlation in multi-label learning, as it can significantly en-
hance model performance. To mitigate noise interference, the re-
constructed matrix 𝑱 is selected for calculating label correlation.
Theoretically, label correlation is indicated by the frequency of label
co-occurrence. In other words, labels exhibit stronger correlation
when they appear together more frequently[44]. The reconstructed
label information is not binary label, it contains more label informa-
tion and better results can be obtained by using it to calculate the
correlation between the labels. However, label correlation manifests
asymmetrically in reality. The correlation between labels a and b
may not mirror that between labels b and a. The label correlation
matrix 𝑨 is computed as follows:

𝑨𝒊𝒋 =
𝑱𝑻
·𝒊 𝑱 ·𝒋

∥𝑱 ·𝒊∥2
2

(6)

where 𝑨 means correlation between labels 𝒊 and 𝒋, and 𝑱 ·𝒊 repre-
sents the 𝒊-th column of 𝑱 . The next step involves transferring
this label correlation to the classifier matrix𝑾 to enhance model
prediction accuracy. In essence, higher correlation between labels
indicates greater similarity among their respective classifiers, and
conversely. Thus, we incorporate the concept of Laplacian eigen-
maps (LE)[45], which facilitates the transfer of label correlation
information to the classifier matrix. This concept is expressed as
follows:

1
2

𝒍
∑︁

𝒊=1

𝒍
∑︁

𝒋

𝑨𝒊𝒋 | |𝒘𝒊 −𝒘𝒋 | |
2
2 = 𝑻𝒓 (𝑾𝑳𝑾𝑻

) (7)

Where 𝑻𝒓 (·) is the trace of the matrix, and 𝑳 = 𝑫 − 𝑨 is de-
fined as graph Laplacian matrix. 𝐷 represents a diagonal matrix, of
which 𝑫𝒊𝒊 =

∑𝒏
𝒋=1 𝑨𝒊𝒋 . By this method, the classifier matrix𝑾 is

adept at performing classification tasks more effectively, leveraging
asymmetric label relationships while mitigating noise interference.
Recognizing the interplay of label correlations, the classifier matrix
𝑾 is designed to be linearly correlated to precisely reflect these
interdependencies, leading to a low-rank matrix structure for𝑾 .
Nonetheless, optimizing such a structure is complex due to the
discrete nature of the rank function. Studies and empirical data
indicate that the Frobenius norm is an effective convex proxy for
imposing low-rank constraints[46]. The modified formula is de-
tailed as follows:

min
𝑾

| |𝑱 − 𝑿𝑻𝑾 | |
2
𝑭 + 𝝀1 | |𝑾 | |

2
𝑭 + 𝝀2𝑻𝒓 (𝑾𝑳𝑾𝑻

) (8)

3.3 Matrix nonlinear decomposition
Let us consider the hypothetical existence of a perfect label matrix
�̃� , encompassing all labels with precision and completeness. This
matrix can be factorized into the multiplication of two matrices,
both characterized by low rank, as articulated by the following
expression:

˜𝒀𝒏×𝒍 = 𝑮𝒏×𝒌𝑼𝒌×𝒍 (𝒌 ≤ 𝒄) (9)
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In this scenario, 𝑮 denotes a latent label matrix, which can be
interpreted as a low-rank representation derived from reducing
the label dimensions within �̃� . It is evident that 𝑮 is more succinct
and generalized compared to �̃� and it is capable of filtering out the
noise present in �̃� . The matrix 𝑼 delineates the linkage between
the pristine label matrix and the latent one, earning the title of
the correlation matrix for 𝑮 [47]. Define the following objective
function as:

min
𝑮,𝑼

| |�̃� − 𝑮𝑼 | |2𝑭 (10)

By minimizing the reconstruction error, a better latent label matrix
𝑮 and its association matrix 𝑼 can be found. The latent label matrix
𝑮 is low-dimensional, which is equivalent to the reduced dimension
of the label matrix �̃� . In most multi-label learning, it is usually as-
sumed that there is a linear mapping relationship between features
and the label matrix 𝑮 , namely:

𝑮 = 𝑿𝑻 𝑽 (11)

Where 𝑽 ∈ R𝒅×𝒌 . Yet, linear models frequently fail to capture
the complexities of real-world data [48]. From equation (10), we
discern that the label space 𝑮 is situated within the continuum of
real numbers, typically ranging from [0, 1]. The Sigmoid function,
with its smooth, S-shaped curve, maps any input to a value within
the same interval, making it well-suited for multi-label learning
due to its continuous and differentiable properties. It enhances the
discriminative power of label predictions and facilitates a nonlinear
transformation that leverages each sample’s information [49]. The
Sigmoid function is defined as:

𝝋(K) =
I

I + e−K (12)

Where 𝑰 ∈ R𝒏×𝒌 represents the matrix with all elements of 1, The
decomposition of the label matrix is not unique. The Sigmoid func-
tion can project the result into the interval [0, 1], aligning closely
with the probabilistic nature of label distributions and enhancing
the characterization of the interplay between features and labels.
By leveraging matrix transformations, we can devise a nonlinear
model that encapsulates the intricate associations between features
and labels. The mathematical expression for this model is presented
hereinafter:

𝑮 = 𝝋(𝑿𝑻 𝑽 ) =
I

I + e−𝑿𝑻𝑽
(13)

Combined with Formula (9), the ideal label matrix �̃� can be ex-
pressed as:

˜𝒀 = GU = 𝝋(𝑿𝑻 𝑽 )𝑼 =
I

I + e−XTV
𝑼 (14)

where 𝑼 and 𝑽 can be obtained by solving the following optimiza-
tion problem:

min
𝑼,𝑽

| |�̃� − 𝝋(𝑿𝑻 𝑽 )𝑼 ∥
2
𝑭 + 𝝀3 | |𝑼 | |

2
𝑭 + 𝝀4 | |𝑽 | |

2
𝑭 (15)

First, the ideal label matrix is decomposed into the latent label ma-
trix and association matrix. Then, in order to describe the relation-
ship between nonlinear features and labels, the Sigmoid function is
used for nonlinear mapping. By processing samples point by point,
the sample information can be more effectively utilized, and the
predicted output is more consistent with the real label distribution.

3.4 Overall Objective Function
Combining formula (8) and formula (15), in order to learn the non-
linear relationship of the model, the result of the linear classifier is
taken as the ideal label in the nonlinear classifier, the final objective
function of PML-LENFN is as follows:

min
𝑾,𝑼,𝑽

| |𝑱 − 𝑿𝑻𝑾 | |
2
𝑭 + ||𝑿𝑻𝑾 − 𝝋(𝑿𝑻 𝑽 )𝑼 ∥

2
𝑭

+ 𝝀1 | |𝑾 | |
2
𝑭 + 𝝀2𝑻𝒓 (𝑾𝑳𝑾𝑻

) + 𝝀3 | |𝑼 | |
2
𝑭 + 𝝀4 | |𝑽 | |

2
𝑭

(16)

3.5 Optimization
For the above optimization problem, ADMM [50] method is adopted
to solve it. In other words, a variable is solved and updated by fixing
the other variables. Due to the complexity of two-level nonlinear
mapping, variables 𝑯 and 𝑸 are introduced to simply express the
gradient of each variable in the objective function.

𝑯 = 𝝋(𝑿𝑻 𝑽 ) (17)

𝑸 =
𝒆−𝑿

𝑻𝑼

(𝑰 + 𝒆−𝑿𝑻𝑼 )2
(18)

Where 𝑰 ∈ R𝒏×𝒌 represent the matrix with all elements of 1. (1)
Update𝑾 , Fixed𝑼 and 𝑽 ,after derivation andmaking the derivative
result to be zero, we simplify it as follows:

2𝑿𝑿𝑻𝑾 +𝑾 (𝝀1 +
1
2
𝝀2𝑳

𝑻
+

1
2
𝝀2𝑳) = 𝑿𝑯𝑼 + 𝑿𝑱 (19)

We discover that formula (18) satisfies the Sylvester equation form
of𝑴𝑾 +𝑾𝑵 = 𝑻 , where𝑴 = 2𝑿𝑿𝑻 ,𝑵 = 𝝀1𝑰 +𝝀2𝑳𝑻 +𝝀2𝑳 and
𝑻 = 𝑿𝑯𝑼 + 𝑿𝑱 . It can be solved by lyap function in MATLAB.

(2) Update 𝑼 , Fixed𝑾 and 𝑽 , after derivation and making the
derivative result to be zero, we simplify it as follows:

U = (𝝀3 + HTH)
−1HT

∗ (XTW) (20)

(3) Update 𝑽 , Fixed𝑾 and 𝑼 , Formula (16) becomes as:

min
V

𝚪(V) = min
V

| |𝑿𝑻𝑾 − 𝝋(𝑿𝑻 𝑽 )𝑼 ∥
2
𝑭 + 𝝀4 | |𝑽 | |

2
𝑭 (21)

Then, the gradient of Formula (21) for can be expressed as:
𝝏 𝚪(V)
𝝏 V

= X(Q ⊙ ((HU − XTW)UT
) + 𝝀4𝑽 (22)

4 EXPERIMENT
4.1 Dataset
To evaluate the generalization performance of our proposed PML-
LENFN method, a total of 9 datasets were used for comparative
study. Specifically, the experiments were conducted on 3 real-world
PML datasets and 17 synthetic PML datasets generated from 6
multi-label datasets. Detailed characteristics of all datasets are
summarized in Table 1. For 3 real-world PML datasets includ-
ing Music_emotion[51], Music_style[51] and YeastBP [51], whose
candidate labels are concentrated with natural noise. For pub-
lic MLL datasets including Genbase[52], CAL500 [53], Bibtex[54],
Medical[55], Birds[56] and Emotions[57]. We generate multiple
synthetic PML data sets from each of them by randomly selecting
irrelevant labels to form candidate label sets alongside their ground
truth labels. As illustrated in Table 1, each value in the ’𝑛𝑢𝑚 − 𝑟 ’
column corresponds to a distinct configuration involving the se-
lection of varying numbers of irrelevant labels, 𝒓 ∈ {1, 2, 3} means
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Table 1: Basic information about three real-word partial
multi-label data sets and six multi-label data sets.

Datsets 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐷𝑖𝑚Class𝑛𝑢𝑚 − 𝑟 𝑎𝑣𝑔.#𝐺𝐿𝑆 𝐹𝑖𝑒𝑙𝑑

Music_emotion 6833 98 11 2.42 Music
Music_style 6839 98 10 1.44 Music
YeastBP 6139 6139 217 5.537 Biology
Genbase 662 1186 27 1,2,3 1.252 Biology
CAL500 502 68 174 1,2,3 26.044 Music
Bibtex 7395 1836 159 1,2,3 2.402 Text
Medical 978 1449 45 1,2,3 1.245 Text
Birds 645 260 19 1,2,3 1.014 Audio

Emotions 593 72 6 1,2 1.869 Music

that 1, 2, 3 random noises are injected respectively, Since Emotions
data set has only six labels, and most of the true number of labels
is three, So only set 𝒓 ∈ {1, 2}, finally resulting in a total of 17
synthetic PML data sets being generated.

4.2 Experimental Setting
Due to space constraints, we only present the experimental results
of three evaluation indicators commonly used in multi-label classi-
fication models: 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 , 𝑂𝑛𝑒 𝐸𝑟𝑟𝑜𝑟 , and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.
For the first two evaluation indicators, the smaller the value, the
better the effect, the latter is the opposite. For a detailed description
of the metrics, see [58].

In order to reduce randomness, we used 10 cross-checks, and
the experimental results included the mean and standard deviation
of each result. We use the following eight state-of-the-art methods
as benchmarks. These include two MLL algorithms, ML-KNN [7]
and LIFT [59], six PML algorithms included PML-DNDC [41]. PML-
SALC [40], PAR-MAP and PAR-VLS [36], fPML [37], and PML-fp [6].
Each configured with parameters suggested in respective literature.

4.3 Experimental Result
The results are presented in Tables 2, 3, 4 and 5. The best results
of the experiment are shown in bold. Some results are from the
reference[41]. It should be noted that PML-SALC was not included
in the experiments for the Music emotion, Music style, and YeastBP
datasets due to the absence of publicly available code. Upon review-
ing the outcomes, the following insights can be deduced:

• It turns out from Table 2 that we conduct 9 cases (3 datasets
× 3 metrics = 9 cases) of experiments on real-world PML
datasets and PML-LENFN performs best in all cases, account-
ing for 100.00%. This proves that PML-LENFN performs best
on these real-world datasets.

• It turns out fromTables 3, 4 and 5 that we conduct 51 cases (17
datasets × 3 metrics = 51 cases) of experiments on synthetic
PML datasets where 𝒓 ∈ {1, 2, 3} and PML-LENFN performs
best in 46 cases, accounting for 90.20%. It proves that PML-
LENFN still performs best in these synthetic datasets.

• MLL algorithm works well in data sets with relatively little
noise, PML algorithm is much better than MLL algorithm
when there is relatively much noise. These PML algorithms
are generally superior to MLL algorithms.

Following the initial analysis, we employed the post hocNemenyi
test (at 0.05 significance level) to scrutinize the variances among the
algorithms. In this study, PML-LENFN serves as the benchmark. The
critical difference (CD) was calculated to be 2.9138. The assessment

of statistical significance hinges on whether the gap between PML-
LENFN’s average ranking and that of other algorithms exceeds
the CD threshold. A visual representation of these comparisons is
provided in Figure 3. Upon examining the rankings across various
metrics, PML-LENFN emerged as the top performer, significantly
outclassing PML-fp, PAR-MAP, PAR-VLS, ML-KNN and LIFT across
all evaluation criteria.

4.4 Parameter Analysis
The sensitivity analysis of parameters elucidates their individual
influence on the model’s performance. Conducted on the Emotions
dataset with 𝒓 = 1. We set the range of the four parameters 𝝀1 , 𝝀2
, 𝝀3 and 𝝀4 as: {0.001, 0.01, 0.1, 1, 10, 100}. In addition, there are
some sensitivity parameters in this paper that need to be adjusted,
the value range of parameter 𝒌 is :{1, 2, 3, 4, 5}, the value range of
parameter 𝜶 is:{0.5, 0.6, 0.7, 0.8, 0.9}, the value range of parameter
𝜷 is:{0.1, 0.2, 0.3, 0.4, 0.5}. Other parameters are unchanged when
one parameter changes. The experimental results are shown in the
Figure 4. Upon analyzing these result, we discovered that, each con-
straint in the model has improved effect compared with no addition.
Some analysis is as follows: 𝝀1 represents the weight of the overfit
of the equilibrium model, and its value cannot be too large or too
small. 𝝀2 represents the label correlation constraint weight, exces-
sive value of 𝜆2 will skew model focus. Adding strong constraints
to labels that have little relationship with each other will reduce the
performance of the model. 𝝀3 represents the constraint weight of
the dimensionality reduction mapping matrix, and 𝒌 represents the
dimensionality after dimensionality reduction. In practical experi-
ments, as long as the dimensionality after dimensionality reduction
is not particularly small, the model can maintain good performance,
so it is not sensitive to parameters 𝝀3 and 𝒌 . 𝝀4 gauges nonlinearity,
too high can overemphasize nonlinear traits. 𝜷 represents the far
neighbors’ influence, too high a value may over-rely on far data
points.

4.5 Ablation Study
In order to prove the validity of each constraint in the model, we
will compare the algorithm with the degenerate algorithms. We
performed ablation experiments on synthetic PML datasets with
𝒓 = 1 random noise added to the Emotions and Birds data sets.
To verify the effect of label enhancement on the model, we use
the original label information and leave the rest unchanged, called
LE-free. Due to space limitations, and relevant tags and neighbor
algorithm has been a lot of algorithm is proved to be effective
[7, 9, 36, 44], so here only proves that more far neighbors to the
model. 𝛽 is set to 0 means far neighbors is not used, and the rest
is unchanged, which is called Far Neighbor-free. In order to prove
the effect of Nonlinear matrix decomposition on the model, we
remove the constraint of the second matrix in formula (15), called
Nonlinear-free. The results of ablation experiments are shown in
the Figure 5. The results show that PML-LENFN is superior to
all degradation algorithms, proving that every constraint in the
model has a positive promotion effect on the model, among which
label enhancement has the best promotion effect. And nonlinear
constraints also have a promotion effect, proving that the model
has partial nonlinear properties.
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Table 2: Comparision of PML-LENFN with other state-of-the-art PML and MLL algorithms on real-world datasets
(mean±std),where the best result are in bold and the suboptimal is shown with an underscore.

Datastets PML-LENFN PML-DNDC PAR-MAP PAR-VLS fPML PML-fp LIFT ML-KNN
𝑹𝒂𝒏𝒌 𝒊𝒏𝒈 𝑳𝒐𝒔𝒔 (the smaller, the better)
Music_emotion .230±.011 .233±.004 .245±.006 .261±.007 .331±.008 .276±.007 .276±.009 .302±.009
Music_style .135±.006 .139±.006 .161±.006 .161±.005 .224±.007 .146±.005 .202±.010 .199±.008
YeastBP .178±.004 .192±.004 .283±.040 .935±.024 .415±.057 .363±.041 .316±.054 .408±.060
𝑶𝒏𝒆 𝑬𝒓𝒓𝒐𝒓 (the smaller, the better)
Music_emotion .441±.013 .497±.011 .474±.018 .473±.019 .592±.012 .540±.018 .554±0.022 .544±.018
Music_style .350±.017 .351±.010 .450±.034 .370±.016 .404±.012 .406±.017 .407±.017 .384±.015
YeastBP .408±.006 .435±.013 .912±.054 .906±.054 .980±.015 .992±.036 .913±.019 .953±.048
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏 (the larger, the better)
Music_emotion .625±.011 .608±.005 .614±.007 .605±.006 .520±.008 .567±.010 .569±.008 .555±.007
Music_style .738±.010 .734±.006 .716±.010 .716±.010 .654±.007 .703±.009 .665±.008 .683±.009
YeastBP .460±.018 .376±.007 .158±.019 .086±.019 .095±.020 .143±.021 .169±.058 .110±.029

Table 3: Comparision of PML-LENFN with other state-of-the-art PML and MLL algorithms on synthetic datasets and three
evaluation metrics when 𝑟 = 1 (mean±std), where the best results are in bold and the suboptimal are shown with an underscore.

Datasets PML-LENFN PML-DNDC PML-SALC PAR-MAP PAR-VLS fPML PML-fp LIFT ML-KNN
𝑹𝒂𝒏𝒌 𝒊𝒏𝒈𝑳𝒐𝒔𝒔 (the smaller, the better)
Genbase .001±.002 .003±0.02 .005±.003 .014±.006 .025±.010 .0170.006 .031±.013 .009±.007 .008±.006
CAL500 .173±.010 .181±.004 .178±.008 .176±.005 .538±.010 .181±.005 .182±.009 .184±.007 .185±.007
Bibtex .073±.004 .075±.003 .107±.008 .320±.007 .325±.010 .105±.009 .108±.007 .110±.005 .225±.005
Medical .021±.007 .027±.014 .025±.006 .080±.013 .106±.018 .050±.012 .098±.019 .036±.008 .061±.012
Birds .172±.032 .173±.017 .170±.032 .316±.022 .319±.019 .226±.023 .426±.040 .263±.029 .336±.025
Emotions .163±.036 .183±.021 .193±.020 .230±.051 .242±.016 .206±.014 .386±.021 .263±.027 .312±.026
𝑶𝒏𝒆 𝑬𝒓𝒓𝒐𝒓 (the smaller, the better)
Genbase .000±.000 .000±.002 .019±.009 .028±.015 .050±.024 .030±.014 .043±.010 .027±.013 .024±.014
CAL500 .117±.014 .126±.027 .119±.022 .116±.019 .324±.051 0.120±.019 .130±.008 .124±.024 .116±.019
Bibtex .360±.009 .363±.009 .371±.011 .743±.017 .588±.012 .453±.017 .377±.006 .401±.017 .624±.012
Medical .137±.037 .153±.028 .164±.041 .441±.073 .252±.051 .194±.038 .345±.043 .174±.039 .276±.035
Birds .390±.076 .399±.059 .401±.046 .689±.036 .618±.047 .669±.033 .859±.058 .777±.081 .738±.036
Emotions .276±.067 .309±.048 .326±.052 .355±.064 .288±.048 .349±.040 .469±.042 .386±.048 .419±.047
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏 (the larger, the better)
Genbase .995±.007 .993±.005 .991±.004 .980±.011 .959±.022 .981±.010 .985±.008 .982±.011 .983±.010
CAL500 .516±.013 .514±.007 .513±.014 .511±.011 .380±.019 .504±.015 .506±.011 .504±.015 .490±.011
Bibtex .595±.001 .589±.007 .572±.003 .477±.008 .482±.007 .546±.008 .546±.008 .528±.014 .321±.006
Medical .888±.032 .885±.020 .871±.033 .651±.051 .733±.034 .833±.029 .694±.041 .855±.029 .772±.025
Birds .632±.050 .629±.036 .629±.041 .402±.025 .408±.025 .433±.029 .273±.027 .360±.044 .371±.021
Emotions .798±.043 .777±.024 .769±.029 .736±.030 .758±.017 .752±.019 .626±.020 .703±.025 .672±.023

Table 4: Comparision of PML-LENFN with other state-of-the-art PML and MLL algorithms on synthetic datasets and three
evaluation metrics when 𝑟 = 2 (mean±std), where the best results are in bold and the suboptimal are shown with an underscore.

Datasets PML-LENFN PML-DNCN PML-SALC PAR-MAP PAR-VLS fPML PML-fp LIFT ML-KNN
𝑹𝒂𝒏𝒌 𝒊𝒏𝒈 𝑳𝒐𝒔𝒔 (the smaller, the better)
Genbase .002±.002 .003±.002 .005±.002 .018±.007 .024±.007 .010±.005 .008±.003 .010±.005 .013±.009
CAL500 .177±.009 .180±.007 .178±.014 .170±.005 .553±.002 .181±.008 .184±.008 .184±.006 .186±.005
Bibtex .080±.005 .082±.003 .116±.006 .326±.007 .320±.008 .106±.012 .108±.004 .120±.008 .230±.004
Medical .025±.008 .031±.007 .027±.008 .085±.014 .103±.016 .050±.013 .052±.019 .043±.010 .074±.011
Birds .182±.037 .192±.019 .184±.035 .312±.022 .320±.018 .427±.043 .329±.045 .352±.024 .352±.024
Emotions .189±.035 .196±.022 .233±.015 .262±.057 .263±.019 .443±.022 .345±.037 .358±.021 .358±.021
𝑶𝒏𝒆 𝑬𝒓𝒓𝒐𝒓 (the smaller, the better)
Genbase .001±.002 .001±.003 .002±.003 .013±.009 .007±0.011 .002±.003 .004±.005 .003±.004 .015±.014
CAL500 .118±.018 .123±.027 .118±.020 .116±.018 .282±.050 .116±.019 .126±.012 .128±.033 .117±.018
Bibtex .366±.012 .376±.013 .373±.011 .749±.023 .588±.002 .458±.017 .389±.009 .418±.013 .634±.005
Medical .142±.031 .157±.011 .164±.043 .445±.065 .234±.032 .196±.040 .241±.054 .191±.050 .283±.030
Birds .424±.092 .429±.056 .445±.064 .691±.050 .619±.043 .648±.041 .806±.055 .771±.078 .745±.053
Emotions .292±.059 .320±.048 .335±.052 .418±.059 .316±.040 .391±.038 .553±.051 .479±.062 .480±.038
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏 (the larger, the better)
Genbase .994±.006 .993±.005 .991±.004 .966±.082 .958±.036 .980±.012 .988±.005 .980±.013 .978±.013
CAL500 .516±.013 .513±.009 .511±.013 .511±.011 .393±.016 .500±.031 .503±.016 .496±.012 .489±.010
Bibtex .588±.006 .579±.003 .553±.007 .474±.015 .480±.005 .486±.013 .543±.013 .488±.013 .318±.006
Medical .879±.021 .877±.022 .869±.032 .646±.047 .744±.026 .833±.036 .800±.048 .839±.037 .756±.024
Birds .604±.012 .592±.018 .559±.048 .403±.034 .416±.019 .441±.026 .315±.040 .360±.043 .331±.026
Emotions .776±.036 .767±.024 .742±.022 .702±.022 .737±.014 .726±.015 .579±.021 .636±.031 .631±.018
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Table 5: Comparision of PML-LENFN with other state-of-the-art PML and MLL algorithms on synthetic datasets and three
evaluation metrics when 𝑟 = 3 (mean±std), where the best results are in bold and the suboptimal are shown with an underscore.

Datasets PML-LENFN PML-DNDC PML-SALC PAR-MAP PAR-VLS fPML PML-fp LIFT ML-KNN
𝑹𝒂𝒏𝒌 𝒊𝒏𝒈 𝑳𝒐𝒔𝒔 (the smaller, the better)
Genbase .002±.003 .003±.003 .004±.003 .017±.013 .023±.006 .009±.005 .009±.003 .011±.009 .013±.010
CAL500 .177±.009 .180±.009 .179±.015 .176±.005 .543±.018 .182±.005 .183±.009 .185±.006 .188±.008
Bibtex .086±.006 .088±.003 .129±.006 .335±.006 .320±.007 .108±.004 .112±.006 .124±.005 .237±.003
Medical .028±.008 .031±.009 .030±.008 .089±.013 .109±.018 .049±.013 .053±.013 .043±.011 .087±.015
Birds .198±.045 .201±.023 .217±.028 .337±.035 .354±.025 .391±.026 .442±.051 .358±.050 .379±.022
𝑶𝒏𝒆 𝑬𝒓𝒓𝒐𝒓 (the smaller, the better)
Genbase .001±.006 .002±.004 .004±.008 .018±.013 .008±.009 .003±.003 .019±.006 .005±.006 .016±.014
CAL500 .116±.018 .119±.058 .117±.020 .291±.047 .117±.022 .117±.022 .127±.012 .122±.018 .117±.017
Bibtex .371±.004 .378±.010 .386±.015 .751±.018 .588±.007 .460±.007 .396±.016 .434±.011 .640±.009
Medical .149±.030 .159±.001 .164±.037 .453±.074 .280±.057 .197±.042 .255±.050 .193±.042 .312±.037
Birds .438±.051 .438±.054 .468±.053 .730±.055 .617±.059 .599±.044 .817±.045 .814±.065 .778±.049
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏 (the larger, the better)
Genbase .992±.001 .992±.005 .989±.006 .960±.011 .957±.015 .981±.013 .982±.005 .981±.013 .974±.017
CAL500 .515±.013 .513±.018 .510±.017 .512±.011 .397±.018 .501±.011 .503±.017 .497±.013 .481±.009
Bibtex .579±.011 .572±.007 .533±.009 .473±.006 .479±.004 .486±.008 .530±.010 .486±.009 .312±.003
Medical .876±.024 .872±.021 .865±.028 .641±.053 .708±.042 .832±.033 .789±.035 .836±.032 .728±.029
Birds .593±.056 .585±.036 .561±.034 .369±.039 .337±.025 .390±.029 .289±.036 .342±.042 .338±.024

(a) 𝑹𝒂𝒏𝒌𝒊𝒏𝒈 𝑳𝒐𝒔s (b) 𝑶𝒏𝒆 𝑬𝒓𝒓𝒐𝒓 (c) 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄 𝒊𝒔𝒊𝒐𝒏

Figure 3: Results of PML-LENFN against other approaches with the Nemenyi test(CD = 2.9138 at 0.05 significance level).

(a) 𝝀1 (b) 𝝀2 (c) 𝝀3 (d) 𝝀4

(e) k (f) 𝜶 (g) 𝜷 (h) 𝝁

Figure 4: Results of Parameter sensitivity for PML-LENFN on Emotions.

(a) Emotions (b) Birds

Figure 5: Ablation experiment on Emotions and Birds.

5 CONCLUSION
In this paper, we introduce PML-LENFN, a novel partial multi-label
algorithm. Firstly, it enhances labels using near and far neighbors
information, richer than binary. The impact of label correlation

on the model is also considered, with the correlation information
from reconstructed labels transferred to the classifier. Additionally,
nonlinear matrix decomposition is used to constrain the learning of
the linear classifier in order to capture the model’s nonlinear char-
acteristics. Extensive experiments show the model’s excellence. In
future work, wewill reduce the number of parameters and reference
multi-view learning.
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