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Abstract
Syntax is a latent hierarchical structure which
underpins the robust and compositional nature
of human language. In this work, we explore
the hypothesis that syntactic dependencies can
be represented in language model attention dis-
tributions and propose a new method to induce
these structures theory-agnostically. Instead
of modeling syntactic relations as defined by
annotation schemata, we model a more gen-
eral property implicit in the definition of depen-
dency relations, syntactic substitutability. This
property captures the fact that words at either
end of a dependency can be substituted with
words from the same category. Substitutions
can be used to generate a set of syntactically
invariant sentences whose representations are
then used for parsing. We show that increas-
ing the number of substitutions used improves
parsing accuracy on natural data. On long-
distance subject-verb agreement constructions,
our method achieves 79.5% recall compared
to 8.9% using a previous method. Our method
also provides improvements when transferred
to a different parsing setup, demonstrating that
it generalizes.

1 Introduction

In recent years, large pretrained language models
(LLMs), like BERT (Devlin et al., 2019), have led
to impressive performance gains across many nat-
ural language processing tasks. This has led to
a line of work attempting to explain how natural
language understanding might occur within these
models and what sorts of linguistic properties are
captured. Going one step further, we explore the
hypothesis that syntactic dependencies can be ex-
tracted from LLMs without additionally learned
parameters or supervision.

Previous work on syntax has tested (1) whether
language models exhibit syntactically dependent
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the girls run in a park with that ball.

the kids play in a park with that ball.

the kids run to a park with that ball.

Figure 1: Syntactic relations represent intersubstitutabil-
ity: the nominal subject ‘kids’ can be substituted with
another noun ‘girls’ without affecting syntactic well-
formedness. Swapping the verb ‘run’ with ‘play’ and
the preposition ‘in’ with ‘to’ are other examples for this
sentence. Substitutions define a set of sentences that
can be used to model this property during parsing.

behaviour like long-distance subject-verb agree-
ment (Marvin and Linzen, 2018; Gulordava et al.,
2018; Goldberg, 2019), and (2) whether syntactic
structures are retrievable from model-internal rep-
resentations or mechanisms (Hewitt and Manning,
2019; Htut et al., 2019; Limisiewicz et al., 2020).
While the former approach is theory-agnostic, as
it does not require a specific syntactic form to be
defined, it lacks the interpretability that inducing
explicit structures provides, as we do here.

Instantiating the latter approach, Hewitt and
Manning (2019) train a probe in order to project
model representations of words into a new vector
space where a maximum spanning tree algorithm
(MST) can be applied to induce the desired syn-
tactic parse. However, it is not clear whether such
a method relies solely on the information already
present in the model, or whether the trained probe is
contributing model-external knowledge (Belinkov,
2022). A less ambiguous approach is instead to
use model-internal distributions directly as input
to the tree induction algorithm without additional
training. In this vein, previous work has made use
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of attention distributions from transformer-based
LMs (e.g. Raganato and Tiedemann, 2018; Htut
et al., 2019). This parallels observations made by
Clark et al. (2019) that certain attention heads in
BERT correspond to dependency relations. How-
ever, given the large amount of information present
in LLMs, nothing constrains the extracted parses to
be syntactic parses when representations are used
directly.

In this paper, we propose a novel method to dis-
till syntactic information by modelling a general
property of syntactic relations which is independent
of any specific formalism. This property, syntactic
substitutability, captures the intuition that syntac-
tic structures define categories of intersubstitutable
words – illustrated in Figure 1. We make use of
this notion by enumerating syntactically invariant
sentences which can then be exploited together to
induce their shared syntactic structure. Our primary
goal is to investigate whether modeling syntactic
substitutability better extracts syntactic information
from attention mechanisms, resulting in more accu-
rately induced parses. Inducing structures without
relying on specific annotation schemata also allows
us to better understand how the syntactic relations
represented in a model might be similar to existing
theoretical proposals.

We demonstrate that our method, Syntactic Sub-
stitutability as Unsupervised Dependency Syntax
(SSUD) leads to improvements in dependency pars-
ing accuracy. As more substitutions are used,
parsing scores increase. We also quantitatively
show that the induced parses align more with
an annotation schema where function words are
treated as heads (Experiment 1). When tested
on long-distance subject-verb agreement construc-
tions, SSUD achieves an increase in recall of
>70% compared to a previous unsupervised pars-
ing method (Experiment 2). We also demonstrate
how our method can be transferred to and improve
different parsing algorithms, showing that SSUD
generalizes effectively (Experiment 3).

2 Related work

Our work is related to a long tradition of unsuper-
vised syntactic parsing, for example, the genera-
tive DMV model (Klein and Manning, 2004) and
the compound Probabilistic Context Free Grammar
model (Kim et al., 2019) for constituency parsing.
Motivations for this stem from the idea that syntac-
tic parses can be induced by computing an MST

over scores between words in a sentence that rep-
resent how likely it is for two words to be in a
syntactic dependency or how likely a span corre-
sponds to a syntactic constituent.

We seek to work with scores directly derivable
from LLMs, following previous proposals which
have used attention distributions of transformer-
based models (Vaswani et al., 2017) to calculate
scores. Examples in dependency parsing include
Raganato and Tiedemann (2018) who use neural
machine translation models, and Htut et al. (2019)
and Limisiewicz et al. (2020) who use BERT. For
constituency parsing, Kim et al. (2020) propose a
method based on the syntactic similarity of word
pairs, calculated as a function of their attention dis-
tributions. The use of attention distributions for
parsing tasks is supported by the observation made
by Clark et al. (2019) that certain attention heads
correspond to syntactic dependencies in BERT.
However, they also observe that attention heads
do not only capture syntactic information, but also
other relationships like coreference. Our method
proposes syntactic substitutability to address this
issue, as motivated in the next section. Previous
work from Limisiewicz et al. (2020) proposes an
algorithm to select syntactically relevant heads, but
we contend that this is maximally effective if the
distributions within a single head also only capture
syntactic information. We return this idea in Exper-
iment 3 and investigate the effect of adding SSUD
to this algorithm.

Other complementary methods use BERT’s con-
textualized representations to perform parsing. For
example, Wu et al. (2020) propose a method which
calculates scores based on the ‘impact’ that mask-
ing a word in the input has on the representations
of the other words in the sentence, and Hewitt and
Manning (2019) train a probe with supervision to
project vectors into a ‘syntactic’ space. Another ap-
proach is using BERT’s masked language modeling
objective to compute scores for syntactic parsing.
Work in this vein include Hoover et al. (2021) and
Zhang and Hashimoto (2021), motivated by a hy-
pothesis stemming from Futrell et al. (2019) that
syntactic dependencies correspond to a statistical
measure of mutual information.

Lastly, while the non-parametric use of substi-
tutability for syntactic parsing has not been pre-
viously proposed, parallels can be drawn to work
in language model interpretability. Papadimitriou
et al. (2022) show that BERT systematically learns



to use word-order information to syntactically dis-
tinguish subjects and objects even when the respec-
tive nouns are swapped. This is a special case of
substitution: the syntactic structure of these sen-
tences is invariant despite their non-prototypical
meaning. We take these results to mean that BERT
has a knowledge of syntax that is robust to substi-
tution, and as a result, substitutability may be an
effective constraint.

3 Syntactic Substitutability and
Dependency Relations

In this section, we propose a method to model
the formalism-neutral objective of substitutability
within the induction of syntactic structures. This
notion is often explicitly included in the defini-
tion of syntactic grammars, see for example Hunter
(2021) and Mel’čuk (2009). Intuitively, intersub-
stitutable words form syntactic categories which
syntactic relations operate on.

3.1 Problem statement
We wish to extract a tree-shaped syntactic depen-
dency structure ts for a sentence s from the mech-
anisms or representations of an LLM. We denote
the target sentence s of length n as

s :=< w(0), ..., w(i), ..., w(n−1) >.

Edges in ts belong to the set of binary syntactic rela-
tions Rsynt. The specific relations that are included
are relative to specific formalisms. We define

Depsynt(s, i, j) ∈ {0, 1}
which denotes whether or not two words in a sen-
tence s, w(i) and w(j), are in a syntactic depen-
dency relationship. If Depsynt(s, i, j) = 1, then
∃r ∈ Rsynt s.t. r relates w(i) and w(j) denoted

w(i)
r←→ w(j),

where w(i)
r←→ w(j) denotes an undirected relation.

Given that relations are binary, a matrix of scores
between all words in a given sentence is required
before syntactic trees can be induced. In this work,
we propose attention distributions of self-attention
heads as candidate scores. However, any method
which calculates pairwise scores between words
can be used here with no change.

We denote the attention distribution for word
w(i)

1 in the given sentence s, of length n as

1BERT’s tokenizer does not tokenize on words, but rather
on subwords tokens. We follow Clark et al. (2019) and sum
and normalize in order to convert from attention distributions
over tokens to one over words.

Att(s, i) := [asi0, ..., a
s
ii, ..., a

s
i(n−1)],

where aij refers to the attention weight from w(i)

to w(j). The sentence’s attention matrix, Att(s), is
the n× n matrix where row i is equal to Att(s, i).

3.2 Attention distributions
For each word in a sentence, attention heads in
BERT compute a distribution over all words in a
sentence. Each row i ∈ [0, n) of Att(s) corre-
sponds to the attention distribution for word w(i).

Previous work has made use of attention distri-
butions to extract syntactic trees by using MST
algorithms over the attention matrix of a single sen-
tence (Raganato and Tiedemann, 2018; Htut et al.,
2019). The hypothesis here is that the attention
scores between syntactically dependent words is
higher than those that are not. Given this, the cor-
rect undirected syntactic parse can be induced, i.e.
MST (Att(s)) = ts, if

∀(i, j) ∈ {(a, b)|Depsynt(s, a, b) = 1}
∀(y, z) ∈ {(c, d)|Depsynt(s, c, d) = 0}

asij > asyz. (1)

We suggest that the assumption being made in
Equation 1 is incorrect, given that attention dis-
tributions can correspond to a wide variety of phe-
nomena – again they need not be syntactic. For
example, an edge in the induced tree may have
been predicted due to a high score resulting from
coreference or lexical similarity.

3.3 Modeling syntactic substitutability
We propose syntactic substitutability as a
formalism-neutral method of extracting syntac-
tic information from attention distributions. In-
tuitively, a syntactic grammar is defined in such
a way as to offer an abstraction over individual
lexical items and operate on syntactic categories.
Formalizing this, we make the assumption that any
relation r ∈ Rsynt defines a set of words that can
be substituted for one another in a sentence. The
formal definition that we begin with is referred
to as the quasi-Kunze property in Mel’čuk (2009).
There, a relation is defined from a head word, w(i),
to a subtree which is rooted at another word, w(j).
For a relation to be syntactic, it must define some
class of words X , such that subtrees which are
rooted at words from X can be substituted into
the original sentence without affecting syntactic
well-formedness. An example of this is provided
in Figure 2.



the kids run in a park with the ball.
the kids run to that yard with the ball.

Figure 2: The subtree rooted at ‘park’ (underlined) is
substituted for one rooted at ‘yard.’

just thought you ’d like to know. (Target)
always, simply, only thought you ’d like to know.

just figured, knew, think you ’d like to know.

just thought you ’d love, demand, have to know.

just thought you ’d like to help, talk, stay .

Figure 3: A set of sentences generated via SSUD for a
sentence taken from the WSJ10 dataset with example
substitutions at each position listed.

We propose a modified form of this property
defined in terms of the substitution of individual
words since constraining substitutions to subtrees
would be complex given an unsupervised process.
Note, however, that this is exactly equivalent to
substituting subtrees which differ only in their
root word. As previously stated, we make no
assumptions about the directionality of these
relationships.

Definition 1. Modified quasi-Kunze property:
Let w(i) and w(j) be words. For any relation r,
if r ∈ Rsynt, then there exists X , such that for
any syntactic tree with relation w(i)

r←→ w(j),
replacing w(j) with a word x ∈ X does not affect
the sentence’s syntactic well-formedness.

In our framework, we assume that for any rela-
tion to be a syntactic relation, it must satisfy the
modified quasi-Kunze property as defined above.
We demonstrate that this provides a tractable objec-
tive for inducing dependency structures.

3.4 Generating sentences via substitution

In order to model the property in Definition 1, we
generate candidate substitutions using an LLM. In
this work, we use BERT itself to predict possible
substitutions using masked language modeling, a
task for which it was trained. We find that this gen-
erates empirically correct sentence substitutions, as
in Figure 3.

We choose to substitute all open-class cate-
gories and some closed-class categories (adjectives,
nouns, verbs, adverbs, prepositions, and determin-
ers) with words from the same class. In order to
do so, we use Stanza’s Universal POS tagger (Qi

et al., 2020).2

This process allows us to model more fine-
grained syntactic categories than sampling via POS
alone. For example, the substitutions for the word
‘thought’ in Figure 3 demonstrate how not just any
verb can be substituted for any other. Instead, cor-
rect substitutions must be sensitive to subcatego-
rization (the syntactic argument(s) required). In
this case, ‘thought’ requires a clausal complement,
which ‘figured,’ and ‘knew’ both admit. Substitut-
ing ‘thought’ with a verb like ‘eat’ would result in
ungrammaticality or an altered syntactic structure.

We can denote a sentence where the word at
position j is replaced with word x as s\(x, j) and
the set of such sentences Ssub(s, j,X). This is
defined on the syntactic category X as given in
Definition 1.

Ssub(s, j,X) := {s\(x, j)|x ∈ X}. (2)

3.5 Inducing trees with syntactic relations

We will now explore how to apply this newly de-
fined set of syntactically invariant sentences to the
extraction of structures from attention distributions.

Given that our relations r ∈ Rsynt satisfy Defi-
nition 1, if Depsynt(s, i, j) = 1, then ∃r ∈ Rsynt

such that it relates w(i) and w(j) and defines a syn-
tactic category X of valid substitutions;

if Depsynt(s, i, j) = 1,

then ∀s′ ∈ Ssub(s, j,X), Depsynt(s
′, i, j) = 1.

(3)

Importantly, any sentence s′ ∈ Ssub(s, j,X) has
the same syntactic structure as the original, s.

Given this basic assumption of the properties
of syntactic relations in a dependency grammar,
we can now propose a method of extracting syn-
tactic structures from LLM attention distributions.
Rather than applying the MST algorithm on the
attention distributions of a single sentence, we ap-
ply the MST over an attention matrix which is
derived by some algorithm, f applied over the set
of attention matrices of the set of sentences created
via substitution Ssub(s, i,X),∀i ∈ [0, n− 1].

Attsub(s) = f({Att(s′)|∀s′ ∈ Ssub(s, i,X),

i ∈ [0, n− 1]}) (4)

2This is the strictest theoretical setting, however, see Ex-
periment 3 for further discussion.



Recall that in the hypothesis represented by Equa-
tion 1, the assumption is that words in syntactic de-
pendencies have higher attention scores than those
that are not. The new hypothesis that we test in this
work is that using the attention distributions of a
single target sentence may reveal little about syn-
tactic dependencies, which we propose must satisfy
Definition 1. Instead, we use the attention patterns
over a set of syntactically invariant sentences, as
defined by the procedure we gave in §3.4.

Concretely, we test whether an averaged at-
tention distribution over the set Ssub(i, x), i ∈
[0, n − 1] better reflects syntactic dependencies,
i.e.

∀(i, j) ∈ {(a, b)|Depsynt(s, a, b) = 1},
∀(y, z) ∈ {(c, d)|Depsynt(s, c, d) = 0},

avg(as
′
ij |∀s′ ∈ Ssub(s, i,X)) >

avg(as
′
yz|∀s′ ∈ Ssub(s, i,X)), (5)

and whether taking the maximum spanning tree of
these averaged attention scores provides better re-
sulting parses, ts = MST (Attsub(s)). Equations
1 and 5 provide a comparison between the previous
work and our proposal.

Additionally, we suggest the following function f
for combining attention distributions between sen-
tences: each row i in the output matrix is equal to
the averaged ith row of the attention distributions
over the sentences which are substituted at w(i), i.e.

Attsub(s)[i] =

avg({Att(s′)[i]|∀s′ ∈ Ssub(s, i,X)}). (6)

We define our method, SSUD, as tree induction
for a sentence s, which uses an attention distri-
bution, Attsub(s), produced by averaging over k
substitutions at each position, |Ssub(s, i,X)| = k.

Our experiments in the sections below inves-
tigate whether modeling syntactic substitutabil-
ity with SSUD results in the induction of better
syntactic structures than using the target sentence
alone. We test our hypothesis on standard datasets
and long-distance subject-verb agreement construc-
tions. SSUD is used in two different parsing setups,
providing direct comparison with a previously pro-
posed tree induction algorithm.

4 Datasets and Models

As in previous work (e.g. Hoover et al., 2021),
we assess our method using two gold-standard En-

glish dependency parsing datasets: (1) the sen-
tence length ≤ 10 test split (section 23) of the
Wall Street Journal portion of the Penn Treebank
(Marcus et al., 1993) annotated with Stanford De-
pendencies (de Marneffe et al., 2006) (WSJ10; 389
sentences), and (2) the English section of the Paral-
lel Universal Dependencies dataset annotated with
Universal Dependencies (Nivre et al., 2020) (EN-
PUD; 1000 sentences). Additionally, we assess our
parses with Surface-Syntactic Universal Dependen-
cies annotations (Gerdes et al., 2018; see §5.4). We
use section 21 of the Penn Treebank as a validation
set. We also test our method on a more difficult,
long-distance subject-verb agreement dataset from
Marvin and Linzen (2018) (see Experiment 2).

The language model investigated here is BERT
(Devlin et al., 2019), a transformer-based lan-
guage model. Specifically, we focus on the
bert-base-uncased model, which has 12 lay-
ers with 12 self-attention heads each (110M param-
eters). To test generalization with respect to model
size, we also use bert-large-uncased
(336M parameters) in Experiment 1.

5 Does modeling syntactic substitutability
increase parse accuracy?

5.1 Experiment 1: Setup

In Experiment 1.1, we induce trees over attention
distributions computed by averaging all heads at a
given layer. We apply our proposed method SSUD
and compare the Unlabeled Undirected Attachment
Score (UUAS, as in Hewitt and Manning, 2019) of
trees which are induced using only the attention dis-
tributions of the target sentence, with trees resulting
from applying SSUD. UUAS is calculated as the
number of edges in the gold-annotated parse which
are also predicted by the model, divided by the to-
tal number of edges. In this experiment, we apply
SSUD with k = 1 (one additional sentence per
word) to choose a layer. We expect SSUD to work
only when syntactic information is represented.

In Experiment 1.2, we test the effect of SSUD
by increasing the number of additional sentences
used for each word, applying this on the best-
performing layer from above. As syntactic sub-
stitutability is modeled using sets of sentences, the
effect is expected to be greater as more appropriate
substitutions are made.

In both experiments, we induce trees over the
attention matrices using Prim’s algorithm (Prim,
1957) which produces non-projective undirected,



unlabeled trees. This allows us to investigate the ef-
fect of modeling syntactic substitutability without
making more assumptions about the directionality
of the relations. Given this algorithm, the sentences
which contribute the scores for all edges predicted
could have been substituted at any position, includ-
ing at either the head or tail of a given dependency.
We make no assumptions regarding the projectivity
of the resulting tree and apply this uniformly across
the comparisons that we make. See Experiment 3
for SSUD with an algorithm for directed trees.

5.2 Experiment 1.1: Results and Discussion
For bert-base-uncased, the layer with the
largest change in UUAS on the validation set be-
tween using the target sentence and using SSUD
is Layer 10 (Appendix A). This generalizes
to the results on both test sets, Table 1. With
bert-large-uncased, we observe that Lay-
ers 17 and 18 perform the best (Table 9). As pre-
dicted, this may reflect the fact that syntactic infor-
mation is more robustly represented in these layers.

For both the base and large models, our find-
ings with regards to which layers contain retriev-
able syntactic information corroborate previous
work. We find that Layer 10 and Layers 17 and
18 perform best for the base and large models,
respectively. Previous work in constituency parsing
with the same models, Kim et al. (2020), find that
Layer 9 (base) and Layer 16 (large) perform
best. Probing experiments have also previously
shown that constituency information occurs before
dependency information in BERT’s representations
(Tenney et al., 2019).

In Experiment 1.2, we further investigate the ef-
fect of SSUD by providing more substitutions at
each word (increasing k). For the following exper-
iments, we use Layer 10 of the base-uncased
model and Layer 17 of bert-large-uncased.

5.3 Experiment 1.2: Results and Discussion
Table 2 provides the results as the number of sub-
stitutions is increased. Improvements are seen
for both models on WSJ-10 and EN-PUD. There
is a marginally larger increase for the EN-PUD
dataset which has sentences of average length 17,
compared to sentences of ≤10 for WSJ-10. The
monotonic increase in UUAS as more sentences
are added suggests that our method of modeling
substitutability using sentence substitutions is an
effective constraint for distilling syntactic informa-
tion from models. It also suggests that the syntactic

UUAS
WSJ10 EN-PUD

Layer T. k = 1 ∆ T. k = 1 ∆
6 57.3 57.3 0.0 44.8 44.8 0.0
7 56.3 56.4 0.1 44.2 44.1 -0.1
8 56.0 56.1 0.1 43.2 43.2 0.0
9 55.9 55.8 -0.1 43.9 44.0 0.1

10 55.7 56.8 1.1 44.3 44.7 0.4

Table 1: UUAS scores on WSJ10 and EN-PUD
(bert-base-uncased). SSUD k = 1 compared
with only using target sentence (T.).

bert-base-uncased (UUAS)
T. k = 1 k = 3 k = 5 k = 10

WSJ10 55.7 56.8 57.0 57.3 57.6
EN-PUD 44.3 44.7 45.6 46.2 46.4

bert-large-uncased (UUAS)
WSJ10 56.1 56.5 56.7 56.7 57.2

EN-PUD 45.5 45.8 46.2 46.6 47.0

Table 2: Results on WSJ-10 and EN-PUD
for bert-base-uncased (Layer 10) and
bert-large-uncased (Layer 17). Compari-
son between using the target sentence alone (T.), and
SSUD, with an increasing number of substitutions,
k = 1, 3, 5, 10.

Method WSJ10 EN-PUD
UUAS UUAS UAS

Ours – Experiment 1 57.6 46.4 –
Zhang and Hashimoto (2021) 58.74 –§ –
Hoover et al. (2021)* 53.- 43.-¶ –
Klein and Manning (2004)† 55.91 – –
Limisiewicz et al. (2020)‡ – 59.9 52.8
Ours – Experiment 3 – 62.0 54.5

Table 3: Results from Experiments 1 and 3 are reported
with comparisons to previously proposed methods (best
non-projective scores from bert-base-uncased).
§not included due to computation time; †reported in
Zhang and Hashimoto (2021); ¶results are from mul-
tilingual BERT. *‘abs CPMI’ trees experiment in the
original paper; ‡ ‘1000 selection sentences’ experiment
in the original paper.

representations intrinsic to the model are robust to
substitution, allowing SSUD to disentangle syntac-
tic information better than using the target sentence
alone. We provide further analysis of the results
from the bert-base-uncased model.

In Table 3, we provide comparisons to other
previously proposed methods. We see that SSUD
is competitive with other reported UUAS scores.
We suggest that even though our method does not
achieve state-of-the-art scores, they are compara-
ble and the performance increases are reliable. In
the following experiment, we provide more fine-



A witness told police that the victim had attacked the suspect in April .
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Figure 4: Dependency parse which compares the result of SSUD and using the target sentence alone. In the SSUD
parse, the noun, ‘victim’ is accurately attached to its verb ‘attacked’ (in green). Without SSUD, ‘victim’ is attached
to the determiner of ‘suspect,’ perhaps due to lexical similarity (in red). Dark blue edges match the gold-standard
parse. Light blue edges demonstrate how induced edges can differ, but still be syntactically informative.

EN-PUD (UUAS)
T. k = 10 ∆

UD (Nivre et al., 2020) 44.3 46.4 2.1
SUD (Gerdes et al., 2018) 56.0 59.0 3.0

Table 4: UUAS scores for Universal Dependencies an-
notations (UD) and Surface-Syntactic Universal Depen-
dencies annotations (SUD) on sentences from EN-PUD
(bert-base-uncased). Comparison between us-
ing the target sentence alone (T.) and SSUD, k = 10.

grained comparisons to previous methods by look-
ing at more challenging syntactic constructions.

In Figure 4, we provide an example of a parse
tree induced via SSUD and one which only uses
the target sentence. We have labeled some edges
which differ from the UD annotation, but which
are still syntactically informative, e.g. predicting
an edge from the matrix verb ‘told’ to the com-
plementizer ‘that,’ rather than to the main verb of
the embedded clause (see Appendix C for more
example parses). Cases such as these demonstrate
that specific choices from annotation schemata can
artificially lower the resulting UUAS scores. We
now test this observation quantitatively.

5.4 Results and Discussion: Which syntactic
formalism do SSUD parses align with?

In order to compare differences resulting from an-
notation choices, we rescore the EN-PUD trees
induced via SSUD on a different syntactic formal-
ism. Specifically, we choose the Surface-Syntactic
UD formalism (SUD) (Gerdes et al., 2018), which
differs from UD mainly in one respect: function

words are treated as heads of relations in SUD. For
example, in SUD, a verb with a clausal comple-
ment would be attached to a complementizer as we
noted in our qualitative analysis above.

Table 4 shows that SSUD parses receive higher
scores on SUD (59.0 vs. 46.4 UUAS) and that
using our method on SUD provides a larger im-
provement (+3.0pts vs. +2.1pts). We also find dif-
ferences when looking at recall scores for specific
relations which differ between the formalisms (see
Appendix B for full relation-wise results). For ex-
ample, two relations which are annotated with con-
tent words as heads in UD, obl and ccomp, both
receive low recall: 2.3% and 11.1%, respectively.
In contrast, the two SUD relations which subsume
these two relations, comp:obj and comp:obl,
achieve much higher recall: 57.56% and 79.3%.

This result supports our qualitative analysis in
the previous section, however, Kulmizev et al.
(2020) come to the opposite conclusion when as-
sessing the preferences of BERT for the same two
annotation schemata. Since they use a trained probe
to induce parses, perhaps different kinds of linguis-
tic information are being recovered via our two
distinct methods. We leave further analysis of this
to future work.

6 Does SSUD help with harder syntactic
constructions?

6.1 Experiment 2: Dataset and Setup

In the previous experiments, we provided results
for our method applied to standard parsing datasets.
In this experiment, we use data from Marvin and



Linzen (2018) to control for the syntactic struc-
tures being evaluated. Specifically, we look at
more challenging long-distance subject-verb agree-
ment constructions which have been used to inves-
tigate hierarchically-dependent behaviour in lan-
guage models. The reasoning here is that models
using linear heuristics such as the distance between
a noun and a verb would mistakenly assign closer
nouns as nominal subjects. We reframe this task
and investigate whether the tree-induction methods
are able to accurately predict an edge between the
subject and verb. We report a correctly predicted
edge as either between the subject’s determiner or
head noun and the verb.

We sample 1000 sentences from 2 templates
used in Marvin and Linzen (2018): agreement
across an object relative clause (e.g. ‘The pilot
[that the minister likes] cooks.’) and agreement
across a subject relative clause (e.g. ‘The customer
[that hates the skater] swims.’). We include only
non-copular verbs to control for any possible dif-
ferences in syntactic representation.

We evaluate SSUD on this task and provide re-
sults from applying Zhang and Hashimoto (2021)’s
conditional MI method, which performs better than
ours in the previous task, for comparison.

6.2 Experiment 2: Results and Discussion

The results are shown in Table 5, with an improve-
ment in edge recall for SSUD as k is increased.
This further corroborates our observations from
the previous experiments on standard datasets, and
the increase of 8.4 points for the object relative
clauses, and 8.3 points for subject relative clauses
are promising. Comparing our results to those from
applying Zhang and Hashimoto (2021)’s method
are promising as well. SSUD outperforms theirs on
both object (+70.6pts) and subject relative clauses
(+61.1pts). A future extension to this experiment
which could improve the interpretability of model
mechanisms is to compare the results of syntactic
structure induction with an evaluation of model be-
haviour (i.e. does a correctly predicted edge lead
to correct agreement).

7 Does SSUD generalize?

7.1 Experiment 3: Setup

In this experiment, we test whether SSUD robustly
improves syntactic dependency parsing by apply-
ing it to a different parsing algorithm proposed by
Limisiewicz et al. (2020) for extracting directed

Object Relative Clause (recall)
Method T. k = 1 k = 3 k = 5 k = 10

Ours 71.1 71.2 72.4 75.3 79.5
Z + H 8.9 – – – –

Subject Relative Clause (recall)
Ours 54.7 57.9 60.1 61.2 63.0
Z + H 1.9 – – – –

Table 5: Results on subject-verb edge prediction. We
compare using the target sentence alone (T.) with us-
ing SSUD k = 1, 3, 5, 10. For comparison, scores for
conditional MI trees averaged over 3 seeds using only
the target sentence are reported (Z+H), as proposed in
Zhang and Hashimoto (2021).

dependency trees from attention distributions. We
can directly test the effect of SSUD simply by using
SSUD-processed attention matrices whenever at-
tention matrices are used in the original algorithm.

This method involves a key additional step of
selecting syntactically informative attention heads
based on UD relations before inducing syntactic
trees. This process requires supervision from gold-
standard parses but, as such, provides an ‘upper
bound’ of how much UD-like syntactic structure
can be retrieved from BERT. Heads are selected
for both the dependent-to-parent and parent-to-
dependent directions for each relation. As with
previous experiments, we compare SSUD to using
the target sentence only, and evaluate both steps of
the algorithm: (i) are the chosen heads more accu-
rate for the UD relations considered, and (ii) does
SSUD improve the induced syntactic trees? We
constrain our method and use the same resources
and models as the original algorithm3 and do not
use POS information. We test the best-performing
method in their paper which uses 1000 selection
sentences. Following the original paper, directed
labeled and unlabeled trees are induced and un-
labeled attachment scores and labeled attachment
scores on the EN-PUD dataset are used for evalua-
tion.

7.2 Experiment 3: Results and Discussion

The results of the experiment are summarized in
Table 6. For head selection, SSUD outperforms
using the target sentence alone in all but 3 relations:
aux (-0.2pts) and amod (-0.1pts) in the dependent-
to-parent direction, and nummod (-0.8pts) in the
parent-to-dependent direction. There is no relation
that using SSUD does not improve for at least one

3https://github.com/tomlimi/BERTHeadEnsembles.

https://github.com/tomlimi/BERTHeadEnsembles


Dependent-to-Parent Head Selection Accuracy
Label T. k = 1 k = 3 k = 5 ∆(SSUD, T.)
nsubj 63.8 65.8 67.0 68.2 4.4
obj 91.1 92.7 93.9 93.9 2.8
det 97.3 97.4 96.8 95.7 0.1
case 88.0 88.0 88.2 87.9 0.2

Tree Induction Scores
Metric T. k = 1 k = 3 k = 5 ∆(SSUD, T.)
UAS 52.8 53.7 54.5 54 1.7
LAS 22.5 25.6 26.3 22 3.8

Table 6: Results on selected non-clausal relations used
for head selection in the dependent to parent direction,
full results in Appendix D. Unlabeled (UAS) and labeled
(LAS) scores are reported as well. Using only the target
sentence (T.) is equivalent to the original algorithm;
results for SSUD (k = 1, 3, 5) are provided.

of the directions. For tree induction, we see that
SSUD k = 3 provides the highest improvements
with increases in both the unlabeled (+1.7pts) and
labeled (+3.8pts) attachment scores. Unlike in the
previous experiments, increasing the number of
substitutions does not monotonically increase pars-
ing accuracy. We analyze this effect below.

As stated in the setup, we wished to maintain the
resources and models used in the original paper and
as such do not use POS information here. This in
turn leads to a split between lexical and functional
categories. Increasing the number of substitutions
for closed categories like determiners can lead to
a decrease in performance if the number of possi-
ble substitutions is exceeded. Quantitative results
reveal this is the case: for example, as more substi-
tutions are used, correctly labeling the det relation
falls from 38.6 (k = 3) to 7.9 (k = 5). The head
selection accuracy patterns in Table 6 reflect this as
well. Interestingly, at k = 5 the model incorrectly
labels det as case 48.2% of the time. However,
when considering a relation with open class words
like obj, SSUD k = 5 labels obj correctly with
36.6 recall, outperforming T. by 11.6pts. We refer
the reader to Appendix D for full results. While
we only explore a static number of substitutions
here, future work may find that a dynamic number
of substitutions leads to further improvements.

Overall, the results for Experiment 3 show that
SSUD leads to gains over the original algorithm
and effectively distills more syntactic information
even when used in a different setup.

8 Conclusion

The results across the three experiments show that
there is merit to modeling the property of syntac-
tic substitutability when inducing syntactic depen-

dency structures. Indeed attention distributions do
capture a surprising amount of syntactic informa-
tion, despite never being trained to do so. With
substitutability as a constraint, we can better make
use of this information for unsupervised parsing
and better understand the extent to which this prop-
erty is learned by attention mechanisms. Our re-
sults also suggest that previous probing results on
attention mechanisms using single sentences may
underestimate the amount of syntactic information
present.

We show that SSUD effectively transfers to new
parsing setups and to different datasets. A potential
next step is to use this method cross-linguistically
in order to better understand the representation of
different languages within multilingual models. In
addition to uses for NLP and computational linguis-
tics, these interpretable, model-intrinsic structures
may provide a new source of data for work in theo-
retical linguistics and syntactic annotation, and as
further confirmation of the emergence of syntax-
like structures in neural network language models.

Ethics Statement

While there are few ethical problems linked to the
methodology explored in this paper, there remain
those more generally associated with large lan-
guage models, including concerns of privacy and
learned biases. A better understanding of linguistic
mechanisms in models may lead to improvements
in this domain as well.

Limitations

In this paper, we focus only on English data. This
is a limitation of the work because English is a
language with relatively strict word order and does
not morphologically mark most grammatical re-
lations. This may present a challenge when this
method is used in other languages as substituting a
given word in a sentence may affect morphological
marking on other words in the sentence, but we
hope large-scale training of BERT-like models may
circumvent some of these problems. Theoretically,
we can capture this by assuming more fine-grained
categories which do not differ in this morphology
(see Dehouck and Gómez-Rodríguez (2020) for a
discussion).

Another limitation of this study is that we only
study BERT models trained on English. This has
a twofold effect: (1) there is nothing stopping the
attention mechanisms of a different model from



storing syntactic information differently, and (2) as
previously mentioned, English has a relatively rigid
word order which may already carry much infor-
mation about the syntactic relations between words.
Compared to a language with more word orders
like Japanese or German, it is not unimaginable
that attention mechanisms learn to track syntactic
relations differently. Addressing the small number
of models studied here, we suggest that the main
contribution of this method, that syntactic substi-
tutability can help extract syntax from models, is
one which is defined agnostically of the specific
model. As such, the results of applying this method
to different architectures may in fact be informative
for the interpretation of their internal mechanisms
as well.

The domains explored in this paper are limited:
the WSJ10 dataset features sentences from news
articles in the Wall Street Journal (Marcus et al.,
1993), and the EN-PUD dataset are sentences from
news and Wikipedia articles (Nivre et al., 2020).
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A Experiment 1.1: Validation set results

We report Experiment 1.1 results for the validation
set. Layer 10, which shows the largest increase,
was chosen for Experiments 2 and 3.

UUAS
WSJ Section 21 (validation)

Layer T. k = 1 ∆
6 52.5 52.7 0.2
7 51.4 51.7 0.3
8 50.7 50.8 0.1
9 52.1 52.0 -0.1

10 49.3 49.9 0.6

Table 7: UUAS scores on validation set. SSUD k = 1
compared with only using target sentence (T.).

B Experiment 1.2: What does SSUD
improve?

In this section, we provide additional results from
Experiment 1.2.

One noted qualitative improvement due to SSUD
is a decrease in non-syntactic edges being predicted
between words which are semantically similar, but
not syntactically dependent. This provides a poten-
tial explanation for the quantitative results in Table
8 which shows increases in the recall of adjacent
edges and precision of non-adjacent edges. This
suggests that fewer incorrect non-adjacent edges
are being predicted (i.e. ones predicted due to lexi-
cal similarity) and more correct adjacent edges (i.e.
closer dependencies that are not necessarily seman-
tically dependent or similar). See Figure 4 for an
example and Appendix C for further discussion of
this and more examples.

WSJ10
T. k=1 k=3 k=5 k=10 ∆10−T.

Adjacent Rec. 73.8 76.3 76.8 77.7 77.4 3.6
Prec. 67.7 68.3 68 68.3 67.8 0.1

Non-Adj. Rec. 34.5 34 33.7 33.3 34.2 -0.3
Prec. 38.5 39.3 39.7 39.7 41.1 2.6

EN-PUD
T. k=1 k=3 k=5 k=10 ∆10−T.

Adjacent Rec. 71.7 73 74.7 75.7 76.1 4.4
Prec. 55.5 55.6 55.9 56 56 0.5

Non-Adj. Rec. 24.5 24.2 24.6 24.8 24.9 0.4
Prec. 31.1 31.3 32.4 33.3 33.7 2.6

Table 8: Adjacent and non-adjacent edge recall and
precision results on WSJ10 and EN-PUD. Results are
reported across an increasing number of substitutions,
k = 1, 3, 5, 10 for Layer 10.

In Tables 10 and 11, we report the relation-wise
results for both datasets. We see similar improve-
ments in both the WSJ-10 dataset and the EN-PUD

dataset with SSUD: +2.0/+1.7 for nsubj, +4.0/+1.5
for dobj/obj, among other parallels. Again, note
that annotation schemata may be defined differ-
ently from the edges induced, even if they are syn-
tactically informative. For example, the ccomp
(clausal complement) relation, which links a verb
or adjective with a dependent clause, has a rela-
tively low 11.1% recall in the EN-PUD dataset.
Looking at an example like Figure 5 in Appendix
Section C begins to show why this may be: the
verb ‘told’ is linked with the complementizer ‘that,’
rather than the main verb of the embedded clause
‘attacked,’ as is done in the UD schema.

B.1 Surface-Syntactic UD

In Table 12, we provide full results on the English
Parallel Surface-Syntactic UD annotated dataset.
As discussed, this formalism treats functional
words like complementizers and prepositions as
the heads of dependencies. This is the pattern that
we have qualitatively noted in SSUD derived parses.
The results show that SSUD favours SUD, achiev-
ing a 57.6% recall on the SUD comp:obj and
79.3% on the comp:obl relation which encom-
pass the UD ccomp relation mentioned above. The
comparison is not robust as those two relations also
include other UD complement relations, though the
SUD scores are reliably higher.

C Experiment 1.2: Example parses

In Figures 5, 6, and 7, we provide some example
parses comparing our method, and those induced
using conditional MI with Zhang and Hashimoto
(2021)’s method, seed = 1. The errors and
improvements we note relate to the results dis-
cussed in Appendix B, including a decrease of
non-syntactic edges predicted due to semantic sim-
ilarity, and specific differences between induced
trees and annotation-dependent choices.

D Experiment 3: Additional results

We provide full per relation results for Experiment
3 in this section. Results for head selection accu-
racy for both the dependent-to-parent and parent-to-
dependent direction are provided in Tables 13 and
14, respectively. As reviewed in §7.2, SSUD out-
performs the original algorithm with just the target
sentence on all relations except on aux (-0.2pts)
and amod (-0.1pts) in the dependent-to-parent di-
rection, and nummod (-0.8pts) in the parent-to-
dependent direction.



Per relation results on unlabeled and labeled
trees are also provided in Tables 15 and 16. The
recall scores for UAS are calculated as the number
of edges predicted correctly for each relation, while
for LAS both the edge and correct label must be
predicted. As reviewed in §7.2 and Table 6, SSUD
k = 3 provides the best results, and much of the de-
crease between k = 3 and k = 5 can be attributed
to relations with closed class lexical items like det,
while open class relations like obj and subj re-
main relatively stable or show improvements as
substitutions are increased.

E Experiment 1:
bert-large-uncased

UUAS
WSJ10 EN-PUD

Layer T. k = 1 ∆ T. k = 1 ∆
16 54.6 54.8 0.2 43.6 43.8 0.2
17 56.1 56.5 0.4 45.5 45.8 0.3
18 53.5 54.3 0.8 41.5 41.9 0.4

Table 9: UUAS scores on WSJ10 and EN-PUD
(bert-large-uncased). SSUD k = 1 compared
with only using target sentence (T.).

In Table 9, we provide full results for Experi-
ment 1 for the bert-large-uncased model.
The best-performing layer corresponds with pre-
vious results from the literature about the locus
of retrievable syntactic information in pretrained
BERT models (e.g. Kim et al., 2020).

F Compute and package versions

The SSUD experiments can be reproduced with
a GPU with 2GB of memory, and a CPU with
24GB of memory. Experiments each run in 7hrs,
on an RTX8000. Experiments comparing our
method with Zhang and Hashimoto (2021) used
a GPU with 24GB of memory, and CPU with
100GB of memory. These experiments ran in 10hrs
on an RTX8000 GPU. Packages: Stanza (1.4.0);
networkx (1.22.4); numpy (1.22.4); transformers
(4.19.2); torch (1.11.0).

Experiments involving the algorithm proposed
in Limisiewicz et al. (2020) used a GPU with 24GB
of memory, and a CPU with 128GB. These experi-
ments ran in 10hrs, on an RTX8000. We direct the
reader to the original repository for packages used
therein.

G Datasets and licenses

The Stanza (Qi et al., 2020) package was used as
intended, under the Apache License, Version 2.0.

The datasets were used as intended, as estab-
lished by previous work such as Klein and Manning
(2004) and Hoover et al. (2021). EN-PUD is part
of the publicly available Parallel Universal Depen-
dencies treebanks. Surface-Syntactic UD treebanks
are also available publicly. The WSJ datasets were
acquired through a Not-For-Profit, Standard Lin-
guistic Data Consortium licence. The data are from
published news, and Wikipedia sources.



Recall (WSJ10)
SD Relation T. k = 10

acomp 64.3 78.6
advcl 0.0 0.0
advmod 58.2 60.3
amod 72.7 74.8
appos 65.0 65.0
aux 45.0 43.3
auxpass 70.8 79.2
cc 37.0 38.9
ccomp 5.9 5.9
conj 51.5 51.5
cop 34.8 44.9
csubj 50.0 50.0
dep 45.5 48.5
det 76.7 75.7
discourse 60.0 40.0
dobj 58.2 62.2
expl 100.0 85.7
iobj 50.0 50.0
mark 25.0 25.0
neg 23.4 27.7
nn 65.4 67.5
npadvmod 25.0 50.0
nsubj 45.2 47.2
nsubjpass 25.0 20.8
num 67.3 67.3
number 85.2 85.2
parataxis 0.0 0.0
pcomp 100.0 100.0
pobj 63.7 63.7
poss 45.7 48.6
possessive 68.8 87.5
preconj 0.0 0.0
predet 100.0 0.0
prep 58.2 60.5
prt 100.0 100.0
quantmod 57.1 57.1
rcmod 0.0 0.0
tmod 33.3 55.6
vmod 70.0 60.0
xcomp 14.7 23.5

Table 10: Experiment 1.2: Per relation results on
WSJ10, annotated with Stanford Dependencies, compar-
ing target only (T.), and SSUD, k = 10. Note: recall of
a relation may be lower if the induced trees differ from
annotation schemata, despite syntactic relevance.

Recall (EN-PUD)
UD Relation T. k = 10

acl 35.2 34.7
acl:relcl 21.3 24.2
advcl 6.5 5.5
advmod 49.6 53.4
amod 68.7 72.9
appos 27.3 23.1
aux 32.9 33.4
aux:pass 71.2 74.8
case 55.1 59.9
cc 32.6 33.8
cc:preconj 0.0 9.1
ccomp 8.1 11.1
compound 79.1 84.6
compound:prt 95.7 98.6
conj 31.1 28.2
cop 30.4 33.2
csubj 11.1 11.1
csubj:pass 0.0 0.0
dep 0.0 0.0
det 68.5 72.9
det:predet 33.3 33.3
discourse 0.0 0.0
dislocated 0.0 0.0
expl 69.4 66.1
fixed 85.4 85.4
flat 78.3 79.1
goeswith 100.0 100.0
iobj 40.0 40.0
mark 52.1 51.7
nmod 12.3 10.2
nmod:npmod 63.2 68.4
nmod:poss 40.0 41.4
nmod:tmod 38.5 43.6
nsubj 28.3 30.0
nsubj:pass 26.4 25.9
nummod 73.2 74.0
obj 41.8 43.3
obl 3.1 2.3
obl:npmod 50.0 45.0
obl:tmod 22.2 11.1
orphan 14.3 14.3
parataxis 6.2 7.2
reparandum 0.0 0.0
vocative 0.0 100.0
xcomp 19.9 21.4

Table 11: Experiment 1.2: Per relation results on EN-
PUD, annotated with Universal Dependencies, compar-
ing target only (T.), and SSUD, k = 10. Note: recall of
a relation may be lower if the induced trees differ from
annotation schemata, despite syntactic relevance.



Recall (EN-PUD)
SUD Relation T. k=10
appos 28.7 24.5
cc 39.4 40.6
cc@preconj 0.0 9.1
comp:aux 50.5 51.0
comp:aux@pass 71.5 75.2
comp:obj 54.0 57.6
comp:obl 76.5 79.3
comp:pred 38.7 42.2
comp@expl 66.7 61.5
compound 79.1 84.6
compound@prt 95.7 98.6
conj 36.2 35.3
conj@emb 50.0 60.0
det 68.5 72.9
det@predet 33.3 33.3
discourse 100.0 100.0
dislocated 0.0 0.0
flat 86.5 87.4
goeswith 100.0 100.0
mod 61.1 64.4
mod@npmod 61.1 66.7
mod@poss 49.1 52.1
mod@relcl 13.7 15.2
mod@tmod 43.6 46.2
orphan 0.0 0.0
parataxis 12.4 12.4
reparandum 0.0 0.0
subj 34.1 36.1
subj@pass 23.6 26.0
udep 64.6 67.9
udep@npmod 52.4 47.6
udep@poss 45.1 43.1
udep@tmod 33.3 22.2
unk 85.7 86.7
unk@expl 73.9 73.9
vocative 0.0 100.0

Table 12: Experiment 1.2: Per relation results on EN-
PUD, annotated with Surface-Syntactic Universal De-
pendencies, comparing target only (T.), and SSUD,
k = 10. Note: recall of a relation may be lower if
the induced trees differ from annotation schemata, de-
spite syntactic relevance.



A witness told police that the victim had attacked the suspect in April .

det nsubj iobj

mark

det

nsubj

aux

ccomp

det

obj

case

obl

SSUD, k = 10
9/12 = 75%

A witness told police that the victim had attacked the suspect in April . target only
8/12 = 66%

A witness told police that the victim had attacked the suspect in April .
detdet wrong

obj
casewrongiobj det

wrong

obl
wrong

aux

Z+H
8/12 = 66%

Figure 5: This example was presented in Figure 4 above. The conditional MI parse predicts an edge between
‘suspect’ and ‘witness,’ perhaps for their salience to the domain of the sentence – ‘witness’ is no longer attached
to its verb ‘told.’ This is perhaps similar to the edge between ‘victim’ and ‘the [suspect]’ in the target-only parse,
where ‘victim’ is no longer attached to the verb ‘attacked’.



Many people , including Indigenous groups , argue they trivialize First Nations culture .

amod

nsubj

case

amod

nmod

nsubj

ccomp

amod compound

obj

SSUD, k = 10
8/10 = 80%

Many people , including Indigenous groups , argue they trivialize First Nations culture . target only
7/10 = 70%

Many people , including Indigenous groups , argue they trivialize First Nations culture .
amod amodwrong

nmod obj

compoundamod nsubj

wrong

wrong

Z+H
7/10 = 70%

Figure 6: The edge between ‘Indigenous’ and ‘First’ in the target-only parse shows edge-prediction errors where
words are linked with other semantically similar words, rather than syntactically dependent ones. An edge is also
predicted between ‘people’ and ‘trivialize’ in the conditional MI parse represents an incorrect argument structure,
which should be more like the SSUD parse where the noun phrase ‘many people’ is connected to ‘argue’. We see in
the SSUD parse an example where the choice of headedness in the noun phrase artificially lowers the UUAS score.
Qualitatively, the nominal subject of the verb ‘argue’ is correctly attached. The clausal argument structure is also
improved: ‘argue’ in the SSUD parse correctly attaches to its clausal complement at the verb ‘trivialize.’



" Physicians do n’t have these tools , they have only a prescription pad and an injection , " Mailis said .

nsubj

aux
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obj
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parataxis
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det
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obj
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det

conj

nsubj

parataxis

SSUD, k = 10
9/16 = 56%

" Physicians do n’t have these tools , they have only a prescription pad and an injection , " Mailis said . target only
6/16 = 38%

" Physicians do n’t have these tools , they have only a prescription pad and an injection , " Mailis said .
wrong wrongwrongwrong advmod

wrong

nsubj

wrong

compound

conj

wrong detwrong nsubjwrong det

Z+H
7/16 = 44%

Figure 7: In the target-only parse, we again see the effect of semantic similarity on the induced parse. ‘Physicians’
is connected to both ‘tools’ and ‘injections’, rather than either the auxiliary verb ‘do’ or the main verb ‘have.’
This is resolved in both the SSUD and conditional MI parses. A weakness of the SSUD parse here is the lack of
clarity in conjunctions, where the induced structure of ‘a prescription pad and an injection’ does not appear to be
adequately clarified. The subtree containing this in the SSUD parse, rooted by the quantifier ‘only,’ is however
correctly attached to the verb ‘have,’ unlike the target-only parse.



d2p Head Selection
UD Relation T. k = 1 k = 3 k = 5

acl 53.2 55.7 55.4 55.4
advcl 40.6 41.6 44.7 43.7
cc 67.0 68.0 67.5 68.2
csubj 56.7 53.3 56.7 56.7
parataxis 28.9 29.9 26.8 29.9
amod 94.3 94.1 94.2 94.1
advmod 65.5 66.0 66.7 67.5
aux 93.6 93.4 92.5 92.5
compound 86.9 87.4 88.8 87.6
conj 62.3 64.7 66.2 67.2
det 97.3 97.4 96.8 95.7
nmod 49.2 48.2 49.3 49.5
nummod 85.8 86.2 87.4 86.6
obj 91.1 92.7 93.9 93.9
subj 63.8 65.8 67.0 68.2
case 88.0 88.0 88.1 87.9
mark 75.1 75.3 75.5 75.7

Table 13: Experiment 3: Dependent-to-Parent head se-
lection accuracy results

p2d Head Selection
UD Relation T. k=1 k=3 k=5
acl 52.5 54.0 54.7 53.5
advcl 26.6 33.1 38.9 39.9
cc 58.4 59.9 59.6 58.1
csubj 46.7 50.0 40.0 36.7
parataxis 28.9 26.8 32.0 28.9
amod 79.7 80.6 80.7 80.9
advmod 64.9 66.0 64.7 65.1
aux 82.5 82.6 82.7 82.5
compound 82.4 83.0 85.3 84.7
conj 47.6 48.4 50.9 51.4
det 70.7 72.4 72.7 72.5
nmod 55.7 56.1 56.5 56.7
nummod 74.0 66.1 72.4 73.2
obj 81.0 82.7 84.4 84.8
subj 73.7 74.4 75.9 75.9
case 68.8 69.7 71.0 71.3
mark 66.3 67.0 60.9 62.2

Table 14: Experiment 3: Parent-to-Dependent head se-
lection accuracy results

Recall (EN-PUD)
UD Relation T. 1 3 5
acl 2.1 1.0 1.5 3.6
acl:relcl 1.0 1.0 1.4 2.4
advcl 1.0 0.7 1.4 2.4
advmod 57.9 59.6 59.0 59.6
amod 91.1 92.2 92.6 91.9
appos 6.3 4.2 6.3 5.6
aux 82.7 83.9 84.2 82.2
aux:pass 100.0 99.6 99.3 99.6
case 81.0 82.4 83.4 81.8
cc 60.5 61.7 64.8 62.4
cc:preconj 27.3 27.3 54.5 45.5
ccomp 0.0 0.0 0.0 0.0
compound 89.0 89.8 90.0 89.6
compound:prt 7.1 8.6 15.7 14.3
conj 1.6 2.2 2.5 1.7
cop 73.4 76.0 77.2 73.4
csubj 3.7 0.0 0.0 3.7
csubj:pass 0.0 0.0 0.0 0.0
det 94.4 95.6 94.8 94.8
det:predet 77.8 88.9 88.9 77.8
discourse 0.0 0.0 0.0 0.0
dislocated 0.0 0.0 0.0 0.0
expl 58.1 58.1 54.8 62.9
flat 8.3 6.1 7.8 7.4
goeswith 0.0 0.0 0.0 0.0
iobj 50.0 60.0 50.0 70.0
mark 65.6 67.0 66.7 65.6
nmod 7.3 7.8 8.7 8.5
nmod:npmod 15.8 15.8 15.8 15.8
nmod:poss 68.2 71.5 70.4 69.9
nmod:tmod 12.8 12.8 7.7 10.3
nsubj 54.3 55.8 58.8 58.5
nsubj:pass 40.2 45.6 46.9 41.0
nummod 72.1 72.8 73.2 74.0
obl 2.6 2.4 3.4 3.6
obl:npmod 65.0 70.0 65.0 70.0
obl:tmod 11.1 11.1 11.1 11.1
orphan 0.0 0.0 14.3 14.3
parataxis 0.0 1.0 0.0 0.0
punct 17.7 17.7 17.9 16.5
reparandum 0.0 0.0 0.0 0.0
root 100.0 100.0 100.0 100.0
vocative 0.0 0.0 0.0 0.0
xcomp 9.6 10.3 10.0 12.9
UUAS 52.8 53.7 54.5 54.0

Table 15: Experiment 3: Per relation results for induced
unlabeled trees, comparing target only (T.) with increas-
ing SSUD.



Recall (EN-PUD)
UD Relation T. k = 1 k = 3 k = 5

amod 41.6 47.2 69.2 53.0
aux 71.0 64.6 55.1 72.7
case 31.0 41.9 68.1 56.0
cc 2.6 2.3 1.2 0.5
compound 50.7 31.0 15.1 41.2
conj 1.3 2.1 2.4 1.6
det 55.1 73.9 38.6 7.9
mark 0.5 0.4 4.5 0.5
nmod 3.5 3.3 2.3 1.6
nsubj 19.5 22.8 24.3 23.0
nummod 0.0 3.5 2.4 5.5
obj 25.0 27.2 35.6 36.6
root 100.0 100.0 100.0 100.0
advmod 5.5 10.2 8.2 9.4
LAS 22.48 25.6 26.3 22.0

Table 16: Experiment 3: Per relation results for induced
labeled trees, comparing target only (T.) with increasing
SSUD. Note: only labels that are considered during
head selection can be labeled in the final tree.


