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ABSTRACT

A recent study (Rice et al., 2020) revealed overfitting to be a dominant phe-
nomenon in adversarially robust training of deep networks, and that appropriate
early-stopping of adversarial training (AT) could match the performance gains
of most recent algorithmic improvements. This intriguing problem of robust
overfitting motivates us to seek more remedies. As a pilot study, this paper in-
vestigates two empirical means to inject more learned smoothening during AT:
one leveraging knowledge distillation and self-training to smooth the logits, the
other performing stochastic weight averaging (Izmailov et al., 2018) to smooth
the weights. Despite the embarrassing simplicity, the two approaches are sur-
prisingly effective and hassle-free in mitigating robust overfitting. Experiments
demonstrate that by plugging in them to AT, we can simultaneously boost the
standard accuracy by 3.72% ∼ 6.68% and robust accuracy by 0.22% ∼ 2.03%,
across multiple datasets (STL-10, SVHN, CIFAR-10, CIFAR-100, and Tiny Ima-
geNet), perturbation types (`∞ and `2), and robustified methods (PGD, TRADES,
and FSGM), establishing the new state-of-the-art bar in AT. We present system-
atic visualizations and analyses to dive into their possible working mechanisms.
We also carefully exclude the possibility of gradient masking by evaluating our
models’ robustness against transfer attacks. Codes are available at https:
//github.com/VITA-Group/Alleviate-Robust-Overfitting.

1 INTRODUCTION
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Figure 1: The standard (top) and robust (bottom)
test error rate comparison, between the vanilla
PGD-AT baseline (Madry et al., 2018), and PGD-
AT with our proposed weight/label smoothening
techniques applied, on CIFAR-10 with ResNet-
18. Our methods effectively mitigates the robust
overfitting (Rice et al., 2020) even when trained
to 200 epochs, while maintaining the same high
standard/robust accuracies compared to the best
early-stop checkpoint of the baseline.

Adversarial training (AT) (Madry et al., 2018), i.e.,
training a deep network to minimize the worst-case
training loss under input perturbations, is recognized
as the current best defense method to adversarial at-
tacks. However, one of its pitfalls was exposed by
a recent work (Rice et al., 2020): in contrast to the
commonly-held belief that overparameterized deep
networks hardly overfit in standard training (Zhang
et al., 2016; Neyshabur et al., 2017; Belkin et al.,
2019), overfitting turns out to be a dominant phe-
nomenon in adversarially robust training of deep net-
works. After a certain point in AT, e.g., immediately
after the first learning rate decay, the robust test er-
rors will only continue to substantially increase with
further training (see Figure 1 bottom for example).

That surprising phenomenon, termed as “robust
overfitting”, has been prevalent on many datasets
and models. As Rice et al. (2020) pointed out, it
poses serious challenges to assess recent algorithmic
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advances upon AT: by just using an earlier checkpoint, the performance of AT be drastically boosted
to match the more recently reported state-of-the-arts (Yang et al., 2019b; Zhang et al., 2019b). Even
worse, Rice et al. (2020) tested several other implicit and explicit regularization methods, including
weight decay, data augmentation and semi-supervised learning; they reported that none of those al-
ternatives seem to combat robust overfitting (stably) better than simple early stopping. The authors
thus advocated using the validation set to select a stopping point, although the manual picking would
inevitably trade off between selecting either the peak point of robust test accuracy or that of standard
accuracy, which often do not coincide (Chen et al., 2020a).

Does there exist more principled, hands-off, and hassle-free mitigation for this robust overfitting,
for us to further unleash the competency of AT? This paper explores two options along the way,
that draw two more sophisticated ideas from enhancing standard deep models’ generalization. Both
could be viewed as certain types of learned smoothening, and are directly plugged into AT:

• Our first approach is to smooth the logits in AT via self-training, using knowledge distilla-
tion with the same model pre-trained as a self-teacher. The idea is inspired by two facts:
(1) label smoothening (Szegedy et al., 2016) can calibrate the notorious overconfidence of
deep networks (Hein et al., 2019), and that was found to improve their standard generaliza-
tion; (2) label smoothening can be viewed as a special case of knowledge distillation (Yuan
et al., 2020), and self-training can produce more semantic-aware and discriminative soft
label “self-teachers” than naive label smoothening (Chen et al., 2020b; Tang et al., 2020).
• Our second approach is to smooth the weights in AT via stochastic weight averaging (SWA)

(Izmailov et al., 2018), a popular training technique that leads to better standard generaliza-
tion than SGD, with almost no computational overhead. While SWA has not yet be applied
to AT, it is known to find flatter minima which are widely believed to indicate stronger ro-
bustness (Hein & Andriushchenko, 2017; Wu et al., 2020a). Meanwhile, SWA could also
be interpreted as a temporal model ensemble, and therefore might bring the extra robustness
of ensemble defense (Tramèr et al., 2018; Grefenstette et al., 2018) with the convenience
of a single model. Those suggest that applying SWA is natural and promising for AT.

To be clear, neither knowledge-distillation/self-training nor SWA was invented by this paper: they
have been utilized in standard training to alleviate (standard) overfitting and improve generalization,
by fixing over-confidence and by finding flatter solutions, respectively. By introducing and adapting
them to AT, our aim is to complement the existing study, demonstrating that while simpler regular-
izations were unable to fix robustness overfitting as Rice et al. (2020) found, our learned logit/weight
smoothening could effectively regularize and mitigate it, without needing early stopping.

Experiments demonstrate that by plugging in the two techniques to AT, we can simultaneously boost
the standard accuracy by 3.72% ∼ 6.68% and robust accuracy by 0.22% ∼ 2.03%, across multiple
datasets (STL-10, SVHN, CIFAR-10, CIFAR-100, and Tiny ImageNet), perturbation types (`∞ and
`2), and robustified methods (PGD, TRADES, and FSGM), establishing the new state-of-the-art in
AT. As shown in Figure 1 example, our method eliminates the robust overfitting phenomenon in AT,
even when training up to 200 epochs. Our results imply that although robustness overfitting is more
challenging than standard overfitting, its mitigation is still feasible with properly-chosen, advanced
regularizations that were developed for the latter. Overall, our findings join (Rice et al., 2020) in
re-establishing the competitiveness of the simplest AT baseline.

1.1 BACKGROUND WORK

Deep networks are easily fooled by imperceivable adversarial samples. To tackle this vulnerability,
numerous defense methods were proposed (Goodfellow et al., 2015; Kurakin et al., 2016; Madry
et al., 2018), yet many of them (Liao et al., 2018; Guo et al., 2018; Xu et al., 2017; Dziugaite
et al., 2016; Dhillon et al., 2018; Xie et al., 2018; Jiang et al., 2020) were later found to result from
training artifacts, such as obfuscated gradients (Athalye et al., 2018) caused by input transformation
or randomization. Among them, adversarial training (AT) (Madry et al., 2018) remains one of the
most competitive options. Recently more improved defenses have been reported (Dong et al., 2018;
Yang et al., 2019b; Mosbach et al., 2018; Hu et al., 2020; Wang et al., 2020a; Dong et al., 2020;
Zhang et al., 2020a;b), with some of them also being variants of AT, e.g. TRADES (Zhang et al.,
2019b) and AT with metric learning regularizers (Mao et al., 2019; Pang et al., 2019; 2020).

While overfitting has become less a practical concern in training deep networks nowadays, it was not
yet noticed nor addressed in the adversarial defense field until lately. An overfitting phenomenon was
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first observed in a few fast adversarial training methods (Zhang et al., 2019a; Shafahi et al., 2019b;
Wong et al., 2020) based on FGSM (Goodfellow et al., 2015), e.g., sometimes the robust accuracy
against a PGD adversary suddenly drop to nearly zero after some training. (Andriushchenko &
Flammarion, 2020) suggested it to be rooted in those methods’ local linearization assumptions of the
loss landscape in those “fast” AT. The recently reported robust overfitting (Rice et al., 2020) seems
to raise a completely new challenge for the classical AT (not fast): the model starts to irreversibly
lose robustness after training with AT for a period, even the double-descent generalization curves
still seemed to hold (Belkin et al., 2019; Nakkiran et al., 2019). Among various options tried in Rice
et al. (2020), early-stopping was so far the only effective remedy found.

2 METHODOLOGY

2.1 LEARNING TO SMOOTH LOGITS IN AT

Rationale: Why AT enforces models robust against adversarial attacks of a specific type and cer-
tain magnitudes. However, it has been shown to “overfit” the threat model “seen” during training
(Kang et al., 2019; Maini et al., 2019; Stutz et al., 2020), and its gained robustness does not ex-
trapolate to larger perturbations nor unseen attack types. Stutz et al. (2020) hypothesized this to be
an unwanted consequence of enforcing high-confidence predictions on adversarial examples since
high-confidence predictions are difficult to extrapolate to arbitrary regions beyond the seen examples
during training. We generalize this observation: during AT, the attacks generated at every iteration
can be naturally considered as continuously varying/evolving, along with the model training. There-
fore, we hypothesize one source of robust overfitting might lie in that the model “overfits” the attacks
generated in the early stage of AT and fails to generalize or adapt to the attacks in the late stage.

To alleviate the overconfidence problem, we adapt the label smoothening (LS) technique in standard
training (Szegedy et al., 2016). LS creates uncertainty in the one-hot labels, by computing cross-
entropy not with the “hard” targets from the dataset, but with a weighted mixture of these one-hot
targets with the uniform distribution. This uncertainty helps to tackle alleviate the overconfidence
problem Hein et al. (2019) and improves the standard generalization. The idea of LS was previously
investigated in other defense methods (Shafahi et al., 2019a; Goibert & Dohmatob, 2019), but much
of the observed robustness gains were later attributed to obfuscated gradients (Athalye et al., 2018).
Two recent works (Stutz et al., 2020; Cheng et al., 2020) have integrated LS with AT to inject label
uncertainty: Stutz et al. (2020) used a convex combination of uniform and one-hot distributions as
target for the cross-entropy loss in AT, which resembles the LS regularizer, while Cheng et al. (2020)
concurrently used an LS regularizer for AT.

However, there is one pitfall of the naive LS in (Szegedy et al., 2016): over-smoothening labels in
a data-blind way could cause loss of information in the logits, and hence weakened discriminative
power of the trained models (Müller et al., 2019). That calls for a careful and adaptive balance be-
tween discriminative capability and confidence calibration of the model. In the context of AT, Stutz
et al. (2020) crafted a perturbation-dependent parameter, to explicitly control the transition from
one-hot to the uniform distribution when the attack magnitude grows from small to large. To iden-
tify more automated and principled means, we notice another recent work (Yuan et al., 2020), who
explicitly connected knowledge distillation (KD) (Hinton et al., 2015) to LS. The authors pointed
out that LS equals a special case of KD using a virtual and hand-crafted teacher; on the contrary, the
conventional KD provides data-driven soften labels rather than simply mixing one-shot and uniform
vectors. Together with many others (Furlanello et al., 2018; Chen et al., 2020b), these works demon-
strated that using model-based and learned soft labels supplies much superior confidence calibration
and logit geometry compared to the naive LS (Tang et al., 2020).
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Figure 2: Comparing the logit distribution
of different LS/KD means on CIFAR-10 us-
ing ResNet-18 (C7 is the correct label).

Furthermore, (Furlanello et al., 2018; Chen et al., 2020b;
Yuan et al., 2020) unanimously revealed that another
strong teacher model with extra privileged information
is NOT critical to the success of KD. Yuan et al. (2020)
shows that even a poorly-trained teacher with much lower
accuracy can still improve the student. Moreover, Chen
et al. (2020b); Yuan et al. (2020) find self-teacher to be
sufficiently effective for KD, that is, using soft-logit out-
puts from the student or designed manually as the KD
regularization to train itself (also called teacher-free KD
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(Tf-KD) in (Yuan et al., 2020)). These observations make the main cornerstone for our learned logit
smoothening approach next.

Approach: How We follow (Chen et al., 2020b; Yuan et al., 2020) to use self-training with the
same model, but introduce one specific modification. The one model could be trained with at least
two different ways: standard training, or robust training (AT or other cheaper ways; see ablation
experiments). That can yield two self-teachers. We assume both to be available; and let x be the
input, y the one-hot ground truth label, δ the adversarial perturbation bounded by `p norm ball with
radius ε, and θr/θs the weights of the robust-/standard-trained self-teachers, respectively. Note the
two self-teachers share the identical network architecture and training data with our target model.
Our self-training smoothed loss function is expressed below (λ1 and λ2 are two hyperparameters):

min
θ

E(x,y)∈D {(1− λ1 − λ2) · max
δ∈Bε(x)

LXE(f(θ,x + δ), y)+

λ1 · KDadv(f(θ,x + δ), f(θr,x + δ)) + λ2 · KDstd(f(θ,x + δ), f(θs,x + δ))},
(1)

where LXE is robustified cross-entropy loss adopted in the original AT; KDadv and KDstd are the
Kullback–Leibler divergence loss with the robust-trained and standard-trained self-teachers, respec-
tively. λ1 = 0.5 and λ2 = 0.25 are default in all experiments. More details are in Appendix A2.1.

Figure 2 visualizes an example of logit distributions, generated by naive LS (Szegedy et al., 2016),
the Tf-KD regularizer using manually-designed self-teacher in (Yuan et al., 2020), as well our
standard- and robust-trained teachers, respectively. We observe both standard and robust self-
teachers are more discriminative than the other two baseline smoothenings, while the robust self-
teacher is relatively more conservative as one shall expect.

2.2 LEARNING TO SMOOTH WEIGHTS IN AT

Rationale: Why Another measure that is often believed to indicate the standard generalization is
the flatness: the loss surface at the final learned weights for well-generalizing models is relatively
“flat”. Similarly, Wu et al. (2020a) advocated that a flatter adversarial loss landscape shrinks the
robustness generalization gap. This is aligned with (Hein & Andriushchenko, 2017) where the
authors called it local Lipschitz and proved that the Lipschitz constant can be used to formally
measure the robustness of machine learning models. The flatness preference of a robust model has
been echoed by many empirical defense methods, such as hessian/curvature-based regularization
(Moosavi-Dezfooli et al., 2019), gradient magnitude penalty (Wang & Zhang, 2019), smoothening
with random noise (Liu et al., 2018), or entropy regularization (Jagatap et al., 2020). However,
all those methods will incur (sometimes heavy) computational or memory overhead; and many can
cause standard accuracy drops, e.g., hessian/curvature-based methods (Gupta et al., 2020).

Stochastic weight averaging (SWA) (Izmailov et al., 2018) was proposed to enforce the weight
smoothness, by simply averaging multiple checkpoints along the training trajectory. SWA is known
to find much flatter solutions than SGD, is extremely easy to implement, improves standard gen-
eralization, and has almost no computational overhead. SWA has been successfully adopted in
semi-supervised learning (Athiwaratkun et al., 2018), Bayesian inference (Maddox et al., 2019), and
low-precision training (Yang et al., 2019a). In this paper, we introduce SWA to AT for the first time,
in order to smooth the weights and find flatter minima that may improve the adversarially robust
generalization. Note that we choose SWA mainly due to its simplicity for proofs-of-concept; while
extensively comparing alternative “flatness” regularizations is beyond our current work’s scope.

One additional bonus of adopting SWA in AT is the temporal ensemble effect of SWA. It has been
widely observed (Tramèr et al., 2018; Grefenstette et al., 2018; Wu et al., 2020b; Wang et al., 2021)
that training a model with the attack transferred from another could reduce “trivial robustness”
caused by locally nonlinear loss surfaces, and therefore constructed model ensembles for a stronger
defense. SWA was interpreted as approximating the fast geometric ensembling (Garipov et al.,
2018), by aggregating multiple checkpoint weights at different training time. Applying SWA to AT
therefore may lead to stronger and more transferable attacks, and consequently stronger defense due
to ensembling, with the convenience of a single model.

Approach: How Following (Izmailov et al., 2018), applying SWA to AT is straightforward:

WT
SWA =

WT−1
SWA × n+WT

n+ 1
, WT =WT−1 + ∆WT (2)
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Figure 3: Results of testing accuracy over epochs for ResNet-18 trained on CIFAR-10, CIFAR-100, STL-10,
and Tiny ImageNet. Dash / Solid lines show the standard accuracy (SA) / robust accuracy (RA). Blue, Green,
Black and Orange curves represent the performance of Baseline, KD, SWA and KD&SWA respectively.

where T indexs the training epoch, n the number of past checkpoints to be averaged, WSWA the
averaged network weight,W the current network weight, and ∆W the SGD update.

3 EXPERIMENT AND ANALYSIS

Datasets We consider five datasets in our experiments: CIFAR-10, CIFAR-100 (Krizhevsky &
Hinton, 2009), SVHN (Netzer et al., 2011), STL-10 (Coates et al., 2011) and Tiny-ImageNet (Deng
et al., 2009). In all experiments, we randomly split the original training set into one training and one
validation sets with a 9:1 ratio. Due to the limited space, we place the SVHN results in Appendix
A1.3. The ablation studies and the visualizations are mainly on CIFAR-10 and CIFAR-100.

Attack Methods We consider three representative attacks: FGSM (Goodfellow et al., 2015), PGD
(Madry et al., 2018), and TRADES (Zhang et al., 2019b). All of them are applied with (`2,ε =
128/255) or (`∞,ε = 8/255) setting as in (Madry et al., 2018), to generate adversarial samples.
We use FSGM-1/PGD-10/TRADES-10 for training and PGD-20 for testing as the default setting,
following Madry et al. (2018); Chen et al. (2020a). In addition, we use Auto-Attack (Croce & Hein,
2020) and CW Attack (Carlini & Wagner, 2017) for a more rigorous evaluation. More details are
provided in the Appendix A2.2.

Training and Evaluation Details For all experiments, we by default use ResNet-18 (He et al.,
2016), with the exception of VGG-16 (Simonyan & Zisserman, 2014) and Wide-ResNet (Zagoruyko
& Komodakis, 2016) adopted in Table 3. For training, we adopt an SGD optimizer with a momentum
of 0.9 and weight decay of 5×10−4, for a total of 200 epochs, with a batch size of 128. The learning
rate starts from 0.1 (0.01 for SVHN (Rice et al., 2020)), decay to one-tenth at epochs 50 and 150
respectively. For Tiny-ImageNet, we train for 100 epochs, and the learning rate decay at epochs 50
and 80 with other settings unchanged. The self-training KD regularization is applied throughout the
entire training, and SWA is employed after the first learning rate decay (when the robust overfitting
usually starts to occur). We evaluate two common metrics that are widely adopted (Zhang et al.,
2019b; Chen et al., 2020a): Standard Testing Accuracy (SA), and Robust Testing Accuracy (RA),
which are the classification accuracies on the original and the attacked test sets, respectively.

3.1 TACKLING ROBUST OVERFITTING

Superior Performance Across Datasets Table 1 demonstrates our proposal on STL-10, CIFAR-
10, CIFAR-100, and Tiny-ImageNet. We consider PGD-AT (Madry et al., 2018) as Baseline; and
denote our two training techniques as +KDstd&adv (KD with standard and robust self-teachers),
and +SWA, respectively. To numerically show the gap of robust overfitting, we also report the best
RA values when early stopping during training, the final RA in the last epoch, and as the difference
between final minus best. For reference, we also report the corresponding SA for the same best-RA
checkpoint (not the best SA value throughout training), the final epoch SA, and their difference.

We first observe that the robust overfitting prevails in all Baseline cases, with RA differences be-
tween final and best early-stopping values as large as 9.34% (CIFAR-10). In comparison, SA stays
stable (with negative gaps on STL-10 and CIFAR-10) or continues to improve along with more train-
ing epochs (with small positive gaps on CIFAR-100 and Tiny-ImageNet). Fortunately, the gaps were
significantly reduced by +KDstd&adv; and further diminished to only 0.4% to 0.6% when SWA is
also applied.
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Table 1: Performance showing the occurrence of robust overfitting across datasets and the effectiveness of
our proposed remedies with ResNet-18. The difference between best and final robust accuracy indicates degra-
dation in performance during training. We pick the checkpoint which has the best robust accuracy on the
validation set. The best results and the smallest performance differences are marked in bold.

Dataset Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

STL-10
Baseline 36.24 32.20 4.04 56.50 63.69 -7.19
Baseline + KDstd&adv 36.39 34.83 1.56 62.44 64.81 -2.37
Baseline + KDstd&adv + SWA 36.46 35.90 0.56 62.76 64.24 -1.48

CIFAR-10
Baseline 50.72 41.38 9.34 80.78 82.44 -1.66
Baseline + KDstd&adv 50.89 48.26 2.63 83.67 85.25 -1.58
Baseline + KDstd&adv + SWA 52.14 51.53 0.61 84.65 85.40 -0.75

CIFAR-100
Baseline 27.32 19.84 7.48 53.90 53.56 0.34
Baseline + KDstd&adv 27.56 26.02 1.54 57.42 60.34 -2.92
Baseline + KDstd&adv + SWA 28.28 27.69 0.59 60.58 60.85 -0.27

Tiny-ImageNet
Baseline 19.81 13.43 6.38 45.85 45.58 0.27
Baseline + KDstd&adv 21.45 19.25 2.20 48.98 51.15 -2.17
Baseline + KDstd&adv + SWA 21.84 21.45 0.39 50.57 51.38 -0.81

Further, we observe our methods to push the best RA higher by 0.22% ∼ 2.03%. For example,
the best RA on Tiny-ImageNet rises from 19.81% to 21.84%. Meanwhile, since there is no longer
robust overfitting early in training, the best RA checkpoints become to select late epochs (often
close to the end). Consequently, the SA values of the selected best RA models are all substantially
improved. For example on CIFAR-100, the standard accuracy of our methods (best RA checkpoint)
surpasses the baseline’s best RA checkpoint by 6.68%, and by 7.29% for the final checkpoint.

Figure 3 further plots the RA and SA curves during training, from which we can clearly observe the
diminishing of robust overfitting, after applying KDstd&adv, SWA and a combination of two meth-
ods. The training curves robustly improve until the end, without compromising the best achievable
RA results, and further leads to a much-improved trade-off between RA and SA by avoiding early
stopping (e.g., selecting an early checkpoint for RA, when SA might still be half-baked).

Across Perturbations and Robustified Methods Our success can extend beyond PGD-AT. Ta-
ble 2 presents more results in different perturbations (i.e. `2, `∞) and diverse robustified meth-
ods (i.e. FSGM in (Wong et al., 2020), TRADES in (Zhang et al., 2019b)). Consistent obser-
vations can be made: almost eliminated robust overfitting gaps, and significant gains on RA (by
0.61% ∼ 3.11%) and SA (by 1.80% ∼ 4.22%).

We also compare with previous state-of-the-art results in (Rice et al., 2020) under the same setting.
As shown in Table A7 (Appendix), our methods shrink the gap between the RA best checkpoint and
the final epoch RA from 5.70% to 0.17% and simultaneously improve 4.50% by RA and 3.04% by
SA. More results can be found in Appendix A1.

Across Architectures and Improved Attacks Table 3 demonstrates the effectiveness of our meth-
ods across different architectures, including VGG-16, Wide-ResNet-34-4, and Wide-ResNet-34-10.
Specifically, our methods reduce the drop of robust accuracy from 5.83% to 0.06% with VGG-16
on CIFAR-10 while achieving an extra robust accuracy improvement of 2.57%, 1.69% and 1.23%
with VGG-16, Wide-ResNet-34-4 and Wide-ResNet-34-10 on CIFAR10, respectively. To further
verify the improvements achieved by our methods, we conduct extra evaluations under improved
attacks. As shown in Table 4, after applying the combination of KD and SWA, the overfitting prob-
lem is largely mitigated under both Auto-Attack (Croce & Hein, 2020) and CW attack (Carlini &
Wagner, 2017). Take CIFAR-10 `∞ adversary as an example, our approaches shrink the drop of ro-
bust accuracy from 7.04% to −0.09% under Auto-Attack, and 14.96% to 0.79% under CW attack,
when comparing the best model to the eventually converged model. These results indicate that our
methods can generalize to different architectures and improved attacks.

Excluding Obfuscated Gradients An often argued “counterfeit” of improved robustness is
caused by less effectiveness of generated adversarial examples due to obfuscated gradients (Athalye
et al., 2018). To exclude this possibility, we show that our methods maintain improved robustness
under unseen transfer attacks. To start with, the left figure in Figure 4 shows the transfer testing per-
formance on an unseen robust model (here we use a separately robustified ResNet-50 with PGD-10
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Table 2: Controlled experiments on CIFAR-10. The difference between best and final robust accuracy indicates
degradation in performance during training. We pick the checkpoint which has the best robust accuracy on
the validation set. The best results and the smallest performance difference are marked in bold.

Adversary Norm Radius Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

PGD `2 ε = 128
255

Baseline 67.26 65.93 1.33 88.78 88.86 -0.08
Our Methods 70.37 70.23 0.14 90.58 90.48 0.10

FGSM `2 ε = 128
255

Baseline 66.48 64.12 2.36 88.77 89.40 -0.63
Our Methods 69.53 69.49 0.04 91.11 91.15 -0.04

FGSM `∞ ε = 8
255

Baseline 43.14 37.09 6.05 85.77 86.51 -0.74
Our Methods 43.75 43.74 0.01 88.53 88.72 -0.19

TRADES `2 ε = 128
255

Baseline 69.07 64.81 4.26 85.43 85.61 -0.18
Our Methods 70.30 69.60 0.70 89.65 89.55 0.10

TRADES `∞ ε = 8
255

Baseline 51.07 47.32 3.75 79.67 81.81 -2.14
Our Methods 52.92 52.28 0.64 82.95 83.31 -0.36

Table 3: Controlled experiments across different architecture on CIFAR-10/100 under `∞ adversary. The
difference between best and final robust accuracy indicates degradation in performance during training. We
pick the checkpoint which has the best robust accuracy on the validation set. The best results and the smallest
performance difference are marked in bold.

Architecture Dataset Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

VGG-16 CIFAR-10 Baseline 46.42 40.59 5.83 75.29 79.54 -4.25
Our Methods 48.99 48.93 0.06 79.00 79.69 -0.69

VGG-16 CIFAR-100 Baseline 21.64 17.43 4.21 39.26 45.84 -6.58
Our Methods 24.79 24.73 0.06 48.20 49.00 -0.80

WRN-34-4 CIFAR-10 Baseline 52.59 43.06 9.53 81.53 83.28 -1.75
Our Methods 54.28 53.90 0.38 85.17 85.50 -0.33

WRN-34-4 CIFAR-100 Baseline 28.02 20.61 7.41 53.19 53.63 -0.44
Our Methods 30.10 29.80 0.30 57.23 58.05 -0.82

WRN-34-10 CIFAR-10 Baseline 54.27 47.12 7.15 84.16 85.72 -1.56
Our Methods 55.50 55.34 0.16 86.81 87.06 -0.25

WRN-34-10 CIFAR-100 Baseline 29.95 24.02 5.93 56.56 56.42 0.14
Our Methods 31.93 31.51 0.42 60.86 61.78 -0.92

Table 4: Evaluation under improved attacks on CIFAR-10/100 with ResNet-18. The difference between best
and final robust accuracy indicates degradation in performance during training. We pick the checkpoint which
has the best robust accuracy under PGD-20 attack on the validation set. The best results and the smallest
performance difference are marked in bold.

Dataset Norm Radius Settings Auto-Attack CW Attack
Best Final Diff. Best Final Diff.

CIFAR-10 `2 ε = 128
255

Baseline 67.18 64.29 2.89 73.80 53.77 20.03
Our Methods 68.87 68.90 -0.03 73.89 73.79 0.10

CIFAR-10 `∞ ε = 8
255

Baseline 47.00 39.96 7.04 75.48 60.52 14.96
Our Methods 49.35 49.44 -0.09 77.83 77.04 0.79

CIFAR-100 `2 ε = 128
255

Baseline 37.16 33.43 3.73 48.43 37.73 10.70
Our Methods 40.56 40.61 -0.05 51.02 50.90 0.12

CIFAR-100 `∞ ε = 8
255

Baseline 22.73 18.11 4.62 45.89 37.76 8.13
Our Methods 25.42 25.35 0.07 49.46 49.07 0.39

on CIFAR-100), using attacks generated by the different epoch checkpoints of PGD-AT Baseline,
Baseline + KDstd&adv, and Baseline + KDstd&adv + SWA. A higher robust accuracy on the unseen
robust model corresponds to a weaker attack. Apparently, our methods consistently yield stronger
and more transferable attacks, while the attacking quality generated by the baseline quickly drops
with deteriorated transferability. Similarly, the right figure of Figure 4 transfers the attack from
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Figure 4: (Left) Transfer attack performance on an unseen robust model, where attacks are generated by
Baseline, KD, and KD&SWA’s different epoch checkpoints. (Right) Transfer attack performance on models
from Baseline, KD, and KD&SWA, where attacks are generated by an unseen robust model. The unseen robust
model is a ResNet-50 trained by PGD-10. All experiments are conducted on the CIFAR-100 dataset.

Table 5: Ablation studies on CIFAR-10 with ResNet-18. Compared with Baseline (PGD-AT) methods, the
performance improvements and degradations by adding each component are reported in red and blue numbers.

Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

Baseline 50.72 41.38 9.34 80.78 82.44 -1.66

KDstd 48.72(↓ 2.00) 43.08(↑ 1.70) 5.64 83.40(↑ 2.62) 84.80(↑ 2.36) -1.40
KDadv 51.01 (↑ 0.29) 47.72(↑ 6.34) 3.29 82.18(↑ 1.40) 83.51(↑ 1.07) -1.33
SWA 51.65(↑ 0.93) 48.21(↑ 6.83) 3.44 83.42(↑ 2.64) 84.12(↑ 1.68) -0.70
KDstd&adv 50.89(↑ 0.17) 48.26(↑ 6.88) 2.63 83.67(↑ 2.89) 85.25(↑ 2.81) -1.58
KDstd&adv + SWA 52.14(↑ 1.42) 51.53(↑ 10.15) 0.61 84.65(↑ 3.87) 85.40(↑ 2.96) -0.75

an unseen robust model to the above three methods, while our methods consistently defend better.
Those empirical pieces of evidence suggest that our RA gains are not a result of gradient masking.

3.2 ABLATION STUDY AND VISUALIZATION

KDadv, KDstd and SWA We study the effectiveness of each component in logit and weight
smoothening. We also specifically decompose KDstd&adv into two ablation methods: KDstd (by
setting λ2 = 0 in Eqn. (1)), andKDadv (by setting λ1 = 0), respectively. Table 5 shows thatKDstd,
KDadv and SWA all substantially contribute to suppressing the robust overfitting and enhancing the
SA-RA trade-off. We notice that while KDstd seems to (understandably) sacrifice the best RA a bit
for improving TA, combining it with KDadv brings the RA compromise back and boosts them both.

Table 6: Ablation of label smoothing versus KD on CIFAR-10.

Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

Label Smoothing 50.75 44.73 6.02 81.28 83.54 -2.26
Tf-KDreg 50.79 45.65 5.14 79.63 83.56 -3.93

KDstd&adv−FGSM 50.81 48.32 2.49 84.79 85.59 -0.80
KDstd&adv−PGD10 50.89 48.26 2.63 83.67 85.25 -1.58
KDstd&adv−PGD100 50.92 48.47 2.45 83.31 84.64 -1.33

Naive LS versus learned logit
smoothening As KD could be
viewed as a learned version of LS
(Yuan et al., 2020), we next quan-
tify the benefit of using KDstd&adv,
compared to naive LS (Szegedy et al.,
2016), and the teacher-free knowl-
edge distillation regularization (Tf-
KDreg) in (Yuan et al., 2020), all incorporated with PGD-AT on CIFAR-10. Table 6 show that
both naive LS and Tf-KDreg also reduce robust overfitting to some extent, but far less competitive
than KDstd&adv. Moreover, the robustness gains of naive LS and Tf-KDreg no longer hold under
transfer attacks, implying that they are susceptible to obfuscated gradients. Further visualization
in Figure 5 demonstrates that our methods smooth the logits without compromising the class-wise
discriminative information, while naive LS and Tf-KD might suffer from weaker gradients here.

Quality of Self-Teachers An extra price for our learned logit smoothening is the pre-training of
self-teachers, although this is already quite common in similar literature (Chen et al., 2020a;b).
To further reduce this burden, we explore whether high-quality and more expensive pre-training is
necessary for us, and fortunately find that is not the case. For example, Table 6 shows only marginal
performance difference when the robust self-teacher is pre-trained using FGSM or PGD-10/100.
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Figure 5: t-SNE results of different logits smoothing approaches on CIFAR-10. Dots and stars represent for
clean and adversarial images respectively. Orange, Blue and Green represent classes A, B and C respectively.
For each class, we visualize all testing images and their corresponding adversarial images from PGD-20.
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Figure 6: Comparison of loss landscapes of models trained by baseline (the first row) and our methods (the
second row). Loss plots in each column are generated from the same original image randomly chosen from the
CIFAR-100 test dataset. z axis denotes the loss value. Following the settings in (Engstrom et al., 2018), we plot
the loss landscape function: z = loss(x · r1 + y · r2), where r1 = sign(∇if(i)) and r2 ∼ Rademacher(0.5).
Here i denostes the original image, and f(·) a trained model whose inputs are scaled to [0, 1].
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Figure 7: Robust testing loss as
a function of perturbed weight dis-
tance, starting from models trained by
PGD-AT baseline and our methods on
CIFAR-100.

Visualizing Flatness and Local Linearity We expect SWA
to find flatter minima for AT to improve its generalization, and
we show it to indeed happen by visualizing the loss landscape
w.r.t. both input and weight spaces. Figure 6 shows that our
methods notably flatten the rugged landscape w.r.t. the input
space, compared to the PGD-AT baseline, which aligns with
the robust generalization claims in (Moosavi-Dezfooli et al.,
2019; Wu et al., 2020a). Figure 7 follows (Izmailov et al.,
2018) to perturb the trained model in the weight space and
show how the robust testing loss changes over the perturbation
radius. We perturb 10 different random directions at each dif-
ferent `2 distance. Our methods present better weight smooth-
ness around the achieved local minima too, which suggests im-
proved generalization (Dinh et al., 2017; Petzka et al., 2019).

We additionally look at the local linearity measurement proposed in (Andriushchenko & Flammar-
ion, 2020), which originally addresses catastrophic overfitting in fast AT. As shown in Figure A11,
our methods also achieve consistently better local linearity.

4 CONCLUSION

This paper takes one more step towards addressing the recently discovered robust overfitting is-
sue in AT. We present two empirical solutions to smooth the logits and weights respectively; both
are motivated by successful practice in improving standard generalization, and we adapt them for
AT. While Rice et al. (2020) found simpler regularizations unable to fix robustness overfitting, our
learned smoothening regularization seems to largely mitigate that. Extensive experiments show our
proposal to establish new state-of-the-art performance on AT. While promising progress has been
made, the underlying cause of robust overfitting is not yet fully explained. Our future work will
connect to more theoretical understandings of this issue (Wang et al., 2019; 2020b).
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A1 MORE EXPERIMENT RESULTS

A1.1 STATE-OF-THE-ART BENCHMARK ON CIFAR-100

We implement our methods with exactly the same setting as (Rice et al., 2020) and compare it with
the baseline result reported from the original paper. As shown in Table A7 and Figure A8, our
methods achieve great improvements both on robust accuracy and standard accuracy (1.64% in RA
and 3.78% in SA for `∞, 4.50% in RA and 3.04% in SA for `2), which establish a new state-of-the-
art bar.

Table A7: Comparative Experiment on CIFAR-100, we follow the same setting and compare with the baseline
result from (Rice et al., 2020). Best refers to the model with best robust accuracy during training and Final is
an average of accuracy over last 5 epochs.

Adversary Norm Radius Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

PGD `2 ε = 128
255

Baseline 43.20 37.50±0.09 5.70 62.50 60.10±0.22 2.40
Our Methods 47.70 47.53±0.03 0.17 65.54 65.56±0.01 -0.02

PGD `∞ ε = 8
255

Baseline 28.10 21.40±0.39 6.70 52.70 54.10±0.23 -1.40
Our Methods 29.74 29.40±0.02 0.34 56.48 57.69±0.03 -1.21
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Figure A8: Results of testing accuracy over epochs for ResNet-18 trained on CIFAR-100 with the same setting
as Rice et al. (2020). Dash lines show the standard accuracy (SA); solid lines represent the robust accuracy
(RA). Blue, Green and Orange curves represent the performance of Baseline, KD and KD&SWA respectively.

A1.2 T-SNE RESULT ON CIFAR-100

We visualize the learned feature space with all training images and their corresponding adversarial
images from PGD-10 on CIFAR-100. As shown in Figure A9, our learned features have a larger dis-
tance between classes while being more clustered within the same class. The more distinguishable
feature embedding justifies the improvement of both robust and standard accuracy.

A1.3 SUPERIOR PERFORMANCE ON SVHN

We conduct our experiments on SVHN with ResNet-18 (He et al., 2016) architecture and adopt an
SGD optimizer with a momentum of 0.9 and a weight decay of 5 × 10−4 for 80 epochs in total
with a batch size of 128. The learning rate starts from 0.01 and follows a cosine annealing schedule.
The result can be found on Table A8 and Figure A10. As we can see, the robust accuracy of the
best checkpoint for `∞ is improved from 52.60% to 53.65%, and robust overfitting is alleviated
by 6.30%. In the meantime, standard accuracy has also been improved by 2.47%. The superior
performance on SVHN aligns with results on other datasets, which shows the effectiveness of our
methods.
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Figure A9: t-SNE results of different models trained on CIFAR-100. Dots and stars represent for
clean and adversarial images respectively. Red, Blue and Green represent classes A, B and C respec-
tively. For each class, we visualize all training images and their corresponding adversarial images
from PGD-10. The left figure is Baseline; the right figure is Our Methods.
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Figure A10: Results of testing accuracy over epochs for ResNet-18 trained on SVHN. Dash lines show the
standard accuracy (SA); solid lines represent the robust accuracy (RA). Blue, Green, Black and Orange curves
represent the performance of Baseline, KD, SWA and KD&SWA respectively.

Table A8: Performance showing the occurrence of robust overfitting and effectiveness of our proposed reme-
dies with ResNet-18 on SVHN. The difference between best and final robust accuracy indicates degradation in
performance during training. We pick the checkpoint which has the best robust accuracy on validation dataset.
The best results and the minimum performance difference are marked in bold.

Dataset Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

SVHN
Baseline 52.60 43.30 9.30 87.93 89.94 -2.01
Baseline + KDstd&adv 52.93 48.46 4.47 87.62 91.36 -3.74
Baseline + KDstd&adv + SWA 53.65 50.65 3.00 90.40 91.70 -1.30

A1.4 LOCAL LINEARITY

As proposed by (Andriushchenko & Flammarion, 2020), the catastrophic overfitting problem is
mainly due to the local linearity reduction when adversarial training with FGSM(Rice et al., 2020).
So we borrow this measurement in the robust overfitting scenario, which calculates the expectation
of the cosine similarity of the gradient between the original input and randomly perturbed one with a
uniform distribution, as shown in Eqn. 3. The result shown in figure A11 indicates that our methods
help to slow the decline of local linearity and the maintenance of local linearity is also helpful for
preventing robust overfitting.
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E(x,y)∈D,η∈U([−ε,ε]d)

[
cos
(
∇xL(f(θ,x), y),∇xL(f(θ,x + η), y)

)]
(3)
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Figure A11: The local linearity is calculated from all test images on CIFAR-100 with models from
each period of the training process. Blue, Green and Orange curves represent the local linearity of
Baseline, KD and KD&SWA respectively.

A1.5 ABLATION OF TRANSFER ATTACK

With the purpose of fully comparing the effects of label smoothing and knowledge distillation, we
introduce a transfer attack with an unseen non-robust model with the same architecture, follow the
same setting as (Fu et al., 2020). A higher accuracy on the unseen model indicates a weaker attack
generated by the corresponding setting while a higher accuracy from the unseen model means better
robustness. As shown in Table A9, only knowledge distillation shows significant improvement with
both accuracies, compared with baseline(PGD-AT) methods. The strength of generated adversarial
images is improved by 4.32% and the robustness is improved by 2.91% for the best model. We also
experiment with an unseen robust model and get consistent improvement. This improvement indi-
cates that knowledge distillation introduces more discriminating information from teacher models,
which is better than manually designed label smoothing methods.

Table A9: Ablation of Transfer attack. The accuracy on unseen model is the accuracy of unseen
model with adversarial images generated by source models from different settings and the accuracy
from unseen model means the opposite. We generated adversarial images for all test images on
CIFAR-10 with `∞ PGD-20. Baseline represents the PGD-AT methods.

Settings Accuracy on unseen model Accuracy from unseen model
Best Final Best Final

Baseline 69.87 80.43 79.72 81.77
Label smoothing 70.94 81.24 78.44 82.82

Tf-KDreg 73.29 82.21 79.47 82.71
KDstd&adv−PGD10 65.55 72.63 82.63 84.01

A1.6 SWA VERSUS ISWA

One possible extension of SWA is to replaceWT−1 withWT−1
SWA in Eqn. 2. We name this variant as

iSWA and compare it with the original SWA in Table A10. Both weight smoothing techniques can
mitigate robust overfitting, and iSWA performs slightly better on RA while sacrificing some SA.
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Table A10: Ablation of SWA on CIFAR-10.Best refers to the model selected with best robust
accuracy on validation dataset and Final is the model at the end of training process.

Settings Robust Accuracy (RA) Standard Accuracy (SA)
Best Final Diff. Best Final Diff.

KDstd&adv−PGD10 + SWA 52.14 51.53 0.61 84.65 85.40 -0.75
KDstd&adv−PGD10 + iSWA 52.36 52.33 0.03 83.17 83.54 -0.37

A2 MORE METHODOLOGY AND IMPLEMENTATION DETAILS

A2.1 KNOWLEDGE DISTILLATION

We state KD as follows:

KD(y, ŷ) = −H(t(y), t(ŷ))

= −
∑
j

t(y)j log t(ŷ)j

where t(y)i = (yi)
1/T∑

j(yj)
1/T , T = 2 in our case, following the standard setting in (Hinton et al., 2015;

Li & Hoiem, 2017).

A2.2 ADVERSARIAL TRAINING

Adversarial training incorporates generated adversarial examples into the training process and sig-
nificantly improves the robustness of networks. In our paper, we implemented three different ad-
versarial training schemes: FGSM, PGD and TRADES, which can be described as the optimization
problem below: Eqn.4 for FGSM and PGD, Eqn.5 for TRADES.

min
θ

E(x,y)∈D max
δ∈Bε(x)

L(f(θ,x + δ), y) (4)

min
θ

E(x,y)∈D

[
L(f(θ,x), y) + β · max

δ∈Bε(x)
KL(f(θ,x + δ), f(θ,x))

]
(5)

As for the maximization process, FGSM perturbs the input with a single step in the direction of the
sign of the gradient and PGD is the iterative form of FGSM with random restarts, which works as
follows.

δt+1 = projP

(
δt + α · sgn

(
∇xL(f(θ,x + δt), y)

))
(6)

δt+1 = projP

(
δt + α · sgn

(
∇xKL(f(θ,x + δ), f(θ,x)

))
(7)

TRADES (Eqn.7) replaces the cross entropy loss in PGD with the Kull-back–Leibler divergence of
network output for the clean input and the adversarial input. Where f is the network with parameters
θ, (x, y) is the data. α is the step size and δt is the adversarial perturbation after t times iterations.
The perturbation is constrained in an `p norm ball, i.e.‖δ‖p ≤ ε, which is realized by projection. we
consider both `∞ and `2 in our paper. For `∞ adversary, we use ε = 8

255 and α = 2
255 for PGD and

TRADES with 10 steps in training and 20 steps in testing, while using α = 7
255 for FGSM during

training. As for `2 adversary, we use ε = 128
255 and α = 15

255 with the same steps as `∞ adversary in
all three attack methods.

For a comprehensive evaluation, we consider two improved attacks, i.e., Auto-Attack (Croce &
Hein, 2020) and CW Attack (Carlini & Wagner, 2017). We use the official implementation and
default settings for Auto-Attack (`∞ with ε = 8

255 and `2 with ε = 128
255 ) and the implementation
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from AdverTorch (Ding et al., 2019) for CW attack with the same setting as Rony et al. (2019),
specifically, 1 search step on C with an initial constant of 0.1, with 100 iterations for each search
step and 0.01 learning rate. Detailed links are provided below:

• The Official Repository: https://github.com/fra31/auto-attack
• The Leaderboard: https://robustbench.github.io/
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