
Artificial Intelligence 278 (2020) 103194
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Variable neighborhood search for graphical model energy

minimization

Abdelkader Ouali a,∗, David Allouche b, Simon de Givry b,∗, Samir Loudni a,
Yahia Lebbah c,∗, Lakhdar Loukil c, Patrice Boizumault a

a University of Caen Normandy, CNRS, UMR 6072 GREYC, 14032 Caen, France
b INRA, MIA Toulouse, UR-875, 31320 Castanet-Tolosan, France
c University of Oran1, Lab. LITIO, 31000 Oran, Algeria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2018
Received in revised form 3 September 2019
Accepted 27 October 2019
Available online 31 October 2019

Keywords:
Variable neighborhood search
Computational Protein Design
Parallelism
Complete search method
Anytime algorithm
Discrete graphical model
Combinatorial optimization
Markov Random Field
Most Probable Explanation
Cost Function Network

Graphical models factorize a global probability distribution/energy function as the product/
sum of local functions. A major inference task, known as MAP in Markov Random
Fields and MPE in Bayesian Networks, is to find a global assignment of all the variables
with maximum a posteriori probability/minimum energy. A usual distinction on MAP
solving methods is complete/incomplete, i.e. the ability to prove optimality or not.
Most complete methods rely on tree search, while incomplete methods rely on local
search. Among them, we study Variable Neighborhood Search (VNS) for graphical models.
In this paper, we propose an iterative approach above VNS that uses (partial) tree
search inside its local neighborhood exploration. The proposed approach performs several
neighborhood explorations of increasing search complexity, by controlling two parameters,
the discrepancy limit and the neighborhood size. Thus, optimality of the obtained solutions
can be proven when the neighborhood size is maximal and with unbounded tree search.
We further propose a parallel version of our method improving its anytime behavior on
difficult instances coming from a large graphical model benchmark. Last we experiment
on the challenging minimum energy problem found in Computational Protein Design,
showing the practical benefit of our parallel version. A solver is available at https://
github .com /toulbar2 /toulbar2.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Probabilistic graphical models [1] are formed by variables linked to each other by stochastic relationships. They enable
to model complex systems with heterogeneous data and to capture uncertainty. Graphical models have been applied in a
wide range of areas such as image analysis, speech recognition, bioinformatics, and ecology.

We focus on models with discrete variables like Markov Random Field and Bayesian Network. Our goal is to find a
global assignment of all the variables with maximum a posteriori probability. This optimization task defines an NP-complete
problem [2]. Solving methods can be categorized in two groups: exact and local search methods. Exact methods rely on
tree search, variable elimination, linear programming, or a combination of them [3–5]. Graph-cut and message-passing algo-
rithms like loopy belief propagation and variational approaches [6–10] are exact only in some particular cases (e.g., binary

* Corresponding authors.
E-mail address: samir.loudni@unicaen.fr (S. Loudni).
https://doi.org/10.1016/j.artint.2019.103194
0004-3702/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2019.103194
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
https://github.com/toulbar2/toulbar2
mailto:samir.loudni@unicaen.fr
https://doi.org/10.1016/j.artint.2019.103194
https://github.com/toulbar2/toulbar2
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.103194&domain=pdf

2 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
image denoising or tree structured problems). Local search methods are stochastic algorithms like Gibbs sampling, Guided
Local Search [11,12], and Stochastic Greedy Search [13]. Some of them have theoretical asymptotic proof of convergence, i.e.,
the optimal solution is guaranteed to be found if infinite time is available. In practice, they may exhibit a better anytime
behavior than exact methods on large and difficult problems [14,12,13], i.e., they produce better solutions in less time.

A few attempts have been done to combine exact and local search methods. A simple way is to run sequentially a local
search algorithm then tree search, where solutions found by local search will be used as initial upper bounds for branch and
bound exact methods. Another approach is to design a local search framework where the neighborhood exploration is per-
formed by tree search in a systematic or non-systematic way as it is done in Large Neighborhood Search (LNS) [15–19] and
Variable Neighborhood Search (VNS) [20,21]. VNS/LDS+CP [21] combines a metaheuristic, VNS, with Limited Discrepancy
Search (LDS) [22], a partial tree search method (Section 2). We propose in this paper an iterative variant of VNS/LDS+CP,
called Unified Decomposition Guided VNS (UDGVNS), adapted to graphical models and able to prove optimality when the
neighborhood size is maximal and with unbounded tree search.

Contributions and plan.

1. We introduce UDGVNS, a new iterative approach above DGVNS1 (Decomposition Guided VNS) unifying complete and in-
complete search methods. UDGVNS restores the completeness of DGVNS by applying successive calls with an increasing
discrepancy limit.

2. We describe a coarse-grained parallel version called UPDGVNS (for Unified Parallel DGVNS) allowing asynchronous
cooperative execution of UDGVNS processes with centralized information exchange as in [24,25]. As for UDGVNS, the
parallel release enables one to control the compromise between optimality proof and anytime behavior. Compared to
UDGVNS, the parallel version enables us to improve the anytime behavior on difficult instances.

3. We propose a new operator denoted add1/jump for managing the neighborhood size k that exploits the graph of
clusters provided by a tree decomposition of the problem.

4. We present an extensive empirical study that includes a wide range of instances coming from various benchmarks
(Cost Function Network (CFN), Computer Vision and Pattern Recognition (CVPR), Uncertainty in Artificial Intelligence
(UAI) 2008 and Probabilistic Inference Challenge (PIC) 2011) which compares our techniques to state-of-the-art ones.
Experimental results show that our approaches offer a good compromise between the number of problems completely
solved compared to the quality of the best solution found.

5. We report experiments on the challenging minimum energy problem in Computational Protein Design (CPD). For this
aim, we designed new larger instances that are well structured and supposed to be more difficult to solve than those
generated in [26]. We show the practical benefit of our approaches compared to toulbar2 and FIXBB2 the simulated
annealing algorithm provided by the Rosetta package for CPD.

The paper is organized as follows. Section 2 recalls preliminaries. Section 3 presents UDGVNS. Section 4 describes our
parallel version UPDGVNS. Sections 5-6 report experiments we performed. Finally, we conclude and draw some perspectives.

2. Preliminaries

2.1. Graphical model

Definition 1. A probabilistic graphical model (or Gibbs distribution) [1] is a triplet (X , D, F) with X = {X1, . . . , Xn}, a set
of n random variables, D = {D1, . . . , Dn}, a set of finite domains of values of maximum size d = maxn

i=1 |Di |, and F , a set
of potential functions. Each variable Xi takes values in Di . An assignment of X is a set x = (x1, . . . , xn), with xi ∈ Di . The
set of all possible assignments of X is denoted � = ∏n

i=1 Di . Let A = {D ′
1, . . . , D

′
n} with D ′

i ⊆ Di represent a restricted set
of � called a partial assignment. If S is a subset of V = {1, . . . , n}, X S , xS and �S are respectively the subset of random
variables {Xi, i ∈ S}, the assignment (xi, i ∈ S) obtained from x, and the set of all possible assignments of X S . Given a set S
of partitions of V , the set F = { f S }S∈S of maps from �S to R+ is said to factorize a joint probability distribution P iff:

P (x) = 1

Z

∏

f S∈F
f S(xS) (1)

where Z = ∑
x∈�

∏
f S ∈F f S(xS) is the normalizing constant, also called the partition function.

Among the various tasks, the Most Probable Explanation (MPE) problem is to find the most likely assignment x ∈ � to all
the variables in X maximizing P (x). By taking the opposite of the logarithm of P (x), i.e.,

1 DGVNS [23] exploits, within VNS/LDS+CP, structural knowledge coming from tree decomposition in order to efficiently guide the exploration of large
neighborhoods (Section 2).

2 Fixed backbone design application.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 3
Algorithm 1: Limited Discrepancy Search algorithm.

Function LDS(�, A, ub : In/O ut, x : O ut) : Boolean
lef t ← true ; right ← true ;
if (∃Di ∈ A, |Di | > 1) then

Choose an unassigned variable Xi ∈ X such that |Di | > 1 ;
Choose a value xi ∈ Di ;
A′ ← (A \ {Di}) ∪ {{xi}} ;
if (lb(A′) < ub) then

le f t ← LDS(�, A′, ub, x) ; // left branch
if (� > 0) then

A′′ ← (A \ {Di}) ∪ {Di \ {xi}} ;
if (lb(A′′) < ub) then

right ← LDS(� − 1, A′′, ub, x) ; // right branch
else

1 return false ; // search is incomplete
else

2 ub ← lb(A), x ← A ; // new solution found
return le f t ∧ right ; // true if both branches are complete

− logP (x) =
∑

f S ∈F
− log f S(xS) + log Z =

∑

f S∈F
ϕ(xS) + log Z

we obtain an additive model with ϕ(xS) called an energy function. Finding a solution of minimum energy is equivalent
to MPE. In the rest of the paper, we consider energy minimization. When ϕ(xS) maps to N+ ∪ {∞}, the corresponding
deterministic graphical model is called a Cost Function Network (CFN) [27]. Finding a solution of minimum cost is the same
as doing energy minimization on the equivalent probabilistic model [28].

Specific solving methods have been proposed to solve these problems but two general approaches can be considered.
The first one applies traditional search techniques based on backtracking or branch and bound. In the worst case, their time
complexity is in O (dn) while being generally linear in space. The second one relies on methods that exploit the notion of
decomposition of graphs and which are based on Dynamic Programming (DP) (see Section 2.4.1). These methods make it
possible to guarantee a time complexity in O (dw) (where w is the minimum width over all the tree decompositions) but
with an exponential space complexity.

2.2. DFBB and limited discrepancy search

Depth-First Branch and Bound (DFBB) methods explore a search tree in a systematic way by recursively choosing the
next unassigned variable to assign and by choosing a value in its domain for the assignment (the branch part) until a better
solution is found or it can be proved that the subtree rooted at the current search node has no better solutions and it can
be pruned (the bound part). DFBB depends on its variable and value ordering heuristics for branching in order to find good
solutions rapidly and to reduce the size of the search tree to be explored. It also depends on its lower bound computation
in order to prune the search for minimization problems. Typically, lower bounds are built by dynamic programming with
bounded memory, such as mini-buckets heuristic [29], or by solving a linear relaxation of the problem or its dual in an
exact or approximate way. In the experiments, we exploit during search an approximate dual lower bound called Existential
Directional Arc consistency (EDAC) [30] that performs fast incremental problem reformulations with extra domain value
pruning. More information can be found in [31].

Limited Discrepancy Search (LDS) [22] is a heuristic method that explores the search tree in a non-systematic way by
making a limited number of wrong decisions w.r.t. its value ordering heuristic. We assume a binary search tree where at
each search node either the selected variable is assigned to its chosen preferred value (left branch) or the value is removed
from the domain (right branch). Each value removal corresponds to a wrong decision made by the search, it is called a
discrepancy. The number of discrepancies is limited by a parameter denoted �. See Algorithm 1, where lb(A) gives a lower
bound on the minimum energy minx∈∏

Di∈A Di
− logP (x) of the partial assignment A.

In order to detect if a complete search has been done, LDS returns true if and only if the discrepancy limit is never
reached. Otherwise it returns false as soon as � = 0 (line 1). If it returns true then LDS is equivalent to a complete DFBB.

In order to produce better quality solutions as time passes, a simple strategy is to iterate LDS with an increasing number
of discrepancies � going from �min to �max . See Algorithm 2 for this Iterative LDS (ILDS) method, where +� is a special sum
operator that will be discussed in Section 3. The minimum energy and its corresponding solution are provided in global
variables ub and x. In the sequel, we give no initial upper bound (ub = ∞).

Proposition 1. ILDS(0, n(d − 1), +, ∞, {}) is a complete method with a worst-case time complexity exponential in the number of
variables and a linear space complexity.

Proof. First, we prove that ILDS returns true if and only if optimality was proven. Each iteration does at most � discrep-
ancies along the path from the root search node to a terminal node. With a sufficiently large discrepancy limit, LDS never

4 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Algorithm 2: Iterative LDS algorithm.

Function ILDS(�min, �max, +�, ub : In/O ut, x : O ut) : Boolean
r ← 0 ; // number of discrepancy iterations
� ← �min ; // initial discrepancy limit
while (� ≤ �max) do

opt ← LDS(�, D, ub, x) ;
3 if (opt ∨ ub = lb(D)) then return true ;

r ← r + 1 ;
4 if (� < �max) then � ← min(�max, �min +� r) ;

else � ← ∞
return false ;

reaches its discrepancy limit (� = 0) and explores a complete search tree, so both LDS and ILDS (line 3) return true. Be-
cause we have in the worst case n(d − 1) value removals (right branches) to reach a terminal node before assigning all the
variables, we can set �max = n(d − 1) and at least, the last iteration is complete,3 i.e., LDS(n(d − 1), D, ub, x) is equivalent
to a complete DFBB. Here, d is the maximum domain size of all the variables.

Another condition for completeness is reached when LDS finds a solution with a cost equal to a known lower bound of
the problem. In this case, LDS will stop branching and ILDS will return true before reaching its last iteration (line 3).

For simplicity reasons, let assume variables with Boolean domains (d = 2). The maximum height h of the explored
search tree is therefore equal to the number of variables h = n. The number of terminal nodes with exactly � discrepancies
is bounded by (h

�). In the worst case, ILDS runs for � = 0..h. The number of terminal nodes of LDS for � = h is equal to
(h

0) + (h
1) + (h

2) + . . . + (h
h) = ∑

0≤k≤h(h
k) = 2h . Thus in the worst case, one iteration of LDS has a time complexity in �(2h).

By doing at most h + 1 iterations (from � = 0 to �max = h), ILDS will explore at least �(2h) terminal nodes. The asymptotic
time complexity of ILDS is therefore exponential in the number of variables.

Because LDS has a linear space complexity, thanks to its depth-first search principle as in DFBB, ILDS has also a linear
space complexity. �

In [32], a similar stopping condition for optimality proof was presented. Because heuristics are often less informed near
the root of the search tree, it is usually better to make wrong decisions at the beginning of the search [22,33]. It favors
exploring new parts of the search tree, possibly finding better solutions that will prune the remaining part of the search
tree already explored at previous iterations. Our actual implementation of LDS exploits this fact (right branch done before
left branch when the discrepancy limit is not reached).

2.3. Variable neighborhood search

VNS [20] is a metaheuristic that uses a finite set of pre-selected neighborhood structures Nk, k = 1, 2, ..., kmax to es-
cape from local minima by systematically changing the neighborhood structure if the current one does not improve the
incumbent solution. VNS repeatedly performs three major steps. In the first one, called shaking, a solution x′ is randomly
generated in the neighborhoods of x denoted Nk(x). In the second one, a local search method is applied from x′ to obtain a
local optimum x′′ . In the third one, called neighborhood change, if x′′ is better, than x is replaced with x′′ and k is set to 1;
otherwise, k is increased by one.

The use of VNS scheme for solving deterministic graphical models started with VNS/LDS+CP [21] and improved in
DGVNS [23] (see section 2.4). This approach is related to LNS [15], but it adjusts dynamically the neighborhood size and
exploits a tree decomposition of the constraint graph of the problem when the search seems to stagnate as in VNS.

2.4. Decomposition guided variable neighborhood search

Recently, Fontaine et al. [23] investigated the incorporation of tree decomposition in order to efficiently guide the ex-
ploration of large neighborhoods. They proposed Decomposition Guided VNS (DGVNS), a first local search approach that
exploits the graph of clusters provided by a tree decomposition of the constraint graph of the problem to build relevant
neighborhood structures. The next section 2.4.1 defines formally the constraints tree decomposition. Then we present in sec-
tion 2.4.2 the construction of the initial solution exploited by DGVNS. In section 2.4.3, we detail the main DGVNS algorithm,
and show in section 2.4.4 how to instantiate VNS/LDS+CP algorithm from DGVNS. Finally, we briefly discuss the impact of
a tree decomposition on the performance of DGVNS.

3 In practice, � was less than or equal to 128 for all instances completely solved within 1 hour CPU time limit by LDS and VNS methods in Section 5.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 5
Algorithm 3: Decomposition Guided VNS algorithm.

Procedure DGVNS(�, kmin, kmax, ub : In/O ut, x : O ut)
let (CT , T) be a tree decomposition of (X , D, F) ;
LDSr (n(d − 1), D, ub, x) ; // find an initial solution
c ← 1 ; // current cluster index
i ← 0 ; // nb. of successive failed neighborhood sizes
k ← kmin ; // initial neighborhood size
while (k ≤ kmax ∧ ¬T imeO ut) do

5 A ← getNeighborhood(x, Cc , k) ;
ub′ ← ub ;

6 LDSr (�, A, ub′, x′) ; // neighborhood search
if (ub′ < ub) then

7 x ← x′ , ub ← ub′ ; // new best solution
8 i ← 0, k ← kmin ;

else
i ← i + 1 ;

9 k ← min(kmax, kmin + i) ;
10 c ← 1 + c mod |CT | ; // visit next cluster

Function getNeighborhood(x, C, k)

if k ≥ |X | then
11 Xun ← X

else
12 Cand ← CompleteCluster(C, k) ;
13 Xun ← Random(Cand, k) ; // Random selection of k conflict variables
14 A ← {Di | Xi ∈ Xun} ∪ {{xi} | Xi ∈ X \Xun} ; // Unassign selected variables

return A ;

2.4.1. Tree decomposition

Definition 2. A tree decomposition of a connected graphical model G is a pair (CT , T) where T = (I, A) is a tree with nodes
set I and edges set A and CT = {Ci | i ∈ I} is a family of subsets of X , called clusters, such that: (i) ∪i∈I Ci =X , (ii) ∀ f S ∈F ,
∃ Ci ∈ CT s.t. S ⊆ Ci , (iii) ∀ i, j, k ∈ I , if j is on the path from i to k in T , then Ci ∩ Ck ⊆ C j .

Definition 3. The intersection of two clusters Ci and C j is called a separator, and noted sep(Ci, C j).

Definition 4. A graph of clusters for a tree decomposition (CT , T) is an undirected graph G = (CT , E) that has a vertex for
each cluster Ci ∈ CT , and there is an edge (Ci, C j) ∈ E when sep(Ci, C j) �= ∅.

The width w of a tree decomposition (CT , T) is equal to maxCi∈CT |Ci | −1. The treewidth w∗ of G is the minimum width
over all the tree decompositions of G .

Several studies have focused on the computation of tree decompositions [34,35]. The proposed algorithms can be classi-
fied into two approaches: the exact algorithms that compute decompositions of optimal width (equal to the treewidth) and
the heuristic methods, which do not offer a guarantee on optimality. The motivation of heuristic approaches is due to the
fact that the optimal computation is an NP-hard problem [36]. Heuristic approaches dedicated to handle graphical models
often use triangulation (such as Minimum Fill-in (min-fill) [37] and Maximum Cardinality Search (MCS) [38]). These heuristic
approaches allow to process graphs of several thousand of vertices in reasonable time, but without guaranteeing the quality
of the obtained decompositions in terms of deviation from the optimum w∗ . Other heuristics and pre- or post-processing
rules may be applied to reduce the width of the decomposition [35,34]. In this paper, we use a heuristic approach based on
min-fill.

2.4.2. Initial solution and restricted LDS
VNS relies on an initial solution x. Without any infinite terms in the problem (corresponding to forbidden assignments or

hard constraints), x can be produced by a greedy search algorithm such as LDS(0, D, ∞, x). Otherwise, we can either relax
the problem (by replacing every infinite energy term by the sum of the greatest finite term of each original energy function
in the problem) or rely on a complete search method. For that, we made a modified version of LDS, called Restricted LDS
(LDSr), that stops immediately after a first solution is found.4

In particular, LDSr (n(d − 1), D, ∞, x) will either find a solution of finite cost (i.e., satisfying all the constraints) or prove
the problem has no feasible solution.

4 At the end of line 2 of Algorithm 1, it stops the recursive LDS procedure and returns false.

6 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
2.4.3. DGVNS algorithm
Algorithm 3 shows the pseudo-code of DGVNS. It exploits the graph of clusters provided by a tree decomposition of the

constraint graph of the problem to build relevant neighborhood structures. Let X be the set of variables, and let Nk,c be the
neighborhood structure, where k is the neighborhood size and Cc is the cluster where the variables will be selected from.

First, an initial solution x is generated by LDSr , as detailed in section 2.4.2. Second, to favor moves on regions that are
closely linked, x is partially destroyed by unassigning a subset of k variables and an exploration of its (large) neighborhood
is performed until the solution is repaired with a new one. To select the variables to be unassigned, DGVNS uses a neigh-
borhood heuristic based on clusters (see function getNeighborhood, line 5): the set of candidate variables Cand to be
unassigned are selected in the same cluster Cc . Indeed, the concept of cluster embodies this criterion, because of its size
(smaller than the original problem), and by the strong connection of the variables it contains. If (k > |Cc|), we complete
the set of candidate variables to be unassigned by adding clusters adjacent to Cc in order to take into account the topology
of the graph of clusters. This treatment is achieved by function CompleteCluster(Cc, k) (line 12). Third, a subset of k
variables Xun is randomly selected in Cand (line 13), and then rebuilt using LDSr . In the particular case where k is greater
than the variables cardinality (line 11), the whole variables are selected. The neighborhood change in DGVNS is performed
in the same way as in VNS. However, DGVNS considers successively all the clusters Cc . This ensures a better diversification
by covering a large number of different regions, and to locate the region containing the global optimum.

The core of DGVNS is its reconstruction phase. It relies on a non local solver combining constraint propagation and
Restricted LDS with a fixed discrepancy to explore the neighborhood of the solution. One advantage of this choice is its
exploration speed that improves the quality profile and allows a more balanced exploration of the search tree. First, a
subset of k variables are selected in X . Then, a partial assignment A is generated from the current solution x by unfixing
the k selected variables, and then re-built in the best way (line 6).

Let succ a successor function5 and Nk,c the current neighborhood structure: if LDSr finds a (first) solution of better
quality x′ in the neighborhood of x (line 6), then x′ becomes the current solution (line 7), k is reset to kmin (line 8), and the
next cluster is considered (line 10). Otherwise, DGVNS looks for improvements in N(k+1),succ(c) , a neighborhood structure
where (k + 1) variables will be unassigned (line 9). In fact, when a local minimum is found in the current neighborhood,
moving from k to (k + 1) will also provide some diversification by enlarging the neighborhood size. The search stops when
it reaches the maximal neighborhood size allowed or a timeout.

2.4.4. From DGVNS to VNS/LDS+CP
When a tree decomposition of the constraint graph of the problem is not available, the constraints can be handled as a

single cluster (i.e. |CT | = 1), and DGVNS behaves as VNS/LDS+CP algorithm [23]. In this case, the search process completes
the variables with LDSr without taking into account the constraints connectivity, which is intuitively less efficient than
the solving process when |CT | > 1. More precisely, when the variables Xun are strongly connected through the constraint
graph, LDSr will efficiently instantiate these variables thanks to constraint propagation, called at every LDS search node,
where it is well known that its effectiveness depends on the connectivity of the variables to be instantiated. This idea is
cleverly exploited by DGVNS thanks to the concept of cluster provided by the tree decomposition of the constraint graph. In
VNS/LDS+CP, the neighborhood heuristic (function getNeighborhood) randomly selects k variables to unassign among
conflicted ones. Such a heuristic which is mainly based on random choices has a major drawback since it does not take
advantage of the topology of the constraint graph. For instance, it may select unrelated variables (i.e., no constraint may be
fully unassigned), and all selected variables may also have a high degree (i.e., they occur in many constraints). In such a
case, it is unlikely to rebuild them without violating several constraints, and thus to find a solution of better quality than
the current one. Nevertheless, as reported by [23], VNS/LDS+CP remains efficient on some problems, but DGVNS is much
more efficient.

2.4.5. Synthesis
The motivation of exploiting the graph of clusters of a tree decomposition within VNS/LDS+CP algorithm is to build

pertinent neighborhood structures enabling better diversification. Clearly, the quality of the tree decomposition impacts
greatly the performance of DGVNS.

In our prior works [23], we have studied the impact of some parameters related to topological properties of the tree
decomposition: the width of a tree decomposition w , separators size, and the decomposability of a problem (w

n), estimated by
the ratio between the width of a tree decomposition and the number of variables. The width of a tree decomposition gives
a good indication on the size of subproblems, while separators size provides information about the connectivity between
clusters and the degree of their overlap.

From this study, we showed that DGVNS is very effective on problems that decompose into weakly connected clusters of
reasonable size, i.e. tree decompositions characterized by low values of (w

n), and by separators of small size (clusters that do
not overlap heavily), leading to more pertinent neighborhoods.

5 succ(c) = 1 + c mod |CT |.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 7
Algorithm 4: Unified Decomposition Guided VNS algorithm.

Procedure UDGVNS(�min, �max, +�, kmin, kmax, +k, ub : In/O ut, x : O ut, opt : O ut)
let (CT , T) be a tree decomposition of (X , D, F) ;

15 opt ← LDSr (n(d − 1), D, ub, x) ; // find an initial solution
16 if (ub = lb(D)) then opt ← true ;

c ← 1 ; // current cluster index
r ← 0 ; // number of discrepancy iterations
� ← �min ; // initial discrepancy limit
while (¬opt ∧ � ≤ �max) do

i ← 0 ; // nb. of successive failed neighborhood sizes
17 k ← kmin ; // initial neighborhood size

while (¬opt ∧ k ≤ kmax) do
A ← getNeighborhood(x, Cc , k) ;
ub′ ← ub ;

18 opt ← LDSr (�, A, ub′, x′); // neighborhood search
19 if (ub′ = lb(D)) then opt ← true ;
20 else if (A �= D) then opt ← false ;
21 if (ub′ < ub) then

x ← x′ , ub ← ub′ ; // new best solution
22 i ← 0, k ← kmin ;
23 r ← 0, � ← �min ;

else
i ← i + 1 ;
if (k < kmax) then

k ← min(kmax, kmin +k i) ;
else k ← ∞

24 c ← 1 + c mod |CT | ; // visit next cluster
r ← r + 1 ;
if (� < �max) then

� ← min(�max, �min +� r) ;
else

� ← ∞
// End

Fig. 1. A general overview of UDGVNS algorithm, exploring successively different search trees, starting from an initial greedy search (•), and ending to a
complete search (�).

3. Unified decomposition guided VNS

We present UDGVNS in Algorithm 4, an iterative DGVNS method, unifying two complete and incomplete search methods.
As done by Iterative LDS, UDGVNS restores the completeness of DGVNS by applying successive calls with an increasing
discrepancy limit.

3.1. UDGVNS algorithm

As in the previous VNS algorithms, the initial solution of UDGVNS is obtained by LDSr (line 15), corresponding to
a greedy search with no discrepancy if the problem to be solved has only finite energy terms. Then UDGVNS tries to
improve the current solution by doing several neighborhood explorations of increasing search complexity, by controlling two
parameters, the discrepancy limit (�) and the neighborhood size (k), as shown in Fig. 1. It starts from a small neighborhood
with a few variables unassigned (k = kmin = 4). It explores the neighborhood using LDS with a small discrepancy limit

8 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
initially set to one (� = �min = 1). The unassigned variables are selected from a current cluster of a tree decomposition (and
its neighbor clusters if needed) as done in DGVNS. If no solution is found then UDGVNS increases its neighborhood size until
all the variables of the problem are included in the neighborhood (k = kmax = n). If still no solution is found then UDGVNS
increases its discrepancy limit and resets its neighborhood size to kmin . The last iteration corresponds to a complete search
on the whole problem for proving optimality (k = kmax = n, � = �max = n(d − 1)). As soon as a better solution is found by
the current neighborhood search (line 18), UDGVNS stops the search in order to reinitialize the two parameters to their
minimum value (lines 22–23). By doing so, it favors finding the next solutions more rapidly, as it is faster to explore many
small neighborhoods than a larger one, improving the anytime behavior of the search.

Proposition 2. UDGVNS(1, n(d − 1), +, 1, n, +, ∞, {}, opt) is a complete method with a worst-case time complexity exponential in
the number of variables and a linear space complexity.

Proof. For UDGVNS, optimality can be proven in two cases: (i) when the current neighborhood corresponds to the whole
problem (condition falsified at line 20, since (A �= D) is false) and the discrepancy value is greater than or equal to the
maximum number of right branches (checked as before during LDS searches at lines 15, 18), and thus DGVNS behaves
as an exhaustive search, or (ii) by examining the bounds at the root node (line 16) and after each neighborhood search
(line 19). In this case, the search space is implicitly explored by the algorithm, therefore optimality is proven. Case (i) is
always reached when k = kmax = n and � = �max = n(d − 1), corresponding here to the last iteration of the two While loops
of UDGVNS. Notice that in this case (k = kmax) and (� = �max), all the variables are selected candidates (see line 11) to be
explored exhaustively by an LDS stopping at the first solution better than the current bound. If the current bound is not
optimal, the search restarts until reaching optimality. In practice, optimality proofs are often produced at smaller �, but still
for k = n (or before if condition at line 19 becomes true).

Assuming a complete search tree over Boolean variables (d = 2), the worst-case time complexity of the initial LDSr

at line 15 is in �(2n). The inner LDSr at line 18 with k variables and � discrepancies has a search tree with maximum
height h = k, assuming variables with Boolean domains. In the worst case, its asymptotic time complexity is in �(2h) for
� = h = k (see Proposition 1). The number of LDSr calls depends on the problem upper bound. Each time a strictly better
upper bound is found (line 21), LDSr is stopped and we reset k and � to their minimum value (lines 22–23). When the
energy functions map to N+ ∪ {∞} as in Cost Function Network (CFN), there will be a finite number of upper bound
improvements. Moreover if +� and +k are strictly increasing functions, then there is a finite number of LDSr calls until
� = �max and k = kmax , and no better solution exists (otherwise, � = �min and k = kmin , and the search will continue). Thus,
UDGVNS terminates and returns opt = true if and only if it exists a feasible optimal solution. It has the same exponential
time and linear space complexities as ILDS. �
3.2. Strategies for managing parameters of UDGVNS

UDGVNS has to control the evolution of two parameters. For each parameter, � and k, we have tested three updating
rules: increase by one at each iteration (+�/k = +), multiply by two at each iteration (a +�/k b = mult2(a, b) = a × 2b), and
apply a Luby strategy [39] (a +�/k b = Luby(a, b) = a × luby(1 + b)).6

Operator +k controls the compromise between intensification and diversification. The goal of the Luby strategy is to
exponentially increase the number of small neighborhoods explored compared to the number of larger ones. Whereas
classical VNS algorithms will get stuck on large problems,7 trying to diversify the search by exploring larger neighborhoods,
VNS using Luby will spend more time on small neighborhoods in order to locally improve the current solution, favoring
intensification. By adding randomness on variable and/or value ordering heuristics8 used by LDSr , it is possible to find a
better solution even when the discrepancy limit decreases when applying the Luby strategy. The mult2 strategy reduces
the number of neighborhood explorations at a given discrepancy limit, in order to try larger discrepancy limits more rapidly.
If the problem is solvable by a complete search within the time limit, it will also speed-up the optimality proof.

Operator +� controls the compromise between incomplete and complete search. Using a fast growing strategy emphasis
completeness whereas a slow growth should favor anytime behavior. The mult2 strategy tends to favor a non-decreasing
worst-case complexity of the successive neighborhood searches, especially when going from � with k = kmax to 2� with
k = kmin (for sufficiently large kmin).

We noticed that it is worthwhile to cover all the variables by the union of the explored neighborhoods in order to
not miss some important variables. We tested a fourth strategy for k which consists in a slow increment (by +1) at the
beginning until k = maxi∈I (|Ci |) + |CT | − 1 then it jumps directly to k = kmax . This ensures that k grows slowly until the
largest cluster has been totally explored by at least one neighborhood search. Then, when k = kmax = |X |, UDGVNS does
a restart, looking for an improved starting solution, using LDSr applied on the whole problem. If it fails to find a better

6 Recall luby(i) = {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .}.
7 Although it is possible to add a limit on the number of backtracks per neighborhood search as it is done in Large Neighborhood Search methods [15].
8 Adaptive heuristics such as weighted degree heuristic [40] will also modify the variable ordering from one search to another.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 9
Fig. 2. A general overview of UPDGVNS algorithm. The set {C1, C2, . . . , Cn} corresponds to the n clusters provided by the tree decomposition. The total
number of available workers is denoted by i. The master’s global solution is denoted by S . Local solutions found by workers are denoted by S ′.

solution, or prove optimality, a larger discrepancy can be selected and UDGVNS continues its intensification process starting
with a small neighborhood size (line 17).

4. A parallel version of UDGVNS

This section describes how UDGVNS has been parallelized. We called the resulting algorithm Unified Parallel
DGVNS (UPDGVNS). Section 4.1 provides a general overview of the parallel version. The UPDGVNS algorithm is detailed
in section 4.2. A more detailed discussion about UPDGVNS properties is given in section 4.3.

4.1. UPDGVNS in nutshell

The parallel version relies on a master/worker model and exploits the UDGVNS framework to control the compromise
between optimality proof and anytime behavior. UPDGVNS enhances the optimization process of UDGVNS by enabling better
diversification. More precisely, UPDGVNS uses the master process as a diversification component to explore the search
space on a global scale, while using the worker process as an intensification component to exploit the search space on the
neighborhood provided by the master. Fig. 2 provides an overview of UPDGVNS method based on the following three main
components:

• a master process, on the left side, which determines the neighborhoods to be explored and updates the global solution
S at each iteration.

• a set of asynchronous worker processes, on the right side, which explore independently the parts of the search space
assigned by the master process.

• an interaction model based on asynchronous communication between the master and the workers, where the master
process controls the communication over the entire processes.

4.2. UPDGVNS algorithm

Algorithms 5 and 6 depict the pseudo-code of UPDGVNS in more details. Let P be a data structure allowing to manage
a list of parameters used by each worker process for the exploration of the neighborhood of a solution x (i.e., i, k, r, �, cl,
x, ub, opt). Initially, the master (see Algorithm 5) initiates the search by launching (at line 26) npr9 worker processes in
parallel with the same initial solution (line 25). This is done by initializing the different parameters for the neighborhood
exploration and sending them to each worker p. Each worker process obtains from the master a copy of the current best
solution x, the index c of the cluster to be processed and performs destroy and repair operations on its local copy (see

9 Worker processes are ranked from 1 to npr , while the masker is ranked zero.

10 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Algorithm 5: Master algorithm for Unified Parallel DGVNS algorithm.

Procedure master(npr, �min, �max, +�, kmin, kmax, +k, ub : In/O ut, x : O ut, opt : O ut)
let (CT , T) be a tree decomposition of (X , D, F) ;

25 opt ← LDSr (n(d − 1), D, ub, x) ; // find an initial solution
if (ub = lb(D)) then opt ← true if (¬opt) then

c ← 1 ; // current cluster index
26 for each worker p = 1, . . . , npr do

// initial parameters of neighborhood exploration
P[p].ub ← ub, P[p].x ← x, P[p].cl ← c, P[p].� ← �min , P[p].k ← kmin ;
P[p].r ← 0 ; // number of discrepancy iterations
P[p].i ← 0 ; // nb. of succ. failed neighb. sizes
Send(p, P[p]);
c ← 1 + c mod |CT | ; // visit next cluster

27 while (¬opt ∧ ¬T imeO ut) do
Receive(p, P[p]) ; // wait a new solution from worker p

28 if (P[p].opt) then opt ← true // optimality proof check;
if (P[p].k ≥ kmax ∧ P[p].� ≥ �max) then T imeO ut ← true;
// update parameters of neighborhood exploration
P[p].cl ← c;
if (P[p].ub < ub) then

ub ← P[p].ub, x ← P[p].x ; // new best solution
P[p].i ← 0, P[p].k ← kmin ;
P[p].r ← 0, P[p].� ← �min ;

else
P[p].ub ← ub, P[p].x ← x ;
P[p].i ← P[p].i + 1 ;
if (P[p].k < kmax) then

P[p].k ← min(kmax, kmin +k P[p].i) ;
else

P[p].i ← 0, P[p].k ← kmin ;
P[p].r ← P[p].r + 1 ;
if (P[p].� < �max) then

P[p].� ← min(�max, �min +� P[p].r) ;
c ← 1 + c mod |CT |;

29 if (¬opt ∧ ¬T imeO ut) then Send(p, P[p])

Algorithm 6: Worker algorithm for UPDGVNS algorithm.

Procedure worker
while (¬T imeO ut) do

Receive(0, P);
A ← getNeighborhood(P .x, C P .cl, P .k) ;
P .opt ← LDSr P .�, A, P .ub, P .x ;
if (P .ub = lb(D)) then P .opt ← true else if (A �=D) then P .opt ← false Send(0, P);

Algorithm 6). As soon as a new solution x′ is found by a worker p, it is sent to the master as well as its status (i.e. flag
opt) by checking whether x′ is proven optimal, by setting flag opt to true. In the second while loop (at line 27), the master
waits for new solutions found by each worker process. Like UDGVNS, the master controls how the discrepancy limit � and
the neighborhood size k evolve during successive explorations and updates the shared global best solution x according to
solutions sent by the workers. However, contrary to UDGVNS, whenever k reaches kmax and the discrepancy value is greater
than or equal to �max or the internal flag opt of the worker is true (line 28), the whole process stops and the master returns
the (optimal) solution. Otherwise, if the time limit is not reached, the workers that are ready to restart a new exploration
are re-launched starting from the best available overall solution on the next clusters (line 29).

4.3. UPDGVNS properties

This section discusses in depth the key properties of UPDGVNS that contribute to its success, namely diversification and
workload distribution between workers.

4.3.1. Diversification in UPDGVNS
Regarding the parallelization scheme, diversification is ensured in three ways:

1. the parallel exploration of different clusters provides a form of diversification to UPDGVNS method by exploring inde-
pendently different parts of the search space. Moreover, the unassigned variables are selected from a current cluster of
a tree decomposition (and its neighbor clusters if needed) in a random way as done in DGVNS algorithm.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 11
2. the control of the size of the neighborhood (k) and the discrepancy limit (�) is done per worker in an asynchronous
and independent manner. This allows relaunching each worker asking for a next cluster with diverse parameters and
different initial partial assignments, thus enhancing the diversification scheme of UPDGVNS.

3. to prevent redundant searches among different workers, i.e., case where two or more identical10 neighborhoods are
explored, we add randomness in the variable ordering heuristic used in LDSr algorithm. More precisely, our heuristic
for variable ordering first selects the variable having the lowest ratio domain cardinality divided by weighted degree
(dom/wdeg), breaking ties by selecting one variable randomly. This leads to variations in the exploration of the search
tree performed by each worker.

All these features provide a high level of diversification by exploring different regions in parallel and allow to decrease
the probability that different workers perform the same exploration of the search space even for k = kmax = n.

4.3.2. Workload distribution in UPDGVNS
In our parallel algorithm, we do not decompose the whole search space into a partition of subproblems but rather explore

different randomly-selected subproblems which may overlap. First, each subproblem is related to a particular cluster in the
tree decomposition and each time a worker asks for a job it gets the next (current) cluster c in a global round-robin fashion
(Algorithm 6) and explores the assigned cluster independently starting from the best overall available solution. So, in terms
of workload distribution between workers, this remains more or less balanced. Moreover, since the proof of optimality
is performed sequentially, i.e., by a single worker who explores the entire search tree, this does not induce unbalanced
workloads among workers.

Second, the way the size of the neighborhood (k) and the discrepancy limit (�) evolve is done per worker in an asyn-
chronous and independent manner. This can lead to a situation where one worker may search on a small subproblem, while
another worker on a larger subproblem. If the larger subproblem is not defined over the whole problem, the balance on
subproblems is quickly established with the rest of the workers once the current worker finishes its exploration. This is
achieved by the master which updates parameters of the neighborhood exploration accordingly (i.e., neighborhood size and
discrepancy limit) in order to relaunch the worker on the next cluster. In the end, the first worker finishing its search on
the whole problem with no discrepancy limit will report optimality and stop UPDGVNS.

5. UAI evaluation results

5.1. Benchmarks description

We performed experiments on probabilistic and deterministic graphical models coming from a large multi-paradigm
benchmark repository [28].11 Among the 3016 available instances, we selected all the instances that were used in previous
Uncertainty in Artificial Intelligence (UAI) competitions, in image analysis, or in CFN optimization. It includes 319 instances
from UAI 2008 Evaluation and Probabilistic Inference Challenge (PIC) 2011,12 1461 instances from the Computer Vision and
Pattern Recognition (CVPR) OpenGM2 benchmark13 [41], and 281 instances from the Cost Function Library.14 In order to
have a fair comparison between solvers, we preprocessed all the instances by polynomial-time problem reformulations
and simplifications that remove variables (using bounded and functional variable elimination [42]), values (using dead-end
elimination [43]), and fixed-value potentials, after an initial lower bound computation by Equivalence Preserving Transforma-
tions [31] (enforcing Virtual Arc Consistency (VAC) as a message-passing algorithm). The resulting instances are smaller while
preserving the same optimum. We used toulbar2 with options -A -z=2 for this preprocessing step. We kept 1669 non-trivial
instances (with more than one variable) for the experiments. The number of variables n ranges from 4 (CVPR-GeomSurf-
3-gm13) to 48,566 (CVPR-ColorSeg-8-crops-small) with mean value n ≈ 403.4 (instead of 1, 316.5 before preprocessing).
For DGVNS methods, we built tree decompositions using min-fill heuristic. Because the number of clusters m = |CT | can be
very large (m ≈ 256.7), we merged any pair of connected clusters (Ci, C j) when the separator size is too large compared to
the individual cluster sizes (|sep(Ci, C j)| > 0.7 min(|Ci |, |C j|)), resulting in m ≈ 19.9 and mean treewidth maxi∈I (|Ci |) ≈ 76.9
(instead of 49.6 without merging). In order to experiment sequential and parallel methods on the most difficult instances,
we selected a subset of instances unsolved in 1 hour by all our DFBB, LDS, and VNS algorithms. We took at most twenty
instances per problem category (avoiding over-representation issues by some categories), resulting in a selection of 114
difficult instances.15

10 This may arise when all the variables of the problem are included in the neighborhood (k = kmax = n).
11 genoweb .toulouse .inra .fr /~degivry /evalgm.
12 graphmod .ics .uci .edu /uai08 /Evaluation /Report /Benchmarks, www.cs .huji .ac .il /project /PASCAL.
13 hci .iwr.uni -heidelberg .de /opengm2.
14 costfunction .org /benchmark.
15 UAI DBN, Grid, Linkage, ObjectDetection, CVPR ChineseChars, ColorSeg-8, InPainting-4, InPainting-8, ProteinInteraction, and CFN CELAR, ProteinDesign,

SPOT5, Warehouse categories.

http://www.genoweb.toulouse.inra.fr/~degivry/evalgm
http://www.graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
http://www.cs.huji.ac.il/project/PASCAL
http://www.hci.iwr.uni-heidelberg.de/opengm2
http://www.costfunction.org/benchmark

12 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Fig. 3. Number of instances solved by our approach as times passes on a restricted benchmark set (Methods are sorted as timeout limit (3600s)).

Fig. 4. Number of instances solved by each method as time passes (UDGVNS= UDGVNS(k add1/jump, � mult2)).

5.2. Experimental protocol

LDSr employs a randomized (for breaking ties) dynamic variable ordering heuristic.16 Its value ordering heuris-
tic chooses the EAC value as the preferred value and lower bounds are deduced by enforcing EDAC, as explained

16 Weighted degree heuristic as defined in [40].

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 13
Fig. 5. Average evolution of normalized upper bounds for UDGVNS versus DFBB and LDS algorithms on 114 difficult instances.

in [30]. In the following, we set kmin = 4, kmax = n = |X |, �min = 1, and �max = n(d − 1). DFBB corresponds to
UDGVNS∞, ∞, +, ∞, ∞, +, LDS corresponds to UDGVNS(1, ∞, mult2, |X |, |X |, +), DGVNS to UDGVNS3, 3, +, kmin, kmax, +.
These methods and their parallelization based on MPI (UPDGVNS) have been implemented into the new version 1.0.0 of
toulbar2.17

We compared with state-of-the-art exact solvers. daoopt
18 won PIC 2011. It has a time-bounded initial phase of lower

bound computation based on Message Passing Linear Programming algorithm [8,9] and mini-bucket elimination [29] with iter-
ative min-fill heuristic, further improved by Join Graph Linear Programming [44]. It also finds good initial upper bounds using
LDS (with discrepancy limit set to 1) and stochastic local search GLS+ [12]. We used the standalone code of daoopt ver-
sion 0.99.7g-UAI12 (with option settings –mplp=2000 –mplps=60 –slsX=20 –slsT=10 -t 30000 –orderTime=180 –jglp=1000
–jglps=60 -i 35 -m 4096 –match -y –lds=1 for 3600-second time limit). We tested three parameter settings as suggested
in [45], controlling the time spent to compute initial lower and upper bounds. In the 3600 sec. setting, SLS is run 20
times with 10 seconds per run. The best solution found is used as an initial upper bound for an AND/OR exhaustive tree
search. We compared also with an older version of toulbar2, namely incop+toulbar2

19 [28] won the UAI 2010 Evaluation
at 20-minute time limit. incop+toulbar2 takes a starting solution from the best result of three runs of the IDWalk [46]
local search algorithm (100,000 local moves per run). It is followed by an exhaustive hybrid best-first search [5]. IBM
ILOG cplex 12.7.0.0 (using parameters EPAGAP, EPGAP, and EPINT set to zero to avoid premature stop) was reported as
being very competitive on some image analysis [41] and Markov Random Field problems [28]. cplex explores its search
tree using best-first search. It applies several heuristics methods to find good solutions before and during the search. We
also compared with message-passing algorithms: libDAI

20 [47], winner of the UAI 2010 Evaluation at 20 sec. and 1 h. time
limits, mplp2

21 [8,9], and TRW-S22 [6]. Note that libDAI and TRW-S are applied on the original instances rather than the
preprocessed ones as we found they produced better results without applying VAC first. All solvers read problems in uai
tabular format, except cplex which uses the local polytope formulation (called support encoding in [28]). All computa-
tions were performed on a cluster of 48-core AMD Opteron 6176 at 2.3 GHz and 384 GB of RAM with a 1-hour CPU time
limit.23

17 https://github .com /toulbar2 /toulbar2.
18 https://github .com /lotten /daoopt.
19 www.inra .fr /mia /T /toulbar2 version 0.9.8 with parameters -i -dee -hbfs.
20 bitbucket .org /jorism /libdai .git version 0.3.2 using UAI 2010 settings.
21 cs .nyu .edu /~dsontag /code /README _v2 .html using 2.10−7 int gap thres.
22 github .com /opengm /opengm v2.3.5 with TRW-S v1.3 stopping after 100, 000 iterations or 10−5 gap thres.
23 Using parameter -pe parallel_smp min(2x, 30) on a SUN Grid Engine for a method exploiting x core(s) to ensure half-load of the nodes on the cluster.

https://github.com/toulbar2/toulbar2
https://github.com/lotten/daoopt
http://www.inra.fr/mia/T/toulbar2
http://www.bitbucket.org/jorism/libdai.git
http://www.cs.nyu.edu/~dsontag/code/README_v2.html
http://www.github.com/opengm/opengm

14 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Fig. 6. Any time upper bound zoom for UDGVNS versus LDS.

5.3. Experimental results

5.3.1. Optimality results
The efficiency of DFBB, LDS, and VNS methods to prove optimality is shown in the cactus plot of Fig. 3. DFBB was

slightly more efficient than LDS and solved 1442 (resp. 1433) instances among 1669 in 1-hour time limit. They are
followed by three UDGVNS strategies with (k mult2, � mult2) (1430 solved), (k Luby, � mult2) (1425 solved) and
(k add1/jump, � mult2) (1421 solved), remaining very close in terms of performance. Next, a set of three less-and-less
efficient UDGVNS strategies rise: (k add1, � mult2) (1384 solved), (k add1, � Luby) (1361 solved) and (k add1, � add1)

(1333 solved), showing the importance of faster discrepancy increase to speed up optimality proofs. The worst strategy here
was using a fixed discrepancy level (� = 3 as originally proposed in [23]) which solved 1128 instances. Fig. 4 compares the
cactus plot of UDGVNS versus cplex, daoopt, and incop+toulbar2. daoopt (3600 sec. setting) solved 1409 instances, cplex

solved 1423, and incop+toulbar21440 instances.

5.3.2. Anytime upper bound profiles
In order to summarize the evolution of upper bounds as time passes, we took a subset of 114 difficult instances, unsolved

in 1 hour by our DFBB, LDS, and VNS methods (whereas cplex could solve 17 of these instances). Specifically, for each
instance I we normalize all energies as follows: the best, potentially suboptimal solution found by any algorithm is 1, the
worst solution is 2. This normalization is invariant to translation and scaling. Fig. 5 shows the upper bound behavior for
different VNS strategies compared to DFBB and LDS. Fig. 6 reports an anytime upper bound zoom. The ranking of best
methods is the opposite of the cactus plot order, except for (k add1/jump, � mult2) which comes in second position.
According to details in Fig. 6, the � = 3 strategy got the best upper bounds in average, but still very close to the other
VNS strategies, except may-be (k Luby, � mult2) and (k mult2, � mult2). We conclude that our new iterative UDGVNS
method (especially (k add1/jump, � mult2)) offers a good compromise between anytime behavior and optimality proof.
These results also show that variable neighborhood search is by far superior to classical systematic DFBB or non-systematic
LDS tree search methods, improving by more than 20% (resp. 10%) the quality of the solutions.

5.3.3. Comparing UDGVNS with state-of-the-art methods
In the following figures, we assume UDGVNS with (k add1/jump, � mult2) strategy. Fig. 7 compares UDGVNS with

state-of-the-art methods. Message-passing algorithms like TRW-S and libDAI gave the worst results. They could not find any
solution for 20 (resp. 19) instances (mostly in UAI/Linkage and CFN/SPOT5 categories, both containing hard constraints). The
same problem occurred for mplp2 on 5 instances (SPOT5), but it obtained much better results on the remaining instances.
cplex ran out of memory on two instances without producing any solution due to the heavy local polytope encoding
(CFN/Warehouse/capb, capmq5). All other methods got better results in average and produced at least one solution per
instance. According to its initial phase setting, daoopt provides different anytime behaviors, very close to the best solutions

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 15
Fig. 7. Comparing the anytime behavior of UDGVNS against state-of-the-art methods.

Fig. 8. Anytime upper bound with 1, 10 and 30 processors respectively for cplex and UPDGVNS (UPDGVNS= UPDGVNS(k add1/jump, � mult2)).

in 1 hour. UDGVNS performed the best, slightly better than incop+toulbar2, improving by 1.7% (resp. 2.3%) on average after
1 hour (20 min).

5.3.4. Parallelization
Finally, in order to evaluate the impact of core numbers, we consider the anytime upper bound behavior of the parallel
release: UPDGVNS using (k add1/jump, � mult2) with �min = 3, taken from the best strategies enlightened by UDGVNS.
We made a comparison with cplex using 10 and 30 cores. Fig. 8 shows that cplex with 10 or 30 cores exhibits better
anytime behavior than cplex using 1 core, but still being far from the other competitors (30 cores gave solutions 10% higher

16 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Fig. 9. Comparing the anytime behavior of parallel UPDGVNS.

Table 1
Best CPU time (in seconds) for sequential versions and best wall-clock time for multiple-core ones to find and prove optimality on Pedigree instances. A “–”
means no proof of optimality in 1 hour (except daoopt with no time limit) (in parenthesis, unnormalized upper bound found after 1 hour).

Linkage (optimum/worst
solution)

pedigree19
(4625/21439)

pedigree31
(5258/166553)

pedigree44
(6651/104904)

pedigree51
(6406/629929)

cplex (1 core) 790 59.3 6.35 36.23
cplex (10 cores) 191 9.00 2.48 9.43
cplex (30 cores) 75 7.17 2.69 5.34
daoopt (1 core) 375,110 16,238 95,830 101,788
daoopt (20 cores) 27,281 1,055 6,739 6,406
daoopt (100 cores) 7,492 201 1,799 1,578
udgvns (1 core) –(4949) –(5258) –(6722) –(6406)
updgvns (10 cores) –(4762) 3,341 –(6651) –(6406)
updgvns (30 cores) –(4626) 1,775 –(6651) –(6406)

than UPDGVNS after 1 hour). We could not compare with the parallel version of daoopt as it is based on a different cluster
engine (condor) and it does not parallelize its initial phase.

Fig. 9 shows that UPDGVNS (with 10 or 30 cores) provides slightly better upper bounds than UDGVNS (using 1 core)
in less than 20 min. The results seem to be, in average, poorly sensitive to the cores number, due to the fact that the
10-core curve is extremely close from the 30-core one. Fig. 9 also compares the anytime upper bound quality with those
provided by single-core incop local solver followed by a hybrid best-first search in toulbar2 and by daoopt with options
tuned for the 1200-second UAI 2014 challenge. The 10 and 30-core UPDGVNS curves converge quickly in less than 2 min.
incop+toulbar2 quickly drops out around 1 min and never reaches the same quality level. UDGVNS converges slower but
still going down after 20 min. daoopt (1200 sec. setting) gave results 10% in average worse than UPDGVNS with either 10
and 30 processors.

The trends observed over all instances are quite similar to those obtained on selected instances for each family. The
only one exception is the Pedigree instances. Table 1 gives the solving time to find and prove optimality on UAI-Linkage
category for U(P)DGVNS, cplex and daoopt (in parenthesis, unnormalized upper bound found after 1 hour). We report
daoopt time from [48], obtained on a cluster of dual 2.67 GHz Intel Xeon X5650 6-core CPUs and 24 GB of RAM. We can
see that UDGVNS and UPDGVNS (with 10 or 30 cores) are clearly dominated by cplex which exhibits better results. daoopt

remains competitive on these instances but still being far from cplex in terms of CPU times.

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 17
Table 2
Comparing UDGVNS(k add1/jump, � mult2), UPDGVNS(npr, k add1/jump, � mult2) and
toulbar2 in terms of optimality results within the 24-hours time limit. A ’–’ indicates that the
corresponding solver failed to prove optimality.

Instance Time (s)

UDGVNS UPDGVNS toulbar2

5dbl 1,828.27 791.16 783.18
3r8q – – 41,700.10
4bxp – – 4,261.67
1f00 – – 9,749.00
1xaw – – 2,917.04
5e10 839.52 196.43 1,171.98
2gee – – 9,795.59
5e0z 416.12 172.96 999.66
3lf9 – – 2,960.64
5eqz – – 41,813.00

6. Computational protein design

In Computational Protein Design (CPD), the challenge of identifying a protein that performs a given task is defined as the
combinatorial optimization of a complex pairwise energy function over amino acid sequences and 3D geometry [49]. This
holds great interest in medicine, synthetic biology, nanotechnologies and biotechnologies [50][51][52]. We used the CPD
problem as a difficult benchmark to test our tree-decomposition based methods. For that, we generated 21 large instances
with small treewidth selected from the Protein Data Bank24 (PDB). These instances have been selected on the basis of 3D
criteria described in a supplementary material.25 The instances contain from n = 107 up to 292 variables with a maximum
domain size from d = 383 to 450, and between 1, 623 and 6, 208 binary cost functions. The min-fill treewidth ranges from
w = 21 to 68, resulting in small ratios of treewidth per number of variables, from w

n = 0.16 to 0.34.

6.1. Experimental protocol

We compared UDGVNS and UPDGVNS with VNS/LDS+CP and Fixed BackBone (a CPD dedicated algorithm provided by
the Rosetta package). We also compared with toulbar2. We tested toulbar2 using Virtual Arc Consistency [31] in pre-
processing and hybrid best-first search with tree decomposition (BTD-HBFS) using min-fill heuristic. Dead end elimination
is turned off, according to [26] (the resulting command line is: toulbar2 -B=1 -A -dee: -O=-3). The toulbar2 experiments
use a 24-hour CPU time limit.

Concerning the VNS methods, in order to evaluate variability due to the random selection of neighborhoods, a set of 10
runs per instance with different seeds has been performed with a time limit of 1-hour per run. For the parallel strategy, the
number of processes npr is set to 96 (i.e. maximum number of available processors). For UDGVNS and UPDGVNS, following
the results observed in Section 5, we considered the following two settings for operators +k and +�: (k add1, � = 3)

which yields the best anytime performances and (k add1/jump, � mult2) which offers the best compromise between
both anytime performances and optimality proof. kmin , kmax and �min have been respectively set to 4, n (the total number
of variables) and 3 (they correspond to the same parameter settings as those described in [23]). All computations were
performed on a cluster of 96-core AMD Opteron 6174 at 2.2 GHz and 256 GB of RAM.

6.2. Experimental results

As for UAI instances, we evaluated the effectiveness of UDGVNS and UPDGVNS on CPD instances in terms of optimality
proof (cf. Section 6.2.1) and solution quality vs. CPU time (cf. Section 6.2.2). We also study in Section 6.2.3 the impact of
varying the number of processes for the parallel release UPDGVNS.

6.2.1. Optimality results
Our first set of experiments aims at evaluating the efficiency of UDGVNS and UPDGVNS in terms of optimality proof

comparing with toulbar2. We used the setting (k add1/jump, � mult2) with �min = 3, taken from the best strategies
enlightened by UDGVNS. Table 2 reports the CPU-times required by UDGVNS, UPDGVNS and toulbar2 to find and prove
the optimum within the 3600-second time limit (24 hours for toulbar2). As we can see, toulbar2 clearly outperforms
both VNS methods: UDGVNS and UPDGVNS were able to prove optimality only on 3 instances among the 9 ones closed by
toulbar2. However, on two instances (5e10 and 5e0z), UDGVNS is up to 2.40 times faster than toulbar2 while UPDGVNS
increases speeds by up to 5.96 times, despite the fact that BTD-HBFSbenefits from the lower bounds reported by HBFS in

24 www.pdb .org.
25 genoweb .toulouse .inra .fr /~degivry /evalgm /CFN /ProteinDesignUAI2017.

http://www.pdb.org
http://www.genoweb.toulouse.inra.fr/~degivry/evalgm/CFN/ProteinDesignUAI2017

18 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
Table 3
Comparative evaluation on CPD instances. In bold instances completely solved by toulbar2. ncl is the number of clusters. �E is in Rosetta energy unit. It
has been obtained by the difference of solution costs divided by the cost shift used during modeling, in this case 108.

Instance ncl VNS/LDS+CP UDGVNS UPDGVNS FIXBB toulbar2 Speed-up

Succ. Time (s) Succ. Time (s) Succ. Time (s) �E Time (s) �E (1/2) (1/3) (2/3)

5dbl 87 10/10 2,762±67 10/10 249±7 10/10 62±7 0.28 783 0 11.09 44.27 3.98
5jdd 168 0/10 – 10/10 1,611±20 10/10 243±13 4.08 20,662 0.04 – – 6.63
3r8q 157 0/10 – 10/10 1,246±292 10/10 206±8 4.19 12,762 0 – – 6.03
4bxp 108 10/10 1,214±32 10/10 907±75 10/10 120±19 0.26 2,966 0 1.33 10.12 7.57
1f00 177 0/10 – 0/10 – 10/10 271±11 4.39 9,749 0 – – –
2x8x 131 10/10 3,312±112 4/10 2,731±1,065 10/10 215±11 4.16 69,213 3.61 1.21 15.41 12.71
1xaw 66 0/10 – 2/10 3,585±35 10/10 167±39 2.73 2,804 0 – – 21.50
5e10 74 10/10 1,667±86 10/10 193±6 10/10 30±2 0.27 1,172 0 8.63 55.78 6.45
1dvo 82 10/10 940±23 10/10 352±5 10/10 75±2 2.90 34,143 0.18 2.67 12.47 4.66
1ytq 67 10/10 2,235±211 10/10 292±1 10/10 87±1 1.67 17,064 0.31 7.65 25.57 3.33
2af5 140 0/10 – 10/10 1,029±19 10/10 281±13 4.37 86,029 0.60 – – 3.65
1ng2 86 10/10 1,066±70 10/10 583±46 10/10 115±4 1.14 38,731 5.93 1.82 9.27 5.07
3sz7 79 0/10 – 10/10 627±54 10/10 144±11 3.11 82,626 0.54 – – 4.35
2gee 110 10/10 1,648±8 10/10 961±5 10/10 149±27 1.68 5,021 0 1.71 11.07 6.45
5e0z 73 10/10 622±16 10/10 310±2 10/10 45±8 0.16 999 0 2.0 13.90 6.92
1yz7 87 10/10 2,149±10 10/10 2,081±38 10/10 133±4 2.91 83,817 3.21 1.03 16.18 15.67
3e3v 91 0/10 – 10/10 867±207 10/10 111±10 2.57 81,575 0.15 – – 7.81
3lf9 72 10/10 1,636±32 10/10 167±1 10/10 56±2 2.41 2,667 0 9.81 29.06 2.96
1is1 107 10/10 3,179±52 10/10 444±27 10/10 213±13 3.46 63,832 0.42 7.15 14.91 2.08
5eqz 89 10/10 1,850±49 10/10 528±8 10/10 95±3 2.20 12,768 0 3.50 19.44 5.54
4uos 118 10/10 2,305±988 1/10 3,380±661 10/10 167±2 5.21 58,590 17.87 0.68 13.79 20.23

–: TimeOut (1): VNS/LDS+CP(k add1, � = 3) (2): UDGVNS(k add1, � = 3) (3): UPDGVNS(npr,k add1, � = 3)

individual clusters to improve its anytime behavior and from the global pruning lower bounds of BTD. This greatly improves
the overall performance of toulbar2 compared to VNS/LDS+CP.

6.2.2. CPU time and solution quality results
Our second set of experiments aims at evaluating VNS capability with respect to finding the optimal solution or a

solution of better quality on instances for which optimal solutions are unavailable. For this aim, we selected (k add1, � = 3)

as a setting for operators +k and +� .
Table 3 shows a comparative evaluation of VNS methods with FIXBB and toulbar2. For each instance and each VNS

method, we report the number of successful runs to reach the optimum (or the best known solution for unsolved instances)
within a 3600-second time limit, the average CPU times (in seconds) over the 10 runs (for unsuccessful runs, the CPU time
is set to the time limit) ± the standard deviation. The energy gap �E between the best VNS solution and the two external
references FIXBB and toulbar2 are also given. For toulbar2, reported CPU times correspond to times to find an optimal
solution (for solved instances) or the best one (for unsolved ones) within the 24-hour time limit.

A) VNS methods vs. Fixbb. Rosetta Modeling suite is one of the most popular software package used in the CPD field. It
provides a Monte Carlo based Simulated Annealing algorithm called FIXBB. In this work, the best solutions exhibited
by 1000 FIXBB cycles performed on each CPD instance have been used as base-line to compare solution quality of the
solutions provided by VNS methods when toulbar2 BTD-HBFS fails to solve the instance.

The FIXBB CPU times are two orders of magnitude higher than the 1 h. time limit imposed for VNS evaluation. They
are not reported as they exceed 100 hours in sequential mode, even if FIXBB cycles are independent and thus are easy
to parallelize. As we can see in Table 3 (see column (4) �E), the solution quality of FIXBB is in all cases inferior to the
best solution found by the VNS methods. The energetic gap �E between FIXBB solution and the best VNS overall solution
ranges between +0.16 and +5.20 Rosetta Energy Unit (R.E.U). As shown in [26] such a level of energy difference can strongly
impact the designed protein solution (i.e. the corresponding sequences of the two methods can be far in terms of Hamming
distance).

B) VNS methods vs. toulbar2. The comparison between best solutions found by VNS methods and toulbar2 shows that,
excepted VNS/LDS+CP method, both UDGVNS (except on 1f00) and UPDGVNS provide in all cases the same or even better
solution than toulbar2 (see column (5) �E in Table 3). On 11 instances unsolved by toulbar2, UDGVNS and UPDGVNS
always obtain solutions of better quality. The energetic gap �E in the worst case reaches 17.86 R.U.E. Concerning the
number of successful runs reported over the 10 runs, VNS/LDS+CP seems less robust respectively than UDGVNS and
the parallel release UPDGVNS. This last one provides in all cases the best solution over all. Table 3 also compares the VNS
methods in terms of speedups. We observe that speedup values are fluctuating from one instance to another, very likely due
to the tree decomposition resulting from the 3D shape of each instance. For VNS/LDS+CP and UDGVNS, it ranges between
0.68 and 11.09 over the 14 instances solved by both methods. As expected, when tree decomposition and parallelization are
used, not only the speed of resolution increases but the reliability too (speedup values between 9.27 and 55.78). Moreover,

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 19
Table 4
Comparing speed-ups of VNS methods with (k add1, � = 3) strategy to obtain the best solution computed by
toulbar2 within the 3600-second time limit on solved CPD instances. A ’–’ indicates that the corresponding
solver was not able to compute a solution of equal/better quality than toulbar2.

Instance Speed-up

(toulbar2/VNS/LDS+CP) (toulbar2/UDGVNS) (toulbar2/UPDGVNS)

5dbl 0.28 3.14 12.55
3r8q - 33.46 202.07
4bxp 3.51 4.69 35.56
1f00 - 17.02 35.93
1xaw - 2.92 17.49
5e10 0.70 6.07 39.22
2gee 5.94 10.19 65.82
5e0z 1.60 3.22 22.36
3lf9 - 17.75 52.58
5eqz 22.61 79.18 439.48

Table 5
Comparing CPU times spent by VNS methods with (k add1, � = 3) strategy to obtain the best solution computed by toulbar2 within the 3600-second time
limit on unsolved CPD instances. A ’–’ indicates that the corresponding solver was not able to compute a solution of equal/better quality than toulbar2.

Instance Time (s) Speed-up

VNS/LDS+CP UDGVNS UPDGVNS (toulbar2 /VNS/LDS+CP) (toulbar2 /UDGVNS) (toulbar2 /UPDGVNS)

5jdd - 1,611.39±20 235.52±11 - 12.82 87.73
2x8x 2,070.49±62 883.50±56 176.48±2 33.42 78.33 392.18
1dvo 885.47±21 264.56±3 68.83±2 38.55 129.05 496.04
1ytq 2,194.63±210 291.93±1 85.19±1 7.77 58.45 200.30
2af5 - 815.62±13 254.68±10 - 105.47 337.79
1ng2 530.56±3 304.94±2 83.88±3 73.00 127.01 461.74
3sz7 3,029.44±566 565.29±40 125.62±7 27.27 146.16 657.74
1yz7 970.24±4 419.47±3 115.22±2 86.38 199.81 727.45
3e3v 2,332.23±46 288.46±2 93.44±2 34.97 282.79 873.01
1is1 2,803.27±45 437.44±28 208.47±12 22.77 145.92 306.19
4uos 460.73±3 420.18±2 153.11±1 127.16 139.43 382.66

Table 6
Impact of the number of processes on the parallelization.

Instance UDGVNS UPDGVNS(10) UPDGVNS(30) UPDGVNS(96) Speed-up

Succ. Time (s) Succ. Time (s) Succ. Time (s) succ. Time (s) (1/2) (1/3) (1/4) (2/4) (3/4)

5dbl 10/10 249±7 10/10 127±23 10/10 88±12 10/10 62±7 1.96 2.83 3.98 2.02 1.40
5jdd 10/10 1,611±20 10/10 603±67 10/10 342±22 10/10 243±13 2.67 4.71 6.63 2.47 1.40
3r8q 10/10 1,246±292 10/10 508±61 10/10 301±28 10/10 206±8 2.45 4.13 6.03 2.46 1.46
4bxp 10/10 907±75 10/10 301±39 10/10 186±26 10/10 120±19 3.01 4.88 7.57 2.50 1.55
1f00 0/10 – 10/10 589±75 10/10 361±47 10/10 271±11 – – – 2.17 1.32
2x8x 4/10 2,731±1,065 10/10 600±198 10/10 322±44 10/10 215±11 4.55 8.49 12.71 2.79 1.49
1xaw 2/10 3,585±35 10/10 434±162 10/10 219±56 10/10 167±39 8.25 16.37 21.50 2.60 1.31
5e10 10/10 193±6 10/10 59±15 10/10 35±6 10/10 30±2 3.26 5.54 6.45 1.97 1.16
1dvo 10/10 352±5 10/10 134±18 10/10 102±6 10/10 75±2 2.61 3.44 4.66 1.78 1.35
1ytq 10/10 292±1 10/10 148±12 10/10 102±5 10/10 87±1 1.97 2.87 3.33 1.68 1.16
2af5 10/10 1,029±19 10/10 529±47 10/10 362±20 10/10 281±13 1.94 2.84 3.65 1.87 1.28
1ng2 10/10 583±46 10/10 223±30 10/10 160±20 10/10 115±4 2.61 3.64 5.07 1.94 1.39
3sz7 10/10 627±54 10/10 392±39 10/10 221±20 10/10 144±11 1.60 2.83 4.35 2.71 1.53
2gee 10/10 961±5 10/10 252±28 10/10 203±44 10/10 149±27 3.81 4.72 6.45 1.69 1.36
5e0z 10/10 310±2 10/10 93±19 10/10 65±10 10/10 45±8 3.33 4.74 6.92 2.07 1.45
1yz7 10/10 2,081±38 10/10 242±19 10/10 174±24 10/10 133±4 8.59 11.98 15.67 1.82 1.30
3e3v 10/10 867±207 10/10 265±42 10/10 170±19 10/10 111±10 3.26 5.08 7.81 2.39 1.53
3lf9 10/10 167±1 10/10 100±17 10/10 71±4 10/10 56±2 1.66 2.36 2.96 1.78 1.25
1is1 10/10 444±27 10/10 454±87 10/10 317±30 10/10 213±13 .97 1.40 2.08 2.12 1.48
5eqz 10/10 528±8 10/10 187±22 10/10 120±4 10/10 95±3 2.82 4.40 5.54 1.96 1.26
4uos 1/10 3,380±661 10/10 217±18 10/10 189±6 10/10 167±2 15.58 17.91 20.23 1.29 1.12

–: TimeOut (1): udgvns (2): UDGVNS(10) (3): UPDGVNS(30) (4): UPDGVNS(96)

the comparison between UDGVNS and UPDGVNS shows significant accelerations (between 2.08 and 21.50), thus confirming
the practical interest of parallelization in addition to the exploitation of problem decomposition.

C) Comparing anytime performances of VNS methods. We have also investigated the anytime performances of three VNS meth-
ods by reporting the CPU-times required within the time limit of 1 hour to reach a solution of equal quality computed

20 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
by toulbar2 within the 3600-second time limit. For solved instances, according to details in Table 4, both UDGVNS and
UPDGVNS find optimal solutions more quickly than toulbar2. For UDGVNS, speedup values range from 2.92 to 79.18 with
a mean of 17.76 over all the solved instances. For UPDGVNS, the ratio in terms of speedup is greatly amplified (between
12.55 and 439.48 with a mean of 92.30 over all the solved instances). On the 11 opened instances, results (summarized in
Table 5) show a clear ordering in terms of CPU times across different solvers, from toulbar2, VNS/LDS+CP, UDGVNS, and
UPDGVNS. The speedup values are significantly improved, in particular with UPDGVNS (between 87.73 and 873.01 with a
mean of 447, 53 over all the unsolved instances). These results confirm the superiority of VNS methods in terms of anytime
performance as compared to toulbar2.

One putative explanation of the observed performance ordering between VNS methods may be the problem exploration
coverage with the picked neighborhoods during search. Indeed, respectively with 1, 034 and 597 the average total number
of neighborhoods explored during search for the 21 CPD instances is in average 1.73 higher in VNS/LDS+CP than UDGVNS.
Accordingly, tree decomposition picks more pertinent neighborhoods than VNS/LDS+CP and seems to increase the prob-
ability for full problem coverage, which can be explained by the decreasing of possible combinations as a consequence of
the partition in clusters of variables. Besides, parallelization is one way to increase the coverage probability, because it is
a simple way to increase the number of processed neighborhoods. Consequently, in practice, with 3, 320 neighborhoods in
average, UPDGVNS explores in 5.56 times more subproblems than the corresponding sequential version. This fact can be an
explanation of the good quality of the observed results.

6.2.3. Parallelization
For the last experiment, we analyzed the performance of our parallel algorithm by measuring the speed-up on varying

the number of processes. We consider the number of successful runs as well as the average CPU times ± the standard devi-
ation (over the 10 runs) of the parallel release UPDGVNS (using k add1 with � = 3) to reach the optimum (or the best found
solution for unsolved instances) within a time limit of 1-hour per run. We compare with UDGVNS with (k add1, � = 3). We
set npr to 10, 30 and 96 respectively (including the master process).

As can be seen from Table 6, UPDGVNS with 10, 30 or 96 processors, are able to obtain better results faster than UDGVNS
(using one core). Table 6 also reports the speed-up values for different numbers of processes. Comparing to 10-processes,
the improvements to UDGVNS yield a speed-up of 1.6 to 15.58 (3.85 on average). Moreover, with the increase of the number
of processes the gains in terms of CPU times are remarkably amplified. In the case of 30 processes the speed-up is 5.75 on
average and for 96 processes it is 7.68 compared to the results of UDGVNS. These results show that our parallel release on
CPD instances is less sensitive to the communication overhead when increasing the number of processes and it does not
impact the overall efficiency of our approach.

7. Conclusion and perspectives

In this paper we proposed a unified view of VNS methods including various LDS and neighborhood evolution strategies.
Experiments performed on difficult instances, coming from a large graphical model benchmark, showed that our hybrid
method has a much better anytime behavior than existing tree search methods and still being competitive for proving
optimality. UDGVNS takes advantage of the good convergence properties of DGVNS and proves optimality in many cases.
On structured or unstructured problems of large sizes, like CPD, UDGVNS obtains solutions of (very) good quality, thus
outperforming the state-of-the-art Fixbb Rosetta Modeling software package used in the CPD field. We further proposed
a parallel version of our method improving its anytime behavior. It remains as future work to manage dynamically the
tree-decomposition associated to the instance to solve. Another promising research direction is to use machine learning
techniques to identify the best decompositions to be used for practical solving [53].

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

This work has been partially funded by the french “Agence Nationale de la Recherche”, reference ANR-16-C40-0028.
We are grateful to the genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) and the high perfor-
mance center of Cerist-Algiers in Algeria for providing computing and storage resources. We thank Mathieu Fontaine for his
contribution to the code of DGVNS.

References

[1] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009.
[2] S. Shimony, Finding MAPs for belief networks is NP-hard, AI Commun. 68 (1994) 399–410.
[3] R. Marinescu, R. Dechter, Memory intensive and/or search for combinatorial optimization in graphical models, AI Commun. 173 (16–17) (2009)

1492–1524.

http://refhub.elsevier.com/S0004-3702(18)30592-7/bib6B6F6C6C657232303039s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib5368696D6F6E7931393934s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D6172696E65736375303962s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D6172696E65736375303962s1

A. Ouali et al. / Artificial Intelligence 278 (2020) 103194 21
[4] L. Otten, R. Dechter, Anytime AND/OR depth-first search for combinatorial optimization, AI Commun. 25 (3) (2012) 211–227.
[5] D. Allouche, S. de Givry, G. Katsirelos, T. Schiex, M. Zytnicki, Anytime hybrid best-first search with tree decomposition for weighted CSP, in: Proc. of

CP, 2015, pp. 12–28.
[6] V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization, IEEE Trans. Pattern Anal. Mach. Intell. 28 (10) (2006) 1568–1583.
[7] M. Wainwright, M. Jordan, Graphical models, exponential families, and variational inference, Found. Trends Mach. Learn. 1 (1–2) (2008) 1–305.
[8] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, Y. Weiss, Tightening LP relaxations for MAP using message-passing, in: Proc. of UAI, 2008, pp. 503–510.
[9] D. Sontag, D. Choe, Y. Li, Efficiently searching for frustrated cycles in MAP inference, in: Proc. of UAI, 2012, pp. 795–804.

[10] H. Wang, D. Koller, Subproblem-tree calibration: a unified approach to max-product message passing, in: Proc. of ICML, 2013, pp. 190–198.
[11] J. Park, Using weighted MAX-SAT engines to solve MPE, in: Proc. of AAAI, 2002, pp. 682–687.
[12] F. Hutter, H. Hoos, T. Stützle, Efficient stochastic local search for MPE solving, in: Proc. of IJCAI, 2005, pp. 169–174.
[13] O. Mengshoel, D. Wilkins, D. Roth, Initialization and restart in stochastic local search: computing a most probable explanation in Bayesian networks,

IEEE Trans. Knowl. Data Eng. 23 (2) (2011) 235–247.
[14] R. Marinescu, K. Kask, R. Dechter, Systematic vs. non-systematic algorithms for solving the MPE task, in: Proc. of UAI, 2003, pp. 394–402.
[15] P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, in: Proc. of CP, 1998, pp. 417–431.
[16] L. Perron, P. Shaw, V. Furnon, Propagation guided large neighborhood search, in: Proc. of CP, 2004, pp. 468–481.
[17] M. Lombardi, P. Schaus, Cost impact guided lns, in: Proc. of Integration of AI and OR Techniques in Constraint Programming, 2014, pp. 293–300.
[18] J.J. Dekker, M.G. de la Banda, A. Schutt, P.J. Stuckey, G. Tack, Solver-independent large neighbourhood search, in: Proc. of CP, 2018, pp. 81–98.
[19] E. Demirovic, G. Chu, P.J. Stuckey, Solution-based phase saving for CP: a value-selection heuristic to simulate local search behavior in complete solvers,

in: Proc. of CP, 2018, pp. 99–108.
[20] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper. Res. 24 (11) (1997) 1097–1100.
[21] S. Loudni, P. Boizumault, Solving constraint optimization problems in anytime contexts, in: Proc. of IJCAI, 2003, pp. 251–256.
[22] W. Harvey, M. Ginsberg, Limited discrepancy search, in: Proc. of IJCAI, 1995, pp. 607–615.
[23] M. Fontaine, S. Loudni, P. Boizumault, Exploiting tree decomposition for guiding neighborhoods exploration for VNS, RAIRO Oper. Res. 47 (2) (2013)

91–123.
[24] T. Davidovic, T. Crainic, MPI parallelization of variable neighborhood search, Electron. Notes Discrete Math. 39 (2012) 241–248.
[25] A. Ouali, S. Loudni, L. Loukil, P. Boizumault, Y. Lebbah, Replicated parallel strategies for decomposition guided VNS, Electron. Notes Discrete Math. 47

(2015) 93–100.
[26] D. Simoncini, D. Allouche, S. de Givry, C. Delmas, S. Barbe, T. Schiex, Guaranteed discrete energy optimization on large protein design problems, J.

Chem. Theory Comput. 11 (12) (2015) 5980–5989.
[27] P. Meseguer, F. Rossi, T. Schiex, Soft constraints processing, in: Handbook of Constraint Programming, Elsevier, 2006, pp. 279–326, Ch. 9.
[28] B. Hurley, B. O’Sullivan, D. Allouche, G. Katsirelos, T. Schiex, M. Zytnicki, S. de Givry, Multi-language evaluation of exact solvers in graphical model

discrete optimization, Constraints 21 (3) (2016) 413–434.
[29] R. Dechter, I. Rish, Mini-buckets: a general scheme for bounded inference, J. ACM 50 (2) (2003) 107–153.
[30] J. Larrosa, S. de Givry, F. Heras, M. Zytnicki, Existential arc consistency: getting closer to full arc consistency in weighted CSPs, in: Proc. of IJCAI, 2005,

pp. 84–89.
[31] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, T. Werner, Soft arc consistency revisited, AI Commun. 174 (2010) 449–478.
[32] W. Karoui, M.-J. Huguet, P. Lopez, W. Naanaa, Yields: a yet improved limited discrepancy search for csps, in: Proc. of Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems, 2007, pp. 99–111.
[33] P. Prosser, C. Unsworth, Limited discrepancy search revisited, ACM J. Exp. Algorithmics 16 (2011) 1.6:1.1–1.6:1.18.
[34] H. Bodlaender, A. Koster, Treewidth computations I. Upper bounds, Inf. Comput. 208 (3) (2010) 259–275.
[35] H. Bodlaender, A. Koster, F. Van den Eijkhof, Preprocessing rules for triangulation of probabilistic networks, Comput. Intell. 21 (3) (2005) 286–305.
[36] S. Arnborg, et al., Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (1987) 277–284.
[37] U. Kjærulff, Triangulation of Graphs – Algorithms Giving Small Total State Space, Tech. rep., Aalborg University, 1990.
[38] R.E. Tarjan, et al., Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,

SIAM J. Comput. 13 (3) (1984) 566–579.
[39] M. Luby, A. Sinclair, D. Zuckerman, Optimal speedup of Las Vegas algorithms, in: Proc. of TCS, 1993, pp. 128–133.
[40] F. Boussemart, F. Hemery, C. Lecoutre, L. Sais, Boosting systematic search by weighting constraints, in: Proc. of ECAI, 2004, pp. 146–150.
[41] J. Kappes, B. Andres, F. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy, C. Rother, A

comparative study of modern inference techniques for structured discrete energy minimization problems, Int. J. Comput. Vis. 115 (2) (2015) 155–184.
[42] A. Favier, S. Givry, A. Legarra, T. Schiex, Pairwise decomposition for combinatorial optim. in graphical models, in: Proc. of IJCAI, 2011, pp. 2126–2132.
[43] S. de Givry, S. Prestwich, B. O’Sullivan, Dead-end elimination for weighted CSP, in: Proc. of CP, 2013, pp. 263–272.
[44] A. Ihler, N. Flerova, R. Dechter, L. Otten, Join-graph based cost-shifting schemes, in: Proc. of UAI, 2012, pp. 397–406.
[45] L. Otten, A. Ihler, K. Kask, R. Dechter, Winning the PASCAL 2011 MAP challenge with enhanced AND/OR branch-and-bound, in: Proc. of NIPS Workshop

DISCML, 2012.
[46] B. Neveu, G. Trombettoni, F. Glover, ID walk: a candidate list strategy with a simple diversification device, in: Proc. of CP, 2004, pp. 423–437.
[47] J.M. Mooij, libDAI: a free and open source C++ library for discrete approximate inference in graphical models, J. Mach. Learn. Res. 11 (2010) 2169–2173.
[48] L. Otten, R. Dechter, And/or branch-and-bound on a computational grid, J. Artif. Intell. Res. 59 (2017) 351–435.
[49] D. Allouche, J. Davies, S. de Givry, G. Katsirelos, T. Schiex, S. Traoré, I. André, S. Barbe, S. Prestwich, B. O’Sullivan, Computational protein design as an

optimization problem, AI Commun. 212 (2014) 59–79.
[50] P.-S. Huang, S.E. Boyken, D. Baker, The coming of age of de novo protein design, Nature 537 (2016) 320–327.
[51] S.M. Lippow, B. Tidor, Progress in computational protein design, in: Protein Technologies/Systems Biology, Curr. Opin. Biorecovery 18 (4) (2007)

305–311, https://doi .org /10 .1016 /j .copbio .2007.04 .009, http://www.sciencedirect .com /science /article /pii /S0958166907000778.
[52] D.L. Trudeau, D.S. Tawfik, Protein engineers turned evolutionists—the quest for the optimal starting point, in: Pharmaceutical Biotechnology, Curr. Opin.

Biotechnol. 60 (2019) 46–52, https://doi .org /10 .1016 /j .copbio .2018 .12 .002, http://www.sciencedirect .com /science /article /pii /S095816691830209X.
[53] M. Abseher, N. Musliu, S. Woltran, Improving the efficiency of dynamic programming on tree decompositions via machine learning, J. Artif. Intell. Res.

58 (2017) 829–858.

Glossary

BTD-HBFS: Backtrack Tree Decomposition - Hybrid Best First Search
CFN: Cost Function Network
CPD: Computational Protein Design
CVPR: Computer Vision and Pattern Recognition
DFBB: Depth-First Branch and Bound

http://refhub.elsevier.com/S0004-3702(18)30592-7/bib6F7474656E32303132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B6174736972656C6F73313561s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B6174736972656C6F73313561s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B6F6C6D6F676F726F763036s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib57614A3038s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib736F6E7461673038s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib736F6E7461673132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib484B3133s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib5061726B3032s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib48757474657248533035s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D656E6773686F656C52573131s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D656E6773686F656C52573131s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D6172696E657363754B443033s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib736861772D3938s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib506572726F6E32303034s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4C6F6D626172646932303134s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44656B6B657232303138s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44656D69726F76696332303138s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44656D69726F76696332303138s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D6C6164656E6F7669633A313939373A564E533A3237363936362E323736393835s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4C6F75646E69423033s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib48617247696E3935s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F726169726F2F466F6E7461696E654C423133s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F726169726F2F466F6E7461696E654C423133s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib437261696E696332303132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F656E646D2F4F75616C693135s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F656E646D2F4F75616C693135s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib53696D6F6E63696E693230313547756172616E7465656450726F626C656D73s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib53696D6F6E63696E693230313547756172616E7465656450726F626C656D73s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib536F66743036s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4875726C65793136s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4875726C65793136s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib64656368746572323030336D696E69s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4C6172726F736132303035s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4C6172726F736132303035s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib636F6F70657232303130s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B61726F756932303037s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B61726F756932303037s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib50726F7373657232303131s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib426F646C61656E64657232303130s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib426F646C61656E64657232303035s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F646D2F41726E626F726750433837s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B6A616572756C66663930747269616E67756C6174696F6E6F66s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F7369616D636F6D702F5461726A616E593834s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F7369616D636F6D702F5461726A616E593834s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib6C75627931393933s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib626F757373656D61727432303034s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B617070657332303135s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4B617070657332303135s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib46617669657232303131s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib5364474445453133s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib49686C657232303132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4F7474656E3132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4F7474656E3132s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib696477616C6B3A63703034s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4D6F6F696A3130s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib4F7474656E32303137414E444F52424Fs1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib416C6C6F7563686532303134436F6D7075746174696F6E616C50726F626C656Ds1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib416C6C6F7563686532303134436F6D7075746174696F6E616C50726F626C656Ds1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib526576696577733A6875616E6732303136636F6D696E67s1
https://doi.org/10.1016/j.copbio.2007.04.009
http://www.sciencedirect.com/science/article/pii/S0958166907000778
https://doi.org/10.1016/j.copbio.2018.12.002
http://www.sciencedirect.com/science/article/pii/S095816691830209X
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F6A6169722F416273656865724D573137s1
http://refhub.elsevier.com/S0004-3702(18)30592-7/bib44424C503A6A6F75726E616C732F6A6169722F416273656865724D573137s1

22 A. Ouali et al. / Artificial Intelligence 278 (2020) 103194
DGVNS: Decomposition Guided VNS
EDAC: Existential Directional Arc consistency
FIXBB: Fixed BackBone
ILDS: Iterative LDS
LDS: Limited Discrepancy Search
LDSr: Restricted LDS
LNS: Large Neighborhood Search
MCS: Maximum Cardinality Search
min-fill: Minimum Fill-in
PIC: Probabilistic Inference Challenge
UAI: Uncertainty in Artificial Intelligence
UDGVNS: Unified Decomposition Guided VNS
UPDGVNS: Unified Parallel DGVNS
VAC: Virtual Arc Consistency
VNS: Variable Neighborhood Search
VNS/LDS+CP: VNS/LDS + Constraint Programming

	Variable neighborhood search for graphical model energy minimization
	1 Introduction
	2 Preliminaries
	2.1 Graphical model
	2.2 DFBB and limited discrepancy search
	2.3 Variable neighborhood search
	2.4 Decomposition guided variable neighborhood search
	2.4.1 Tree decomposition
	2.4.2 Initial solution and restricted LDS
	2.4.3 DGVNS algorithm
	2.4.4 From DGVNS to VNS/LDS+CP
	2.4.5 Synthesis

	3 Uniﬁed decomposition guided VNS
	3.1 UDGVNS algorithm
	3.2 Strategies for managing parameters of UDGVNS

	4 A parallel version of UDGVNS
	4.1 UPDGVNS in nutshell
	4.2 UPDGVNS algorithm
	4.3 UPDGVNS properties
	4.3.1 Diversiﬁcation in UPDGVNS
	4.3.2 Workload distribution in UPDGVNS

	5 UAI evaluation results
	5.1 Benchmarks description
	5.2 Experimental protocol
	5.3 Experimental results
	5.3.1 Optimality results
	5.3.2 Anytime upper bound proﬁles
	5.3.3 Comparing UDGVNS with state-of-the-art methods
	5.3.4 Parallelization

	6 Computational protein design
	6.1 Experimental protocol
	6.2 Experimental results
	6.2.1 Optimality results
	6.2.2 CPU time and solution quality results
	6.2.3 Parallelization

	7 Conclusion and perspectives
	Acknowledgements
	References
	Glossary

