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Abstract

This work provides the first theoretical study on the ability of graph Message
Passing Neural Networks (gMPNNs) —such as Graph Neural Networks (GNNs)—
to perform inductive out-of-distribution (OOD) link prediction tasks, where de-
ployment (test) graph sizes are larger than training graphs. We first prove non-
asymptotic bounds showing that link predictors based on permutation-equivariant
(structural) node embeddings obtained by gMPNNs can converge to a random
guess as test graphs get larger. We then propose a theoretically-sound gMPNN that
outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds
showing that, as test graphs grow, these embeddings converge to embeddings of a
continuous function that retains its ability to predict links OOD. Empirical results
on random graphs show agreement with our theoretical results.

1 Introduction

Link prediction is the task of predicting whether two nodes likely have a missing link [1, 12, 30, 37,
66]. Link prediction tasks arise in many settings, ranging from predicting edges on bipartite graphs
between users and products or content in recommender systems [6, 11, 31, 32, 39, 62], to knowledge
graph reconstruction [4, 14, 20, 54, 66, 67], to predicting protein-protein interactions [57].

In recent years, there has been growing interest in applying neural network models to inductive link
prediction tasks. Inductive link prediction considers methods trained on a graph G and deployed
at test time on another graph G'°. It also encompasses the task of training the method on a smaller
induced subgraph G" of a larger graph G', then deploying it on the entire graph. In particular, our
work focuses on graph message-passing Neural Networks (gMPNNs) [21, 60] or, more precisely, the
widely used Graph Neural Network (GNN) framework [8, 9, 13, 22, 24, 28, 61, 64, 69].

Our work asks the following questions: Are link prediction methods able to cope with the task of
inductive out-of-distribution (OOD) link prediction, where (unseen) test graphs are significantly
larger than training graphs? How can these OOD link prediction tasks be theoretically defined? Can
we obtain non-asymptotic bounds on the generalization capabilities of these methods?

The majority of today’s link prediction methods are based on a similar principle. Consider an
attributed graph G = (V, E), with node set V' = {1, ..., N}, edge set E C V x V, and node features
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F € RN*Fo Fy > 1. Then, given a pair of nodes i, j € V, after T' > 1 iterations over G, these

methods produce associated node embeddings (representation vectors) ©F, @;- € Rfr, Fr > 1,

which are then used in a link function 7* : RFT x R¥T — [0, 1] such that n*(©7, ©%) predicts the
probability that ¢ and j have a missing link in G. In our notation we will denote all node embeddings
and associated functions with the superscript “*”. Henceforth we denote gMPNNSs that output
structural node embeddings as gMPNN5s®.

Node embeddings. The first part of our work considers a subset of these methods, where the output
node embeddings are permutation equivariant (a.k.a. structural node embeddings [65]). Informally,
a sequence of node embeddings ©® € RY*F7 given by an embedding method is permutation-
equivariant if for any arbitrary graph G and any permutation m € Sy of the node indices, where Sy
is the symmetric group, the resulting isomorphic graph G’ = (7w o V, 7 o E, 7 o F) gets permuted
node embeddings ©°’ = w0 ©*®, where m o M defines the action of 7 on M (we will provide a formal
definition in Section 2). We leave the study of OOD link prediction with positional node embeddings
(a.k.a. permutation-sensitive node embeddings [65]) to future work.

The application of GNNss to link prediction tasks is made difficult by the fact that, by construction,
permutation-equivariant GNNs give the same embeddings ©F, ©F to any isomorphic nodes i, j
in G, as noted by You et al. [82] and Srinivasan and Ribeiro [65]. Isomorphic nodes are nodes
that are structurally indistinguishable in G (even when considering node features) except by their
(assumed arbitrary) node indices ¢,j € V. That is, if a graph has isomorphic pairs, permutation-
equivariant GNN link prediction can fail. The recent link prediction literature has significantly relied
on isomorphic nodes for theoretical results (e.g., Zhang et al. [86, Theorem 2] uses isomorphic nodes
to prove that, uniformly, graphs are likely to have many isomorphic nodes and hence are not amenable
to accurate link prediction). However, isomorphic nodes are rare in both real-world graphs (see
Figure 3 in the Appendix) and in large random graphs (Proposition 1).

An important open question is whether equivariant GNN would be able to predict links in asymmetric
graphs. That is, the concerns of [65, 82] may not be of practical importance. Our work also answers
this question: We see that for in-distribution link prediction tasks (where graph test sizes are the same
as training sizes), permutation-equivariant GNNs are able to predict links by tapping into the graph
asymmetries. However, we show theoretically and empirically that tapping into asymmetries can fail
OOD even when it works in-distribution.

Pairwise embeddings. Taking a different route, Srinivasan and Ribeiro [65] provides an existence
proof that the link prediction task between ¢ and j can always be performed by a pairwise embedding
017 (G), i.e., for any pair of nodes 4, j in a graph G, there exists a pairwise embedding O3} (&)
and a link function 1°*® : RF7 — [0, 1] such that n** (O3} ) approximates the probability that i and
7 have a hidden link. In our notation we will denote all pairwise (joint 2-node) embeddings and
associated functions with the superscript “**”. Unfortunately, as the test graph grows, we were unable
to prove existing pairwise embedding methods [50, 72, 84, 86, 87] are able to perform OOD link
prediction tasks. Hence, we propose a novel family of gMPNNSs for pairwise embeddings, denoted
gMPNN5s*® henceforth. The second part of our work considers the OOD generalization capability of
these gMPNNs®®.

Contributions. In this work we study inductive OOD link prediction tasks for larger test graphs
using permutation-equivariant node and pairwise embeddings, ©° and ©°°, respectively. Our work
makes the following contributions:

1. We provide a theoretical framework defining OOD inductive link prediction tasks, where test
graphs are significantly larger than training graphs.

2. We show that structural node embeddings from message-passing GNNs can fail in OOD link
prediction tasks if the test graph (from the same graph family) is significantly larger than the
training graph. Our work fills an important gap in the literature, where Bevilacqua et al. [7]
studied the OOD capabilities of GNNs for graph classification using random graph models. Our
work studies the OOD capabilities of GNNs for inductive link prediction in a similar setting.

3. We propose a new family of structural pairwise embeddings, denoted gMPNNs®®, that can
provably perform the above OOD task.

4. We provide non-asymptotic bounds on the convergence of pairwise gMPNNs embeddings. Exten-
sive empirical experiments using stochastic block models (SBMs [63]) validate our theoretical



results. Our work focuses on providing a theoretical understanding of the challenges of OOD
link prediction tasks rather than propose real-world link prediction tasks and compare baselines.
However, we believe that our work lays the theoretical foundation (and challenges) for future
application-focused works.

2 Preliminaries

Given an attributed graph G = (V, E), withnode set V = {1, ..., N}, edge set E C V x V, adjacency
matrix A € {0,1}V*Y, where A;; = 1(; j)cr}. and node features F € RN*Fo_ F, > 0. Let
P, € By be a permutation matrix associated with permutation 7 € Sy (Where Sy is the symmetric
group), where By denotes the Birkhoff polytope of N x N doubly-stochastic matrices. Doubly-
sctochastic matrices are non-negative square matrices whose rows and columns sum to one. The
matrix P, defines the action of permutation 7 on these matrices, e.g., To A = P,TAPE . We denote
a pair of nodes i, j € V as isomorphic in G if exists m € Sy such that m; = j, A = P, AP, and
F = P, F. Node features can be defined by the graph signal f : V' — R as a function that maps a
node to an Fy-dimensional feature in R*. Then the signal of the graph F' can be represented by a
matrix F' = [f}, ..., fx]T € RV*Fo where f; € RF0 are the features of node i € V.

Random graph model for G. Denote the metric-measure space by (X,d, ), where X is a
set, d is a metric, and p is a probability Borel measure. A graphon is defined as a map-
ping W : X x X — [0,1] [15, 75]. In what follows we define how the graph G is
sampled from the graphon models. The signal definition follows Maskey et al. [46, Def-
inition 2.3] and the edge samples follow Airoldi et al. [3], Lawrence and Hyvirinen [34].

Definition 1 (Random graph model). We define (W, f) as a Graph Model

random graph model for G on (X, d, u) with the graphon W : Ggé‘;“@ @@
X x X — [0, 1] and the metric-space signal f : X — R, f €

L*>°(X) is an essentially bounded measurable function with the
essential supremum norm. We obtain (G, F') by first sampling N
i.i.d. random points X1, ..., Xy from X with probability density
1, as the nodes of G. Then the edge (i, j) between nodes i and j is
sampled with probability W (X, X;), i.e., the adjacency matrix
A = (Ai ;)i of Gis defined as A j = 1(Z; ; < W(Xy, W) Figure 1: Templated causal DAG
fori,j = 1,..,N, where {Z; ;}[;_, are sampled i.i.d. from of G. Hidden and observed vari-
Uniform(0,1). The graph signal F = [fy, ..., fx]T € RN¥*F0o  ables are shaded white and gray,
is defined as f; = f(X;). We say (G, F) ~ (W, f). Further, respectively.

we restrict our attention to graphons W such that there exists a

constant dyy, satisfying the graphon degree dy () := [, W(z,y)dpu(y) > dpin > 0,Vz € X.

In an abuse of notation we identify node ¢ € V with the sampled value X; ~ p,Vi € {1,..., N},
since generally 1 is such that P(X; = X;) = 0 almost everywhere for i # j (e.g., 4 is uniform).
The causal DAG of the data generation process of G is given in Figure 1. Our goal is to produce
predictors that survive the distribution shift implied by a change in the distribution of graph sizes N
during test time. We note that all proofs are relegated to the Appendix due to space constraints.

2.1 Inductive structural node representations with graph message-passing neural networks

Henceforth use the terms node embeddings and node representations interchangeably. Graph message-
passing Neural Network (gMPNN?®) is defined by realizing a message-passing Neural Network
(MPNN) on a graph. We now restate the Maskey et al. [46, Definition 2.1] of MPNN.

Definition 2 (MPNN [46]). Let T € N denote the number of layers. Fort = 1,...,T, let 1 :
R2Fe-1 5 RFe—1 gpd W) . RF—1+Heoy s RF pe functions, where Fy € N is called the feature
dimension of layer t. The corresponding MPNN © is define by the sequence of message functions
(q)(t))thl and update functions (\Il(t))?zl, ie.© = ((Q(t))z;l, (\Il(t))thl).

)

We now introduce the gMPNN® with T message-passing layers. For eachnode i € V, fi' at layer

t € {1,...,T} is defined recursively using (a) its own representation at layer ¢t — 1 (f;(t*l)) and
(b) an aggregated representation of its neighbors ml(-t). Unlike Maskey et al. [46, Definition 2.2]
considering mean aggregation, we consider here the (N-normalized)sum representation as follows:



Definition 3 (eMPNN®). (Adaptation of [46, Definition 2.2] to N-normalized GNNs) Let (G, F)
be a graph with graph signals as in Definition 1 and © be a MPNN as in Definition 2. For layer
t=1,..,T, define @:A(t) as maps from the input graph G and graph signals F(©) = F € RN*Fo 1o
the features in the t-th neural layer by

oY RN o L RNF oy FO = (57N

where F'!) is defined by the (N -normalized) sum aggregation procedure, ¥i € V, for 9:4(t),
1
t o(t—1 o(t—1 ot o(t—1 t
ml( ) = N ZAi,j‘I’(t)(fi( ),fj( )), f; = \If(t)(fi( ),mz(- )).
j=1

Given a gMPNN®, @:A(T), with T > 1 layers as in Definition 3, their outputs are GA(T) (F) € RNxFr

for the (N-normalized) sum aggregation, and are henceforth denoted as node embedding outputs of
the gMPNN®. We denote @:A(T) (F); as the node embedding for node i € V.

2.2 Node embeddings with continuous message passing neural networks

Here we adapt the degree-normalized definition of Maskey et al. [46] on continuous message passing
for structural node embeddings to our continuous integral aggregation (N-normalized GNNs).

Definition 4 (Continuous message-passing). Given a MPNN © as in Definition 2, the node continuous
message passing neural network (cMPNN®) on graphons is defined by using the metric-space signals
f: X — RF0 and continuous aggregation to replace the graph node features and the aggregation
scheme in Definition 3. Using a message signal U : X x X — RH, the continuous integral
aggregation is defined as My, (U)(x) = [, W(z,y)U(z,y)du(y), where W is a graphon.

As defined in Maskey et al. [46, Definition 2.4], the same MPNN © can process metric-space
signals instead of graph signals with the continuous aggregations. Instead of using continuous mean
aggregation as [46, Definition 2.4], we are using continuous integral aggregation.

Definition 5 (¢(MPNN®). (Adaptation of [46, Definition 2.4] to N-normalized GNNs) Let (W, f)
be a random graph model as in Definition 1 and © be a MPNN as in Definition 2. Fort =1,...,T,
define @;I(,t) as maps from input metric-space signal f*©) = f : X — R 1o the features in the t-th
layer by

O LA(X) = L2(X),  f* s £,

where f.(t) are defined sequentially aggregation for @;[(,t):

9" (@) ==/XW(x,y)@”(f'(t_”(w),f'(t‘”(y))du(y),f'(”(x) t= WO (D (), g% ().

3 Size-stability of node representation and its drawbacks

We now present our results about convergence of gMPNN® to cMPNN?® for test graphs G* sampled
from the graphon random graph model (see Definition 1), and how it leads to size-stability of
gMPNN"* for nodes that have the same representation under cMPNNs®. Theoretical proofs and
common definitions (e.g., Lipschitz continuous functions) are relegated to the Appendix to save space.

3.1 Convergence of gMPNNs towards cMPNNs as test graph size increase

We now prove that, with high probability, the maximum infinity difference between the gMPNN*® and
c¢MPNN"* node representations decreases with N, the size of G*. The proof of Theorem 1 closely
follows the pointwise convergence proof in Maskey et al. [45], adapted to our OOD setting and can
be found in the Appendix.

Theorem 1 (OOD convergence without in-distribution convergence). For a random graph model
(W, f) satisfying Definition 1, let N be a random variable defining the distribution of graph
sizes in training. Define the test distribution (G*, F'®) ~ (W, f) through the causal graph in
Figure 1 as an interventional change to obtain larger test graph sizes where min(supp(N™))> M, =
max(supp(N™)) (which means any test graph is much larger than the largest possible training
graph). Let © = (@], (¥W)T ) be a MPNN as in Definition 2 with T layers such that



W) R2Fi-1 5 RHt-1 gpg OO - RF—1+Hi—1 5 REL gre learned from the training distribution

and are Lipschitz continuous with Lipschitz constants Lg) (M,,) and Lg) (M,,) that depend on M,,.

Let gMPNN® @;(T) and cMPNN°® @;‘(,T) be as in Definitions 3 and 5. Let XY, ..., X% and A’ be
as in Definition 1. Let p € (0, m) Then, if

VNE 42

V1og 2N®/p) ~ duin’

we have with probability at least 1 — Zszl 2(H; + 1)p,

(D

. o . . . log(2N* /p
St = [0 (F); = 63 ()X | < (€1 + Cal o) VA,

where the constants Cy and Cy are defined in the Appendix and depend on {Lg) (M), Lg) (M)},
and the distribution of (G, F').

Theorem 1 above shows that as the test graph size N'® grows, the node representations from the
discrete gMPNNs®learned in the training data converge to the continuous cMPNNSs®. Theorem 1’s
OO0D statement has profound consequences when it comes to predicting links using the node repre-
sentations obtained by a gMPNN®. Next, Corollary 1 shows that for any two nodes i, j € V' that
are indistinguishable in the cMPNN® (defined as @;/I(/T)(f)(X;e) = @;‘(/T) (f)(XF)), they will get
increasingly similar representations in the discrete gMPNN® as N' grows.

Corollary 1. Let © = ((®D)L,, (W)), 05, 03" p, (W £). (G", F"), (G*, ), N",
Nt A, and X, ..., X% be as in Theorem 1. If there exists i,j € V' i # j, s.t. @;[(,T) (X;) =
@;[(/T) (X,) and Equation (1) is satisfied, then, with C1 and Cy as in Theorem 1, we have that with
probability at least 1 — Zszl 2(H; + 1)p,

° e . e 2+/log(2Ne
O (F): ~ 0% ()l < (€1 + Coll o) 2B

Ate Ate N[e

Implications of Corollary 1 on Stochastic Block Models (SBMs). In what follows, we will
discuss circumstances where two nodes 7,5 € V get the same cMPNN® representations (i.e.,

@;[(,T) (NH(X;) = G;IST)( [)(X;). We will restrict our results to an important family of graphon
models: Stochastic Block Models (SBMs) [63], where we also model node attributes. SBMs were
chosen because they can consistently model large graphs generated by any piecewise Lipschitz
graphon model [3]. SBMs are also intuitive models, which makes them useful to illustrate our results.

Definition 6 (Stochastic Block Model (SBM)). An SBM (W, f) is a random graph model (Def-
inition 1) with cluster structures in W and f. Partition the node set into v > 2 disjoint subsets
S1,82,...,8. C V (known as blocks or communities) with an associated v X r symmetric ma-
trix S, where the probability of an edge (i,j), i € S, and j € Sy is Sap, for a,b € {1,...,r}.
Let X = [0,1), and p be the uniform distribution on [0,1]. By dividing X = [0,1] into dis-
joint convex sets [to,t1),[t1,t2),. .., [tr—1,tr], where to = 0 and t, = 1, node i belongs to
block S, if X; ~ Uniform(0,1) satisfies X; € [ta—1,ta). The graphon function W is defined
as W(Xi, X5) = Yopeqn,...rp Sanl(Xi € [ta—1,ta))1(X; € [ty—1,tp)). We take the liberty to

also define node signals in our SBM model, where for B = [By, ..., BT € R"™¥° the metric-space
signal f : X — R s defined as f(x) = 2aeft,...ry L@ € [ta—1,ta)) Ba.

We define the action of permutation 7 on B of Definition 6 as 7w o B, where (7 o B),, = B,,.

Definition 7 (Isomorphic SBM blocks). For the SBM model (W, f) in Definition 6, we say two blocks
a,b € {1,...,r} are isomorphic if the SBM satisfies the following two conditions: (a)t, —t,_1 =
ty — ty—1, and (b) for 7 € S,, such that 7, = b, my, = a and 7. = ¢,Ve € {1,...,7}, ¢ # a,b,
S=m08, and B =7oB.

A similar definition can be obtained for the general graphons in Definition 1 using the isomorphic
graphon definition of Lovdsz and Szegedy [40].

Now that we have the definition for isomorphic blocks in SBM models, we can prove that all nodes in
these isomorphic blocks will obtain the same representations under integral aggregation cMPNNs®.



Lemma 1. Let © = ((®W)E (W)L ) be a MPNN as in Definition 2, and @;‘(,T) as in Defi-
nition 5. For the SBM model (W, f) in Definition 6 with N nodes X1, ..., X ne. If there exists
i,j € V' such that X|¢, X' are nodes that belong to isomorphic SBM blocks (Definition 7), then

o () (XE) = 03" (f)(x).

Note that even though any two nodes in isomorphic SBM blocks get the same cMPNN® represen-
tations per Lemma 1, these nodes are likely not isomorphic in G* (as shown in Proposition 1 in
Appendix) and, hence, they get different gMPNN® representations. However, Corollary 1 shows
that these representations become increasingly similar as the test graph size grows. We use this
observation to understand the ability of gMPNNs® to perform link prediction tasks next.

3.2 The hardness of OOD inductive link prediction using structural node embeddings

The convergence of gMPNNs® to cMPNNSs*® as the test graph size N' grows (Theorem 1) implies
through Corollary 1 and Lemma 1 that node representations of distinct SBM blocks can become
increasingly similar as the test graph size grows, even though these nodes are not isomorphic in G*
with high probability (see Proposition 1 in the Appendix).

Definition 8 (Link prediction function from structural node embeddings). An inductive link prediction
function n® : RFT x R¥T — [0, 1] takes the gMPNN® node representations of two nodes i, j € V'
and predicts the edge probability P(Afj = 1). We assume n°® is Lipschitz continuous with Lipschitz
constant Ly (M,,) that depends on max(supp(N")). In the context of graphon random graph models
(Definition 1), we aim to learn 77'(@:4(,ET)(F’€)Z-7 @X,?)(F’e)j) ~ W (i, 7). We further assume we
predict a link if n°(-,-) > 7, while no link if n°(-,-) < 7, for some (arbitrary) threshold 7 € [0, 1]
chosen by the user of such system.

The next corollary showcases the difficulty in OOD predicting links using structural node representa-
tions as N'® grows.

Corollary 2. Let © = ()L, (W)L ) be the MPNN with T layers and ©%", 03" as in

Theorem 1. Let n® : Rft x RFr — [0, 1] be as in Definition 8. Consider the SBM (W, f) in
Definition 6 with isomorphic blocks (Definition 7). Let (G, F") ~ (W, f) and (G', F'¢) ~ (W, f)
be the training and test graphs with N and N nodes, respectively as in Theorem 1. Consider any
two test nodes i,j € {1,...,N"}, i # j, for which we can make a link prediction decision with n®

(i.e., 77’(@:4(,?) (F");, @:A(T) (F');) # 7). Let G™ be large enough to satisfy both Equation (1) and
VNE 2(C1 + G| flloo)
log(2N*/p) ~ In*(&%4: (F):, O4F (F*);) — 7|/ Ly (M)
where p, C1, and Cs are as given in Corollary 1. Then, if i and j belong to isomorphic blocks (i.e.,
@;[(,T) (F)(XP) = @",[(/T) (f)(XE)), with probability at least 1 — Zszl 2(H; + 1)p the link prediction

method in Definition 8 will make the same link prediction regardless of the SBM probability matrix
S (Definition 6) and whether 4 and j are in the same block or distinct isomorphic blocks.

Corollary 2 proves that link prediction with structural node embeddings form gMPNN5s*® is unreliable.
That is, for any link prediction method satisfying Definition 8, as the test graph grows, the method
will increasingly struggle to give different predictions within and across isomorphic SBM blocks,
even when these probabilities are arbitrarily different in the underlying graph model. In what follows
we show that pairwise embeddings can address this challenge.

4 Size-stability of structural pairwise embeddings and its advantages

We have discussed the limitation of gMPNNs® on node representation for link prediction. Now we
claim that a joint continuous message passing graph neural network is capable of link prediction
in graphon random graph models (Definition 1). We define the joint continuous message passing
graph neural network inspired by the cMPNN5s® for node representations (Definition 5). First, we
need to define the graphon fraction of common neighbors for graphon nodes x and y, cy (x,y) :=
S Wz, 2)W (y, z)du(z). We only consider graphons W such that there exists depn satisfying
ew (2,Y) > demin > 0,Vz,y € X in this section. Since we do not have edge feature as in Definition 1,
we define the metric-space pair-wise signal as f**(x,y) = 1,Vz,y € X.



Definition 9 (¢cMPNN®®). Let (W, f) be a random graph model as in Definition 1 and © be a MPNN
as in Definition 2. Fort = 1, ..., T, define the continuous (pairwise) cMPNN®® © % t)
that maps input pairwise metric-space signals f e (0) — = f*® to the features in the t-th layer by

on L(X, X) - 12X, X), [0 oo,

as the mapping

where f **®) gre defined recursively by

g"(t)(x,y) — 1/ ( (y,z) (I)(t)( ..(t_l)(x7y),f..(t_l)(l’,Z))
x w

2 (z,y)
+ WA 2) g0 poa =D (), 22D () dp(2),
CW(1'7y)

£ Oa) = 0O (£ ). %O 9).

The intuition of the aggregation function is that two edges with one same node is considered neighbors
in a higher-order graph [51], and to go from (z,y) to (x, z), we need to transition from y to z, which
has probability W (y, z). The same holds for going from (z, y) to (y, z).

Lemma 2. If ®(z,y) = y and V(x,y) = z/y, then f** (z,y) = W (z,y), Va,y € X is a station-

ary point in the cMPNN®*, i.e. iff“(tfl)(x,y) = W(x,y), then foe®) (x,y) = W(z,y), Va,y €
X.

We define the corresponding gMPNN®*® as follows. First we define the fraction of common neighbors
between nodes ¢ and j as ca; ; = % Zivzl A; - A; .. If two nodes do not have common neighbors,
then we setcq; ; = % to avoid computation error. Further, we define £**; ; = 1 Vi, j € V for any
graph G, and F** = (£*°; ;); jev as the pair-wise graph signals.
Definition 10 (eMPNN**). Ler (G, F') be a graph with graph signals as in Definition 1 and © be a
MPNN as in Definition 2. Fort = 1, ..., T layers we define the gMPNN**® 9“( ) as the mapping that
maps input pairwise graph signals F“(O) =F* 1 thefeatures in the t — th layer by

@:40(0 : RN2><F0 R RNszt,Fu(O) F" (f.. t))

,j=1

where £2*) are defined recursively by the following function,

)

oe(t) | ..(t 1) ..(t 1y, Az o) ..(t 1) ..(t 1)
m*) = 2NZCAM (f f )+ CAmcp (ool g )

gee) . () (f"(,t, 1 m"(t))
: i

i, ) 4,57/

)

Next, Theorem 2 shows that these discrete joint representations gMPNN®® converge to the continuous
pairwise representation cMPNN®® under the causal DAG of Figure 1.

Theorem 2 (OOD convergence without in-distribution convergence). For a random graph model
(W, f) satisfying Definition I, let N be a random variable defining the distribution of graph sizes
in training. Define the test distribution (G, F") ~ (W, f) through the causal graph in Figure 1
as an interventional change to obtain larger test graph sizes where min(supp(N"))>M, =
max (supp(N™)) (which means any test graph is much larger than the largest possible training
graph). Let © = (2T (W) ) be a MPNN as in Definition 2 with T layers such that ®")
and UV that are learned from the training data and are Lipschitz continuous with Lipschitz constants
Lg) (M,) and L‘(If) (M,). Let gMPNN°®*® @;I;(T) and cMPNN** @;;(T) be as in Definitions 9 and 10.
For a random graph model (W, f) as in Definition 1 with demin > 0. Let X, ..., X% and A" be as

. I 1 . N/Ne 4f
in Definition 1. Let p € (0, ST 3 (m) ). Then, if ———— YERET) ~=, we have with probability

at least 1 — 217;1 2(H; + 1)p,

b oo (1) Pes te te .o 1 2(N1e)2
ot max 07T (F™)e; — 65 ) (K, K)o S (Cart ol ) L),

where the constants C's and Cy are defined in the Appendix and depend on {Lg) (M), Lg) (M),
and the distribution of (G", F').



Hence, as the test graph size N'* gets larger w.r.t. N (that is, as we intervene on the causal
DAG of Figure 1 to change the support of the distribution of N in order to obtain larger test
graphs), the link predictor learned in the training data using gMPNN®® will converge to a continuous
method (¢cMPNN**®) that can predict links in OOD tasks (i.e., W (X}, X;-e) is a stationary solution of

c¢cMPNN**® per Lemma 2). This convergence is also observed in our empirical results.

5 Further Related Work

In what follows we describe works related to learning transferability in GNNs. The concept of
transferability of GNN is introduced by Levie et al. [35], Ruiz et al. [58], which state that if two
graphs represent same phenomena (e.g., are sampled from the same distribution), then a transferable
GNN has approximately the same predictive performance on both graphs. This is closely related
to in-distribution generalization capabilities of GNNs to unseen test data, i.e., generalization error
when train and test data come from the same distribution. Existing works [26, 44, 58, 59] prove
the transferability for spectral-based GCNs under graphon models, and Maskey et al. [46] extends
these results to more general message passing GNNs. The GNN smoothness conditions needed
to prove uniform convergence of node-embedding equivariant GNNs in Maskey et al. [46] means
their GNNs would be unable to perform in-distribution link prediction in some tasks (such as the
graphs in Definition 7). However, in practice, we observe (Section 6) that GNNs are capable of
performing these in-distribution link prediction tasks. Our results are also based on general message
passing GNNs. Our goal (OOD link prediction) is, however, significantly different than these prior
works, which focus on in-distribution graph and node classification. The link prediction challenge
for node-embedding equivariant GNNs is either in symmetric graphs (Srinivasan and Ribeiro [65])
or OOD (this work). Theorem 1 and Corollary 1 say the difference of node representations in
isomorphic blocks vanish as the test graphs grow larger, but Theorem 2 says that our pairwise
equivariant representation is capable of performing these OOD link prediction task. Related works
relating to the representation power, higher order structural and positional link prediction methods
(not already covered in our introduction) can be found in Appendix A due to space constraints.

6 Empirical Evaluation

In what follows we empirically validate our theoretical results in two parts. We implement all our
models in Pytorch Geometric [19] and make it available'. Due to space constraints we relegate a
detailed description of our experiments to the Appendix.

Convergence and stability. First we will empirically validate Theorems 1 and 2 and Corollary 1.
Consider an SBM (Definition 6) with three blocks (r = 3) and S, , = 0.55, ¢ = 1,2,3, S§; 2 =
8§51 = 0.05, S1,3 = 83,1 = 0.02. Note that one and three are isomorphic blocks (see Definition 7).
We use a randomly initialized GraphSAGE [24] GNN model for node embedding, and test both the ®
and ¥ of Lemma 2, and a scenario where W is a randomly-initialized MLP for pairwise embeddings.

Figures 2(a-c) show log-log plots of the convergence of gMPNNSs to their continuous cMPNN
counterparts as the test graph size N'® increases. The empirical approximation errors % y, (Theo-
rem 1) (Figure 2(a)) and 63%, (Theorem 2) are shown as a function of the test graph size N*® = 2",
n = 5,...,13. The empirical results show agreement with the theory since d3 , and 3%, are

bounded above by O(y/log N©/+/N¢), which is approximated by the slope —1/2 in a log-log

plot. Figures 2(d-e) show histograms of the difference between gMPNN® embeddings of different
ae(T) ()

nodes in G*. Let A? ;== 0, '(F); —©, '(F), fori,j € V', A?; € R*T and further define
A (resp. non-iso); = (A? ;) arg max, (A3,)x]» Where k € {1,..., Fr} is the dimension of the embed-

ding. We use subscript iso (resp. non-iso) when ¢, ;7 € V' are in isomorphic (resp. non-isomorphic)
SBM blocks (Definition 7). As N' increases, Figure 2(d) shows that embeddings between isomorphic
blocks converge, validating Corollary 1, while Figure 2(e) shows that non-isomorphic blocks do not.

Link prediction performance evaluation with SBMs (in-distribution and OOD). In what follows
we introduce empirical results using a SBM similar in the previous setting. Details can be found
in Appendix B.3. We start by sampling the training graph (G, F') with N" = 10% nodes. We
randomly hide 10% of E" from the original graph G" for link prediction purpose since the goal of
link prediction is to predict possible missing links that is not observed in the original graph. We call

! https://github.com/yangzez/00D-Link-Prediction-Generalization-MPNN
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Figure 2: Experimental agreement with theory: (a) shows 43 y (Theorem 1) of a GraphSAGE
GNN as a function of N'; (b) shows 3%, (Theorem 2) with the gMPNN®*® of Lemma 2 as a
function of N'¢; (c) replicates (b) with ¥ as a randomly-initialized neural network. Results shows
close agreement with Theorems 1 and 2 that predicts slope =~ —1/2 in log-log scale for large N';
(d) shows stable node representations between isomorphic SBM blocks, while (e) shows constant
difference in node representations between non-isomorphic SBM blocks, which validate Corollary 1.

these edges EM4", Then we split EM4" into positive train (80%) and validation (10%) edges (we
reserve 10% of EM4 for the transductive test scenario), and uniformly sample the same number of
across-block non-edges as negative train and validation edges. The embedding method gMPNN*
(resp. gMPNN**®) along with link predictor n°® (resp. n°*®) are trained in an end-to-end manner for
predicting positive and negative edges in training using cross-entropy loss. Our experiments consider
three scenarios (in all scenarios we use the same number of negative test edges as positive test edges,
sampled from non-edges in G'® with endpoints in different isomorphic blocks): (i) (In-distribution)
transductive scenario where G'® = G, where positive test edges are the 10% reserved in E"4 not
used in training or validation; (ii) In-distribution inductive scenario where G'® is sampled from the
same SBM with N*® = N, where we also hide 10% of the edges and sample 0.1| EM4| positive
test edges from EM4 (for fair comparison across all scenarios); (c) OOD inductive scenario where
G* is sampled from the same SBM with N'® = 10 x N, where we also hide 10% of the edges and
sample 0.1| EM4t| positive test edges from EMd-(for fair comparison across all scenarios).

For structural node embeddings we consider GraphSAGE [24], GCN [28] (without positional
features), GAT [70] and GIN [78] as the representatives of gMPNN® models. The link predictor
n°® is as feedfoward network (with 3 hidden layers and 10 neurons each) that receives the two node
embeddings as input, and has link prediction threshold 7 = 0.5 (see Definition 8 for details).

For structural pairwise embeddings we choose our proposed gMPNN®*® method of Definition 10,
since we can prove that our approach is theoretically sound in Lemma 2. We test gMPNN*®* in two
versions: The ® and ¥ functions in Lemma 2 (denoted fixed V) and a feedforward neural network
for ¥ with 2 hidden layers and 5 neurons each (denoted learn ¥). The link predictor n°*® is the same
as ® except it just takes one pairwise embedding as input, rather than two node embeddings.

Table 1 presents our empirical results. The oracle predictor knows the graphon values W (X, X°).
Our evaluation metrics include the Matthews correlation coefficient (mcc) [47], balanced accuracy,
and Hits@ K for K = 10, 50, 100 that counts the ratio of positive edges ranked at the k-th place
or above against all negative edges. Note that gMPNN®* structural node representations can very
accurately predict links in the transductive tasks, and still performs reasonably well in inductive
in-distribution tasks. However, as expected from Corollary 2, this performance suffers significantly as
N'™ becomes 10x larger than N". Now all gMPNN* methods produce predictors that are no better
than a random guess over all metrics (e.g., see OOD mcc and accuracy (in red)). In contrast, the
gMPNN*®* is able to consistently offer good performance on both in-distribution and OOD tasks.

Link prediction performance evaluation with ogbl-ddi (in-distribution and OOD). In what
follows we introduce empirical results using the ogbl-ddi dataset, which represents a drug-drug
interaction network. For the purpose of performing OOD tasks, we start by sampling 10% of the
nodes (427 nodes) and its induced subgraph to be the training graph. Further experimental details can
be found in Appendix B.4. The in-distribution inductive scenario has G* constructed as an induced
subgraph with N** = N" nodes from the remaining ogbl-ddi graph. Our OOD inductive scenario
has G* as the induced subgraph without the training nodes (N' = 3840 nodes). The test edges are
obtained by applying the original edge split on the newly induced test subgraph, where we further
down-sample to the same amount of test edges as in our in-distribution scenarios for fair comparison
across all scenarios. Table 3 in the Appendix presents our empirical results on the ogbl-ddi link
prediction task. All gMPNN® methods performs worse in inductive settings than transductive settings,
and suffer much worse performance in OOD transductive setting except GCNs. In contrast, the



Table 1: Test performance over 50 runs of node and pairwise gMPNNs for in-distribution and
OOD link prediction over SBM graphs. Methods marked with * indicate best result out of distinct
configurations detailed in the Appendix.

Training graph size N = 103

Tasks Model Hit@10(%) Hit@50(%) Hit@100(%) mcc.(%) balanced acc.(%)
GraphSAGE* 95.55( 0.52) 95.93( 0.73) 96.14( 0.74) 95.42( 0.37) 97.66( 0.19)
GCN* 93.15(14.57) 93.99(13.08) 94.35(12.72) 92.41(14.72) 95.97( 8.24)
o4 GAT* 93.77(13.03) 94.01(13.02) 94.14(13.03) 90.94(16.09) 95.26( 8.38)
= b5 GIN* 95.77( 0.59) 96.09( 0.58) 96.28( 0.59) 95.48( 0.41) 97.69( 0.22)
=
'% E gMPNN°®® (fixed ) 93.76( 0.55) 94.17( 0.51) 94.51( 0.49) 93.64( 0.53) 96.72( 0.28)
% E gMPNN*®® (learn ¥) 96.71( 0.32) 96.88( 0.31) 97.00( 0.30) 94.23( 0.55) 97.03( 0.29)
i“ Oracle 96.92( 0.36) 96.92( 0.36) 96.92( 0.36) 93.74( 0.42) 96.77( 0.22)
8 - GraphSAGE* 47.38(39.08) 52.13(38.87) 54.94(37.83) 19.34(43.19) 61.46(20.17)
_5 HZ GCN* 66.29(37.67) 68.52(35.87) 69.92(35.12) 31.76(35.12) 67.21(22.75)
E I GAT* 40.05(39.05) 41.34(39.39) 41.96(39.54) 19.44(35.22) 59.52(16.94)
B 22 GIN* 39.33(34.62) 42.93(33.86) 43.90(33.72) 18.59(39.43) 59.79(18.24)
3 ) gMPNN°®® (fixed ¥) 93.85( 0.49) 94.23( 0.51) 94.55( 0.49) 93.74( 0.48) 96.77( 0.25)
= s gMPNN®® (learn )  96.71( 0.30) 96.91( 0.28) 97.02( 0.27) 94.23( 0.59) 97.03( 0.31)
'§ Oracle 97.01(C 0.31) 97.01( 0.31) 97.01( 0.31) 93.87( 0.39) 96.84( 0.20)
= .  GraphSAGE* 9.97(19.47) 11.73(21.80) 12.98(23.70) -6.56( 5.12) 49.32( 0.60)
-g S  GOCN* 39.29(31.33) 42.15(30.81) 44.19(30.97) -4.88(14.84) 50.33( 6.72)
% Il GAT* 27.31(26.93) 28.13(26.78) 28.72(26.93) -2.00( 8.96) 50.20( 3.37)
o :‘32 GIN* 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) -3.93( 5.12) 49.59( 0.57)
&
2 o gMPNN™ (fixed U) 96.74( 0.07) 96.93( 0.04) 97.01( 0.04) 93.76( 0.05) 96.78( 0.03)
= B gMPNN®® (learn ) 96.97( 0.04) 97.02( 0.04) 97.08( 0.04) 93.94( 0.67) 96.88( 0.35)
8 ‘é Oracle 96.96( 0.03) 96.96( 0.03) 96.96( 0.03) 93.77( 0.04) 96.79( 0.02)
o

gMPNN*®* is able to consistently offer good performance on both in-distribution and OOD tasks,
showing that the theoretical results are not limited to SBM models.

7 Conclusions

This work studied and provided the first theoretical framework for the task of out-of-distribution
(OOD) link prediction, where test graphs are larger than training graphs. Using non-asymptotic
bounds, this work showed that OOD link prediction methods using structural node embeddings
given by message-passing GNNs converge to link predictors that may perform no better than random
guesses. The work also proposed a theoretically-sound structural pairwise embedding with a message-
passing algorithm which is able to perform our OOD link prediction task by being approximately
invariant to interventions on test graph sizes, as the discrete joint embedding converges to the
continuous one. This means that as graph sizes grow in test (OOD), it is still possible to find neural
networks parameters that allows our joint representation to converge to the true link probability.
We show that the same is not guaranteed for node-embedding equivariant message-passing GNNGs.
Extensive empirical evaluation showed agreement with these theoretical results. We do not foresee
adverse social impacts for this theoretical work, but it does raise awareness of the shortcomings of
node-embedding equivariant massage-passing GNNs for link prediction tasks in applications such as
recommender systems.
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