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ABSTRACT

It is well-established that many iterative sparse reconstruction algorithms can be
unrolled to yield a learnable neural network for improved empirical performance.
A prime example is learned ISTA (LISTA) where weights, step sizes and thresholds
are learned from training data. Recently, Analytic LISTA (ALISTA) has been
introduced, combining the strong empirical performance of a fully learned approach
like LISTA, while retaining theoretical guarantees of classical compressed sensing
algorithms and significantly reducing the number of parameters to learn. However,
these parameters are trained to work in expectation, often leading to suboptimal
reconstruction of individual targets. In this work we therefore introduce Neurally
Augmented ALISTA, in which an LSTM network is used to compute step sizes
and thresholds individually for each target vector during reconstruction. This
adaptive approach is theoretically motivated by revisiting the recovery guarantees
of ALISTA. We show that our approach further improves empirical performance
in sparse reconstruction, in particular outperforming existing algorithms by an
increasing margin as the compression ratio becomes more challenging.

1 INTRODUCTION AND RELATED WORK

Compressed sensing deals with the problem of recovering a sparse vector from very few compressive
linear observations, far less than its ambient dimension. Fundamental works of Candes et al. (Candès
et al., 2006) and Donoho (Donoho, 2006) show that this can be achieved in a robust and stable
manner with computationally tractable algorithms given that the observation matrix fulfills certain
conditions, for an overview see Foucart & Rauhut (2017). Formally, consider the set of s-sparse
vectors in RN , i.e. ΣNs :=

{
x ∈ RN

∣∣‖x‖0 ≤ s
}

where the size of the support of x is denoted by
‖x‖0 := |supp(x)| = |{i : xi 6= 0}|. Furthermore, let Φ ∈ RM×N be the measurement matrix, with
typically M � N . For a given noiseless observation y = Φx∗ of an unknown but s-sparse x∗ ∈ ΣNs
we therefore wish to solve:

argmin
x
‖x‖0 s.t. y = Φx (1)

In (Candès et al., 2006) it has been shown, that under certain assumptions on Φ, the solution to the
combinatorial problem in (1) can be also obtained by a convex relaxation where one instead minimizes
the `1–norm of x. The Lagrangian formalism yields then an unconstrained optimization problem also
known as LASSO (Tibshirani, 1996), which penalizes the `1-norm via the hyperparameter λ ∈ R:

x̂ = argmin
x

1

2
‖y − Φx‖22 + λ‖x‖1 (2)

A very popular approach for solving this problem is the iterative shrinkage thresholding algorithm
(ISTA) (Daubechies et al., 2003), in which a reconstruction x(k) is obtained after k iterations from
initial x(0) = 0 via the iteration:

x(k+1) = ηλ/L

(
x(k) +

1

L
ΦT (y − Φx(k))

)
(3)
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where ηθ is the soft thresholding function given by ηθ(x) = sign(x) max(0, |x| − θ) (applied
coordinate-wise) and L is the Lipschitz constant (i.e. the largest eigenvalue) of ΦTΦ. Famously,
the computational graph of ISTA with K iterations can be unrolled to yield Learned ISTA (LISTA)
(Gregor & LeCun, 2010), a K-layer neural network in which all parameters involved can be trained
(each layer k has an individual threshold parameter and individual or shared matrix weights) using
backpropagation and gradient descent. LISTA achieves impressive empirical reconstruction per-
formance for many sparse datasets but loses the theoretical guarantees of ISTA. Bridging the gap
between LISTA’s strong reconstruction quality and the theoretical guarantees for ISTA, ALISTA (Liu
et al., 2019) was introduced. ALISTA, introduces a matrix WT , related to the measurement matrix
ΦT in (3), which is computed by optimizing the generalized coherence:

µ(W,Φ) = inf
W∈RM×N

max
i 6=j

WT
:,iΦ:,j s.t. ∀i ∈ {1, . . . , N} : WT

:,iΦ:,i = 1 (4)

Then, contrary to LISTA, all matrices are excluded from learning in order to retain desirable properties
such as low coherence. For each layer of ALISTA, only a scalar step size parameter γ(k) and a scalar
threshold θ(k) is learned from the data, yielding the iteration:

x(k+1) = ηθ(k)

(
x(k) − γ(k)WT (Φx(k) − y)

)
(5)

As in LISTA, the parameters for ALISTA are learned end-to-end using backpropagation and stochastic
gradient descent by empirically minimizing the reconstruction error:

min
θ(1),...,θ(K),γ(1),...,γ(K)

Ex∗

[
‖x(K) − x∗‖22

]
(6)

The authors rigorously upper-bound the reconstruction error of ALISTA in the noiseless case and
demonstrate strong empirical reconstruction quality even in the noisy case. The empirical performance
similar to LISTA, the retained theoretical guarantees, and the reduction of number of parameters to
train from either O(KM2 + NM) in vanilla LISTA or O(MNK) in the variant of LISTA-CPSS
(Chen et al., 2018) to just O(K), make ALISTA an appealing algorithm to study and extend.

In (Ablin et al., 2019), instead of directly focusing on the reconstruction problem, where λ is
not known a priori, analytical conditions for optimal step sizes in ISTA are derived for LASSO,
yielding Stepsize-ISTA. Stepsize-ISTA is a variant of LISTA in which the measurement matrices
are exempt from training like in ALISTA, outperforming existing approaches to directly solving
LASSO. Thresholds that are adaptive to the current target vector have been explored in ALISTA-AT
(Kim & Park, 2020). Following the majorization-minimization method, component-wise thresholds
are computed from previous iterations. In a particular case this yields θ(k)i = 1/(1 + |x(k−1)i |/ε)
for some ε > 0, known as iterative reweighted `1-minimization. By unrolling this algorithm, the
authors demonstrate superior recovery over ALISTA for a specific setting of M,N and s. In a
related approach (Wu et al., 2020) identify undershooting, meaning that reconstructed components
are smaller than target components, as a shortcoming of LISTA and propose Gated-LISTA to address
these issues. The authors introduce gain and overshoot gates to LISTA, which can amplify the
reconstruction after each iteration before and after thresholding, yielding an architecture resembling
GRU cells (Cho et al., 2014). The authors demonstrate better sparse reconstruction than previous
LISTA-variants and also show that adding their proposed gates to ALISTA, named AGLISTA, it is
possible to improve its performance in the same setting of M,N and s as ALISTA-AT.

In this paper, motivated by essential proof steps of ALISTA’s recovery guarantee, we propose an
alternative method for adaptively choosing thresholds and step sizes during reconstruction. Our
method directly extends ALISTA by using a recurrent neural network to predict thresholds and step
sizes depending on an estimate of the `1-error between the reconstruction and the unknown target
vector after each iteration. We refer to our method as Neurally Augmented ALISTA (NA-ALISTA), as
the method falls into the general framework of neural augmentation of unrolled algorithms (Welling,
2020; Monga et al., 2019; Diamond et al., 2017). The rest of the paper is structured as follows: we
provide theoretical motivation for NA-ALISTA in Section 2, before describing our method in detail
in Section 3. In Section 4, we demonstrate experimentally that NA-ALISTA achieves state-of-the-art
performance in all evaluated settings. To summarize, our main contributions are:

1. We introduce Neurally Augmented ALISTA (NA-ALISTA), an algorithm which learns to adap-
tively compute thresholds and step-sizes for individual target vectors during recovery. The number
of parameters added does not scale with the problem size.
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2. We provide theoretical motivation inspired by guarantees for sparse reconstruction which show
that NA-ALISTA can achieve arrive tighter error bounds depending on the target x∗.

3. We find that NA-ALISTA empirically outperforms ALISTA and other state-of-the-art algorithms
in a synthetic setting as well as in a real-world application from wireless communications and that
the gains increase with decreasing M/N .

2 THEORETICAL MOTIVATION

The thresholds θ(k) in (5) play an important role in the analysis of ALISTA. While the authors of
(Liu et al., 2019) prove that θ(k) must be larger than a certain value in order to guarantee no false
positives in the support of the reconstruction x(k), the thresholds θ(k) also appear as an additive term
in the reconstruction error upper bound.

Thus, to guarantee good reconstruction θ(k) should be just slightly larger than the value it must
surpass in order to both minimize the error and verify the assumption. In this section, we repeat key
insights from ALISTA and motivate the choice of adaptive thresholds - the key improvement in our
proposed NA-ALISTA. More specifically, we repeat the conditions under which ALISTA guarantees
no false positives and highlight an intermediate step in the error bound from (Liu et al., 2019), which
tightens when the thresholds can adapt to specific instances of x∗.

Assumption (adapted from Assumption 1 from (Liu et al., 2019)1)
Let x∗ ∈ ΣNs be a fixed s–sparse target vector. Let W be such that it attains the infimum of the
generalized coherence with Φ (as in (4)) and denote this generalized coherence as µ̃ = µ(W,Φ). Let
s < (1 + 1/µ̃)/2. Let γ(1), . . . , γ(K) be any sequence of scalars taking values in (0, 2

2µ̃s−µ̃+1 ) and
θ(1), . . . , θ(K) with:

θ(k) ≥ γ(k)µ̃‖x(k) − x∗‖1 (7)

Because in ALISTA, the thresholds γ(1), . . . , γ(K) and stepsizes θ(1), . . . , θ(K) are optimized in
expectation over the training data, the inequality in (7) holds only in the general case if the thresholds
are larger than the worst case `1-error committed by the algorithm over all training vectors x∗ i.e.:

θ(k) ≥ γ̃(k)µ̃ sup
x∗
‖x(k) − x∗‖1 (8)

This is needed in order to fulfill the Assumption. Under these conditions it is guaranteed that no false
positives are in the support of the reconstruction:

No false positives (Lemma 1 from (Liu et al., 2019))
Under the settings of the Assumption, it holds that:

supp(x(k)) ⊆ supp(x∗) (9)

However, the threshold θ(k) also reappears in the error upper bound. Here we employ an intermediate
step of the error upper bound from (Liu et al., 2019):

Reconstruction error upper bound (Theorem 1 from (Liu et al., 2019))
Under the settings of the Assumption, it holds that:

‖x(k+1)−x∗‖2 ≤ ‖x(k+1)−x∗‖1 ≤ µ̃γ(k)(s−1)‖x(k)−x∗‖1+θ(k)s+|1−γ(k)|‖x(k)−x∗‖1 (10)

Where the first inequality holds for all real vectors and the second inequality is derived in detail in
Appendix A of (Liu et al., 2019). According to (10) it is therefore desirable that θ(k) is as small as

1Note that in this work and in Liu et al. (2019) the noiseless case is considered to simplify the theorems and
proofs. For similar statements in the noisy case, we refer the reader to Chen et al. (2018).
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possible, but such that it still satisfies (7). This means that ALISTA has to learn thresholds θ̃(k) at
least proportional to the largest possible committed `1-error over all possible x∗ in order to guarantee
good reconstruction, for which it is in turn penalized in the error bound.

However, if an algorithm would have access to ‖x(k) − x∗‖1 and were allowed to choose thresholds
adaptively based on x∗, the more relaxed inequality (7) could be employed directly, without taking
the supremum over all possible x∗ as in (8). Then, this algorithm could obtain a tighter error bound
for some individual targets x∗ than ALISTA since θ̃(k) ≥ θ(k). Finding such an algorithm is the aim
of this paper.

3 NEURALLY AUGMENTED ALISTA

In order to tighten the error upper bound in (10), we introduce Neurally Augmented ALISTA (NA-
ALISTA), in which we adaptively predict thresholds θ(k,x

∗) depending on the current estimate for
the `1-error between x(k) and the unknown x∗. As can be observed from (7), such θ(k,x

∗) must be
proportional to ‖x(k) − x∗‖1.

In theory, this true `1-error could be recovered exactly. This is because there are no false positives
in x(k), making it s-sparse and for a µ̃ < 1/(2s − 1) the column-normalized WTΦ is restricted-
invertible for any 2s-sparse input (Foucart & Rauhut, 2017) [Corollary 5.4, p.113]. However, it is
infeasible to solve such an inverse problem at every iteration k. Furthermore, in practice the sparsity is
often much larger than what is admissible via the coherence bound. For example, in the experiments
of (Gregor & LeCun, 2010; Liu et al., 2019; Wu et al., 2020; Kim & Park, 2020), a sparsity of 50
is used with M = 250, N = 500. This sparsity already exceeds a maximum admitted sparsity of
11 derived from the minimum theoretical coherence of 0.0447 by the Welch Bound (Welch, 1974),
implying that such an exact recovery is not possible in practice anyways.

NA-ALISTA is thus largely concerned with learning for each iteration k a good approximation of
‖x(k) − x∗‖1. For this, consider the `1-norms of the residual:

r(k) := ‖Φx(k) − y‖1 = ‖Φ(x(k) − x∗)‖1 (11)

and the iterative update quantity in (5):

u(k) := ‖WT (Φx(k) − y)‖1 = ‖(WTΦ)(x(k) − x∗)‖1 (12)

Both are known to the algorithm even though x∗ is unknown. That r(k) and u(k) are useful quantities
for approximating the true `1-error stems from the fact that WTΦ has low mutual coherence, thus
being a restricted isometry for sparse vectors. This is visualized in Figure 1. Other useful quantities
to approximate the true `1-error are given by ‖x(0) − x∗‖1, . . . , ‖x(k−1) − x∗‖1. This is highlighted
by Figure 2 and suggests the use of a recurrent neural network in NA-ALISTA. We therefore propose
to use an LSTM (Hochreiter & Schmidhuber, 1997) which has two input neurons, receiving u(k) and
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Figure 1: Correlation between ‖x∗‖1 and r = ‖Φx∗‖1 or u = ‖WT Φx∗‖1. In (a) and (b) for sparse vectors
with ‖x∗‖0 = 15. In (c) and (d) for non-sparse vectors ‖x∗‖0 = N . The non-zero components of x∗ are
drawn i.i.d. fromN (0, 1) with N = 1000. One can see that for sparse x∗, r and u are correlated with ‖x∗‖1
(Spearman coefficients 0.91,0.92), whereas there is a much weaker correlation for non-sparse vectors (0.38,0.37).
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Figure 2: Correlation between u(i) and ‖x(j)−x∗‖1 in a trained instance of NA-ALISTA from different iterations
(i, j). (a): (0, 1), (b): (5, 6), (c): (14, 15), (d): (5, 8). The Spearman coefficients are (0.85,0.96,0.97,0.93)
showing that the strong correlation, is even preserved across multiple iterations (d), suggesting the use of a
recurrent neural network to predict θ(k,x

∗). Training was performed with N = 1000, H = 128 and K = 16.

Algorithm 1: Neurally Augmented ALISTA

Learnable Parameters: initial cell state c0 ∈ RH , initial hidden state h0 ∈ RH ,
LSTM parameters, 1-layer MLP parameters U1 ∈ RH×H , U2 ∈ R2×H to map states to outputs.
Input: y
x← 0; h← h0; c← c0
for {1, . . . ,K} do

r ← ‖Φx− y‖1
u← ‖WT (Φx− y)‖1
c, h← LSTM(c, h, [r, u])
θ, γ ← Softsign(U2(ReLU(U1c)))

x← ηθ

(
x− γWT (Φx− y)

)
end
Return x;

r(k) at each iteration k. This is used to update the internal state and produce the outputs θ(k,x
∗) and

γ(k,x
∗), which are used to compute the next iteration, producing the update rule:

x(k+1) = ηθ(k,x∗)

(
x(k) − γ(k,x∗)WT (Φx(k) − y)

)
(13)

A computational expression for NA-ALISTA is given in Algorithm 1. Note that the introduction
of LSTM-cells in NA-ALISTA does not significantly increase the required computing power in
practice. In fact, in Section 4, we show that small LSTM-cells suffice for best empirical performance,
independently of the problem size. Let H be the size of the hidden layer of the LSTM-cells, then
the computation for a single forward computation of the cell takes O(H2) computations. As a
regular iteration of ALISTA takes O(MN) operations and computing the `1-norm of the update
quantity WT (Φx(k) − y) takes an additional O(N) operations, an iteration of NA-ALISTA requires
O(MN + N + H2) operations. For example, when M = 250, N = 2000, H = 64 as in one of
the experimental settings in Figure 5, then H2/MN = 4096/500000 = 0.008192, showing that the
added computation is negligible in practice.

4 EXPERIMENTS

In this section, we evaluate NA-ALISTA in a sparse reconstruction task and compare it against
ALISTA (Liu et al., 2019), ALISTA-AT (Kim & Park, 2020), AGLISTA (Wu et al., 2020), as well as
the classical ISTA (Daubechies et al., 2003) and FISTA (Beck & Teboulle, 2009). To emphasize a
fair and reproducible comparison between the models, the code for all experiments listed is available
on GitHub 2.

2https://github.com/feeds/na-alista
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4.1 EXPERIMENTAL SETUP

Following the same experimental setup as (Liu et al., 2019; Wu et al., 2020; Chen et al., 2018; Kim
& Park, 2020), the support of x∗ ∈ RN is determined via i.i.d. Bernoulli random variables with
parameter S/N , leading to an expected sparsity of S. The non-zero components of x∗ are then
sampled according to N (0, 1). The entries of Φ are also sampled from N (0, 1), before each column
is normalized to unit `2-norm. W is then computed by minimizing the generalized coherence in (4)
between W and Φ via the Frobenius-Norm approximation using projected gradient descent. This
procedure is identical to (Liu et al., 2019; Wu et al., 2020; Kim & Park, 2020). The Adam optimizer
(Kingma & Ba, 2015) is used to minimize the `2-error from (6) for all algorithms. A test set of 10000
samples is fixed before training and recovery performance is measured with the normalized mean
squared error (NMSE):

NMSE = 10 log10

(Ex∗ [‖x(K) − x∗‖2]

Ex∗ [‖x∗‖2]

)
A support selection trick was introduced in (Chen et al., 2018) to speed up convergence and stabilize
training and has been subsequently used extensively in variants LISTA and ALISTA (Liu et al.,
2019; Kim & Park, 2020; Wu et al., 2020). When support selection is used, a hyperparameter
p = (p(1), . . . , p(K)) is set such that for each layer, a certain percentage of the largest absolute values
are exempt from thresholding, i.e.:

η(θ,p(k))(x)i =

{
xi, if |xi| ≥ bp(k)/Nc-largest value of |x|
sign(xi) max(0, |xi| − θ) else

For a fair comparison, we employ support selection in all learned models compared in this paper
similarly to the literature (Liu et al., 2019; Chen et al., 2018; Wu et al., 2020; Kim & Park, 2020). Our
AGLISTA implementation follows the description in the paper (Wu et al., 2020): we use exponential
gain gates and inverse-proportional-based overshoot gains. The λ parameter in ISTA and FISTA was
tuned via a grid search, we found that λ = 0.4 led to the best performance in our tasks. NA-ALISTA
by default uses both r(k) and u(k) as inputs to the LSTM in iteration k.

When not otherwise indicated we use the following settings for experiments and algorithms: M =
250, N = 1000, S = 50,K = 16, H = 128, and y = Φx∗ + z with additive white Gaussian noise z
with a signal to noise ratio SNR:= E(‖Φx∗‖22)/E(‖z‖22) = 40dB. We train all algorithms for 400
epochs, with each epoch containing 50,000 sparse vectors with a batch size of 512.

4.2 COMPARISON WITH COMPETITORS

As an established experimental setting to compare the performance of of ISTA-based methods the
compressed sensing, previous work (Liu et al., 2019; Kim & Park, 2020; Wu et al., 2020) has
focused on a compression level of M/N = 0.5 with sparsity S=50 following (Chen et al., 2018).
However, practical applications in communication and imaging favor even lower compression rates
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Figure 3: The reconstruction error for ALISTA, AGLISTA, ALISTA-AT and NA-ALISTA over the number of
iterations K for SNR=40dB (3a) and SNR=20dB (3b). NA-ALISTA outperforms all competitors. Results for
settings with smaller N can be found in Appendix A.
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Figure 4: Reconstruction error over different compression ratios. For a constant expected sparsity of S = 50
and M = 250 measurements and K = 26 iterations, the input size N varies. Both under a SNR of 40dB and
20dB NA-ALISTA increases its reconstruction margin to competitors as N increases and the compression ratio
becomes more challenging.

16 32 64 128 256

LSTM Size (H)

−50

−45

−40

−35

−30

−25

n
M

S
E

(d
b

)

N=500

N=1000

N=2000

Figure 5: Reconstruction error for varying settings
of LSTM size in NA-ALISTA. Larger N profit more
from larger H , but in all settings an exponential in-
crease of the LSTM size only yields a marginal im-
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of NA-ALISTA. Inference to obtain these values is
performed on the test set.

like 10 . . . 20%, which is why we extend our analysis to more challenging rates. To achieve different
compression rates we keep the sparsity S and measurements M constant while increasing N .

As shown in Figure 3, we first fix N = 2000 and observe the reconstruction error for a varying
amount of iterations. In Figure 4 we then decrease the compression ratio while keeping the sparsity
constant. We observe that NA-ALISTA outperforms state-of-the-art adaptive methods in all evaluated
scenarios. Whereas for the more established setting from the literature of N=500, the improvement
of NA-ALISTA is small, this margin increases as the compression ratio becomes more challenging.
In Figure 4a the reconstruction error achieved by ALISTA-AT and AGLISTA deteriorates to the
performance of ALISTA, while our NA-ALISTA can sustain its advantage over ALISTA even for
compression rates up to 0.1 when N = 2500. This suggests that our method is interesting to a wider
range of practical applications.

NA-ALISTA with: LSTM-r LSTM-r, u LSTM-u MLP-r, u Vanilla RNN-r, u

N = 500 -42.00 -42.18 -42.03 -39.64 -42.11∗
N = 1000 -39.15 -39.12 -39.24 -35.64 -39.43
N = 2000 -32.50 -32.49 -29.36 -28.47 -24.18∗

Table 1: Reconstruction NMSE in dB for NA-ALISTA with varying inputs (r(k), u(k)) for different neural
network architectures with K = 16, SNR= 40. For the LSTM it does not seem to matter which quantities
we use to estimate the `1-error, since all perform equally well. The MLP is outperformed by all recurrent
architectures. Even though the Vanilla-RNN can perform on par with the LSTM, it suffers from serious training
instability with training resulting in NaNs forN = 500 andN = 2000 (*) even when trained with a significantly
smaller learning rate, which lead us to use the stable LSTM in our experiments.
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Figure 8: Comparison of the ratio θ(k)/γ(k) with the
true `1-error ||x∗ − x(k)||1 at each iteration for NA-
ALISTA for the mean of a batch of randomly drawn
test data {x∗} and its standard deviation. Together
these terms behave as desired, see Eq. (7).

To verify that the added computation, determined by the size H of the LSTM, is negligible in practice,
we test different settings of H . In Figure 5 we show that an exponential increase in hidden neurons
yields only a small error reduction for different N , suggesting that the size H = 128 is a sufficient
default value for several settings of N . This implies that neural augmentation only marginally affects
the runtime. We tested NA-ALISTA using different inputs r(k), u(k) and architectures in Table
1, justifying the use of an LSTM, and concluding that the all approximations perform similarly
and a single approximation of the `1-error is sufficient. However, we observe a slight increase in
convergence speed and training stability when using both inputs. For a direct comparison of wall
clock times we refer the reader to the appendix.

We also evaluate whether the increased empirical performance of NA-ALISTA is truly due to its
adaptivity or simply due to its architecture, since the LSTM architecture could in principle enable
a more stable optimization of the desired parameters due to more stable gradients. This would
imply that when run on a test set, the learned step sizes would not vary depending on the input.
Figure 6 shows that this is not the case, since step sizes and thresholds vary within a margin on a test
set of 10,000 randomly sampled inputs. Also, the decreasing threshold θ(k) corresponds to “warm
start” behavior for ISTA to first go through a thresholding phase and then through a fitting phase
where the threshold becomes essentially zero, see exemplary (Loris, 2009). An additional strength of
NA-ALISTA is that it is fast and stable to train, outperforming competitors after only a few epochs,
as shown in Figure 7.

As an empirical verification of Assumption 1 in (7) we need to check for every x∗, whether the
ratio θ(k,x

∗)/γ(k,x
∗) is proportional to the `1-error ||x∗ − x(k)||1. Since it is infeasible to check the

assumption for the infinite set of sparse vectors ΣNs , we empirically verify (7) for a sample of inputs
from the training distribution. In Figure 8 the means of both values are proportional to each other for
such a test sample, suggesting that the reconstruction bound (10) holds for NA-ALISTA.

4.3 REAL DATA SETTING - MULTIPATH CHANNEL ESTIMATION

In this section we evaluate NA-ALISTA for pilot-based multipath channel estimation for Orthogonal
Frequency Division Multiplexing (OFDM) used in modern wireless networks like LTE and 5G and
video broadcasting systems like DVB-T, see e.g. (Tse & Pramod, 2005). Within a scenario-dependent
coherence time, the communication channel is almost time-invariant and described by a circular con-
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(a) Sample CIR x∗ ∈ CN for delay spread N = 256
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(b) Pilots y ∈ CM for M = 50 and NFFT = 1024

Figure 9: Pilot-based multipath channel estimation with compressed sensing. Here, Φ ∈ CM×N is a subsampled
DFT with NFFT = 1024. A random realization of the CIR x∗ and the pilot values y are shown.
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volution with the channel impulse response (CIR) when using a cyclic prefix. Since this operation is di-
agonalized by the discrete Fourier transform (DFT), i.e. the information bearing data payload is multi-
plexed in OFDM onto different frequencies (called subcarriers) and the channel operation in frequency
space simplifies to simple multiplications with the DFT of the CIR. Hence, demodulation and decoding
of the data message requires accurate knowledge of these instantaneous channel coefficients. In mobile
scenarios, the channel is estimated from scattered pilots: on some pilot subcarriers known symbols are
transmitted. Conventionally, an equidistant pilot pattern is used as motivated by the Nyquist-criterion,
i.e. the maximum delay spread of the channel. Fortunately, the CIR is also often well-approximated by
sparse vectors since it concentrates on only few clusters and paths. Due to longer propagation, more
delayed components decrease in averaged power. A statistical model like in (Saleh & Valenzuela,
1987) is often used for the power delay profile, i.e. the second order statistics of the random CIR.
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Figure 10: Channel estimation error vs. iterations K
for an 10MHz LTE system at SNR=10dB 3. Amount of
pilots M = 100, as used in the standard but sampled
randomly.

From the viewpoint of compressed sensing with
partial Fourier matrices (Foucart & Rauhut,
2017), it is known that pilot overhead can be
reduced and channel estimation performance im-
proved when penalizing with respect to sparsity
and using irregular or random pilot locations
(Tauböck & Hlawatsch, 2008; Jung et al., 2009).
However, since the iterative compressed sensing
algorithms are more complex than linear estima-
tors it is important reach sufficient accuracy in
only few iterations and to rely on fast Fourier
transforms (FFT). Optimizing generalized co-
herence for the algorithm via (4) is therefore not
feasible since the resulting W can usually not
be implemented via FFT.

We evaluate NA-ALISTA for a 10MHz LTE sys-
tem with a FFT size NFFT = 1024 with a cyclic prefix of 256 samples (“long CP”), which is capable
of dealing with channel delay spreads of up to N = 256 (Fig. 9a). A practical system uses M = 100
equispaced pilots at distance of 6 in the allowed band of 600 subcarriers for conventional estima-
tion. As motivated above, for compressed sensing we instead use random locations (Fig.9b). It is
known that with high probability the partial DFT matrix will have good coherence and thus enable
compressed sensing (Foucart & Rauhut, 2017).

As a statistical model for the CIR x ∈ CN we assume an exponentially decaying power delay
profile: for every i ∈ supp(x) the value xi is zero-mean complex-Gaussian distributed with variance
pi = E|xi|2 ' exp(−3.5i). The random support itself is uniformly distributed with given sparsity
S = 8. In Figure 10 we observe that NA-ALISTA finds better solutions with fewer iterations than its
competitors and the gain even improves when decreasing number of pilots to 75 (see Appendix).

5 CONCLUSION AND FUTURE WORK

In this paper, we propose Neurally Augmented ALISTA (NA-ALISTA), an extension of ALISTA in
which the step sizes and thresholds are predicted adaptively to the target vector by a neural network.
Besides a theoretical motivation for NA-ALISTA, we experimentally demonstrate that it is able to
outperform state-of-the-art algorithms such as ALISTA (Liu et al., 2019), AGLISTA (Wu et al., 2020),
and ALISTA-AT (Kim & Park, 2020) in sparse reconstruction in a variety of experimental settings.
In particular, NA-ALISTA outperforms the existing algorithms by a wide margin in settings with a
large compression.
While in this paper we restrict ourselves to the classical compressed sensing setting, neural augmenta-
tion provides a flexible framework for incorporating additional knowledge into classical algorithms.
Therefore, an interesting line of future work is to explore how neural augmentation can incorporate
notions of structured sparsity or other constraints into sparse reconstruction. There is a plethora
of signal processing algorithms, going much beyond variants of compressed sensing and proximal
gradient methods, which lend itself to learned unrolling (Monga et al., 2019). Identifying algorithms
which could benefit from neural augmentation in the way that ALISTA does is left as future work.

3For thresholding in the complex case the magnitude of xi ∈ C is changed and the phase remains the same.
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A SUPPLEMENTARY EXPERIMENTS ON SYNTHETIC DATA
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(a) N = 500, SNR= 40
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(b) N = 500, SNR= 20
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(c) N = 1000, SNR= 40
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(d) N = 1000, SNR= 20
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(e) N = 2000, SNR= 40
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(f) N = 2000, SNR= 20

Figure 11: The reconstruction error for ALISTA, ALISTA-AT and NA-ALISTA over the number of iterations
run for different noise and N settings. In 11a, for the standard setting in the literature with N = 500 and a
noise level of 40dB NA-ALISTA performs on par with competitors after 16 iterations. For an increased N=1000
under the same noise level in 11c, our algorithm outperforms the other methods clearly. For a noise level of
20dB all algorithms perform similarly for N = 500 and N = 1000 and NA-ALISTA outperforms the others at
N = 2000.
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B COMPARISON OF WALL CLOCK RUNTIMES

In Figure 12, a comparison of the wall-clock time for one iteration NA-ALISTA and ALISTA at
inference time for a single batch is shown. A batch size of 5000 instead of 512 is used because
otherwise the kernel launch latency dominates the actual computation time for all algorithms when
a GPU is used. The results show that NA-ALISTA is feasible to compute and in fact faster than
AGLISTA.
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Figure 12: Wall clock time for a single iteration of NA-ALISTA, AGLISTA and ALISTA with M=250 and 500
and N ranging from 750 to 4000 for a single batch of size 5000, averaged over 100 batches. Computations were
run on a system with a NVIDIA Tesla P100 GPU and Intel(R) Xeon(R), with the GPU enabled (a) and CPU
only (b).

C SUPPLEMENTARY EXPERIMENTS IN COMMUNICATION SETTING
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(a) M = 100
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Figure 13: Channel estimation error vs. iterations K for an 10MHz LTE system at SNR=10dB. (a) amount
of sampled pilots M = 100, while (b) reduces this to M = 75, the reconstruction error is still close to using
M = 75.
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