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Abstract

We introduce the forward-backward (FB) representation of the dynamics
of a reward-free Markov decision process. It provides explicit near-optimal
policies for any reward specified a posteriori. During an unsupervised phase,
we use reward-free interactions with the environment to learn two repre-
sentations via off-the-shelf deep learning methods and temporal difference
(TD) learning. In the test phase, a reward representation is estimated
either from observations or an explicit reward description (e.g., a target
state). The optimal policy for that reward is directly obtained from these
representations, with no planning.
The unsupervised FB loss is well-principled: if training is perfect, the
policies obtained are provably optimal for any reward function. With
imperfect training, the sub-optimality is proportional to the unsupervised
approximation error. The FB representation learns long-range relationships
between states and actions, via a predictive occupancy map, without having
to synthesize states as in model-based approaches.
This is a step towards learning controllable agents in arbitrary black-box
stochastic environments. This approach compares well to goal-oriented RL
algorithms on discrete and continuous mazes, pixel-based Ms. Pacman, and
the FetchReach virtual robot arm. We also illustrate how the agent can
immediately adapt to new tasks beyond goal-oriented RL.

1 Introduction and Related Work

We consider one kind of unsupervised reinforcement learning problem: Given a Markov
decision process (MDP) but no reward information, is it possible to learn and store a compact
object that, for any reward function specified later, provides the optimal policy for that
reward, with a minimal amount of additional computation? In a sense, such an object would
encode in a compact form the solutions of all possible planning problems in the environment.
This is a step towards building agents that are fully controllable after first exploring their
environment in an unsupervised way.
Goal-oriented RL methods (Andrychowicz et al., 2017; Plappert et al., 2018) compute policies
for a series of rewards specified in advance (such as reaching a set of target states), but
cannot adapt in real time to new rewards, such as weighted combinations of target states or
dense rewards.
Learning a model of the world is another possibility, but it still requires explicit planning for
each new reward; moreover, synthesizing accurate trajectories of states over long time ranges
has proven difficult (Talvitie, 2017; Ke et al., 2018).
Instead, we exhibit an object that is both simpler to learn than a model of the world, and
contains the information to recover near-optimal policies for any reward provided a posteriori,
without a planning phase.
Borsa et al. (2018) learn optimal policies for all rewards that are linear combinations of a
finite number of feature functions provided in advance by the user. This limits applications:
e.g., goal-oriented tasks would require one feature per goal state, thus using infinitely many
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features in continuous spaces. We reuse a policy parameterization from Borsa et al. (2018),
but introduce a novel representation with better properties, based on state occupancy
prediction instead of expected featurizations. We use theoretical advances on successor state
learning from Blier et al. (2021). We obtain the following.
∙ We prove the existence of a learnable “summary” of a reward-free discrete or continuous

MDP, that provides an explicit formula for optimal policies for any reward specified
later. This takes the form of a pair of representations 𝐹 : 𝑆 × 𝐴 × 𝑍 → 𝑍 and 𝐵 : 𝑆 ×
𝐴 → 𝑍 from state-actions into a representation space 𝑍 ≃ R𝑑, with policies 𝜋𝑧(𝑠) :=
arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 . Once a reward is specified, a value of 𝑧 is computed from reward
values and 𝐵; then 𝜋𝑧 is used. Rewards may be specified either explicitly as a function, or
as target states, or by samples as in usual RL setups.

∙ We provide a well-principled unsupervised loss for 𝐹 and 𝐵: if training is perfect, then
the policies are provably optimal for all rewards (Theorem 1). In finite spaces, perfect
training is possible with large enough dimension 𝑑 (Proposition 3). With imperfect training,
sub-optimality is proportional to the training error (Theorem 5).

∙ We provide a TD-like algorithm to train 𝐹 and 𝐵 to minimize this loss, with function
approximation, adapted from recent methods for successor states Blier et al. (2021). As
usual with TD, learning seeks a fixed point but the loss itself is not observable.

∙ We prove viability of the method on several environments from mazes to pixel-based
MsPacman and a virtual robotic arm. For single-state rewards (learning to reach arbitrary
states), we compare this method to goal-oriented methods such as HER. (Our method
is not a substitute for HER: in principle they could be combined, with HER improving
replay buffer management for our method.) For more general rewards, which cannot be
tackled a posteriori by trained goal-oriented models, we provide qualitative examples.

∙ We also illustrate qualitatively the sub-optimalities (long-range behavior is preserved but
local blurring of rewards occurs) and the representations learned.

2 Problem and Notation

We consider a reward-free Markov decision process (MDP) ℳ = (𝑆,𝐴, 𝑃, 𝛾) with state
space 𝑆 (discrete or continuous), action space 𝐴 (discrete for simplicity, but this is not
essential), transition probabilities 𝑃 (𝑠′|𝑠, 𝑎) from state 𝑠 to 𝑠′ given action 𝑎, and discount
factor 0 < 𝛾 < 1 Sutton & Barto (2018). If 𝑆 is finite, 𝑃 (𝑠′|𝑠, 𝑎) can be viewed as a matrix;
in general, for each (𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑃 (d𝑠′|𝑠, 𝑎) is a probability measure on 𝑠′ ∈ 𝑆. The
notation 𝑃 (d𝑠′|𝑠, 𝑎) covers all cases. All functions are assumed to be measurable.
Given (𝑠0, 𝑎0) ∈ 𝑆 × 𝐴 and a policy 𝜋 : 𝑆 → Prob(𝐴), we denote Pr(·|𝑠0, 𝑎0, 𝜋) and
E[·|𝑠0, 𝑎0, 𝜋] the probabilities and expectations under state-action sequences (𝑠𝑡, 𝑎𝑡)𝑡≥0
starting with (𝑠0, 𝑎0) and following policy 𝜋 in the environment, defined by sampling
𝑠𝑡 ∼ 𝑃 (d𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) and 𝑎𝑡 ∼ 𝜋(𝑠𝑡).
Given a reward function 𝑟 : 𝑆 × 𝐴 → R, the 𝑄-function of 𝜋 for 𝑟 is 𝑄𝜋

𝑟 (𝑠0, 𝑎0) :=∑︀
𝑡≥0 𝛾

𝑡 E[𝑟(𝑠𝑡, 𝑎𝑡)|𝑠0, 𝑎0, 𝜋]. We assume that rewards are bounded, so that all 𝑄-functions
are well-defined. We state the results for deterministic reward functions, but this is not
essential. We abuse notation and write greedy policies as 𝜋(𝑠) = arg max𝑎 𝑄(𝑠, 𝑎) instead of
𝜋(𝑠) ∈ arg max𝑎 𝑄(𝑠, 𝑎). Ties may be broken any way.
We consider the following informal problem: Given a reward-free MDP (𝑆,𝐴, 𝑃, 𝛾), can we
compute a convenient object 𝐸 such that, once a reward function 𝑟 : 𝑆 ×𝐴→ R is specified,
we can easily (with no planning) compute from 𝐸 and 𝑟 a policy 𝜋 such that 𝑄𝜋

𝑟 is close to
maximal?

3 Outline of the Method

The method has three phases: an unsupervised learning phase where we learn a pair
of representations 𝐹 and 𝐵 in a reward-free way, by observing state transitions in the
environment; a reward estimation phase where we estimate a policy parameter 𝑧𝑅 from
reward observations, or directly set 𝑧𝑅 if the reward is known (as in goal-oriented RL); and
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an exploitation phase, where we directly set a policy based on 𝐹 , 𝐵, and 𝑧𝑅. The last two
phases may be merged in some cases.

The unsupervised learning phase. We set a representation space 𝑍 = R𝑑, used to
represent both states and reward functions. We learn a pair of “forward” and “backward”
representations

𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍, 𝐵 : 𝑆 ×𝐴→ 𝑍 (1)
For each 𝑧 ∈ 𝑍, we define the policy 𝜋𝑧(𝑠) := arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧.
No rewards are used in this phase, and no family of tasks has to be specified manually. 𝐹
and 𝐵 are trained such that, for any state-actions (𝑠0, 𝑎0), (𝑠′, 𝑎′), and any 𝑧 ∈ 𝑍,

𝐹 (𝑠0, 𝑎0, 𝑧)⊤𝐵(𝑠′, 𝑎′) ≈
∑︁
𝑡≥0

𝛾𝑡 Pr (𝑠𝑡 = 𝑠′, 𝑎𝑡 = 𝑎′ | 𝑠0, 𝑎0, 𝜋𝑧) (2)

(We actually learn probability densities, which make more sense in continuous spaces, see
(7)–(8).) Since 𝜋𝑧 depends on 𝐹 , (2) is a fixed point equation, similarly to the dependency
between the optimal 𝑄-function and optimal policy in ordinary 𝑄-learning.
Intuitively, 𝐹 is a representation of the future of a state under a certain policy. 𝐵 represents
the past of a state, or the ways to reach that state (see also Appendix E.5). If 𝐹⊤𝐵 is large,
then it is possible to reach the second state from the first. This is akin to a model of the
environment, without synthesizing state trajectories.
This unsupervised learning phase is fully principled: If learning of 𝐹 and 𝐵 is successful,
then this is guaranteed to provide all optimal policies (Theorem 1). Namely, for any reward
function 𝑟(𝑠, 𝑎), the optimal policy for 𝑟 is the policy 𝜋𝑧 with 𝑧 := E(𝑠,𝑎)[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. For
instance, 𝜋𝐵(𝑠,𝑎) is the optimal policy to reach (𝑠, 𝑎).
Approximate solutions still provide approximately optimal policies, with optimality gap
directly proportional to the error on 𝐹⊤𝐵 (Appendix, Theorem 5), so the guarantees are
non-empty.
𝐹 and 𝐵 can be learned off-policy from observed transitions in the environment, via the
Bellman equation for (2),

𝐹 (𝑠0, 𝑎0, 𝑧)⊤𝐵(𝑠′, 𝑎′) = 1𝑠0=𝑠′, 𝑎0=𝑎′ + 𝛾 E𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎0)[𝐹 (𝑠1, 𝜋𝑧(𝑠1), 𝑧)⊤𝐵(𝑠′, 𝑎′)] (3)

in discrete spaces. We leverage efficient algorithms for successor states Blier et al. (2021),
also valid in continuous spaces, and which learn without using the sparse reward 1𝑠0=𝑠′, 𝑎0=𝑎′

(see Section 4).
In finite spaces, exact solutions 𝐹 and𝐵 exist (Appendix, Prop. 3), provided the dimension 𝑑 is
large enough. In infinite spaces, arbitrarily good approximations can be obtained by increasing
𝑑, corresponding to a rank-𝑑 approximation of the pairwise cumulated transition probabilities
in (2). The dimension 𝑑 controls how many types of rewards can be optimized well; even a
relatively small 𝑑 can provide useful behaviors, see the experiments and Appendix E.2. The
algorithm is linear in 𝑑, so 𝑑 can be taken as large as the neural network models can handle.
For exploration in this phase, we use the policies being learned: the exploration policy
chooses a random value of 𝑧 from some distribution (e.g., Gaussian), and follows 𝜋𝑧 for
some time (Appendix, Algorithm 1). However, the algorithm can also work from an existing
dataset of off-policy transitions.
The optimality guarantee and training algorithm are detailed in Section 4.

The reward estimation phase. Once rewards are available, we estimate a reward
representation (policy parameter) 𝑧𝑅 by weighing the representation 𝐵 by the reward:

𝑧𝑅 := E[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] (4)
where the expectation must be computed over the same distribution of state-actions (𝑠, 𝑎)
used to learn 𝐹 and 𝐵. There are several scenarios.
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If the reward is known explicitly, this phase is unnecessary. For instance, if the re-
ward is to reach a target state-action (𝑠0, 𝑎0) while avoiding some forbidden state-actions
(𝑠1, 𝑎1), ..., (𝑠𝑘, 𝑎𝑘), one may directly set

𝑧𝑅 = 𝐵(𝑠0, 𝑎0)− 𝜆
∑︁

𝐵(𝑠𝑖, 𝑎𝑖) (5)

where the constant 𝜆 adjusts the negative reward for visiting a forbidden state. This can be
used for goal-oriented RL.
If the reward is known algebraically as a function 𝑟(𝑠, 𝑎), then 𝑧𝑅 may be computed by
averaging the function 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) over a replay buffer from the unsupervised training
phase.
If the reward is black-box as in standard RL algorithms, then the exploration policy has to
be run again for some time, and 𝑧𝑅 is obtained by averaging 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) over the states
visited.
If it is not possible to run the exploration policy again, one may learn a model 𝑟(𝑠, 𝑎) of
𝑟(𝑠, 𝑎) on some reward observations from any source, then estimate 𝑧𝑅 = E[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]
by averaging the model over a replay buffer from the unsupervised training phase. In this
case, reward identification may be done in parallel to exploitation.
An approximate value for 𝑧𝑅 still provides an approximately optimal policy (Appendix,
Prop. 6 and Thm. 8).
Since reward functions are represented by 𝑑-dimensional vectors 𝑧𝑅, loss of precision neces-
sarily occurs. In practice, for small 𝑑 we notice some blurring of rewards between nearby
states (Fig. 3), for reasons discussed in Section 4.

The exploitation phase. Once the reward representation 𝑧𝑅 has been estimated, the
𝑄-function is estimated as

𝑄(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. (6)
The corresponding policy 𝜋𝑧𝑅

(𝑠) = arg max𝑎 𝑄(𝑠, 𝑎) is used for exploitation.
Fine-tuning was not needed in our experiments, but it is possible to fine-tune the 𝑄-function
using actual rewards, by setting 𝑄(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 + 𝑞𝜃(𝑠, 𝑎) where the fine-tuning
model 𝑞𝜃 is initialized to 0 and learned via any standard 𝑄-learning method.

4 The Forward-Backward Representation of an MDP Encodes
the Optimal Policies

We now present in more detail the algorithm used to learn 𝐹 and 𝐵, and the associated
theoretical guarantee.

Background on successor states. We start with some definitions and an algorithm from
Blier et al. (2021) for successor states of a single policy. The successor state operator 𝑀𝜋

of a policy 𝜋 is defined as follows. For each state-action (𝑠0, 𝑎0), 𝑀𝜋(𝑠0, 𝑎0, ·) is a measure
over the state-action space 𝑆 ×𝐴, representing the expected discounted time spent in each
set 𝑋 ⊂ 𝑆 ×𝐴, namely,

𝑀𝜋(𝑠0, 𝑎0, 𝑋) :=
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) ∈ 𝑋 | 𝑠0, 𝑎0, 𝜋) (7)

for each 𝑋 ⊂ 𝑆 × 𝐴. Viewing 𝑀 as a measure deals with both discrete and continuous
spaces.
In practice, 𝑀𝜋 is represented by a function 𝑚𝜋(𝑠0, 𝑎0, 𝑠

′, 𝑎′) taking a pair of state-actions
and returning a number. Namely, assume access to a training set of transitions in the MDP
(off-policy, reward-free). Let 𝜌(d𝑠,d𝑎) be the probability distribution of state-actions in this
training set; we assume 𝜌 > 0 everywhere. The measure 𝑀𝜋(𝑠0, 𝑎0, ·) may be represented as
a density with respect to 𝜌:

𝑀𝜋(𝑠0, 𝑎0,d𝑠′,d𝑎′) =: 𝑚𝜋(𝑠0, 𝑎0, 𝑠
′, 𝑎′) 𝜌(d𝑠′,d𝑎′) (8)
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where 𝑚𝜋 is an ordinary function (or a distribution, see Appendix E.4).
Algorithms exist to train a parametric model 𝑚𝜋

𝜃 (𝑠0, 𝑎0, 𝑠
′, 𝑎′) of 𝑚𝜋 from a training set of

off-policy observed transitions (𝑠0, 𝑎, 𝑠1) in the MDP, based on a Bellman-like equation for
𝑀 Blier et al. (2021). Namely, sample a transition (𝑠0, 𝑎, 𝑠1) from the training set, generate
an action 𝑎1 ∼ 𝜋(𝑎1|𝑠1), sample a state-action (𝑠′, 𝑎′) from the training set, independently
from (𝑠0, 𝑎, 𝑠1). Then update the parameter 𝜃 by 𝜃 ← 𝜃 + 𝜂 𝛿𝜃 with learning rate 𝜂 and

𝛿𝜃 := 𝜕𝜃𝑚
𝜋
𝜃 (𝑠0, 𝑎, 𝑠0, 𝑎) + 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝑠

′, 𝑎′) × (𝛾 𝑚𝜋
𝜃 (𝑠1, 𝑎1, 𝑠

′, 𝑎′)−𝑚𝜋
𝜃 (𝑠0, 𝑎, 𝑠

′, 𝑎′)) (9)

The true successor state density 𝑚𝜋 is a fixed point of this update in expectation Blier et al.
(2021) (it is the only fixed point in the tabular or overparameterized case). Variants exist,
such as using a target network for 𝑚𝜋

𝜃 (𝑠1, 𝑎1, 𝑠
′, 𝑎′) on the right-hand side, as in DQN.

The naive way to estimate successor states via a Bellman equation from (2) would involve a
sparse reward term 1𝑠0=𝑠′, 𝑎=𝑎′ , resulting in infinitely sparse rewards in continuous spaces.
However, in expectation, this term’s contribution is known algebraically: (9) avoids sparse
rewards in a principled way thanks to the 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝑠0, 𝑎) term Blier et al. (2021).

It is not necessary to know the training distribution 𝜌: all quantities are expressed as
expectations under 𝜌, namely, expectations over the training set. When training under data
distribution 𝜌, one learns the density 𝑚𝜋 of 𝑀𝜋 with respect to 𝜌; this will be useful below.

The forward-backward representation provides the optimal policies. The next
theorem contains the core idea of our algorithms. In short, if we can learn two representations
𝐹 and 𝐵 of state-actions such that 𝐹⊤𝐵 approximates the successor states of certain policies,
then we can compute all optimal policies from 𝐹 and 𝐵.
Theorem 1 (Forward-backward representation of an MDP). Consider an MDP with state
space 𝑆 and action space 𝐴. Let 𝑍 = R𝑑 be some representation space. Let

𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍, 𝐵 : 𝑆 ×𝐴→ 𝑍 (10)

be two functions. For each 𝑧 ∈ 𝑍, define the policy

𝜋𝑧(𝑠) := arg max
𝑎

𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. (11)

Let 𝜌 be any probability distribution on 𝑆 ×𝐴 (e.g., the distribution of state-actions under
some exploration scheme).
Assume that 𝐹 and 𝐵 have been chosen (trained) to satisfy the following: for any 𝑧 ∈ 𝑍, and
any state-actions (𝑠, 𝑎) and (𝑠′, 𝑎′), the quantity 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) is equal to the successor
state density 𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) of policy 𝜋𝑧 with respect to 𝜌.
Then, for any bounded reward function 𝑟 : 𝑆 ×𝐴→ R, the following holds. Set

𝑧𝑅 := E(𝑠,𝑎)∼𝜌 [𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] . (12)

Then 𝜋𝑧𝑅
is an optimal policy for reward 𝑟 in the MDP. Moreover, the optimal 𝑄-function

𝑄* for reward 𝑟 is

𝑄*(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. (13)

The theoretical guarantee extends to approximate training of 𝐹 and 𝐵, with optimality
gap proportional to the 𝐹⊤𝐵 training error. This is important, as exact finite-𝑑 representa-
tions are often impossible in continuous spaces. Namely: if, for some reward 𝑟, the error⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝐵(𝑠′, 𝑎′)−𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)

⃒⃒
is at most 𝜀 on average over (𝑠′, 𝑎′) ∼ 𝜌 for every

(𝑠, 𝑎), then 𝜋𝑧𝑅
is 3𝜀 ‖𝑟‖∞ /(1 − 𝛾)-optimal for 𝑟 (Appendix, Theorem 5, with additional

results on weaker norms).
A similar statement holds if we use �̄�(𝑠, 𝑧, 𝑠′, 𝑎′) + 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) instead of just
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) to learn successor states (Appendix, Theorem 2). Here �̄� is any function
that does not depend on 𝑎. Since �̄� has no rank restriction, the finite rank approximation
only applies to the advantage function.
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Learning 𝐹 and 𝐵. Theorem 1 suggests to choose a parametric model for the representa-
tions 𝐹 and 𝐵, and then train 𝐹 and 𝐵 such that 𝐹⊤𝐵 approximates the successor state
density 𝑚, via any successor state learning algorithm.
This unfolds as follows (Appendix, Algorithm 1). Assume access to a training dataset of
transitions (𝑠0, 𝑎, 𝑠1) in the MDP, e.g., from some exploration policies. The samples (𝑠0, 𝑎)
in this dataset follow some unknown distribution 𝜌; we make no assumptions on 𝜌. Then:
∙ In the unsupervised learning phase, train 𝐹 and 𝐵 so that 𝐹⊤𝐵 approximates the successor

state density 𝑚𝜋𝑧 for every 𝑧. This can use any successor state learning algorithm, adapted
to incorporate 𝑧. Here we use (9).
For this, choose a parametric model 𝐹𝜃, 𝐵𝜃 for the representations 𝐹 and 𝐵. At each step,
pick a 𝑧 at random, pick a batch of transitions (𝑠0, 𝑎, 𝑠1) from the training set, set the
next actions 𝑎1 := 𝜋𝑧(𝑠1), and pick a batch of state-actions (𝑠′, 𝑎′) from the training set,
independently from 𝑧 and (𝑠0, 𝑎, 𝑠1). Then apply the successor state update (9) to the
parametric model 𝑚𝜋𝑧

𝜃 (𝑠0, 𝑎, 𝑠
′, 𝑎′) = 𝐹𝜃(𝑠0, 𝑎, 𝑧)⊤𝐵𝜃(𝑠′, 𝑎′) (Algorithm 1).

For sampling 𝑧, we use a fixed distribution (rescaled Gaussians, see Appendix G). Any
number of values of 𝑧 may be sampled: this does not use up training samples. We
use a target network with soft updates (Polyak averaging) as in DDPG. For training
we also replace the greedy policy 𝜋𝑧 = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 with a regularized version
𝜋𝑧 = softmax(𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧/𝜏) with fixed temperature 𝜏 (Appendix G). Since there is
unidentifiability between 𝐹 and 𝐵 (Appendix, Remark 4), we normalize 𝐵 via an auxiliary
loss in Algorithm 1.

∙ In the reward estimation phase, we estimate the reward representation 𝑧𝑅 via (12), following
one of the use cases from Section 3. The distribution 𝜌 in (12) is the same as the one
used to define the density 𝑚𝜋; thus, 𝑧𝑅 must be estimated over the same distribution of
state-actions used to train 𝐹 and 𝐵.
If the reward is known directly, 𝑧𝑅 can be set by hand following (12). For instance, for the
optimal policy to reach state-action (𝑠, 𝑎), we directly set 𝑧𝑅 = 𝐵(𝑠, 𝑎). (A unit reward at
(𝑠, 𝑎) corresponds to 𝑧𝑅 = 𝐵(𝑠, 𝑎)/𝜌(𝑠, 𝑎) in (12), but 𝜌 is unknown and scaling the reward
yields the same optimal policy.) This extends to finite combinations of states. If 𝑟 is
provided as a function, then E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] may be estimated directly on (𝑠, 𝑎) in
a replay buffer. The case of 𝑟 accessible only by samples has been discussed in Section 3.
Stochastic rewards may be used to estimate 𝑧𝑅. Indeed, if E 𝑟(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) then
E[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] = 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎).

∙ In the exploitation phase, the exploitation policy can be directly set to 𝜋𝑧𝑅
, which selects

the action arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.

Incorporating prior information. We are often interested in rewards depending, not
on the full state, but only on a part or some features of the state (e.g., a few components
of the state, such as the position of an agent, or its neighbordhood, rather than the full
environment). If this is known in advance, the representation 𝐵 can be trained on that
part of the state only, with the same theoretical guarantees (Appendix, Theorem 2). 𝐹 still
needs to use the full state as input. This way, the FB model (2) does not have to learn
how often every (𝑠′, 𝑎′) is reached, only the part of interest in (𝑠′, 𝑎′). More generally, if
𝜙 : 𝑆×𝐴→ 𝐺 is a feature map to some features 𝑔 = 𝜙(𝑠, 𝑎), and if we know that the reward
will be a function 𝑅(𝑔), then the same theorem holds with 𝐵(𝑔) everywhere instead of 𝐵(𝑠, 𝑎),
and with the successor density 𝑚𝜋(𝑠, 𝑎, 𝑔) instead of 𝑚𝜋(𝑠, 𝑎, 𝑠′, 𝑎′) (Appendix, Theorem 2).
Learning the latter is done by replacing 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝑠0, 𝑎) with 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝜙(𝑠0, 𝑎)) in the

first term in (9) Blier et al. (2021). Rewards can be arbitrary functions of 𝑔, so this is more
general than Borsa et al. (2018) which only considers rewards linear in 𝑔. For instance, in
MsPacman below, we let 𝑔 be the position of the agent, so we can optimize any reward
function that depends on this position.

5 Experiments

We first consider the task of reaching arbitrary goal states. For this, we can make quantitative
comparisons to existing goal-oriented baselines. Next, we illustrate qualitatively some tasks
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that cannot be tackled a posteriori by goal-oriented methods, such as introducing forbidden
states. Finally, we illustrate some of the representations learned.

5.1 Environments and Experimental Setup

We run our experiments on a selection of environments that are diverse in term of state
space dimensionality, stochasticity and dynamics.
∙ Discrete Maze is the classical gridworld with four rooms. States are represented by one-hot

unit vectors.
∙ Continuous Maze is a two dimensional environment with impassable walls. States are

represented by their Cartesian coordinates (𝑥, 𝑦) ∈ [0, 1]2. The execution of one of the
actions moves the agent in the desired direction, but with normal random noise added to
the position of the agent.

∙ FetchReach is a variant of the simulated robotic arm environment from (Plappert et al.,
2018) using discrete actions instead of continuous actions. States are 10-dimensional
vectors consisting of positions and velocities of robot joints.
∙ Ms. Pacman is a variant of the Atari 2600 game Ms. Pacman, where an episode ends

when the agent is captured by a monster (Rauber et al., 2018). States are obtained by
processing the raw visual input directly from the screen. Frames are preprocessed by
cropping, conversion to grayscale and downsampling to 84× 84 pixels. A state 𝑠𝑡 is the
concatenation of (𝑥𝑡−12, 𝑥𝑡−8, 𝑥𝑡−4, 𝑥𝑡) frames, i.e. an 84× 84× 4 tensor. An action repeat
of 12 is used. As Ms. Pacman is not originally a multi-goal domain, we define the goals as
the 148 reachable coordinates (𝑥, 𝑦) on the screen; these can be reached only by learning
to avoid monsters.

For all environments, we run algorithms for 800 epochs. Each epoch consists of 25 cycles
where we interleave between gathering some amount of transitions, to add to the replay
buffer, and performing 40 steps of stochastic gradient descent on the model parameters.
To collect transitions, we generate episodes using some behavior policy. For both mazes,
we use a uniform policy while for FetchReach and Ms. Pacman, we use an 𝜀-greedy policy
with respect to the current approximation 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for a sampled 𝑧. At evaluation time,
𝜀-greedy policies are also used, with a smaller 𝜀. More details are given in Appendix G.

5.2 Goal-Oriented Setting: Quantitative Comparisons
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Figure 1: Comparative performance of FB
for different dimensions and DQN in the dis-
crete maze. Left: the policy quality averaged
over 20 randomly selected goals as function of
the the first 200 training epochs. Right: the
policy quality averaged over the goal space
after 800 training epochs.
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Figure 2: Comparative performance of FB
for different dimensions and DQN in Ms. Pac-
man. Left: the success rate averaged over
20 randomly selected goals as function of the
first 200 training epochs. Right: the success
rate averaged over the goal space after 800
training epochs.

We investigate the FB representation over goal-reaching tasks and compare it to goal-oriented
baselines: DQN1, and DQN with HER when needed. We define sparse reward functions. For
Discrete Maze, the reward function is equal to one when the agent’s state is equal exactly to
the goal state. For Discrete Maze, we measured the quality of the obtained policy to be the
ratio between the true expected discounted reward of the policy for its goal and the true
optimal value function, on average over all states. For the other environments, the reward
function is equal to one when the distance of the agent’s position and the goal position is

1Here DQN is short for goal-oriented DQN, 𝑄(𝑠, 𝑎, 𝑔).
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below some threshold, and zero otherwise. We assess policies by computing the average
success rate, i.e the average number of times the agent successfully reaches its goal.
Figs. 1 and 2 show the comparative performance of FB for different dimensions 𝑑, and
DQN and DQN+HER respectively in Discrete Maze and Ms. Pacman (similar results in
FetchReach and Continuous Maze are provided in the Appendix). The performance of FB
consistently increases with the dimension 𝑑 and the best dimension matches the performance
of the goal-oriented baseline. In Ms. Pacman, DQN totally fails to learn and we had to add
HER to make it work.
In Discrete Maze, we observe a drop of performance for 𝑑 = 25: this is due to the spatial
smoothing induced by the small rank approximation and the reward being nonzero only if
the agent is exactly at the goal. This spatial blurring is clear on heatmaps for 𝑑 = 25 vs
𝑑 = 75 (Fig. 3). With 𝑑 = 25 the agent often stops right next to its goal.
To evaluate the sample efficiency of FB, after each epoch, we evaluate the agent on 20
randomly selected goals. Learning curves are reported in Figs. 1 and 2 (left). In all
environments, we observe no loss in sample efficiency compared to the goal-oriented baseline.
In Ms. Pacman, FB even learns faster than DQN+HER.

5.3 More Complex Rewards: Qualitative Results
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Figure 3: Heatmap of max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅

for 𝑧𝑅 = 𝐵( ) Left: 𝑑 = 25. Right: 𝑑 = 75.
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Figure 4: Contour plot of
max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 in Continuous
Maze. Left: for the task of reaching a target
while avoiding a forbidden region, Right:
for two equally rewarding targets.

Figure 5: Trajectories generated by the
𝐹⊤𝐵 policies for the task of reaching a target
position (star shape while avoiding forbid-
den positions (red shape )

Figure 6: Trajectories generated by the 𝐹⊤𝐵
policies for the task of reaching the closest
among two equally rewarding positions (star
shapes ). (Optimal 𝑄-values are not linear
over such mixtures.)

We now investigate FB’s ability to generalize to new tasks that cannot be solved by an already
trained goal-oriented model: reaching a goal with forbidden states imposed a posteriori,
reaching the nearest of two goals, and choosing between a small, close reward and a large,
distant one.
First, for the task of reaching a target position 𝑔0 while avoiding some forbidden positions
𝑔1, . . . 𝑔𝑘 , we set 𝑧𝑅 = 𝐵(𝑔0) − 𝜆

∑︀𝑘
𝑖=1 𝐵(𝑔𝑖) and run the corresponding 𝜀-greedy policy

defined by 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. Fig. 5 shows the resulting trajectories, which succeed at solving
the task for the different domains. In Ms. Pacman, the path is suboptimal (though successful)
due to the sudden appearance of a monster along the optimal path. (We only plot the initial
frame; the full series of frames along the trajectory is in the Appendix.) Fig. 4 (left) provides
a contour plot of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 for the continuous maze and shows the landscape
shape around the forbidden regions.
Next, we consider the task of reaching the closest target among two equally rewarding
positions 𝑔0 and 𝑔1, by setting 𝑧𝑅 = 𝐵(𝑔0) +𝐵(𝑔1). The optimal 𝑄-function is not a linear
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combination of the 𝑄-functions for 𝑔0 and 𝑔1. Fig. 6 shows successful trajectories generated
by the policy 𝜋𝑧𝑅

. On the contour plot of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 in Fig. 4 (right), the two
rewarding positions appear as basins of attraction. Similar results for a third task are shown
in the Appendix: introducing a “distracting” small reward next to the initial position of the
agent, with a larger reward further away. The Appendix includes embedding visualizations
for different 𝑧 and for Discrete Maze and Ms. Pacman.

6 Conclusion

The FB representation is a learnable mathematical object that “summarizes” a reward-free
MDP. It provides near-optimal policies for any reward specified a posteriori, without planning.
It is learned from black-box reward-free interactions with the environment. In practice, this
unsupervised method performs comparably to goal-oriented methods for reaching arbitrary
goals, but is also able to tackle more complex rewards in real time. The representations
learned encode the MDP dynamics and may have broader interest.
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A Outline of the Supplementary Material

The Appendix is organized as follows.

∙ Appendix B provides an extended related work.
∙ Appendix C discusses how incoporate prior information as well as what kinod of

representation is learned.
∙ Appendix D presents the pseudo-code of the unsupervised phase of FB algorithm.
∙ Appendix E provides extended theoretical results on approximate solutions and

general goals:
– Section E.1 formalizes the forward-backward representation with a goal or

feature space.
– Section E.2 establishes the existence of exact FB representations in finite spaces.
– Section E.3 shows how approximate solutions provide approximately optimal

policies.
– Section E.4 presents a note of the measure 𝑀𝜋 and its density 𝑚𝜋.
– Section E.5 shows how 𝐹 and 𝐵 are successor and predecessor features of each

other.
∙ Appendix F provides proofs of all theoretical results above.
∙ Appendix G provides additional information about our experiments:

– Section G.1 describes the environments.
– Section G.2 describes the different architectures used for FB as well as the

goal-oriented DQN.
– Section G.3 provides implementation details and hyperparameters.
– Section G.4 provides additional experimental results.

B Extended Related Work

Borsa et al. (2018) learn optimal policies for rewards that are linear combinations of a finite
number of feature functions provided in advance by the user. The approach of Borsa et al.
(2018) cannot tackle generic rewards or goal-oriented RL: this would require introducing one
feature per possible goal state, requiring infinitely many features in continuous spaces.
Our approach does not require user-provided features describing the future tasks, thanks to
using successor states Blier et al. (2021) where Borsa et al. (2018) use successor features.
Schematically, and omitting actions, successor features start with user-provided features 𝜙,
then learn 𝜓 such that 𝜓(𝑠0) =

∑︀
𝑡≥0 𝛾

𝑡 E[𝜙(𝑠𝑡) | 𝑠0]. This limits applicability to rewards
that are linear combinations of 𝜙. Here we use successor states, namely, we learn two
representations 𝐹 and 𝐵 such that 𝐹 (𝑠0)⊤𝐵(𝑠′) =

∑︀
𝑡≥0 𝛾

𝑡 Pr(𝑠𝑡 = 𝑠′ | 𝑠0). This does not
require any user-provided input.
Thus we learn two representations instead of one. The learned backward representation 𝐵 is
absent from Borsa et al. (2018). 𝐵 plays a different role than the user-provided features 𝜙 of
Borsa et al. (2018): learning of 𝐹 given 𝐵 is not learning of 𝜓 given 𝜙. The features 𝜙 of
Borsa et al. (2018) are split between our learned 𝐵 and the functions 𝜙 we can use if the
reward is known to depend on only part of the state.
We use a similar parameterization of policies by 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 as in Borsa et al. (2018), for
similar reasons, although 𝑧 encodes a different object.
Successor representations where first defined in Dayan (1993) for finite spaces, corresponding
to an older object from Markov chains, the fundamental matrix Kemeny & Snell (1960);
Brémaud (1999); Grinstead & Snell (1997). Stachenfeld et al. (2017) argue for their relevance
for cognitive science. For successor representations in continuous spaces, a finite number of
features 𝜙 are specified first; this can be used for generalization within a family of tasks, e.g.,
(Barreto et al., 2017; Zhang et al., 2017; Grimm et al., 2019; Hansen et al., 2019). Blier et al.
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(2021) moves from successor features to successor states by providing pointwise occupancy
map estimates even in continuous spaces, without using the sparse reward 1𝑠𝑡=𝑠′ . We adapt
successor state learning algorithms from Blier et al. (2021), which also introduced simpler
versions of 𝐹 and 𝐵 for a single, fixed policy.
There is a long literature on goal-oriented RL. For instance, Schaul et al. (2015) learn goal-
dependent value functions, regularized via an explicit matrix factorization. Goal-dependent
value functions have been investigated in earlier works such as (Foster & Dayan, 2002)
and (Sutton et al., 2011). Hindsight experience replay (HER) (Andrychowicz et al., 2017)
improve the sample efficiency of multiple goal learning with sparse rewards. A family of
rewards has to be specified beforehand, such as reaching arbitrary target states. Specifying
rewards a posteriori is not possible: for instance, learning to reach target states does not
extend to reaching the nearest among several goals, reaching a goal while avoiding forbidden
states, or maximizing any dense reward.
For finite state spaces, Jin et al. (2020) provide an algorithm to constitute a training set
by reward-free interactions with a finite environment, such that any optimal policies later
computed on this training set instead of the true environment are provably 𝜀-optimal, for
any reward. They prove tight bounds on the necessary set size. Planning still has to be done
for each reward.

C Discussion

Incorporating prior information. Trying to plan in advance for all possible rewards in
an arbitrary environment may be too generic and problem-agnostic, and become difficult
in large environments, requiring long exploration and a large 𝑑 to accomodate all rewards.
Prior information can be incorporated in several ways into the 𝐹𝐵 method, by focussing on
certain types of rewards or parts of the space.
First, 𝐹 and 𝐵 may be trained only on values of 𝑧𝑅 corresponding to a category of rewards
specified in advance. For instance, training only on 𝑧𝑅 = 𝐵(𝑠) with 𝑠 in some set 𝑆′ ⊂ 𝑆
learns the optimal policies for reaching all states 𝑠 ∈ 𝑆′. Any prior (e.g., Bayesian) on
rewards may be incorporated this way. In our experiments, 𝑧 was just sampled from a
rescaled Gaussian.
Second, we are often interested in rewards depending, not on the full state, but only on a
part or some features of the state (e.g., a few components of the state, such as the position
of an agent, or its neighbordhood, rather than the full environment). If this is known in
advance, the representation 𝐵 can be trained on that part of the state only, with the same
theoretical guarantees (Appendix, Theorem 2). 𝐹 still needs to use the full state as input.
This way, the FB model (2) does not have to learn how often every (𝑠′, 𝑎′) is reached, only
the part of interest in (𝑠′, 𝑎′). More generally, if 𝜙 : 𝑆 × 𝐴 → 𝐺 is a feature map to some
features 𝑔 = 𝜙(𝑠, 𝑎), and if we know that the reward will be a function 𝑅(𝑔), then the
same theorem holds with 𝐵(𝑔) everywhere instead of 𝐵(𝑠, 𝑎), and with the successor density
𝑚𝜋(𝑠, 𝑎, 𝑔) instead of 𝑚𝜋(𝑠, 𝑎, 𝑠′, 𝑎′) (Appendix, Theorem 2). Learning the latter is done
by replacing 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝑠0, 𝑎) with 𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎, 𝜙(𝑠0, 𝑎)) in the first term in (9) Blier et al.

(2021). Rewards can be arbitrary functions of 𝑔, so this is more general than Borsa et al.
(2018) which only considers rewards linear in 𝑔. For instance, in MsPacman below, we let 𝑔
be the position of the agent, so we can optimize any reward function that depends on this
position.
Third, if we are interested only in part of the space, focusing the exploration policy on that
part will provide representations 𝐹 and 𝐵 that minimize the loss over that part of the space.
This could lead to optimal policies for rewards “around a typical set of behaviors”, presumably
a more realistic goal than fully agnostic unsupervised training in complex environments.

What kind of representation is learned? Which information on the reward
gets lost? As reward functions are represented by a finite-dimensional object 𝑧𝑅, some
approximation is incurred on rewards (unless fine-tuning is used at exploitation time). By
(12), a reward is represented by 0 if and only if it is 𝐿2(𝜌)-orthogonal to all components of

12
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𝐵. So the representation 𝐵 is not only part of a transition probability model, but also a
reward regularizer.
The loss associated to (2), and minimized by a Bellman-like training, is

E(𝑠,𝑎)∼𝜌, (𝑠′,𝑎′)∼𝜌, 𝑧∼𝑃𝑧

⃒⃒⃒
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) −

∑︀
𝑡≥0 𝛾

𝑡𝑃𝑡(d𝑠′,d𝑎′ | 𝑠, 𝑎, 𝜋𝑧)/𝜌(d𝑠′,d𝑎′)
⃒⃒⃒2
(14)

where 𝑃𝑡 is the distribution of states reached at step 𝑡 by policy 𝜋𝑧 starting at (𝑠, 𝑎), and 𝑃𝑧

is some user-chosen distribution, such as a Gaussian or a prior over tasks (see above).
Thus, 𝐹 and 𝐵 provide a rank-𝑑 approximation to the transition probabilities in the
environment. For a single 𝑧, this loss is minimized when 𝐹 and 𝐵 are the SVD of the
cumulated transition matrix

∑︀
𝑡 𝛾

𝑡𝑃𝑡, truncated to the largest 𝑑 singular values. The SVD
is computed in the 𝐿2(𝜌) norm: the data distribution influences the representations learned
by focusing on the part of the space covered by 𝜌.
For a fixed policy, on a finite space,

∑︀
𝑡 𝛾

𝑡𝑃𝑡 = (Id−𝛾𝑃 )−1 as matrices. Thus the largest
singular values of

∑︀
𝑡 𝛾

𝑡𝑃𝑡 correspond to the smallest singular values of the Markov chain
Laplacian Id−𝛾𝑃 . The associated singular vectors loosely correspond to long-range (low-
frequency) behavior Mahadevan & Maggioni (2007): presumably, 𝐹 and 𝐵 will represent
spatially smooth rewards first, while local detail may be lost (Fig. 3 and Section 5). Stachen-
feld et al. (2017) argue for the cognitive relevance of low-dimensional approximations of
successor representations.
The features learned in 𝐹 and 𝐵 may have broader interest.

13
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D Algorithm

The unsupervised phase of the FB algorithm is described in Algorithm 1.

Algorithm 1 FB algorithm: Unsupervised Phase
1: Inputs: replay buffer 𝒟 , Polyak coefficient 𝛼 , 𝜈 a probability distribution over R𝑑,

randomly initialized networks 𝐹𝜃 and 𝐵𝜔, learning rate 𝜂, mini-batch size 𝑏, number of
episodes 𝐸, number of gradient updates 𝑁 , temperature 𝜏 and regularization coefficient
𝜆.

2: for 𝑚 = 1, . . . do
3: /* Collect 𝐸 episodes
4: for episode 𝑒 = 1, . . . 𝐸 do
5: Sample 𝑧 ∼ 𝜈
6: Observe an initial state 𝑠0
7: for 𝑡 = 1, . . . do
8: Select an action 𝑎𝑡 according to some behaviour policy (e.g the 𝜀-greedy with

respect to 𝐹𝜃(𝑠𝑡, 𝑎, 𝑧)⊤𝑧 )
9: Observe next state 𝑠𝑡+1

10: Store transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) in the replay buffer 𝒟
11: end for
12: end for
13: /* Perform 𝑁 stochastic gradient descent updates
14: for 𝑛 = 1 . . . 𝑁 do
15: Sample a mini-batch of transitions {(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)}𝑖∈𝐼 ⊂ 𝒟 of size |𝐼| = 𝑏.
16: Sample a mini-batch of target state-action pairs {(𝑠′

𝑖, 𝑎
′
𝑖)}𝑖∈𝐼 ⊂ 𝒟 of size |𝐼| = 𝑏.

17: Sample a mini-batch of {𝑧𝑖}𝑖∈𝐼 ∼ 𝜈 of size |𝐼| = 𝑏.
18: Set 𝜋𝑧𝑖

(· | 𝑠𝑖+1) = softmax(𝐹𝜃−(𝑠𝑖+1, ·, 𝑧𝑖)⊤𝑧𝑖/𝜏)
19: L (𝜃, 𝜔) =

1
2𝑏2

∑︀
𝑖,𝑗∈𝐼2

(︀
𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)⊤𝐵𝜔(𝑠′

𝑗 , 𝑎
′
𝑗)− 𝛾

∑︀
𝑎∈𝐴 𝜋𝑧𝑖(𝑎 | 𝑠𝑖+1) · 𝐹𝜃−(𝑠𝑖+1, 𝑎, 𝑧𝑖)⊤𝐵𝜔−(𝑠′

𝑗 , 𝑎
′
𝑗)
)︀2−

1
𝑏

∑︀
𝑖∈𝐼 𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)⊤𝐵𝜔(𝑠𝑖, 𝑎𝑖)

20: /* Compute orthonormality regularization loss
21: Lreg(𝜔) = 1

𝑏2

∑︀
𝑖,𝑗∈𝐼2 𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤stop-gradient(𝐵𝜔(𝑠′

𝑗 , 𝑎
′
𝑗)) ·

stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤𝐵𝜔(𝑠′
𝑗 , 𝑎

′
𝑗))− 1

𝑏

∑︀
𝑖∈𝐼 𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖))

22: Update 𝜃 ← 𝜃 − 𝜂∇𝜃L (𝜃, 𝜔) and 𝜔 ← 𝜔 − 𝜂∇𝜔(L (𝜃, 𝜔) + 𝜆 ·Lreg(𝜔))
23: end for
24: /* Update target network parameters
25: 𝜃− ← 𝛼𝜃− + (1− 𝛼)𝜃
26: 𝜔− ← 𝛼𝜔− + (1− 𝛼)𝜔
27: end for

14
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E Extended Results: Approximate Solutions and General
Goals

E.1 The Forward-Backward Representation With a Goal or Feature Space

Here we state a generalization of Theorem 1 covering the extensions mentioned in Section 4.
First, this covers rewards depending on the state-action (𝑠, 𝑎) only via certain features
𝑔 = 𝜙(𝑠, 𝑎) where 𝜙 is a known function from state-actions to some goal state 𝐺 (for instance,
rewards depending only on some components of the state). Then it is enough to compute 𝐵
as a function of the goal 𝑔. Theorem 1 corresponds to 𝜙 = Id.
This also allows us to cover successor features as in Borsa et al. (2018), defined by user-
provided features 𝜙. Indeed, fixing 𝐵 to Id and setting our 𝜙 to the 𝜙 of Borsa et al. (2018)
(or fixing 𝐵 to their 𝜙 and our 𝜙 to Id) will represent the same set of rewards and policies
as in Borsa et al. (2018), although with a slightly different learning algorithm and up to
a linear change of variables for 𝐹 and 𝑧 (given by the covariance of 𝜙, see Appendix E.5),
namely, optimal policies for rewards linear in 𝜙. However, keeping the same 𝜙 but letting 𝐵
free (with larger 𝑑) can provide optimal policies for rewards that are arbitrary functions of
𝜙, linear or not.
For this, we extend successor state measures to values in goal spaces, representing the
discounted time spent at each goal by the policy. Namely, given a policy 𝜋, let 𝑀𝜋 be the
the successor state measure of 𝜋 over goals 𝑔:

𝑀𝜋(𝑠, 𝑎,d𝑔) :=
∑︁
𝑡≥0

𝛾𝑡 Pr (𝜙(𝑠𝑡, 𝑎𝑡) ∈ d𝑔 | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋) (15)

for each state-action (𝑠, 𝑎) and each measurable set d𝑔 ⊂ 𝐺. This will be the object
approximated by 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔).
Second, we use a more general model of successor states, 𝑚 ≈ 𝐹⊤𝐵 + �̄� where �̄� does not
depend on the action, so that the 𝐹⊤𝐵 part is enough to compute advantages; this lifts the
constraint that the model of 𝑚 has rank at most 𝑑, because there is no restriction on the
rank on �̄�.
For simplicity we state the result with deterministic rewards, but this extends to stochastic
rewards, because the expectation 𝑧𝑅 will be the same.
Theorem 2 (Forward-backward representation of an MDP, with features as goals). Consider
an MDP with state space 𝑆 and action space 𝐴. Let 𝜙 : 𝑆 × 𝐴 → 𝐺 be a function from
state-actions to some goal space 𝐺 = R𝑘.
Let 𝑍 = R𝑑 be some representation space. Let

𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍, 𝐵 : 𝐺→ 𝑍, �̄� : 𝑆 × 𝑍 ×𝐺→ R (16)
be three functions. For each 𝑧 ∈ 𝑍, define the policy

𝜋𝑧(𝑎|𝑠) := arg max
𝑎

𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. (17)

Let 𝜌 be any probability distribution over the goal space 𝐺. For each 𝑧 ∈ 𝑍, let 𝑚𝜋𝑧

be the density of the successor state measure of 𝜋𝑧 with respect to 𝜌: 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑔) =
𝑚𝜋𝑧 (𝑠, 𝑎, 𝑔) 𝜌(d𝑔).
Assume that 𝐹 and 𝐵 have been chosen (trained) to satisfy the following: for any 𝑧 ∈ 𝑍,
any state-actions (𝑠, 𝑎), and any goal 𝑔 ∈ 𝐺, one has

𝑚𝜋𝑧 (𝑠, 𝑎, 𝑔) = 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + �̄�(𝑠, 𝑧, 𝑔). (18)

Let 𝑅 : 𝑆 ×𝐴→ R be any bounded reward function, and assume that this reward function
depends only on 𝑔 = 𝜙(𝑠, 𝑎), namely, that there exists a function 𝑟 : 𝐺 → R such that
𝑅(𝑠, 𝑎) = 𝑟(𝜙(𝑠, 𝑎)). Set

𝑧𝑅 := E𝑔∼𝜌 [𝑟(𝑔)𝐵(𝑔)] . (19)
Then:
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1. 𝜋𝑧𝑅
is an optimal policy for reward 𝑅 in the MDP.

2. For any 𝑧 ∈ 𝑍, the 𝑄-function of policy 𝜋𝑧 for the reward 𝑅 is equal to

𝑄𝜋𝑧 (𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 + 𝑉 𝑧(𝑠) (20)

and the optimal 𝑄-function is obtained when 𝑧 = 𝑧𝑅. The advantages 𝑄𝜋𝑧 (𝑠, 𝑎)−
𝑄𝜋𝑧 (𝑠, 𝑎′) do not depend on 𝑉 .
Here

𝑉 𝑧(𝑠) := E𝑔∼𝜌[�̄�(𝑠, 𝑧, 𝑔)𝑟(𝑔)]. (21)

and in particular 𝑉 = 0 if �̄� = 0.

3. If �̄� = 0, then for any state-action (𝑠, 𝑎) one has

𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 = sup
𝑧∈𝑍

𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅. (22)

(We do not claim that 𝑉 is the value function and 𝐹⊤𝑧𝑅 the advantage function, only that
the sum is the 𝑄-function. When �̄� = 0, the term 𝐹⊤𝑧𝑅 is the whole 𝑄-function.)
The last point of the theorem is a form of policy improvement. Indeed, by the second point,
𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 is the estimated 𝑄-function of policy 𝜋𝑧 for rewards 𝑟. If 𝑧𝑅 falls outside of the
training distribution for 𝐹 , the values of 𝐹 (𝑠, 𝑎, 𝑧𝑅) may not be safe to use; in that case, it
may be useful to use a finite set 𝑍 ′ ⊂ 𝑍 of values of 𝑧 closer to the training distribution, and
use the estimate sup𝑧∈𝑍′ 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 instead of 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. This has been used, e.g., in
Borsa et al. (2018), but in the end it was not necessary in our experiments.

E.2 Existence of Exact 𝐹𝐵 Representations in Finite Spaces

We now prove existence of an exact solution for finite spaces if the representation dimension
𝑑 is at least #𝑆 × #𝐴. Solutions are never unique: one may always multiply 𝐹 by an
invertible matrix 𝐶 and multiply 𝐵 by (𝐶⊤)−1, see Remark 4 below (this allows us to impose
orthonormality of 𝐵 in the experiments).
The constraint 𝑑 ≥ #𝑆×#𝐴 can be largely overestimated depending on the tasks of interest,
though. For instance, we prove below that in an 𝑛-dimensional toric grid 𝑆 = {1, . . . , 𝑘}𝑛,
𝑑 = 2𝑛 is enough to obtain optimal policies for reaching every target state (a set of tasks
smaller than optimizing all possible rewards).
Proposition 3 (Existence of an exact 𝐹𝐵 representation for finite state spaces). Assume
that the state and action spaces 𝑆 and 𝐴 of an MDP are finite. Let 𝑍 = R𝑑 with 𝑑 ≥ #𝑆×#𝐴.
Let 𝜌 be any probability distribution on 𝑆 ×𝐴, with 𝜌(𝑠, 𝑎) > 0 for any (𝑠, 𝑎).
Then there exists 𝐹 : 𝑆 × 𝐴 × 𝑍 → 𝑍 and 𝐵 : 𝑆 × 𝐴 → 𝑍, such that 𝐹⊤𝐵 is equal to the
successor state density of 𝜋𝑧 with respect to 𝜌:

𝐹⊤(𝑠, 𝑎, 𝑧)𝐵(𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡 Pr((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧)
𝜌(𝑠′, 𝑎′) (23)

for any 𝑧 ∈ 𝑍 and any state-actions (𝑠, 𝑎) and (𝑠′, 𝑎′), where 𝜋𝑧 is defined as in Theorem 1
by 𝜋𝑧(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧.

In practice, even a small 𝑑 can be enough to get optimal policies for reaching arbitrary many
states (as opposed to optimizing all possible rewards). Let us give an example with 𝑆 a toric
𝑛-dimensional grid of size 𝑘.
Let us start with 𝑛 = 1. Take 𝑆 = {0, . . . , 𝑘 − 1} to be a length-𝑘 cycle with three actions
𝑎 ∈ {−1, 0, 1} (go left, stay in place, go right). Take 𝑑 = 2, so that 𝑍 = R2 ≃ C.
We consider the tasks of reaching an arbitrary target state 𝑠′, for every 𝑠′ ∈ 𝑆. Thus the
goal state is 𝐺 = 𝑆 in the notation of Theorem 2, and 𝐵 only depends on 𝑠′. The policy for
such a reward is 𝜋𝑧𝑅

= 𝜋𝐵(𝑠′).
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For a state 𝑠 ∈ {0, . . . , 𝑘 − 1} and action 𝑎 ∈ {−1, 0, 1}, define

𝐹 (𝑠, 𝑎, 𝑧) := 𝑒2𝑖𝜋(𝑠+𝑎)/𝑘, 𝐵(𝑠) := 𝑒2𝑖𝜋𝑠/𝑘. (24)

Then one checks that 𝜋𝐵(𝑠′) is the optimal policy for reaching 𝑠′, for every 𝑠′ ∈ 𝑆. Indeed,
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 = cos(2𝜋(𝑠 + 𝑎 − 𝑠′)/𝑘). This is maximized for the action 𝑎 that brings 𝑠
closer to 𝑠′.
So the policies will be optimal for reaching every target 𝑠′ ∈ 𝑆, despite the dimension being
only 2.
By taking the product of 𝑛 copies of this example, this also works on the 𝑛-dimensional toric
grid 𝑆 = {0, . . . , 𝑘 − 1}𝑛 with 2𝑛 + 1 actions (add ±1 in each direction or stay in place),
with a representation of dimension 𝑑 = 2𝑛 in C𝑛, namely, by taking 𝐵(𝑠)𝑗 := 𝑒2𝑖𝜋𝑠𝑗/𝑘 for
ecah direction 𝑗 and likewise for 𝐹 . Then 𝜋𝐵(𝑠′) is the optimal policy for reaching 𝑠′ for
every 𝑠′ ∈ 𝑆.
More generally, if one is only interested in the optimal policies for reaching states, then
it is easy to show that there exist functions 𝐹 : 𝑆 × 𝐴 → 𝑍 and 𝐵 : 𝑆 → 𝑍 such that the
policies 𝜋𝑧 describe the optimal policies to reach each state: it is enough that 𝐵 be injective
(typically requiring 𝑑 = dim(𝑆)). Indeed, for any state 𝑠 ∈ 𝑆, let 𝜋*

𝑠 be the optimal policy
to reach 𝑠. We want 𝜋𝑧 to be equal to 𝜋*

𝑠 for 𝑧 = 𝐵(𝑠) (the value of 𝑧𝑅 for a reward
located at 𝑠). This translates as arg max𝑎 𝐹 (𝑠′, 𝑎, 𝐵(𝑠))⊤𝐵(𝑠) = 𝜋*

𝑠 (𝑠′) for every other state
𝑠′. This is realized just by letting 𝐹 be any function such that 𝐹 (𝑠′, 𝜋*

𝑠(𝑠′), 𝐵(𝑠)) := 𝐵(𝑠)
and 𝐹 (𝑠′, 𝑎, 𝐵(𝑠)) := −𝐵(𝑠) for every other action 𝑎. As soon as 𝐵 is injective, there exists
such a function 𝐹 . (Unfortunately, we are not able to show that the learning algorithm
reaches such a solution.)

Let us turn to uniqueness of 𝐹 and 𝐵.
Remark 4. Let 𝐶 be an invertible 𝑑× 𝑑 matrix. Given 𝐹 and 𝐵 as in Theorem 1, define

𝐵′(𝑠, 𝑎) := 𝐶𝐵(𝑠, 𝑎), 𝐹 ′(𝑠, 𝑎, 𝑧) := (𝐶⊤)−1𝐹 (𝑠, 𝑎, 𝐶−1𝑧) (25)
together with the policies 𝜋′

𝑧(𝑠) := arg max𝑎 𝐹
′(𝑠, 𝑎, 𝑧)⊤𝑧. For each reward 𝑟, define 𝑧′

𝑅 :=
E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵′(𝑠, 𝑎)].
Then this operation does not change the policies or estimated 𝑄-values: for any reward, we
have 𝜋′

𝑧′
𝑅

= 𝜋𝑧𝑅
, and 𝐹 ′(𝑠, 𝑎, 𝑧′

𝑅)⊤𝑧′
𝑅 = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.

In particular, assume that the components of 𝐵 are linearly independent. Then, taking 𝐶 =(︀
E(𝑠,𝑎)∼𝜌 𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤

)︀−1/2, 𝐵′ is 𝐿2(𝜌)-orthonormal. So up to reducing the dimension 𝑑

to rank(𝐵), we can always assume that 𝐵 is 𝐿2(𝜌)-orthonormal.

Reduction to orthonormal 𝐵 will be useful in some proofs below. Even after imposing that
𝐵 be orthonormal, solutions are not unique, as one can still apply a rotation matrix on the
variable 𝑧.

E.3 Approximate Solutions Provide Approximately Optimal Policies

Here we prove that the optimality in Theorems 1 and 2 is robust to approximation errors
during training. We deal in turn with the approximation errors on (𝐹,𝐵) during unsupervised
training, and on 𝑧𝑅 during the reward estimation phase.

E.3.1 Influence of Approximate 𝐹 and 𝐵

In continuous spaces, Theorems 1 and 2 are somewhat spurious: the equality 𝐹⊤𝐵 = 𝑚 will
never hold exactly with finite representation dimension 𝑑. Instead, 𝐹⊤𝐵 will only be a rank-𝑑
approximation of 𝑚. Even in finite spaces, since 𝐹 and 𝐵 are learned by a neural network,
we can only expect that 𝐹⊤𝐵 ≈ 𝑚 in general.
We now prove that approximate solutions still provide approximately optimal policies. We
start with the error from learning 𝐹 and 𝐵 in the unsupervised learning phase. Then we
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turn to the error from estimating 𝑧𝑅 in the reward estimation phase (in case the reward is
not known explicitly).
We provide this result for different notions of approximate solutions for 𝐹 and 𝐵: first, in
sup norm over (𝑠, 𝑎) but in expectation over (𝑠′, 𝑎′) (so that a perfect model of the world
is not necessary); second, for the weak topology on measures (this is the most relevant in
continuous spaces: for instance, a Dirac measure can be approached by a continuous model
in the weak topology).
𝐹 and 𝐵 are trained such that 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) approximates the successor state density
𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′). In the simplest case, we prove that if for some reward 𝑅,

E(𝑠′,𝑎′)∼𝜌

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝐵(𝑠′, 𝑎′)−𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)

⃒⃒
≤ 𝜀 (26)

for every (𝑠, 𝑎), then the optimality gap of policy 𝜋𝑧𝑅
is at most (3𝜀/(1− 𝛾)) sup |𝑅| for that

reward (Theorem 5, first case).
In continuous spaces, 𝑚𝜋 is usually a distribution (Appendix E.4), so such an approximation
will not hold, and it is better to work on the measures themselves rather than their densities,
namely, to compare 𝐹⊤𝐵𝜌 to 𝑀𝜋. We prove that if 𝐹⊤𝐵𝜌 is close to 𝑀𝜋 in the weak topology,
then the resulting policies are optimal for any Lipschitz reward.2

Remember that a sequence of nonnegative measures 𝜇𝑛 converges weakly to 𝜇 if for any
bounded, continuous function 𝑓 ,

∫︀
𝑓(𝑥)𝜇𝑛(𝑑𝑥) converges to

∫︀
𝑓(𝑥)𝜇(d𝑥) (Bogachev (2007),

§8.1). The associated topology can be defined via the following Kantorovich–Rubinstein
norm on nonnegative measures (Bogachev (2007), §8.3)

‖𝜇− 𝜇′‖KR := sup
{︂⃒⃒⃒⃒∫︁

𝑓(𝑥)𝜇(d𝑥)−
∫︁
𝑓(𝑥)𝜇′(d𝑥)

⃒⃒⃒⃒
: 𝑓 1-Lipschitz function with sup |𝑓 | ≤ 1

}︂
(27)

where we have equipped the state-action space with any metric compatible with its topology.3

The following theorem states that if 𝐹⊤𝐵 approximates the successor state density of the
policy 𝜋𝑧 (for various sorts of approximations), then 𝜋𝑧 is approximately optimal. Given a
reward function 𝑟 on state-actions, we denote

‖𝑟‖∞ := sup
(𝑠,𝑎)∈𝑆×𝐴

|𝑟(𝑠, 𝑎)| (28)

and
‖𝑟‖Lip := sup

(𝑠,𝑎)̸=(𝑠′,𝑎′)∈𝑆×𝐴

𝑟(𝑠, 𝑎)− 𝑟(𝑠′, 𝑎′)
𝑑((𝑠, 𝑎), (𝑠′, 𝑎′)) (29)

where we have chosen any metric on state-actions.
The first statement is for any bounded reward. The second statement only assumes an
𝐹⊤𝐵 approximation in the weak topology but only applies to Lipschitz rewards. The third
statement is more general and is how we prove the first two: weaker assumptions on 𝐹⊤𝐵
work on a stricter class of rewards.
Theorem 5 (If 𝐹 and 𝐵 approximate successor states, then the policies 𝜋𝑧 yield approxi-
mately optimal returns). Let 𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍 and 𝐵 : 𝑆 ×𝐴→ 𝑍 be any functions, and
define the policy 𝜋𝑧(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for each 𝑧 ∈ 𝑍.
Let 𝜌 be any positive probability distribution on 𝑆 ×𝐴, and for each policy 𝜋, let 𝑚𝜋 be the
density of the successor state measure 𝑀𝜋 of 𝜋 with respect to 𝜌. Let

�̂�𝑧(𝑠, 𝑎, 𝑠′, 𝑎′) := 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′), �̂�𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) := �̂�𝑧(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′)
(30)

2This also holds for continuous rewards, but the Lipschitz assumption yields an explicit bound in
Theorem 5.

3The Kantorovich–Rubinstein norm is closely related to the 𝐿1 Wasserstein distance on probability
distributions, but slightly more general as it does not require the distance functions to be integrable:
the Wasserstein distance metrizes weak convergence among those probability measures such that
E[𝑑(𝑥, 𝑥0)] < ∞.
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be the estimates of 𝑚 and 𝑀 obtained via the model 𝐹 and 𝐵.
Let 𝑟 : 𝑆 × 𝐴 → R be any bounded reward function. Let 𝑉 * be the optimal value function
for this reward 𝑟. Let 𝑉 𝜋𝑧 be the value function of policy 𝜋𝑧 for this reward. Let 𝑧𝑅 =
E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)].
Then:

1. If E(𝑠′,𝑎′)∼𝜌 |�̂�𝑧𝑅(𝑠, 𝑎, 𝑠′, 𝑎′)−𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)| ≤ 𝜀 for any (𝑠, 𝑎) in 𝑆 × 𝐴, then⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 *

⃦⃦⃦
∞
≤ 3𝜀 ‖𝑟‖∞ /(1− 𝛾).

2. If 𝑟 is Lipschitz and
⃦⃦⃦
�̂�𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
KR
≤ 𝜀 for any (𝑠, 𝑎) ∈ 𝑆 × 𝐴,

then
⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 *

⃦⃦⃦
∞
≤ 3𝜀max(‖𝑟‖∞ , ‖𝑟‖Lip)/(1− 𝛾).

3. More generally, let ‖·‖𝐴 be a norm on functions and ‖·‖𝐵 a norm on measures, such
that

∫︀
𝑓 d𝜇 ≤ ‖𝑓‖𝐴 ‖𝜇‖𝐵 for any function 𝑓 and measure 𝜇. Then for any reward

function 𝑟 such that ‖𝑟‖𝐴 <∞,⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 *

⃦⃦⃦
∞
≤

3 ‖𝑟‖𝐴

1− 𝛾 sup
𝑠,𝑎

⃦⃦⃦
�̂�𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
𝐵
. (31)

Moreover, the optimal 𝑄-function is close to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅:

sup
𝑠,𝑎

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄*(𝑠, 𝑎)

⃒⃒
≤

2 ‖𝑟‖𝐴

1− 𝛾 sup
𝑠,𝑎

⃦⃦⃦
�̂�𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
𝐵
. (32)

E.3.2 An approximate 𝑧𝑅 yields an approximately optimal policy

We now turn to the second source of approximation: computing 𝑧𝑅 in the reward estimation
phase. This is a problem only if the reward is not specified explicitly.
We deal in turn with the effect of using a model of the reward function, and the effect of
estimating 𝑧𝑅 = E(𝑠,𝑎)∼𝜌 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) via sampling.
Which of these options is better depends a lot on the situation. If training of 𝐹 and 𝐵
is perfect, by construction the policies are optimal for each 𝑧𝑅: thus, estimating 𝑧𝑅 from
rewards sampled at 𝑁 states (𝑠𝑖, 𝑎𝑖) ∼ 𝜌 will produce the optimal policy for exactly that
empirical reward, namely, a nonzero reward at each (𝑠𝑖, 𝑎𝑖) but zero everywhere else, thus
overfitting the reward function. Reducing the dimension 𝑑 reduces this effect, since rewards
are projected on the span of the features in 𝐵: 𝐵 plays both the roles of a transition model
and a reward regularizer. This appears as a

√︀
𝑑/𝑁 factor in Theorem 8 below.

Thus, if both the number of samples to train 𝐹 and 𝐵 and the number of reward samples
are small, using a smaller 𝑑 will regularize both the model of the environment and the model
of the reward. However, if the number of samples to train 𝐹 and 𝐵 is large, yielding an
excellent model of the environment, but the number of reward samples is small, then learning
a model of the reward function will be a better option than direct empirical estimation of 𝑧𝑅.

The first result below states that reward misidentification comes on top of the approximation
error of the 𝐹⊤𝐵 model. This is relevant, for instance, if a reward model 𝑟 is estimated by
an external model using some reward values.
Proposition 6 (Influence of estimating 𝑧𝑅 by an approximate reward). Let 𝑟 : 𝑆 ×𝐴→ R
be any reward function. Let 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)].

Let 𝜀𝐹 𝐵 be the error attained by the 𝐹⊤𝐵 model in Theorem 5 for reward 𝑟; namely, assume
that

⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 *

⃦⃦⃦
∞
≤ 𝜀𝐹 𝐵 with 𝑉 * the optimal value function for 𝑟.

Then the policy 𝜋𝑧𝑅
(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 defined by the model 𝑟 is(︂

‖𝑟 − 𝑟‖∞
(1− 𝛾) + 𝜀𝐹 𝐵

)︂
-optimal for reward 𝑟.
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This still assumes that the expectation 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] is computed exactly for
the model 𝑟. If 𝑟 is given by an explicit model, this expectation can in principle be computed
on the whole replay buffer used to train 𝐹 and 𝐵, so variance would be low. Nevertheless, we
provide an additional statement which covers the influence of the variance of the estimator
of 𝑧𝑅, whether this estimator uses an external model 𝑟 or a direct empirical average reward
observations 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎).
Definition 7. The skewness 𝜁(𝐵) of 𝐵 is defined as follows. Assume 𝐵 is bounded. Let
𝐵1, . . . , 𝐵𝑑 : 𝑆 ×𝐴→ R be the functions of (𝑠, 𝑎) defined by each component of 𝐵. Let ⟨𝐵⟩
be the linear span of the (𝐵𝑖)1≤𝑖≤𝑑 as functions on 𝑆 ×𝐴. Set

𝜁(𝐵) := sup
𝑓∈⟨𝐵⟩, 𝑓 ̸=0

‖𝑓‖∞
‖𝑓‖𝐿2(𝜌)

. (33)

Theorem 8 (Influence of estimating 𝑧𝑅 by empirical averages). Assume that 𝑧𝑅 =
E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] is estimated via

𝑧𝑅 := 1
𝑁

𝑁∑︁
𝑖=1

𝑟𝑖𝐵(𝑠𝑖, 𝑎𝑖) (34)

using 𝑁 independent samples (𝑠𝑖, 𝑎𝑖) ∼ 𝜌, where the 𝑟𝑖 are random variables such that
E[𝑟𝑖|𝑠𝑖, 𝑎𝑖] = 𝑟(𝑠𝑖, 𝑎𝑖), Var[𝑟𝑖|𝑠𝑖, 𝑎𝑖] ≤ 𝑣 for some 𝑣 ∈ R, and the 𝑟𝑖 are mutually independent
given (𝑠𝑖, 𝑎𝑖)𝑖=1,...,𝑁 .

Let 𝑉 * be the optimal value function for reward 𝑟, and let 𝑉 be the value function of the
estimated policy 𝜋𝑧𝑅

for reward 𝑟.
Then, for any 𝛿 > 0, with probability at least 1− 𝛿,⃦⃦⃦

𝑉 − 𝑉 *
⃦⃦⃦

∞
≤ 𝜀𝐹 𝐵 + 1

1− 𝛾

√︂
𝜁(𝐵) 𝑑
𝑁𝛿

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2

𝐿2(𝜌)

)︁
(35)

which is therefore the bound on the optimality gap of 𝜋𝑧𝑅
for 𝑟. Here 𝜀𝐹 𝐵 is the error due to

the 𝐹⊤𝐵 model approximation, defined as in Proposition 6.

The proofs are not direct, because 𝐹 is not continuous with respect to 𝑧. Contrary to
𝑄-values, successor states are not continuous in the reward: if an action has reward 1 and
the reward for another action changes from 1− 𝜀 to 1 + 𝜀, the return values change by at
most 2𝜀, but the actions and states visited by the optimal policy change a lot. So it is not
possible to reason by continuity on each of the terms involved.

E.4 A Note on the Measure 𝑀𝜋 and its Density 𝑚𝜋

In finite spaces, the definition of the successor state density 𝑚𝜋 via

𝑀𝜋(𝑠, 𝑎,d𝑠′,d𝑎′) = 𝑚𝜋(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (36)

with respect to the data distribution 𝜌 poses no problem, as long as the data distribution is
positive everywhere.
In continuous spaces, this can be understood as the (Radon–Nikodym) density of 𝑀𝜋 with
respect to 𝜌, assuming 𝑀𝜋 has no singular part with respect to 𝜌. However, this is never
the case: in the definition (7) of the successor state measure 𝑀𝜋, the term 𝑡 = 0 produces a
Dirac measure 𝛿𝑠,𝑎. So 𝑀𝜋 has a singular component due to 𝑡 = 0, and 𝑚𝜋 is better thought
of as a distribution.
When 𝑚𝜋 is a distribution, a continuous parametric model 𝑚𝜋

𝜃 learned by (9) can approx-
imate 𝑚𝜋 in the weak topology only: 𝑚𝜋

𝜃 𝜌 approximates 𝑀𝜋 for the weak convergence
of measures. Thus, for the forward-backward representation, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′)
weakly approximates 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′).
We have not found this to be a problem either in theory or practice, and Theorem 5 covers
weak approximations.
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Alternatively, one may just define successor states starting at 𝑡 = 1 in (7). This only works
if rewards 𝑟(𝑠, 𝑎) depend on the state 𝑠 but not the action 𝑎 (e.g., in goal-oriented settings).
If starting the definition at 𝑡 = 1, 𝑚𝜋 is an ordinary function provided the transition
kernels 𝑃 (d𝑠′|𝑠, 𝑎) of the environment are non-singular, 𝜌 has positive density, and 𝜋(d𝑎|𝑠)
is non-singular as well. But starting at 𝑡 = 1 induces some changes in the theorems:

∙ In the learning algorithm (9) for successor states, the term 𝜕𝜃𝑚
𝜋
𝜃 (𝑠, 𝑎, 𝑠, 𝑎) becomes

𝛾 𝜕𝜃𝑚
𝜋
𝜃 (𝑠, 𝑎, 𝑠′, 𝑎′).

∙ The expression for the 𝑄-function in Theorem 1 becomes 𝑄*(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅, and likewise in Theorem 2. The 𝑟(𝑠, 𝑎) term covers the immediate
reward at a state, since we have excluded 𝑡 = 0 from the definition of successor
states.
∙ In general the expression for optimal policies becomes

𝜋𝑧(𝑠) := arg max
𝑎
{𝑟(𝑠, 𝑎) + 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧} (37)

which cannot be computed from 𝑧 and 𝐹 alone in the unsupervised training phase.
The algorithm only makes sense for rewards that depend on 𝑠 but not on 𝑎 (e.g., in
goal-oriented settings): then the policy 𝜋𝑧 is equal to 𝜋𝑧(𝑠) := arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧
again.

E.5 𝐹 and 𝐵 as Successor and Predecessor Features of Each Other

We now give a statement that specifies how 𝐹 encodes the future of a state while 𝐵 encodes
the past of a state. Namely: if 𝐹 and 𝐵 minimize their unsupervised loss, then 𝐹 is equal to
the successor features from the dual features of 𝐵, and 𝐵 is equal to the predecessor features
from the dual features of 𝐹 (Theorem 9).
This statement holds for a fixed 𝑧 and the corresponding policy 𝜋𝑧. So, for the rest of this
section, 𝑧 is fixed.
By “dual” features we mean the following. Define the 𝑑× 𝑑 covariance matrices

Cov𝐹 := E(𝑠,𝑎)∼𝜌[𝐹 (𝑠, 𝑎, 𝑧)𝐹 (𝑠, 𝑎, 𝑧)⊤], Cov𝐵 := E(𝑠,𝑎)∼𝜌[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤]. (38)

Then (Cov𝐹 )−1/2𝐹 (𝑠, 𝑎, 𝑧) is 𝐿2(𝜌)-orthonormal and likewise for 𝐵. The “dual” features
are (Cov𝐹 )−1𝐹 (𝑠, 𝑎, 𝑧) and (Cov𝐵)−1𝐵(𝑠, 𝑎), without the square root: these are the least
square solvers for 𝐹 and 𝐵 respectively, and these are the ones that appear below.
The unsupervised FB loss (14) for a fixed 𝑧 is

ℓ(𝐹,𝐵) :=
∫︁ ⃒⃒⃒⃒⃒⃒𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−

∑︁
𝑡≥0

𝛾𝑡𝑃𝑡(d𝑠′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)
𝜌(d𝑠′,d𝑎′)

⃒⃒⃒⃒
⃒⃒
2

𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′). (39)

Thus, minimizers in dimension 𝑑 correspond to an SVD of the successor state density in
𝐿2(𝜌), truncated to the largest 𝑑 singular values.
Theorem 9. Consider a smooth parametric model for 𝐹 and 𝐵, and assume this model is
overparameterized. 4 Also assume that the data distribution 𝜌 has positive density everywhere.
Let 𝑧 ∈ 𝑍. Assume that for this 𝑧, 𝐹 and 𝐵 lie in 𝐿2(𝜌) and achieve a local extremum
of ℓ(𝐹,𝐵) within this parametric model. Namely, the derivative 𝜕𝜃ℓ(𝐹,𝐵) of the loss with
respect to the parameters 𝜃 of 𝐹 is 0, and likewise for 𝐵.

4 Intuitively, a parametric function 𝑓 is overparameterized if every possible small change of 𝑓 can
be realized by a small change of the parameter. Formally, we say that a parametric family of functions
𝜃 ∈ Θ ↦→ 𝑓𝜃 ∈ 𝐿2(𝑋,R𝑑) smoothly parameterized by 𝜃, on some space 𝑋, is overparameterized if,
for any 𝜃, the differential 𝜕𝜃𝑓𝜃 is surjective from Θ to 𝐿2(𝑋,R𝑑). For finite 𝑋, this implies that
the dimension of 𝜃 is larger than #𝑋. For infinite 𝑋, this implies that dim(𝜃) is infinite, such as
parameterizing functions on [0; 1] by their Fourier expansion.
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Then 𝐹 is equal to (Cov𝐵)−1 times the successor features of 𝐵: for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴,

(Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) =
∑︁
𝑡≥0

𝛾𝑡

∫︁
(𝑠′,𝑎′)

𝑃𝑡(d𝑠′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)𝐵(𝑠′, 𝑎′) (40)

and 𝐵 is equal to (Cov𝐹 )−1 times the predecessor features of 𝐹 :

(Cov𝐹 )𝐵(𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡

∫︁
(𝑠,𝑎)

𝑃𝑡(d𝑠′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)
𝜌(d𝑠′,d𝑎′) 𝐹 (𝑠, 𝑎, 𝑧) 𝜌(d𝑠,d𝑎) (41)

𝜌-almost everywhere. Here the covariances have been defined in (38), and 𝑃𝑡(·|𝑠, 𝑎, 𝜋) denotes
the law of (𝑠𝑡, 𝑎𝑡) under trajectories starting at (𝑠, 𝑎) and following policy 𝜋.
The same result holds when working with features 𝜙(𝑠′, 𝑎′), just by applying it to 𝐵 ∘ 𝜙.

Note that in the FB framework, we may normalize either 𝐹 or 𝐵 (Remark 4), but not both.
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F Proofs

The first proposition is a direct consequence of the definition (15) of successor states with a
goal space 𝐺.
Proposition 10. Let 𝜙 : 𝑆 ×𝐴→ 𝐺 be a map to some goal space 𝐺.
Let 𝜋 be some policy, and let 𝑀𝜋 be the successor state measure (15) of 𝜋 in goal space 𝐺.
Let 𝑚𝜋 be the density of 𝑀𝜋 with respect to some positive probability measure 𝜌 on 𝐺.
Let 𝑟 : 𝐺→ R be some function on 𝐺, and define the reward function 𝑅(𝑠, 𝑎) := 𝑟(𝜙(𝑠, 𝑎))
on 𝑆 ×𝐴.
Then the 𝑄-function 𝑄𝜋 of policy 𝜋 for reward 𝑅 is

𝑄𝜋(𝑠, 𝑎) =
∫︁
𝑟(𝑔)𝑀𝜋(𝑠, 𝑎,d𝑔) (42)

= E𝑔∼𝜌 [𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)] . (43)

Proof of Proposition 10. For each time 𝑡 ≥ 0, let 𝑃𝜋
𝑡 (𝑠0, 𝑎0,d𝑔) be the probability distribu-

tion of 𝑔 = 𝜙(𝑠𝑡, 𝑎𝑡) over trajectories of the policy 𝜋 starting at (𝑠0, 𝑎0) in the MDP. Thus,
by the definition (15),

𝑀𝜋(𝑠, 𝑎,d𝑔) =
∑︁
𝑡≥0

𝛾𝑡𝑃𝜋
𝑡 (𝑠, 𝑎,d𝑔). (44)

The 𝑄-function of 𝜋 for the reward 𝑅 is by definition (the sums and integrals are finite since
𝑅 is bounded)

𝑄𝜋(𝑠, 𝑎) =
∑︁
𝑡≥0

𝛾𝑡 E[𝑅(𝑠𝑡, 𝑎𝑡) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] (45)

=
∑︁
𝑡≥0

𝛾𝑡 E[𝑟(𝜙(𝑠𝑡, 𝑎𝑡)) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] (46)

=
∑︁
𝑡≥0

𝛾𝑡

∫︁
𝑔

𝑟(𝑔)𝑃𝜋
𝑡 (𝑠, 𝑎,d𝑔) (47)

=
∫︁

𝑔

𝑟(𝑔)𝑀𝜋(𝑠, 𝑎,d𝑔) (48)

=
∫︁

𝑔

𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)𝜌(d𝑔) (49)

= E𝑔∼𝜌[𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)] (50)

by definition of the density 𝑚𝜋.

Proof of Theorems 1 and 2. Theorem 1 is a particular case of Theorem 2 (𝜙 = Id and
�̄� = 0), so we only prove the latter.
Let 𝑅(𝑠, 𝑎) = 𝑟(𝜙(𝑠, 𝑎)) be a reward function as in the theorem.
The 𝑄-function of 𝜋 for the reward 𝑅 is, by Proposition 10,

𝑄𝜋(𝑠, 𝑎) = E𝑔∼𝜌[𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)]. (51)

The assumptions state that for any 𝑧 ∈ 𝑍, 𝑚𝜋𝑧 (𝑠, 𝑎, 𝑔) is equal to 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + �̄�(𝑠, 𝑧, 𝑔).
Therefore, for any 𝑧 ∈ 𝑍 we have

𝑄𝜋𝑧 (𝑠, 𝑎) = E𝑔∼𝜌

[︀
𝑟(𝑔)𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + 𝑟(𝑔)�̄�(𝑠, 𝑧, 𝑔)

]︀
(52)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤E𝑔∼𝜌 [𝑟(𝑔)𝐵(𝑔)] + E𝑔∼𝜌[𝑟(𝑔)�̄�(𝑠, 𝑧, 𝑔)] (53)
= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 + 𝑉 𝑧(𝑠) (54)

by definition of 𝑧𝑅 and 𝑉 . This proves the claim (20) about 𝑄-functions.
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By definition, the policy 𝜋𝑧 selects the action 𝑎 that maximizes 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. Take 𝑧 = 𝑧𝑅.
Then

𝜋𝑧𝑅
= arg max

𝑎
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (55)

= arg max
𝑎

{︀
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 + 𝑉 𝑧(𝑠)

}︀
(56)

since the last term does not depend on 𝑎.
This quantity is equal to 𝑄𝜋𝑧𝑅 (𝑠, 𝑎). Therefore,

𝜋𝑧𝑅
= arg max

𝑎
𝑄𝜋𝑧𝑅 (𝑠, 𝑎) (57)

and by the above, 𝑄𝜋𝑧𝑅 (𝑠, 𝑎) is indeed equal to the 𝑄-function of policy 𝜋𝑧𝑅
for the reward 𝑅.

Therefore, 𝜋𝑧𝑅
and 𝑄𝜋𝑧𝑅 constitute an optimal Bellman pair for reward 𝑅. Since 𝑄𝜋𝑧𝑅 (𝑠, 𝑎)

is the 𝑄-function of 𝜋𝑍𝑅
, it satisfies the Bellman equation

𝑄𝜋𝑧𝑅 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) 𝑄
𝜋𝑧𝑅 (𝑠′, 𝜋𝑧𝑅

(𝑠′)) (58)
= 𝑅(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) max

𝑎′
𝑄𝜋𝑧𝑅 (𝑠′, 𝑎′) (59)

by (57). This is the optimal Bellman equation for 𝑅, and 𝜋𝑧𝑅
is the optimal policy for 𝑅.

We still have to prove the last statement of Theorem 2. Since 𝜋𝑧𝑅
is an optimal policy for 𝑅,

for any other policy 𝜋𝑧 and state-action (𝑠, 𝑎) we have

𝑄𝜋𝑧𝑅 (𝑠, 𝑎) ≥ 𝑄𝜋𝑧 (𝑠, 𝑎). (60)

Using the formulas above for 𝑄𝜋, with �̄� = 0, this rewrites as

𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 ≥ 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 (61)

as needed. Thus 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 ≥ sup𝑧∈𝑍 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅, and equality occurs by taking 𝑧 = 𝑧𝑅.
This ends the proof of Theorem 2.

Proof of Proposition 3. Assume 𝑑 = #𝑆 × #𝐴; extra dimensions can just be ignored by
setting the extra components of 𝐹 and 𝐵 to 0.
With 𝑑 = #𝑆 ×#𝐴, we can index the components of 𝑍 by pairs (𝑠, 𝑎).
First, let us set 𝐵(𝑠, 𝑎) := 1𝑠,𝑎.

Let 𝑟 : 𝑆 ×𝐴→ R be any reward function. Let 𝑧𝑅 ∈ R#𝑆×#𝐴 be defined as in Theorem 1,
namely, 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. With our choice of 𝐵, the components of 𝑧𝑅 are
(𝑧𝑅)𝑠,𝑎 = 𝑟(𝑠, 𝑎)𝜌(𝑠, 𝑎). Since 𝜌 > 0, the correspondence 𝑟 ↔ 𝑧𝑅 is bijective.
Let us now define 𝐹 . Take 𝑧 ∈ 𝑍. Since 𝑟 ↔ 𝑧𝑅 is bijective, this 𝑧 is equal to 𝑧𝑅 for some
reward function 𝑟. Let 𝜋𝑧 be an optimal policy for this reward 𝑟 in the MDP. Let 𝑀𝜋𝑟 be
the successor state measure of policy 𝜋𝑧, namely:

𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | (𝑠0, 𝑎0) = (𝑠, 𝑎), 𝜋𝑧) . (62)

Now define 𝐹 (𝑠, 𝑎, 𝑧) by setting its (𝑠′, 𝑎′) component to 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′) for each
(𝑠′, 𝑎′):

𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ := 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′). (63)

Then we have

𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) =
∑︁

𝑠′′,𝑎′′

𝐹 (𝑠, 𝑎, 𝑧)𝑠′′,𝑎′′ 𝐵(𝑠′, 𝑎′)𝑠′′,𝑎′′

= 𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ = 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′) (64)

because by our choice of 𝐵, 𝐵(𝑠′, 𝑎′)𝑠′′𝑎′′ = 1𝑠′=𝑠′′, 𝑎′=𝑎′′ .
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Thus, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) is the density of the successor state measure 𝑀𝜋𝑧 of policy 𝜋𝑧 with
respect to 𝜌, as needed.
We still have to check that 𝜋𝑧 satisfies 𝜋𝑧(𝑠) = arg max𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 (since this is not how it
was defined). Since 𝜋𝑧 was defined as an optimal policy for the reward 𝑟 associated with 𝑧,
it satisfies

𝜋𝑧(𝑠) = arg max
𝑎

𝑄𝜋𝑧 (𝑠, 𝑎) (65)

with 𝑄𝜋𝑧 (𝑠, 𝑎) the 𝑄-function of policy 𝜋𝑧 for the reward 𝑟. This 𝑄-function is equal to the
cumulated expected reward

𝑄𝜋𝑧 (𝑠, 𝑎) =
∑︁
𝑡≥0

𝛾𝑡 E [𝑟(𝑠𝑡, 𝑎𝑡) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧] (66)

=
∑︁
𝑡≥0

𝛾𝑡
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′) Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧) (67)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧) (68)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) (69)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ 𝜌(𝑠′, 𝑎′) (70)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤
(︃∑︁

𝑠′𝑎′

𝑟(𝑠′, 𝑎′)𝜌(𝑠′, 𝑎′)1𝑠′𝑎′

)︃
(71)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 (72)

since 𝑧 is equal to E(𝑠′,𝑎′)∼𝜌[𝑟(𝑠′, 𝑎′)𝐵(𝑠′, 𝑎′)]. This proves that 𝜋𝑧(𝑠) = arg max𝑎 𝑄
𝜋𝑧(𝑠,𝑎) =

arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. So this choice of 𝐹 and 𝐵 satisfies all the properties claimed.

We will rely on the following two basic results in 𝑄-learning.
Proposition 11 (𝑟 ↦→ 𝑄* is Lipschitz in sup-norm). Let 𝑟1, 𝑟2 : 𝑆 ×𝐴→ R be two bounded
reward functions. Let 𝑄*

1 and 𝑄*
2 be the corresponding optimal 𝑄-functions, and likewise for

the 𝑉 -functions. Then

sup
𝑆×𝐴
|𝑄*

1 −𝑄*
2| ≤

1
1− 𝛾 sup

𝑆×𝐴
|𝑟1 − 𝑟2| (73)

and
sup

𝑆
|𝑉 *

1 − 𝑉 *
2 | ≤

1
1− 𝛾 sup

𝑆×𝐴
|𝑟1 − 𝑟2| . (74)

Proof. Assume sup𝑆×𝐴 |𝑟1 − 𝑟2| ≤ 𝜀 for some 𝜀 ≥ 0.
For any policy 𝜋, let 𝑄𝜋

1 be its 𝑄-function for reward 𝑟1, and likewise for 𝑟2. Let 𝜋1 and 𝜋2
be optimal policies for 𝑟1 and 𝑟2, respectively. Then for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴,

𝑄*
1(𝑠, 𝑎) = 𝑄𝜋1

1 (𝑠, 𝑎) (75)
≥ 𝑄𝜋2

1 (𝑠, 𝑎) (76)

=
∑︁
𝑡≥0

𝛾𝑡 E [𝑟1(𝑠𝑡, 𝑎𝑡) | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)] (77)

≥
∑︁
𝑡≥0

𝛾𝑡 E [𝑟2(𝑠𝑡, 𝑎𝑡)− 𝜀 | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)] (78)

=
∑︁
𝑡≥0

𝛾𝑡 E [𝑟2(𝑠𝑡, 𝑎𝑡) | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)]− 𝜀

1− 𝛾 (79)

= 𝑄*
2(𝑠, 𝑎)− 𝜀

1− 𝛾 (80)
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and likewise in the other direction, which ends the proof for 𝑄-functions. The case of
𝑉 -functions follows by restricting to the optimal actions at each state 𝑠.

Proposition 12. Let 𝑓 : 𝑆 × 𝐴 → R be any function, and define a policy 𝜋𝑓 by 𝜋𝑓 (𝑠) :=
arg max𝑎 𝑓(𝑠, 𝑎). Let 𝑟 : 𝑆 ×𝐴→ R be some bounded reward function. Let 𝑄* be its optimal
𝑄-function, and let 𝑄𝜋𝑓 be the 𝑄-function of 𝜋𝑓 for reward 𝑟.
Then

sup
𝑆×𝐴
|𝑓 −𝑄*| ≤ 2

1− 𝛾 sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑓 | (81)

and
sup
𝑆×𝐴
|𝑄𝜋𝑓 −𝑄*| ≤ 3

1− 𝛾 sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑓 | (82)

Proof. Define 𝜀(𝑠, 𝑎) := 𝑄𝜋𝑓 (𝑠, 𝑎)− 𝑓(𝑠, 𝑎).
The 𝑄-function 𝑄𝜋𝑓 satisfies the Bellman equation

𝑄𝜋𝑓 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) 𝑄
𝜋𝑓 (𝑠′, 𝜋𝑓 (𝑠′)) (83)

for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴. Substituting 𝑄𝜋𝑓 = 𝑓 + 𝜀, this rewrites as

𝑓(𝑠, 𝑎) = 𝑟(𝑠, 𝑎)− 𝜀(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) [𝑓(𝑠′, 𝜋𝑓 (𝑠′)) + 𝜀(𝑠′, 𝜋𝑓 (𝑠′))] (84)
= 𝑟(𝑠, 𝑎)− 𝜀′(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) 𝑓(𝑠′, 𝜋𝑓 (𝑠′)) (85)
= 𝑟(𝑠, 𝑎)− 𝜀′(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) max

𝑎′
𝑓(𝑠′, 𝑎′) (86)

by definition of 𝜋𝑓 , where we have set

𝜀′(𝑠, 𝑎) := 𝜀(𝑠, 𝑎)− 𝛾 E𝑠′|(𝑠,𝑎) 𝜀(𝑠′, 𝜋𝑓 (𝑠′)). (87)

(86) is the optimal Bellman equation for the reward 𝑟 − 𝜀′. Therefore, 𝑓 is the optimal
𝑄-function for the reward 𝑟 − 𝜀′. Since 𝑄* is the optimal 𝑄-function for reward 𝑟, by
Proposition 11, we have

sup
𝑆×𝐴
|𝑓 −𝑄*| ≤ 1

1− 𝛾 sup
𝑆×𝐴
|𝜀′| (88)

By construction of 𝜀′, sup𝑆×𝐴 |𝜀′| ≤ 2 sup𝑆×𝐴 |𝜀| = 2 sup𝑆×𝐴 |𝑓 −𝑄𝜋𝑓 |. This proves the first
claim.
The second claim follows by the triangle inequality |𝑄𝜋𝑓 −𝑄*| ≤ |𝑄𝜋𝑓 − 𝑓 |+ |𝑓 −𝑄*| and

2
1−𝛾 + 1 ≤ 3

1−𝛾 .

Proof of Theorem 5. By construction of the Kantorovich–Rubinstein norm, the second claim
of Theorem 5 is a particular case of the third claim, with ‖𝑓‖𝐴 := max(‖𝑓‖∞ , ‖𝑓‖Lip) and
‖𝜇‖𝐵 := ‖𝜇‖KR.
Likewise, since 𝑚 is the density of 𝑀 with respect to 𝜌, the first claim is an instance of the
third, by taking ‖𝑓‖𝐴 := ‖𝑓‖∞ and ‖𝜇‖𝐵 :=

⃦⃦⃦
d𝜇
d𝜌

⃦⃦⃦
𝐿1(𝜌)

. Therefore, we only prove the third
claim.
Let 𝑧 ∈ 𝑍 and let 𝑟 : 𝑆 ×𝐴→ R be any reward function. By Proposition 10 with 𝐺 = 𝑆 ×𝐴
and 𝜙 = Id, the 𝑄-function of policy 𝑄𝜋𝑧 for this reward is

𝑄𝜋𝑧 (𝑠, 𝑎) =
∫︁
𝑟(𝑠′, 𝑎′)𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′). (89)

Let 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) be the difference of measures between the model 𝐹⊤𝐵𝜌 and 𝑀𝜋𝑧 :

𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) := 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′)− �̂�𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (90)
= 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′)− 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). (91)
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We want to control the optimality gap in terms of sup𝑠,𝑎 ‖𝜀𝑧(𝑠, 𝑎, ·)‖𝐵 .
By definition of 𝜀𝑧,

𝑄𝜋𝑧 (𝑠, 𝑎) =
∫︁
𝑟(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) +

∫︁
𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (92)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 +
∫︁
𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (93)

since 𝑧𝑅 =
∫︀
𝑟(𝑠′, 𝑎′)𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). Therefore,⃒⃒

𝑄𝜋𝑧 (𝑠, 𝑎)− 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅

⃒⃒
=
⃒⃒⃒⃒∫︁

𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′)
⃒⃒⃒⃒

(94)

≤ ‖𝑟‖𝐴 ‖𝜀𝑧(𝑠, 𝑎, ·)‖𝐵 (95)

for any reward 𝑟 and any 𝑧 ∈ 𝑍 (not necessarily 𝑧 = 𝑧𝑅).
Let 𝑄* be the optimal 𝑄-function for reward 𝑟. Define 𝑓(𝑠, 𝑎) := 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. By
definition, the policy 𝜋𝑧𝑅

is equal to arg max𝑎 𝑓(𝑠, 𝑎). Therefore, by Proposition 12,

sup
𝑆×𝐴
|𝑄𝜋𝑧𝑅 −𝑄*| ≤ 3

1− 𝛾 sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | . (96)

and
sup
𝑆×𝐴
|𝑓 −𝑄*| ≤ 2

1− 𝛾 sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | . (97)

But by the above,

sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | = sup

𝑆×𝐴

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄𝜋𝑧𝑅 (𝑠, 𝑎)

⃒⃒
(98)

≤ ‖𝑟‖𝐴 sup
𝑆×𝐴
‖𝜀𝑧𝑅

(𝑠, 𝑎, ·)‖𝐵 . (99)

Therefore, for any reward function 𝑟,

sup
𝑆×𝐴
|𝑄𝜋𝑧𝑅 −𝑄*| ≤

3 ‖𝑟‖𝐴

1− 𝛾 sup
𝑆×𝐴
‖𝜀𝑧𝑅

(𝑠, 𝑎, ·)‖𝐵 . (100)

This inequality transfers to the value functions, hence the result. In addition, using again
𝑓(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅, we obtain

sup
𝑆×𝐴

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄*(𝑠, 𝑎)

⃒⃒
≤

2 ‖𝑟‖𝐴

1− 𝛾 sup
𝑆×𝐴
‖𝜀𝑧𝑅

(𝑠, 𝑎, ·)‖𝐵 . (101)

Proof of Proposition 6. This is just a triangle inequality. By assumption, the difference
between the value function of 𝜋𝑧𝑅

and the optimal value function 𝑉 *
𝑟 is at most 𝜀𝐹 𝐵 . Then

by Proposition 11, the difference between 𝑉 *
𝑟 and 𝑉 *

𝑟 is bounded by 1
1−𝛾 sup𝑆×𝐴 |𝑟 − 𝑟|.

Proof of Theorem 8. We proceed by building a reward function 𝑟 corresponding to 𝑧𝑅. Then
we will bound 𝑟 − 𝑟 and apply Proposition 6.
First, by Remark 4, up to reducing 𝑑, we can assume that 𝐵 is 𝐿2(𝜌)-orthonormal.
For any function 𝜙 : (𝑠, 𝑎)→ R, define 𝑧𝜙 := E(𝑠,𝑎)∼𝜌[𝜙(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. For each 𝑧 ∈ 𝑍, define
𝜙𝑧 via 𝜙𝑧(𝑠, 𝑎) := 𝐵(𝑠, 𝑎)⊤𝑧. Then, if 𝐵 is 𝐿2(𝜌)-orthonormal, we have 𝑧𝜙𝑧

= 𝑧. (Indeed,
𝑧𝜙𝑧

= E[(𝐵(𝑠, 𝑎)⊤𝑧)𝐵(𝑠, 𝑎)] = E[𝐵(𝑠, 𝑎)(𝐵(𝑠, 𝑎)⊤𝑧)] =
(︀
E[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤]

)︀
𝑧.)

Define the function
𝑟 := 𝑟 + 𝜙𝑧𝑅−𝑧𝑅

(102)
using the functions 𝜙𝑧 defined above. By construction, 𝑧𝑟 = 𝑧𝑅 + 𝑧𝜙𝑧𝑅−𝑧𝑅

= 𝑧𝑅. Therefore,
the policy 𝜋𝑧𝑅

associated to 𝑧𝑅 is the policy associated to the reward 𝑟.
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We will now apply Proposition 6 to 𝑟 and 𝑟. For this, we need to bound ‖𝜙𝑧𝑅−𝑧𝑅
‖∞.

Let 𝐵1, 𝐵2, . . . , 𝐵𝑑 be the components of 𝐵 as functions on 𝑆 ×𝐴. For any 𝑧 ∈ 𝑍, we have

‖𝜙𝑧‖2
𝐿2(𝜌) =

⃦⃦⃦⃦
⃦∑︁

𝑖

𝑧𝑖𝐵𝑖

⃦⃦⃦⃦
⃦

2

𝐿2(𝜌)

=
∑︁

𝑖

𝑧2
𝑖 = ‖𝑧‖2 (103)

since the 𝐵𝑖 are 𝐿2(𝜌)-orthonormal. Moreover, by construction, 𝜙𝑧 lies in the linear span
⟨𝐵⟩ of the functions (𝐵𝑖). Therefore

‖𝜙𝑧‖∞ ≤ 𝜁(𝐵) ‖𝜙𝑧‖𝐿2(𝜌) = 𝜁(𝐵) ‖𝑧‖ (104)

by the definition of 𝜁(𝐵) (Definition 7).
Therefore,

‖𝜙𝑧𝑅−𝑧𝑅
‖∞ ≤ 𝜁(𝐵) ‖𝑧𝑅 − 𝑧𝑅‖ . (105)

Let us now bound 𝑧𝑅 − 𝑧𝑅:

E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2

]︁
= E

[︁
E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2 | (𝑠𝑖, 𝑎𝑖)

]︁]︁
(106)

= E
[︁
E
[︁
‖𝑧𝑅 − E[𝑧𝑅 | (𝑠𝑖, 𝑎𝑖)]‖2 + ‖E[𝑧𝑅 | (𝑠𝑖, 𝑎𝑖)]− 𝑧𝑅‖2 | (𝑠𝑖, 𝑎𝑖)

]︁]︁
(107)

= E

⎡⎣E
⎡⎣⃦⃦⃦⃦⃦ 1

𝑁

∑︁
𝑖

(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))𝐵(𝑠𝑖, 𝑎𝑖)

⃦⃦⃦⃦
⃦

2

+

⃦⃦⃦⃦
⃦ 1
𝑁

∑︁
𝑖

𝑟(𝑠𝑖, 𝑎𝑖)𝐵(𝑠𝑖, 𝑎𝑖)− 𝑧𝑅

⃦⃦⃦⃦
⃦

2

| (𝑠𝑖, 𝑎𝑖)

⎤⎦⎤⎦
(108)

The first term satisfies

E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑁

∑︁
𝑖

(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))𝐵(𝑠𝑖, 𝑎𝑖)

⃦⃦⃦⃦
⃦

2

| (𝑠𝑖, 𝑎𝑖)

⎤⎦ = 1
𝑁2

∑︁
𝑖

E
[︁
(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))2 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2

]︁
(109)

≤ 1
𝑁2

∑︁
𝑖

𝑣 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2 (110)

because the 𝑟𝑖 are independent conditionally to (𝑠𝑖, 𝑎𝑖), and because 𝐵 is deterministic. The
expectation of this over (𝑠𝑖, 𝑎𝑖) is

E

[︃
1
𝑁2

∑︁
𝑖

𝑣 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2

]︃
= 𝑣

𝑁
E(𝑠,𝑎)∼𝜌 ‖𝐵(𝑠, 𝑎)‖2 = 𝑣

𝑁
‖𝐵‖2

𝐿2(𝜌) (111)

which is thus a bound on the first term.
The second term satisfies

E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑁

∑︁
𝑖

𝑟(𝑠𝑖, 𝑎𝑖)𝐵(𝑠𝑖, 𝑎𝑖)− 𝑧𝑅

⃦⃦⃦⃦
⃦

2
⎤⎦ = 1

𝑁
‖𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)− E𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]‖2

𝐿2(𝜌) (112)

since the (𝑠𝑖, 𝑎𝑖) are independent with distribution 𝜌. By the Cauchy–Schwarz inequality
(applied to each component of 𝐵), this is at most

1
𝑁
‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2

𝐿2(𝜌) ‖𝐵‖
2
𝐿2(𝜌) . (113)

Therefore,

E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2

]︁
≤
(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2

𝐿2(𝜌)

)︁ ‖𝐵‖2
𝐿2(𝜌)

𝑁
. (114)
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Since 𝐵 is orthonormal in 𝐿2(𝜌), we have ‖𝐵‖2
𝐿2(𝜌) = 𝑑. Putting everything together, we

find
E
[︁
‖𝑟 − 𝑟‖2

∞

]︁
≤ 𝜁(𝐵) 𝑑

𝑁

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2

𝐿2(𝜌)

)︁
. (115)

Therefore, by the Markov inequality, for any 𝛿 > 0, with probability 1− 𝛿,

‖𝑟 − 𝑟‖∞ ≤
√︂
𝜁(𝐵) 𝑑
𝑁𝛿

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2

𝐿2(𝜌)

)︁
(116)

hence the conclusion by Proposition 6.

Proof of Theorem 9. Let

𝑚(𝑠, 𝑎, 𝑠′, 𝑎′) :=
∑︁
𝑡≥0

𝛾𝑡𝑃𝑡(d𝑠′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)
𝜌(d𝑠′,d𝑎′) (117)

so that

ℓ(𝐹,𝐵) =
∫︁ ⃒⃒

𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)
⃒⃒2
𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′). (118)

Let us first take the derivative with respect to the parameters of 𝐹 . This is 0 by assumption,
so we find

0 =
∫︁
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)

(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)

)︀
𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′) (119)

=
∫︁
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐺(𝑠, 𝑎)𝜌(d𝑠,d𝑎) (120)

where
𝐺(𝑠, 𝑎) :=

∫︁
𝐵(𝑠′, 𝑎′)

(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)

)︀
𝜌(d𝑠′,d𝑎′) (121)

Since the model is overparameterized, we can realize any 𝐿2 function 𝑓(𝑠, 𝑎) as the derivative
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧) for some direction 𝜃. Therefore, the equation 0 =

∫︀
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐺(𝑠, 𝑎)𝜌(d𝑠,d𝑎)

implies that 𝐺(𝑠, 𝑎) is 𝐿2(𝜌)-orthogonal to any function 𝑓(𝑠, 𝑎) in 𝐿2(𝜌). Therefore, 𝐺(𝑠, 𝑎)
vanishes 𝜌-almost everywhere, namely∫︁

𝐵(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) =
∫︁
𝐵(𝑠′, 𝑎′)𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (122)

Now, since 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) is a real number, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) = 𝐵(𝑠′, 𝑎′)⊤𝐹 (𝑠, 𝑎, 𝑧).
Therefore, the right-hand-side above rewrites as∫︁

𝐵(𝑠′, 𝑎′)𝐵(𝑠′, 𝑎′)⊤𝐹 (𝑠, 𝑎, 𝑧)𝜌(d𝑠′,d𝑎′) = (Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) (123)

so that
(Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) =

∫︁
𝐵(𝑠′, 𝑎′)𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). (124)

Unfolding the definition of 𝑚 yields the statement for 𝐹 . The proof for 𝐵 is similar.
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G Experimental Setup

In this section we provide additional information about our experiments.

G.1 Environments

∙ Discrete maze: is the 11×11 classical tabular gridworld with foor rooms. States are
represented by one-hot unit vectors, 𝑆 = {0, 1}121. There are five available actions ,
𝐴 = {left, right, up, down, do nothing }. The dynamics are deterministic and
the walls are impassable.
∙ Continuous maze: is a two dimensional environment with impassable walls. States

are represented by their Cartesian coordinates (𝑥, 𝑦) ∈ 𝑆 = [0, 1]2. There are five
available actions, 𝐴 = {left, right, up, down, do nothing }. The execution of
one of the actions moves the agent 0.1 units in the desired direction, and normal
random noise with zero mean and standard deviation 0.01 is added to the position
of the agent (that is, a move along the x axis would be 𝑥′ = 𝑥± 0.1 +𝒩 (0, 0.01),
where 𝒩 (0, 0.01) is a normal variable with mean 0 and standard deviation 0.01).
If after a move the agent ends up outside of [0, 1]2, the agent’s position is clipped
(e.g if 𝑥 < 0 then we set 𝑥 = 0). If a move make the agent cross an interior
wall, this move is undone. For all algorithms, we convert a state 𝑠 = (𝑥, 𝑦) into
feature vector 𝜙(𝑠) ∈ R441 by computing the activations of a regular 21× 21 grid
of radial basis functions at the point (𝑠, 𝑦). Especially, we use Gaussian functions:
𝜙(𝑠) =

(︁
exp(− (𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2

𝜎 ), . . . , exp(− (𝑥−𝑥441)2+(𝑦−𝑦441)2

2𝜎2 )
)︁

where (𝑥𝑖, 𝑦𝑖) is the
center of the 𝑖𝑡ℎ Gaussian and 𝜎 = 0.05.
∙ FeatchReach: is a variant of the simulated robotic arm environment from (Plappert

et al., 2018) using discrete actions instead of continuous actions. States are 10-
dimensional vectors consisting of positions and velocities of robot joints. We discretise
the original 3-dimensional action space into 6 possible actions using action stepsize
of 1 (The same way as in https://github.com/paulorauber/hpg, the implementation
of hindsight policy gradient (Rauber et al., 2018)). The goal space is 3-dimensional
space representing of the position of the object to reach.
∙ Ms. Pacman: is a variant of the Atari 2600 game Ms. Pacman, where an episode

ends when the agent is captured by a monster (Rauber et al., 2018). States are
obtained by processing the raw visual input directly from the screen. Frames are
preprocessed by cropping, conversion to grayscale and downsampling to 84×84 pixels.
A state 𝑠𝑡 is the concatenation of (𝑥𝑡−12, 𝑥𝑡−8, 𝑥𝑡−4, 𝑥𝑡) frames, i.e. an 84× 84× 4
tensor. An action repeat of 12 is used. As Ms. Pacman is not originally a multi-goal
domain, we define the set of goals as the set of the 148 reachable coordinate pairs
(𝑥, 𝑦) on the screen; these can be reached only by learning to avoid monsters. In
contrast with (Rauber et al., 2018), who use a heuristic to find the agent’s position
from the screen’s pixels, we use the Atari annotated RAM interface wrapper (Anand
et al., 2019).

G.2 Architectures

We use the same architecture for discrete maze, continuous maze and FeatchReach. Both
forward and backward networks are represented by a feedforward neural network with three
hidden layers, each with 256 ReLU units. The forward network receives a concatenation
of a state and a 𝑧 vector as input and has |𝐴| × 𝑑 as output dimension. The backward
network receives a state as input (or gripper’s position for FeatchReach) and has 𝑑 as output
dimension. For goal-oriented DQN, the 𝑄-value network is also a feedforward neural network
with three hidden layers, each with 256 ReLU units. It receives a concatenation of a state
and a goal as input and has |𝐴| as output dimension.
For Ms. Pacman, the forward network is represented by a convolutional neural network
given by a convolutional layer with 32 filters (8 × 8, stride 4); convolutional layer with
64 filters (4 × 4, stride 2); convolutional layer with 64 filters (3 × 3, stride 1); and three
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fully-connected layers, each with 256 units. We use ReLU as activation function. The 𝑧
vector is concatenated with the output of the third convolutional layer. The output dimension
of the final linear layer is |𝐴| × 𝑑. The backward network acts only on agent’s position, a
2-dimensional input. It is represented by a feedforward neural network with three hidden
layers, each with 256 ReLU units. The output dimension is 𝑑. For goal-oriented DQN, the
𝑄-value network is represented by a convolutional neural network with the same architecture
as the one of the forward network. The goal’s position is concatenated with the output of
the third convolutional layer. The output dimension of the final linear layer is |𝐴|.

G.3 Implementation Details

For all environments, we run the algorithms for 800 epochs. Each epoch consists of 25 cycles
where we interleave between gathering some amount of transitions, to add to the replay
buffer 𝒟 (old transitions are thrown when we reach the maximum of its size), and performing
40 steps of stochastic gradient descent on the model parameters. To collect transitions, we
generate episodes using some behavior policy. For both mazes, we use a uniform policy while
for FetchReach and Ms. Pacman, we use an 𝜀-greedy policy (𝜀 = 0.2) with respect to the
current approximation 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for a sampled 𝑧. At evaluation time, 𝜀-greedy policies
are also used, with a smaller 𝜀 = 0.02 for all envrionments except from discrete maze where
we use Boltzmann policy with temperature 𝜏 = 1. We train each models for three different
random seeds.
For generality, we will keep using the notation 𝐵(𝑠, 𝑎) while in our experiments 𝐵 acts only
on 𝜙(𝑠, 𝑎), a part of the state-action space. For discrete and continuous mazes, 𝜙(𝑠, 𝑎) = 𝑠,
for FetchReach, 𝜙(𝑠, 𝑎) the position of arm’s gripper and for Ms. Pacman, 𝜙(𝑠, 𝑎) is the
2-dimensional position (𝑥, 𝑦) of the agent on the screen.
We denote by 𝜃 and 𝜔 the parameters of forward and backward networks respectively and 𝜃−

and 𝜔− the parameters of their corresponding target networks. Both 𝜃− and 𝜔− are updated
after each cycle using Polyak averaging; i.e 𝜃− ← 𝛼𝜃− + (1−𝛼)𝜃 and 𝜔− ← 𝛼𝜔− + (1−𝛼)𝜔
where 𝛼 = 0.95 is the Polyak coefficient.
During training, we sample 𝑧 from a rescaled Gaussian that we denote 𝜈. Especially, we
sample a 𝑑-dimensional standard Gaussian variable 𝑥 ∼ 𝒩 (0, Id) ∈ R𝑑 and a scalar centered
Cauchy variable 𝑢 ∈ R of scale 0.5, then we set 𝑧 =

√
𝑑𝑢 𝑥

‖𝑥‖ . We use a Cauchy distribution
to ensure that the norm of 𝑧 spans the non-negative real numbers space while having a heavy
tail: with a pure Gaussian, the norm of 𝑧 would be very concentrated around a single value.
We also scale by

√
𝑑 to ensure that each component of 𝑧 has an order of magnitude of 1.

Before being fed to 𝐹 , 𝑧 is preprocessed by 𝑧 ← 𝑧√
1+‖𝑧‖2

2/𝑑
; this way, 𝑧 ranges over a bounded

set in R𝑑, and this takes advantage of optimal policies being equal for a reward 𝑅 and for
𝜆𝑅 with 𝜆 > 0.
To update network parameters, we compute an empirical loss by sampling 3 mini-batches,
each of size 𝑏 = 128, of transitions {(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)}𝑖∈𝐼 ⊂ 𝒟, of target state-action pairs
{(𝑠′

𝑖, 𝑎
′
𝑖)}𝑖∈𝐼 ⊂ 𝒟 and of {𝑧𝑖}𝑖∈𝐼 ∼ 𝜈:

L (𝜃, 𝜔) = 1
2𝑏2

∑︁
𝑖,𝑗∈𝐼2

(︃
𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)⊤𝐵𝜔(𝑠′

𝑗 , 𝑎
′
𝑗)− 𝛾

∑︁
𝑎∈𝐴

𝜋𝑧𝑖
(𝑎 | 𝑠𝑖+1) · 𝐹𝜃−(𝑠𝑖+1, 𝑎, 𝑧𝑖)⊤𝐵𝜔−(𝑠′

𝑗 , 𝑎
′
𝑗)
)︃2

− 1
𝑏

∑︁
𝑖∈𝐼

𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)⊤𝐵𝜔(𝑠𝑖, 𝑎𝑖) (125)

where we use the Boltzmann policy 𝜋𝑧𝑖
(· | 𝑠𝑖+1) = softmax(𝐹𝜃−(𝑠𝑖+1, ·, 𝑧𝑖)⊤𝑧𝑖/𝜏) with

fixed temperature 𝜏 = 200 to avoid the instability and discontinuity caused by the argmax
operator.
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Since there is unidentifiability between 𝐹 and 𝐵 (Appendix, Remark 4), we include a gradient
to make 𝐵 closer to orthonormal, E(𝑠,𝑎)∼𝜌 𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤≈ Id:

1
4𝜕𝜔

⃦⃦
E(𝑠,𝑎)∼𝜌 𝐵𝜔(𝑠, 𝑎)𝐵𝜔(𝑠, 𝑎)⊤− Id

⃦⃦2 =

E(𝑠,𝑎)∼𝜌,(𝑠′,𝑎′)∼𝜌 𝜕𝜔𝐵𝜔(𝑠, 𝑎)⊤ (︀𝐵𝜔(𝑠, 𝑎)⊤𝐵𝜔(𝑠′, 𝑎′) ·𝐵𝜔(𝑠′, 𝑎′)−𝐵(𝑠, 𝑎)
)︀

(126)
To compute an unbiased estimate of the latter gradient, we use the following auxiliary
empirical loss:

Lreg(𝜔) = 1
𝑏2

∑︁
𝑖,𝑗∈𝐼2

𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤stop-gradient(𝐵𝜔(𝑠′
𝑗 , 𝑎

′
𝑗)) · stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤𝐵𝜔(𝑠′

𝑗 , 𝑎
′
𝑗))

− 1
𝑏

∑︁
𝑖∈𝐼

𝐵𝜔(𝑠𝑖, 𝑎𝑖)⊤stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)) (127)

Finally, we use the Adam optimizer and we update 𝜃 and 𝜔 by taking a gradient step on
L (𝜃, 𝜔) and L (𝜃, 𝜔) + 𝜆 ·Lreg(𝜔) respectively, where 𝜆 is a regularization coefficient that
we set to 1 for all experiments.
We summarize the hyperparameters used for FB algorithm and goal-oriented DQN in table 1
and 2 respectively.

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman
number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration 𝜀 1 1 0.2 0.2
evaluation 𝜀 Boltzman with 𝜏 = 1 0.02 0.02 0.02
temperature 𝜏 200 200 200 200
learning rate 0.001 0.0005 0.0005 0.0001 if 𝑑 = 100, else 0.0005
mini-batch size 128 128 128 128
regularization coefficient 𝜆 1 1 1 1
Polyak coefficient 𝛼 0.95 0.95 0.95 0.95
discount factor 𝛾 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

Table 1: Hyperparameters of the FB algorithm

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman
number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration 𝜀 0.2 0.2 0.2 0.2
evaluation 𝜀 Boltzman with 𝜏 = 1 0.02 0.02 0.02
learning rate 0.001 0.0005 0.0005 0.0005
mini-batch size 128 128 128 128
Polyak coefficient 𝛼 0.95 0.95 0.95 0.95
discount factor 𝛾 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

ratio of hindsight replay - - - 0.8

Table 2: Hyperparameters of the goal-oriented DQN algorithm

G.4 Experimental results

In this section, we provide additional experimental results.
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G.4.1 Goal-Oriented Setup: Quantitative Comparisons
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Figure 7: Discrete maze: Comparative performance of FB for different dimensions and
DQN. Left: the policy quality averaged over 20 randomly selected goals as function of the
training epochs. Right: the policy quality averaged over the goal space after 800 training
epochs.
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Figure 8: Continuous maze: Comparative performance of FB for different dimensions and
DQN. Left: the success rate averaged over 20 randomly selected goals as function of the
training epochs. Right: the success rate averaged over 1000 randomly sampled goals after
800 training epochs.
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Figure 9: FetchReach: Comparative performance of FB for different dimensions and DQN.
Left: the success rate averaged over 20 randomly selected goals as function of the training
epochs. Right: the success rate averaged over 1000 randomly sampled goals after 800
training epochs.

G.4.2 More Complex Rewards: Qualitative Results

G.4.3 Embedding Visualization
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Figure 10: Ms. Pacman: Comparative performance of FB for different dimensions and
DQN. Left: the success rate averaged over 20 randomly selected goals as function of the
training epochs. Right: the success rate averaged over the 184 handcrafted goals after
training epochs. Note that FB-50 and F-100 have been trained only for 200 epochs.
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Figure 11: Distance to goal of FB for different dimensions and DQN as function of training
epochs. Left: Continuous maze. Right: FetchReach.
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Figure 12: Discrete Maze: Heatmap plots of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (left) and trajectories
of the Boltzmann policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 with temperature 𝜏 = 1 (right). Top
row: for the task of reaching a target while avoiding a forbidden region, Middle row: for
the task of reaching the closest goal among two equally rewarding positions, Bottom row:
choosing between a small, close reward and a large, distant one.
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Figure 13: Continuous Maze: Contour plots plot of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (left) and
trajectories of the 𝜀 greedy policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 with 𝜀 = 0.1 (right). Left:
for the task of reaching a target while avoiding a forbidden region, Middle: for the task of
reaching the closest goal among two equally rewarding positions, Right: choosing between a
small, close reward and a large, distant one..
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Figure 14: Ms. Pacman: Trajectories of the 𝜀 greedy policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅

with 𝜀 = 0.1 (right). Top row: for the task of reaching a target while avoiding a forbidden
region, Middle row: for the task of reaching the closest goal among two equally rewarding
positions, Bottom row: choosing between a small, close reward and a large, distant one..

37



Self-supervision for Reinforcement Learning Workshop at ICLR 2021

Figure 15: Full series of frames in Ms. Pacman along the trajectory generated by the 𝐹⊤𝐵
policy for the task of reaching a target position (star shape ) while avoiding forbidden
positions (red shape ).
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Figure 16: Discrete maze: Visualization of FB embedding vectors after projecting them
in two-dimensional space with t-SNE. Left: the 𝐹 embedding for 𝑧 = 0. Right: the 𝐵
embedding. Note how both embeddings recover the foor-room and door structure of the
original environment. The spread of B embedding is due to the regularization that makes B
closer to orthonormal.

Figure 17: Continuous maze: Visualization of FB embedding vectors after projecting
them in two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the 𝐹
embedding. Right: the 𝐵 embedding.

Figure 18: Ms. Pacman: Visualization of FB embedding vectors after projecting them in
two-dimensional space with t-SNE. Left: the agent’s position corresponding to the state
to be mapped. Middle: the 𝐹 embedding for 𝑧 = 0. Right: the 𝐵 embedding. Note how
both embeddings recover the cycle structure of the environment. F acts on visual inputs and
B acts on the agent’s position.
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Figure 19: Continuous maze: visualization of 𝐹 embedding vectors for different 𝑧 vectors,
after projecting them in two-dimensional space with t-SNE.
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