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ABSTRACT

This paper aims to explore the separation of the two forward passes in the
Forward-Forward algorithm from a biological perspective in the context of sleep.
We show the size of the gap between the sleep and awake phase influences the
learning capabilities of the algorithm and highlight the importance of negative
data in diminishing the devastating effects of sleep deprivation.

1 INTRODUCTION

The Forward-Forward (FF) algorithm (Hinton, 2022) introduces a new learning procedure that pro-
vides a feasible model of how learning works inside the cortex. In contrast with backpropagation
(Rumelhart et al., 1986), which has been previously shown to be an implausible explanation for
learning in the brain (Lillicrap et al., 2020), the Forward-Forward algorithm aims to avoid the large
memory footprint and overhead computation arising from the backward pass by introducing two
separate forward passes that optimize opposite objectives. During training, one forward pass oper-
ates on real or positive data, while the other uses negative data, which can be generated internally
by the network through top-down connections or supplied externally.

One of the questions posed in the original paper was concerned with the possible effects the sep-
aration of the two forward passes might have on the capabilities of the algorithm. If proven suc-
cessful, this separation would allow for energy-efficient applications in which real data would be
processed continuously while the negative data would be generated and used at a separate point in
time. Moreover, by isolating the forward passes, the Forward-Forward algorithm could potentially
be implemented in the brain since positive data would be processed during the awake phase and
negative data during a subsequent sleep phase. This separation is, however, briefly explored, and
there was no comprehensive study on the effects it could have on the performance of the algorithm.

The aim of this paper is to further explore the separation of the two forward passes and exam-
ine the performance on several image datasets. We will specifically concentrate on the scenario
where the awake phase is longer than the sleep phase and investigate the impact of sleep depri-
vation on the learning capabilities of the Forward-Forward algorithm. The code is available at
https://github.com/mirceatlx/FF.

2 SLEEP

According to Crick (Crick & Mitchison, 1983), the function of rapid eye movement (REM) sleep
(Siegel, 2005) is to remove unwanted modes of behaviour that arise from either the expansion of
the brain or through experience. Similar to Hopfield Networks (Hopfield, 1982), where trying to
store an excessive amount of patterns leads to forgetting and the creation of spurious memories,
overloading the brain with new experiences leads to certain parasitic modes of behaviour. We believe
that this connection between experience and sleep encapsulates the relationship between the two
forward passes in the Forward-Forward algorithm. Thus, the forward pass that uses positive data
represents new experiences or information, while the second forward pass makes use of negative
data to suppress parasitic or redundant patterns created by the exposure to real data. Since we
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present sleep as one or more forward passes running with negative data, we define sleep deprivation
as learning with positive data (awake phase) for prolonged periods of time followed by a short burst
of sleep.

The forward pass that corresponds to the sleep phase is characterized by the objective it tries to
optimize and the choice of negative data (see Appendix B). While the optimization objective is just
the opposite of the objective used in the positive pass, there are multiple possibilities to represent
negative data. In an ideal scenario, the negative data would be generated from the top-down connec-
tions of the model, similar to Predictive Coding (Millidge et al., 2021). However, it is possible to
provide this data externally using some sort of generation strategy. The paper that introduces the FF
algorithm provides some possible techniques, such as inserting a wrong label in real data or creating
hybrid images by combining two samples from the dataset (see Appendix A).

3 EXPERIMENTS AND RESULTS

We present the possible separation of the positive and negative forward passes using the MNIST
for handwritten digits and Fashion-MNIST (Xiao et al., 2017) datasets by utilizing the two negative
data generation strategies described in section A. Table 1 highlights the scenario where the model
spends an equal amount of time in the awake and sleep phase. More specifically, we separate the two
forward passes by alternating between equal periods spent in both stages, where a period is defined
as a fixed number of batches of either real or negative data.

Table 1: Accuracy of models with equal awake and sleep phases, starting from 1 batch per phase up
to 128. The model architecture and training procedure are described in section C.

Dataset Negative data 1 2 4 8 16 32 64 128

MNIST Wrong label 89% 88% 81% 63% 35% 11% 10% 9%
MNIST Masks 88% 84% 85% 78% 74% 49% 23% 11%

Fashion-MNIST Wrong label 73% 63% 59% 54% 20% 14% 10% 10%
Fashion-MNIST Masks 56% 58% 53% 50% 45% 36% 30% 22%

On the other hand, Table 2 features a sleep deprivation scenario where there is only one batch of
negative data followed by multiple batches of positive data.

Table 2: Accuracy of models using unequal phases. The period of the positive data ranges from
1 to 16, and the negative phase is fixed at 1. The empty lines in the table represent models that
experienced no learning.

Dataset Negative data 1 2 4 8 16

MNIST Wrong label 89% 10% 9% - -
MNIST Masks 88% 78% 75% 73% 10%

Fashion-MNIST Wrong label 73% 56% 47% 14% 10%
Fashion-MNIST Masks 56% 55% 54% 52% 49%

We find that the accuracy of the algorithm degrades as the number of batches in the awake and sleep
phases increases. Using masks for generating negative data greatly improves the performance of
both sleep deprivation and equal awake-sleep scenarios and allows for longer awake periods.

4 CONCLUSION

Our research reveals the relationship between the separation of the two forward passes and the
dynamics between sleep and awake phases found in the brain, demonstrating a strong correlation
between the learning performance and the generation strategy for negative data, particularly under
conditions mimicking sleep deprivation. Better approaches for generating negative data allow the
model to stay awake for longer periods of time, enhancing its possible usage in energy-efficient on-
chip learning. Future research in this area should be conducted in order to fully explore the sleep
properties of the algorithm from both a practical and biological perspective.
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A NEGATIVE DATA

We employed the use of two different negative data generation strategies. Our first approach involved
setting a wrong label on a train data point and using this as negative data; this can be seen in Figure
1. We later experimented with using a mixture of two data points combined using a predefined mask
as presented in the Forward-Forward paper (Hinton, 2022); this approach can be visualized in Figure
2. The latter approach allowed our model to perform significantly better than the former, allowing
us to separate the awake and sleep phases more.

Figure 1: Fashion-MNIST image showing a label overlayed on top of the image. The first ten pixels
of the image are set to 0 and the label indicating the class is set to 1.

Figure 2: Negative data generation with masks on the Fashion-MNIST dataset. The image in the
middle is the result of combining the lateral images with the generated mask and its inverse.

B LOSS CALCULATION

The loss calculation employed in our research is inspired by an open-source rendition of the algo-
rithm delineated by Hinton 1. While the original approach, as presented in the cited paper, utilizes
the logistic function in loss computation, we have elected to use the Softplus function due to its
superior empirical performance.

The Softplus function is mathematically defined as:

Softplus(x) = log(1 + ex) (1)

1https://github.com/mohammadpz/pytorch forward forward

4



As a part of our algorithm, we compute two distinct loss values corresponding to positive and neg-
ative data samples. The concept of a ’threshold’ is introduced, a hyperparameter that we have set
to 1.5 in the context of this study, and represents the needed goodness for a layer to be considered
activated.

Losspos = Softplus(−Goodnesspos + Threshold) (2)
Lossneg = Softplus(Goodnessneg − Threshold) (3)

Both loss types aim to optimize different objectives; the loss for positive samples works to maximize
layer goodness, whereas the loss for negative data strives to minimize it. The algorithm effectively
differentiates between positive and negative data through the alternate or combined application of
these losses.

Our approach stands in contrast to the original algorithm, where both loss components were averaged
to calculate the total loss for parameter updates. We have diverged from this by incorporating each
loss component independently during the updating process, allowing for a separation of the phases
of the algorithm.

C MODEL ARCHITECTURE AND TRAINING PROCESS

All experiments are conducted with the same architecture consisting of an input layer of 784 and
three fully connected hidden layers, all having 500 neurons. Each layer is trained for 50 epochs with
a threshold of 1.5. We make use of the Adam optimizer (Kingma & Ba, 2015) with a batch size of
512. The learning rate is set at 0.001 for the negative phase, and the positive phase learning rate is
calculated as follows.

positive lr =
0.001

awake period
(4)

Where awake period represents the number of batches of positive data the model will train on before
switching to negative data.

While training with a substantial quantity of batches during the positive phase, it is possible to
encounter situations where an epoch concluded before reaching the stipulated number of batches. In
such instances, the training sequence continues into the next epoch, picking up right from where it
left off in the previous one.

D PERFORMANCE OF UNSEPARATED PHASES

The initial implementation described by Hinton (2022) with unseparated positive and negative
phases shows the best results on all datasets and training strategies. The results of our reimple-
mentation of the algorithm can be found in Table 3.

Table 3: Test accuracy of the Forward Forward algorithm with unseparated phases.

Dataset Negative data Unseparated

MNIST Wrong label 97.7%
MNIST Masks 96%

Fashion-MNIST Wrong label 88.7%
Fashion-MNIST Masks 86%
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