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ABSTRACT

Single-objective optimization algorithms search for the single highest-quality so-
lution with respect to an objective. Quality diversity (QD) algorithms, such as
Covariance Matrix Adaptation MAP-Elites (CMA-ME), search for a collection of
solutions that are both high-quality with respect to an objective and diverse with
respect to specified measure functions. However, CMA-ME suffers from three
major limitations highlighted by the QD community: prematurely abandoning the
objective in favor of exploration, struggling to explore flat objectives, and having
poor performance for low-resolution archives. We propose a new quality diver-
sity algorithm, Covariance Matrix Adaptation MAP-Annealing (CMA-MAE), that
addresses all three limitations. We provide theoretical justifications for the new al-
gorithm with respect to each limitation. Our theory informs our experiments, which
support the theory and show that CMA-MAE achieves state-of-the-art performance.

1 INTRODUCTION

Consider an example problem of searching for celebrity faces in the latent space of a generative
model. As a single-objective optimization problem, we specify an objective f that targets a celebrity
such as Tom Cruise. A single-objective optimizer, such as CMA-ES (Hansen, 2016), will converge to
a single solution of high objective value, an image that looks like Tom Cruise as much as possible.

However, this objective has ambiguity. How old was Tom Cruise in the photo? Did we want the
person in the image to have short or long hair? By instead framing the problem as a quality diversity
optimization problem, we additionally specify a measure function m1 that quantifies age and a
measure function m2 that quantifies hair length. A quality diversity algorithm (Pugh et al., 2015;
Chatzilygeroudis et al., 2021), such as CMA-ME (Fontaine et al., 2020), can then optimize for a
collection of images that are diverse with respect to age and hair length, but all look like Tom Cruise.

While previous work (Fontaine et al., 2020; 2021a;b; Earle et al., 2021) has shown that CMA-ME
solves such QD problems efficiently, three important limitations of the algorithm have been discovered.
First, on difficult to optimize objectives, variants of CMA-ME will abandon the objective too
soon (Tjanaka et al., 2022), and instead favor exploring the measure space, the vector space defined
by the measure function outputs. Second, the CMA-ME algorithm struggles to explore flat objective
functions (Paolo et al., 2021). Third, CMA-ME works well on high-resolution archives, but struggles
to explore low-resolution archives (Cully, 2021; Fontaine & Nikolaidis, 2021a). We note that the
chosen archive resolution affects the performance of all current QD algorithms.

We propose a new algorithm, CMA-MAE, that addresses these three limitations.

To address the first limitation, we derive an algorithm that smoothly blends between CMA-ES and
CMA-ME. First, consider how CMA-ES and CMA-ME differ. At each step CMA-ES’s objective
ranking maximizes the objective function f by approximating the natural gradient of f at the current
solution point (Akimoto et al., 2010). In contrast, CMA-ME’s improvement ranking moves in the
direction of the natural gradient of f − fA at the current solution point, where fA is a discount
function equal to the objective of the best solution so far that has the same measure values as the
current solution point. The function f − fA quantifies the gap between a candidate solution and the
best solution so far at the candidate solution’s position in measure space.

Our key insight is to anneal the function fA by a learning rate α. We observe that when α = 0, then
our discount function fA never increases and our algorithm behaves like CMA-ES. However, when
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Figure 1: An example of how different α values affect the function f − fA optimized by CMA-MAE
after a fixed number of iterations. Here f is a bimodal objective where mode X is harder to optimize
than mode Y , requiring more optimization steps, and modes X and Y are separated by measure m1.
For α = 0, the objective f is equivalent to f − fA, as fA remains constant. For larger values of α,
CMA-MAE discounts region Y in favor of prioritizing the optimization of region X .

α = 1, then our discount function always maintains the best solution for each region in measure space
and our algorithm behaves like CMA-ME. For 0 < α < 1, CMA-MAE smoothly blends between the
two algorithms’ behavior, allowing for an algorithm that spends more time on the optimization of f
before transitioning to exploration. Figure 1 is an illustrative example of varying the learning rate α.

Our proposed annealing method naturally addresses the flat objective limitation. Observe that both
CMA-ES and CMA-ME struggle on flat objectives f as the natural gradient becomes 0 in this case
and each algorithm will restart. However, we show that, when CMA-MAE optimizes f − fA for
0 < α < 1, the algorithm becomes a descent method on the density histogram defined by the archive.

Finally, CMA-ME’s poor performance on low resolution archives is likely caused by the non-
stationary objective f − fA changing too quickly for the adaptation mechanism to keep up. Our
archive learning rate α controls how quickly f − fA changes. We derive a conversion formula for
α that allows us to derive equivalent α for different archive resolutions. Our conversion formula
guarantees that CMA-MAE is the first QD algorithm invariant to archive resolution.

Overall, our work shows how a simple algorithmic change to CMA-ME addresses all three major
limitations affecting CMA-ME’s performance and robustness. Our theoretical findings justify the
aforementioned properties and inform our experiments, which show that CMA-MAE outperforms
state-of-the-art QD algorithms and maintains robust performance across different archive resolutions.

2 PROBLEM DEFINITION

Quality Diversity. We adopt the quality diversity (QD) problem definition from Fontaine & Nikolaidis
(2021a). A QD problem consists of an objective f : Rn → R that maps n-dimensional solution
parameters to a scalar value denoting the quality of the solution and k measures mi : Rn → R or, as
a vector function, m : Rn → Rk that quantify behavior or attributes of each solution1. The range of
m forms a measure space S = m(Rn). The QD objective is to find a set of solutions θ ∈ Rn, such
that m(θ) = s for each s in S and f(θ) is maximized.

The measure space S is continuous, but solving algorithms need to produce a finite collection of
solutions. Therefore, QD algorithms in the MAP-Elites (Mouret & Clune, 2015; Cully et al., 2015)
family relax the QD objective by discretizing the space S. Given T as the tessellation of S into M
cells, the QD objective becomes to find a solution θi for each of the i ∈ {1, . . . ,M} cells, such
that each θi maps to the cell corresponding to m(θi) in the tesselation T . The QD objective then
becomes maximizing the objective value f(θi) of all cells:

max

M∑
i=1

f(θi) (1)

The differentiable quality diversity (DQD) problem (Fontaine & Nikolaidis, 2021a) is a special case
of the QD problem where both the objective f and measures mi are first-order differentiable.

1In agent-based settings, such as reinforcement learning, the measure functions are sometimes called behavior
functions and the outputs of each measure function are called behavioral characteristics or behavior descriptors.
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Figure 2: Our proposed CMA-MAE algorithm smoothly blends between the behavior of CMA-ES
and CMA-ME via an archive learning rate α. Each heatmap visualizes an archive of solutions across
a 2D measure space, where the color of each cell represents the objective value of the solution.

3 PRELIMINARIES

We present several QD algorithms that solve derivative-free QD problems to provide context for
our proposed CMA-MAE algorithm. Appendix D contains information about the DQD algorithm
CMA-MEGA, which solves problems where exact gradient information is available.

MAP-Elites and MAP-Elites (line). The MAP-Elites QD algorithm produces an archive of solutions,
where each cell in the archive corresponds to the provided tesselation T in the QD problem definition.
The algorithm initializes the archive by sampling solutions from the solution space Rn from a fixed
distribution. After initialization, MAP-Elites produces new solutions by selecting occupied cells
uniformly at random and perturbing them with isotropic Gaussian noise: θ′ = θi + σN (0, I). For
each new candidate solution θ′, the algorithm computes an objective f(θ′) and measures m(θ′).
MAP-Elites places θ′ into the archive if the cell corresponding to m(θ′) is empty or θ′ obtains
a better objective value f(θ′) than the current occupant. The MAP-Elites algorithm results in an
archive of solutions that are diverse with respect to the measure function m, but also high quality with
respect to the objective f . Vassiliades & Mouret (2018) proposed the MAP-Elites (line) algorithm by
augmenting the isotropic Gaussian perturbation with a linear interpolation between two solutions θi
and θj : θ′ = θi + σ1N (0, I) + σ2N (0, 1)(θi − θj).

CMA-ME. Covariance Matrix Adaptation MAP-Elites (CMA-ME) (Fontaine et al., 2020) combines
the archiving mechanisms of MAP-Elites with the adaptation mechanisms of CMA-ES Hansen (2016).
Instead of perturbing archive solutions with Gaussian noise, CMA-ME maintains a multivariate
Gaussian of search directionsN (0,Σ) and a search point θ ∈ Rn. The algorithm updates the archive
by sampling λ solutions around the current search point θi ∼ N (θ,Σ). After updating the archive,
CMA-ME ranks solutions via a two stage ranking. Solutions that discover a new cell are ranked by
the objective ∆i = f(θi), and solutions that map to an occupied cell e are ranked by the improvement
over the incumbent solution θe in that cell: ∆i = f(θi)− f(θe). CMA-ME prioritizes exploration
by ranking all solutions that discover a new cell before all solutions that improve upon an existing
cell. Finally, CMA-ME moves θ towards the largest improvement in the archive, according to the
CMA-ES update rules. Fontaine & Nikolaidis (2021a) showed that the improvement ranking of
CMA-ME approximates a natural gradient of a modified QD objective (see Eq. 1).

4 PROPOSED ALGORITHMS

We present the CMA-MAE algorithm. While we focus on CMA-MAE, the same augmentations
apply to CMA-MEGA to form the novel CMA-MAEGA algorithm (see Appendix D).

CMA-MAE. CMA-MAE is an algorithm that adjusts the rate the objective f − fA changes. First,
consider at a high level how CMA-ME explores the measure space and discovers high quality
solutions. The CMA-ME algorithm maintains a solution point θ and an archive A with previously
discovered solutions. When CMA-ME samples a new solution θ′, the algorithm computes the
solution’s objective value f(θ′) and maps the solution to a cell e in the archive based on the measure
m(θ′). CMA-ME then computes the improvement of the objective value f(θ′) of the new solution,
over a discount function fA : Rn → R. In CMA-ME, we define fA(θ

′) by computing the cell e in
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the archive corresponding to m(θ′) and letting fA(θ
′) = f(θe), where θe is the incumbent solution

of cell e. The algorithm ranks candidate solutions by improvement f(θ′)− fA(θ
′) = f(θ′)− f(θe)

and moves the search in the direction of higher ranked solutions.

Assume that CMA-ME samples a new solution θ′ with a high objective value of f(θ′) = 99. If
the current occupant θe of the corresponding cell has a low objective value of f(θe) = 0.3, then
the improvement in the archive ∆ = f(θ′) − f(θe) = 98.7 is high and the algorithm will move
the search point θ towards θ′. Now, assume that in the next iteration the algorithm discovers a new
solution θ′′ with objective value f(θ′′) = 100 that maps to the same cell as θ′. The improvement
then is ∆ = f(θ′′)− f(θ′) = 1 as θ′ replaced θe in the archive in the previous iteration. CMA-ME
would likely move θ away from θ′′ as the solution resulted in low improvement. In contrast, CMA-ES
would move towards θ′′ as it ranks only by the objective f , ignoring previously discovered solutions
with similar measure values.

In the above example, CMA-ME moves away from high performing solutions in order to maximize
how the archive changes. However, in domains with hard-to-optimize objective functions, it is
beneficial to perform more optimization steps in high-performing regions (Tjanaka et al., 2022).

Like CMA-ME, CMA-MAE maintains a discount function fA(θ
′) and ranks solutions by improve-

ment f(θ′)− fA(θ
′). However, instead of setting fA(θ

′) equal to f(θe), we set fA(θ′) = te, where
te is an acceptance threshold maintained for each cell in the archive A. When adding a candidate
solution to the archive, we control the rate that te changes by the archive learning rate α as follows:
te ← (1− α)te + αf(θ′).

The archive learning rate α in CMA-MAE allows us to control how quickly we leave a high-
performing region of measure space. For example, consider discovering solutions in the same
cell with objective value 100 in 5 consecutive iterations. The improvement values computed by
CMA-ME would be 100, 0, 0, 0, 0, thus CMA-ME would move rapidly away from this cell. The
improvement values computed by CMA-MAE with α = 0.5 would diminish smoothly as follows:
100, 50, 25, 12.5, 6.25, enabling further exploitation of the high-performing region.

Next, we walk through the CMA-MAE algorithm step-by-step. Algorithm 1 shows the pseudo-code
for CMA-MAE with the differences from CMA-ME highlighted in yellow. First, on line 2 we
initialize the acceptance threshold to minf . In each iteration we sample λ solutions around the
current search point θ (line 5). For each candidate solution θi, we evaluate the solution and compute
the objective value f(θi) and measure values m(θi) (line 6). Next, we compute the cell e in the
archive that corresponds to the measure values and the improvement ∆i over the current threshold
te (lines 7-8). If the objective crosses the acceptance threshold te, we replace the incumbent θe
in the archive and increase the acceptance threshold te (lines 9-11). Next, we rank all candidate
solutions θi by their improvement ∆i. Finally, we step our search point θ and adapt our covariance
matrix Σ towards the direction of largest improvement (lines 14-15) according to CMA-ES’s update
rules (Hansen, 2016).

CMA-MAEGA. We note that our augmentations to the CMA-ME algorithm only affects how we
replace solutions in the archive and how we calculate ∆i. CMA-ME and CMA-MEGA replace
solutions and calculate ∆i identically, so we apply the same augmentations to CMA-MEGA to form
a new DQD algorithm, CMA-MAEGA, in Appendix D.

5 THEORETICAL PROPERTIES OF CMA-MAE

We provide insights about the behavior of CMA-MAE for different α values. We include all proofs
in Appendix E. CMA-MAEGA has similar theoretical properties discussed in Appendix F.

Theorem 5.1. The CMA-ES algorithm is equivalent to CMA-MAE when α = 0, if CMA-ES restarts
from an archive solution.

The next theorem states that CMA-ME is equivalent to CMA-MAE when α = 1 with the following
caveats: First, we assume that CMA-ME restarts only by the CMA-ES restart rules, rather than
the additional “no improvement” restart rule in prior work (Fontaine et al., 2020). Second, we
assume that both CMA-ME and CMA-MAE leverage µ selection (Hansen, 2016) rather than filtering
selection (Fontaine et al., 2020).
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Algorithm 1 Covariance Matrix Adaptation MAP-Annealing (CMA-MAE)
CMA-MAE (evaluate,θ0, N, λ, σ, minf , α)

input : An evaluation function evaluate that computes the objective and measures, an initial
solution θ0, a desired number of iterations N , a branching population size λ, an initial
step size σ, a minimal acceptable solution quality minf , and an archive learning rate α.

result :Generate Nλ solutions storing elites in an archive A.

1 Initialize solution parameters θ to θ0, CMA-ES parameters Σ = σI and p, where we let p be the
CMA-ES internal parameters.

2 Initialize the archive A and the acceptance threshold te with minf for each cell e.
3 for iter ← 1 to N do
4 for i← 1 to λ do
5 θi ∼ N (θ,Σ)
6 f,m← evaluate(θi)
7 e← calculate_cell(A,m)
8 ∆i ← f − te
9 if f > te then

10 Replace the current occupant in cell e of the archive A with θi
11 te ← (1− α)te + αf
12 end
13 end
14 rank θi by ∆i

15 Adapt CMA-ES parameters θ,Σ,p based on improvement ranking ∆i

16 if CMA-ES converges then
17 Restart CMA-ES with Σ = σI .
18 Set θ to a randomly selected existing cell θi from the archive
19 end
20 end

Theorem 5.2. The CMA-ME algorithm is equivalent to CMA-MAE when α = 1 and minf is an
arbitrarily large negative number.

We next provide theoretical insights on how the discount function fA smoothly increases from a
constant function minf to the discount function used by CMA-ME, as α increases from 0 to 1. We
focus on the special case of a fixed sequence of candidate solutions.
Theorem 5.3. Let αi and αj be two archive learning rates for archives Ai and Aj such that
0 ≤ αi < αj ≤ 1. For two runs of CMA-MAE that generate the same sequence of m candidate
solutions {S} = θ1,θ2, ...,θm, it follows that fAi

(θ) ≤ fAj
(θ) for all θ ∈ Rn.

Finally, we wish to provide insights about the exploration properties of CMA-MAE for an archive
learning rate α between 0 and 1, when the objective f is constant. Consider an approximate density
descent algorithm that is identical to CMA-ME, but differs by how solutions are ranked. Specifically,
we assume that this algorithm maintains a density histogram of the occupancy counts oe for each
cell e, with oe representing the number of times a solution was generated in that cell. This algorithm
descends the density histogram by ranking solutions based on the occupancy count of the cell that the
solution maps to, where solutions that discover less frequently visited cells are ranked higher.
Theorem 5.4. The CMA-MAE algorithm optimizing a constant objective function f(θ) = C for all
θ ∈ Rn is equivalent to the approximate density descent algorithm, when 0 < α < 1 and minf < C.

While Theorem 5.4 assumes a constant objective f , we conjecture that the theorem holds true
generally when threshold te in each cell e approaches the local optimum within the cell boundaries.

6 EXPERIMENTS

We compare the performance of CMA-MAE with the state-of-the-art QD algorithms MAP-Elites,
MAP-Elites (line), and CMA-ME, using existing Pyribs (Tjanaka et al., 2021) QD library imple-
mentations. We set α = 0.01 for CMA-MAE and include additional experiments for varying α
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LP (sphere) LP (Rastrigin) LP (plateau) Arm Repertoire LSI
Algorithm QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage

MAP-Elites 41.64 50.80% 31.43 47.88% 47.07 47.07% 71.40 74.09% 12.85 19.42%
MAP-Elites (line) 49.07 60.42% 38.29 56.51% 52.20 52.20% 74.55 75.61% 14.40 21.11%
CMA-ME 36.50 42.82% 38.02 53.09% 34.54 34.54% 75.82 75.89% 14.00 19.57%
CMA-MAE 64.86 83.31% 52.65 80.46% 79.27 79.29% 79.03 79.24% 17.67 25.08%

Table 1: Mean QD-score and coverage values after 10,000 iterations for each algorithm per domain.

in section 7. Because annealing methods replace solutions based on the threshold, we retain the
best solution in each cell for comparison purposes. We include additional comparisons between
CMA-MEGA and CMA-MAEGA – the gradient-based counterpart of CMA-MAE – in Appendix K.

We select the benchmark domains from Fontaine & Nikolaidis (2021a): linear projection (Fontaine
et al., 2020), arm repertoire (Cully & Demiris, 2017), and latent space illumination (Fontaine et al.,
2021b). To evaluate the good exploration properties of CMA-MAE on flat objectives, we introduce
a variant of the linear projection domain to include a “plateau” objective function that is constant
everywhere for solutions within a fixed range and has a quadratic penalty for solutions outside the
range. We describe the domains in detail in Appendix B.

6.1 EXPERIMENT DESIGN

Independent Variables. We follow a between-groups design with two independent variables: the
algorithm and the domain.

Dependent Variables. We use the sum of f values of all cells in the archive, defined as the
QD-score Pugh et al. (2015), as a metric for the quality and diversity of solutions. Following Fontaine
& Nikolaidis (2021a), we normalize the QD-score metric by the archive size (the total number of
cells from the tesselation of measure space) to make the metric invariant to archive resolution. We
additionally compute the coverage, defined as the number of occupied cells in the archive divided by
the total number of cells.

6.2 ANALYSIS

Table 1 shows the QD-score and coverage values for each algorithm and domain, averaged over 20
trials for the linear projection (LP) and arm repertoire domains and over 5 trials for the LSI domain.
Fig. 3 shows the QD-score values for increasing number of iterations and example archives for
CMA-MAE and CMA-ME, with 95% confidence intervals.

We conducted a two-way ANOVA to examine the effect of the algorithm and domain (LP (sphere),
LP (Rastrigin), LP (plateau), arm repertoire, and LSI) on the QD-score. There was a significant
interaction between the search algorithm and the domain (F (12, 320) = 1958.34, p < 0.001).
Simple main effects analysis with Bonferroni corrections showed that CMA-MAE outperformed all
baselines in all benchmark domains.

For the arm repertoire domain, we can compute the optimal archive coverage by testing whether each
cell overlaps with a circle of radius equal to the maximum arm length (see Appendix B). We observe
that CMA-MAE approaches the computed optimal coverage 80.24% for a resolution of 100× 100
and outperforms CMA-MEGA (Fontaine & Nikolaidis, 2021a) (see Appendix K).

These results show that the archive learning rate α is particularly beneficial for CMA-MAE. We
observe that CMA-MAE initially explores regions of the measure space that have high-objective
values. Once the archive becomes saturated, CMA-MAE reduces to approximate density descent,
as we prove in Theorem 5.4 for flat objectives. On the other hand, CMA-ME does not receive any
exploration signal when the objective landscape becomes flat, resulting in poor performance.

While our results show improved quantitative results on the LSI domain, Appendix I discusses how
to improve the visual quality by leveraging techniques from the generative art community. Fig. 4
shows an example collage generated by adopting improvements for guiding StyleGAN with CLIP.
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Figure 3: QD-score plot with 95% confidence intervals and heatmaps of generated archives by
CMA-MAE and CMA-ME for the linear projection sphere (top), plateau (middle), and arm repertoire
(bottom) domains. Each heatmap visualizes an archive of solutions across a 2D measure space.

LP (sphere) LP (Rastrigin) LP (plateau) Arm Repertoire
α (CMA-MAE) QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage

0.000 5.82 6.06% 5.33 6.24% 19.49 19.49% 65.91 66.25%
0.001 62.65 79.36% 47.87 68.10% 77.60 77.68% 78.63 79.07%
0.010 64.86 83.31% 52.65 80.56% 79.27 79.29% 79.03 79.24%
0.100 60.42 76.19% 48.74 72.50% 83.21 83.21% 78.74 78.85%
1.000 37.01 43.50% 37.86 52.82% 34.00 34.00% 75.94 76.01%

Table 2: Mean QD metrics after 10,000 iterations for CMA-MAE at different learning rates.

7 ON THE ROBUSTNESS OF CMA-MAE

Next, we present two studies that evaluate the robustness of CMA-MAE across two hyperparameters
that may affect algorithm performance: the archive learning rate α and the archive resolution.
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Figure 4: A latent space illumination collage for the objective “A photo of the face of Tom Cruise.”
with hair length and age measures. See Appendix I for more detail.

Linear Projection (sphere) Linear Projection (plateau) Arm RepertoireLinear Projection (Rastrigin)

Q
D

-S
co

re

Resolution ResolutionResolution Resolution

Figure 5: Final QD-score of each algorithm for 25 different archive resolutions.

Archive Learning Rate. We examine the effect of different archive learning rates on the performance
of CMA-MAE in the linear projection and arm repertoire domains. We vary the learning rate from 0
to 1 on an exponential scale, while keeping the resolution constant in each domain.

Table 2 shows that running CMA-MAE with the different 0 < α < 1 results in relatively similar
performance, showing that CMA-MAE is fairly robust to α values. On the other hand, if α = 0 or
α = 1 the performance drops drastically. Setting α = 1 results in very similar performance with
CMA-ME, which supports our insight from Theorem 5.2.

Archive Resolution. As noted by Cully (2021) and Fontaine & Nikolaidis (2021a), quality diversity
algorithms in the MAP-Elites family sometimes perform differently when run with different archive
resolutions. For example, in the linear projection domain presented in Fontaine et al. (2020),
CMA-ME outperformed MAP-Elites and MAP-Elites (line) for archives of resolution 500 × 500,
while in this paper we observe that it performs worse for resolution 100 × 100. In this study, we
investigate how CMA-MAE performs at different archive resolutions.

First, we note that the optimal archive learning rate α is dependent on the resolution of the archive.
Consider as an example a sequence of solution additions to two archives A1 and A2 of resolution
100× 100 and 200× 200, respectively. A2 subdivides each cell in A1 into four cells, thus archive
A2’s thresholds te should increase at a four times faster rate than A1. To account for this difference,
we compute α2 for A2 via a conversion formula α2 = 1− (1− α1)

r (see derivation in Appendix G),
where r is the ratio of cell counts between archives A1 and A2. We initialize α1 = 0.01 for A1. In
the above example, α2 = 1− (1− 0.01)4 = 0.0394.
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Fig. 5 shows the QD-score of CMA-MAE with the resolution-dependent archive learning rate and the
baselines for each benchmark domain. CMA-ME performs worse as the resolution decreases because
the archive changes quickly at small resolutions, affecting CMA-ME’s adaptation mechanism. On the
contrary, MAP-Elites and MAP-Elites (line) perform worse as the resolution increases due to having
more elites to perturb. CMA-MAE’s performance is invariant to the resolution of the archive.

8 RELATED WORK

Quality Diversity Optimization. The predecessor to quality diversity optimization, simply called di-
versity optimization, originated with the Novelty Search algorithm (Lehman & Stanley, 2011a), which
searches for a collection of solutions that are diverse in measure space. Later work introduced the
Novelty Search with Local Competition (NSLC) (Lehman & Stanley, 2011b) and MAP-Elites (Cully
et al., 2015; Mouret & Clune, 2015) algorithms, which combined single-objective optimization
with diversity optimization and were the first QD algorithms. Since then, several QD algorithms
have been proposed, based on a variety of single-objective optimization methods, such as Bayesian
optimization (Kent & Branke, 2020), evolution strategies (Conti et al., 2018; Colas et al., 2020;
Fontaine et al., 2020), differential evolution (Choi & Togelius, 2021), and gradient ascent (Fontaine
& Nikolaidis, 2021a). Several works have improved selection mechanisms (Sfikas et al., 2021; Cully
& Demiris, 2017), archives (Fontaine et al., 2019; Vassiliades et al., 2018; Smith et al., 2016), and
perturbation operators (Vassiliades & Mouret, 2018; Nordmoen et al., 2018).

QD with Gradient Information. Several works combine gradient information with quality diversity
optimization in ways that do not leverage the objective and measure gradients directly. For example,
in model-based quality diversity optimization (Gaier et al., 2018; Hagg et al., 2020; Cazenille et al.,
2019; Keller et al., 2020; Lim et al., 2021; Zhang et al., 2021; Gaier et al., 2020), Rakicevic et al.
(2021) trains an autoencoder on the archive of solutions and leverages the Jacobian of the decoder
network to compute the covariance of the Gaussian perturbation. In quality diversity reinforcement
learning (QD-RL), several works (Parker-Holder et al., 2020; Pierrot et al., 2020; Nilsson & Cully,
2021; Tjanaka et al., 2022) approximate a reward gradient or diversity gradient via a critic network,
action space noise, or evolution strategies and incorporate those gradients into a QD-RL algorithm.

Acceptance Thresholds. Our proposed archive learning rate α was loosely inspired by simulated
annealing methods (Bertsimas & Tsitsiklis, 1993) that maintain an acceptance threshold that gradually
becomes more selective as the algorithm progresses. The notion of an acceptance threshold is also
closely related to minimal criterion methods in evolutionary computation (Lehman & Stanley, 2010;
Brant & Stanley, 2017; 2020; Stanley et al., 2016). Our work differs by both 1) maintaining an
acceptance threshold per archive cell rather than a global threshold and 2) annealing the threshold.

9 LIMITATIONS AND FUTURE WORK

Our approach introduced two hyperparameters, α and minf , to control the rate that f − fA changes.
We observed that an α set strictly between 0 and 1 yields theoretical exploration improvements and
that CMA-MAE is robust with respect to the exact choice of α. We additionally derived a conversion
formula that converts an α1 for a specific archive resolution to an equivalent α2 for a different
resolution. However, the conversion formula still requires practitioners to specify a good initial
value of α1. Future work will explore ways to automatically initialize α, similar to how CMA-ES
automatically assigns internal parameters (Hansen, 2016).

Quality diversity optimization is a rapidly growing branch of stochastic optimization with applications
in generative design (Hagg et al., 2021; Gaier et al., 2020; 2018), automatic scenario generation
in robotics (Fontaine & Nikolaidis, 2021c; Fontaine et al., 2021a; Fontaine & Nikolaidis, 2021b),
reinforcement learning (Parker-Holder et al., 2020; Pierrot et al., 2020; Nilsson & Cully, 2021;
Tjanaka et al., 2022), damage recovery in robotics (Cully et al., 2015), and procedural content
generation (Gravina et al., 2019; Fontaine et al., 2021b; Zhang et al., 2021; Earle et al., 2021; Khalifa
et al., 2018; Steckel & Schrum, 2021; Schrum et al., 2020; Sarkar & Cooper, 2021; Bhatt et al.,
2022). Our paper introduces a new quality diversity algorithm, CMA-MAE. Our theoretical findings
inform our experiments, which show that CMA-MAE addresses three major limitations affecting the
CMA-ME algorithm, leading to state-of-the-art performance.
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10 ETHICS STATEMENT

By controlling the trade-off between exploration and exploitation in QD algorithms, we aim towards
improving their performance and robustness, thus making these algorithms easier to apply in a wide
range of domains and applications. One promising application is synthetically extracting datasets
from generative models to train machine learning algorithms Jahanian et al. (2021); Besnier et al.
(2020). This can raise ethical considerations because generative models can reproduce and exacerbate
existing biases in the datasets that they were trained on (Jain et al., 2020; Menon et al., 2020). On
the other hand, quality diversity algorithms with carefully selected measure functions can target
diversity with desired attributes, thus we hypothesize that they can be effective in generating balanced
datasets. Furthermore, by attempting to find diverse solutions, QD algorithms are a step towards
open-endedness in AI Stanley et al. (2017) and will often result in unexpected and often surprising
emergent behaviors (Lehman et al., 2020). We recognize that this presents several challenges in
predictability and monitoring of AI systems (Hendrycks et al., 2021), and we highlight the importance
of future work on balancing the tradeoff between open-endedness and control (Ecoffet et al., 2020).

11 REPRODUCIBILITY STATEMENT

In the supplemental material we provide complete source code for all algorithms and experiments, as
well as the Conda environments for installing project dependencies. The “README.md” document
provides complete instructions both setup and execution of all experiments. In Appendix A we
provide all hyperparameters. In Appendix B we provide domain-specific details for replicating all
experimental domains. In Appendix C we provide information about the computational resources
and hardware we used to run our experiments. In Appendix D we provide the pseudocode for the
CMA-MAEGA algorithm, the DQD counterpart of CMA-MAE. In Appendix E we provide the proofs
of all theorems in the paper. In Appendix F we provide the theoretical properties of CMA-MAEGA.
In Appendix G we provide the derivation of the conversion formula for the archive learning rate. In
Appendix H we provide a batch threshold update rule that is invariant to the order that the solutions are
processes within a batch update. In Appendix I we discuss the implementation details for additional
experiments that improve the quality of the generated images in the latent space illumination domain.
In Appendix K we present all metrics with standard errors for each algorithm and domain.
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APPENDIX

A HYPERPARAMETER SELECTION

For all domains we mirror the hyperparameter selection of Fontaine & Nikolaidis (2021a). For
CMA-MAE and CMA-MAEGA, we duplicate the hyperparameter selections of CMA-ME and CMA-
MEGA, respectively. Following Fontaine et al. (2020), we run all algorithms with 15 emitters on
the linear projection and arm repertoire domains. In the latent space illumination domain, we run
experiments with only one emitter, due to the computational expense of the domain. Emitters are
independent CMA-ES instances that run in parallel with a shared archive. For each algorithm, we
select a batch size λ = 36 following Fontaine & Nikolaidis (2021a). For MAP-Elites and MAP-Elites
(line), we initialize the archive with 100 random solutions, sampled from the distribution N (0, I).
These initial solutions do not count in the evaluation budget for MAP-Elites and MAP-Elites (line).
For algorithms in the CMA-ME family (CMA-ME, CMA-MAE, CMA-MEGA, and CMA-MAEGA),
we initialize θ0 = 0 for every domain.

In our experiments we want to directly compare the ranking mechanisms of CMA-ME and
CMA-MAE. However, CMA-ME is typically run with a “no improvement” restart rule, where
the algorithm will restart if no solution changes the archive. Due to CMA-MAE’s annealed accep-
tance threshold te, a “no improvement” restart rule would cause CMA-ME and CMA-MAE to restart
at different rates, confounding the effects of restarts and rankings. Filter selection also has a similar
confounding effect as solutions are selected if they change the archive. For these reasons, in the
main paper we run CMA-ME with a basic restart rule (CMA-ES style restarts only (Hansen, 2016))
and µ selection (Hansen, 2016) (selecting the top half of the ranking). In Appendix Section K, we
run an extra CMA-ME with filter selection and the “no improvement” restart rule, which we denote
CMA-ME*. We include, as an additional baseline, a configuration of CMA-ME that mixes emitters
that optimize only for the objective with emitters that optimize for improvement, a configuration first
studied by Cully (2021). We refer to this configuration as CMA-ME (imp, opt).

In the latent space illumination domain, due to the computational expense of the domain, we compare
directly against the results from Fontaine & Nikolaidis (2021a), where we obtained the data (MIT
license) with consent from the authors. For CMA-MAE and CMA-MAEGA we include the “no
improvement” restart rule to match CMA-ME and CMA-MEGA as closely as possible. For this
domain, we take gradient steps with the Adam optimizer (Kingma & Ba, 2015), following the
recommendation of Fontaine & Nikolaidis (2021a). However, we run CMA-MAE with µ selection,
since we found that small values of the archive learning rate α makes filter selection worse.

In Appendix I, we describe a second LSI experiment on StyleGAN2 (Karras et al., 2020b) configured
by insights from the generative art community that improve the quality of single-objective latent
space optimization. For this domain, we configure CMA-MAEGA and CMA-MEGA to use a “basic”
restart rule because the latent space L2 regularization keeps solutions in the StyleGAN2 training
distribution. For this experiment, the latent space is large (n = 9216), so we exclude CMA-ME
and CMA-MAE due to the size of the covariance matrix (9216× 9216) and the prohibitive cost for
computing an eigendecomposition of a large covariance matrix.

Linear Projection (sphere, Rastrigin, plateau).

• MAP-Elites: σ = 0.5

• MAP-Elites (line): σ1 = 0.5, σ2 = 0.2

• CMA-ME: σ = 0.5, µ selection, basic restart rule

• CMA-ME*: σ = 0.5, filter selection, no improvement restart rule

• CMA-ME (imp, opt): σ = 0.5, µ selection, basic restart rule,
7 optimizing and 8 improvement emitters

• CMA-MAE: σ = 0.5, α = 0.01, minf = 0, µ selection, basic restart rule

• CMA-MEGA: σg = 10.0, η = 1.0, basic restart rule, gradient ascent optimizer

• CMA-MAEGA: σg = 10.0, η = 1.0, α = 0.01, minf = 0, basic restart rule, gradient
ascent optimizer
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Arm Repertoire.

• MAP-Elites: σ = 0.1

• MAP-Elites (line): σ1 = 0.1, σ2 = 0.2

• CMA-ME: σ = 0.2, µ selection, basic restart rule
• CMA-ME*: σ = 0.2, filter selection, no improvement restart rule
• CMA-ME (imp, opt): σ = 0.2, µ selection, basic restart rule,

7 optimizing and 8 improvement emitters
• CMA-MAE: σ = 0.2, α = 0.01, minf = 0, µ selection, basic restart rule
• CMA-MEGA: σg = 0.05, η = 1.0, basic restart rule, gradient ascent optimizer
• CMA-MAEGA: σg = 0.05, η = 1.0, α = 0.01, minf = 0, basic restart rule, gradient

ascent optimizer

Latent Space Illumination. (StyleGAN)

• MAP-Elites: σ = 0.2

• MAP-Elites (line): σ1 = 0.1, σ2 = 0.2

• CMA-ME: σ = 0.02, filter selection, no improvement restart rule
• CMA-MAE: σ = 0.02, α = 0.1, minf = 55, µ selection, no improvement restart rule, 50

iteration timeout
• CMA-MEGA: σg = 0.002, η = 0.002, Adam optimizer, no improvement restart rule
• CMA-MAEGA: σg = 0.002, η = 0.002, α = 0.1, minf = 55, Adam optimizer, no

improvement restart rule, 50 iteration timeout

Latent Space Illumination. (StyleGAN 2)

• MAP-Elites: σ = 0.1

• MAP-Elites (line): σ1 = 0.1, σ2 = 0.2

• CMA-MEGA: σg = 0.01, η = 0.05, Adam optimizer, basic restart rule
• CMA-MAEGA: σg = 0.01, η = 0.05, α = 0.02, minf = 0, Adam optimizer, basic restart

rule

Adam Hyperparameters. We use the same hyperparameters as previous work Perez (2021); Fontaine
& Nikolaidis (2021a).

• β1 = 0.9

• β2 = 0.999

Archives. For the linear projection and arm repertoire domains, we initialize an archive of 100× 100
cells for all algorithms. For latent space illumination we initialize an archive of 200× 200 cells for
all algorithms, following Fontaine & Nikolaidis (2021a).

B DOMAIN DETAILS

To experimentally evaluate both CMA-MAE and CMA-MAEGA, we select domains from Fontaine &
Nikolaidis (2021a): linear projection (Fontaine et al., 2020), arm repertoire (Cully & Demiris, 2017),
and latent space illumination (Fontaine et al., 2021b). While many quality diversity optimization
domains exist, we select these because gradients of f and m are easy to compute analytically and
allow us to evaluate DQD algorithms in addition to derivative-free QD algorithms. To evaluate the
good exploration properties of CMA-MAE on flat objectives, we introduce a variant of the linear
projection domain to include a “plateau” objective function.

Linear Projection. The linear projection domain (Fontaine et al., 2020) was introduced to benchmark
distortions caused by mapping a high-dimensional search space to a low-dimensional measure space.
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Figure 6: Measure function figures reproduced from prior work (Fontaine et al., 2020; Fontaine
& Nikolaidis, 2021a) with the authors’ permission. (a) a Bates distribution. (b) clip function for
defining the measures in the linear projection domain.

The domain forms a 2D measure space by a linear projection that bounds the contribution of each
component θi of the projection to the range [−5.12, 5.12]. QD algorithms must adapt the step size of
each component θi to slowly approach the extremes of the measure space, with a harsh penalty for
components outside [−5.12, 5.12]. As QD domains must provide an objective, the linear projection
domain included two objectives from the black-box optimization benchmarks (Hansen et al., 2016;
2010): sphere and Rastrigin. Following Fontaine et al. (2020), we run all experiments for n = 100.

Formally, the measure functions are defined as a linear projection, a weighted sum of the components
θi ∈ R of a solution θ ∈ Rn. The first measure function m1 is a weighted sum of the first half of
the solution θ, and the second measure function m2 is a weighted sum of the second half of the
solution θ (see Eq. 3). To ensure that all solutions mapped to measure space occupy a finite volume,
the contribution in measure space of each component θi is bounded to the range [−5.12, 5.12] via a
clip function (see Eq. 2) that applies a harsh penalty for solution components θi stepping outside the
range [−5.12, 5.12].

clip(θi) =

{
θi if −5.12 ≤ θi ≤ 5.12

5.12/θi otherwise
(2)

m(θ) =

⌊n
2 ⌋∑

i=1

clip(θi),

n∑
i=⌊n

2 ⌋+1

clip(θi)

 (3)

Fig. 6 visualizes why the linear projection domain is challenging. First, we note that the density of
solutions in search space mapped to measure space mostly occupies the region close to 0. To justify
why, consider sampling uniformly in the hypercube [−5.12, 5.12]n in search space. We note that
each of these points maps to the linear region of the measure functions and each of our measures
becomes a sum of random variables. If we divide by n, we normalize by the dimensions of the
search space, then the measure functions become an average of random variables. The average of n
uniform random variables is the Bates distribution (Johnson et al., 1995), a distribution that narrows
in variance as n grows larger. Without the clip function, a QD algorithm could simply increase
a single θi to reach any point in the measure space. However, the clip function prevents this by
bounding the contribution of each component of θ to the range [−5.12, 5.12]. To reach the extremes
of measure space all components θi must converge to the extremums ±5.12. The linear projection
domain is challenging to explore due to both the clustering of solutions in a small region of measure
space and the heavy measure space penalties applied by the clip function when a component θi leaves
the region [−5.12, 5.12].
Next, we describe the linear projection domain’s objective functions visualized in Fig. 7.
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Figure 7: Objective functions for the linear projection domain in their minimization form for n = 1.
(a) a sphere function. (b) the Rastrigin function. (c) a plateau function.

The objectives of the linear projection domain satisfy the requirements that a QD domain needs
to have an objective and are of lesser importance than the measure function definitions, since the
benchmark primarily evaluates exploration capabilities. Fontaine et al. (2020) selected two objectives
from the black-box optimization benchmarks competition (Hansen et al., 2016; 2010): sphere and
Rastrigin. The sphere function (Eq. 4) is a quadratic function2, while the Rastrigin function (Eq. 5) is
a multi-modal function that when smoothed is quadratic. The domain shifts the global optimum to
the position θi = 5.12 · 0.4 = 2.048.

fsphere(θ) =

n∑
i=1

θ2i (4)

fRastrigin(θ) = 10n+

n∑
i=1

[θ2i − 10 cos(2πθ2i )] (5)

We introduce an additional objective to evaluate the good exploration properties of CMA-MAE on
flat objectives. Our “plateau” objective function (Eq. 7) is constant everywhere, but with a quadratic
penalty for each component outside the range [−5.12, 5.12]. The penalty acts as a regularizer to
encourage algorithms to search in the linear region of measure space.

fplateau(θi) =

{
0 if −5.12 ≤ θi ≤ 5.12

(|x| − 5.12)2 otherwise
(6)

fplateau(θ) =
1

n

n∑
i=1

fplateau(θi) (7)

Arm Repertoire. The arm repertoire domain Cully & Demiris (2017); Vassiliades & Mouret
(2018) tasks QD algorithms to find a diverse collection of arm positions for an n-dimensional planar
robotic arm with revolute joints. The measures in this domain are the 2D coordinates of the robot’s
end-effector and the objective is to minimize the variance of the joint angles.

In Fig. 8, we visualize example arms for n = 5 (5-DOF). The optimal solutions in this domain have
0 variance between all joint angles. The measure functions are bounded to the range [−n, n] as each
arm segment has a unit length. The reachable cells form a circle of radius n. Therefore, the optimal
archive coverage is approximately πn2

4n2 ≈ 78.5%. An archive can achieve an upper-bound of this ratio
that becomes tighter at higher resolutions. We select n = 100 (100-DOF) arms for the experiments.

Latent Space Illumination. Prior work introduced the latent space illumination problem (Fontaine
et al., 2021b), the problem of searching the latent space of a generative model with a quality diversity
algorithm. We evaluate on the StyleGAN+CLIP version of this problem (Fontaine & Nikolaidis,

2In derivative-free optimization many of the benchmark functions are named after the shape of the contour
lines. In the case of quadratic functions with an identity Hessian matrix, the contour lines form hyperspheres.
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Figure 8: Examples of the Arm Repertoire domain for n = 5. The figures are reproduced from
previous work (Fontaine & Nikolaidis, 2021a) with the authors’ permission. (a) An optimal grasp
with 0 variance between joint angles. (b) A sub-optimal grasp. (c) An ensemble of 0 variance optimal
grasps.

2021a), by searching the latent space of StyleGAN (Karras et al., 2019) with a QD algorithm. We
form the differentiable objective and measures in this domain by specifying text prompts to the CLIP
model (Radford et al., 2021) that can determine the similarity of an image and text. We specify an
objective prompt of “A photo of Beyonce”. For measures, we would like to have CLIP quantify
abstract concepts like the hair length or age of the person in the photo. However, CLIP can only
determine similarity of an image and a text prompt. As surrogates for age and hair length, we specify
the measure prompts of “A small child” and “A woman with long blonde hair”. The objective and
measure functions guide the QD algorithms towards discovering a collection of photos of Beyoncé
with varying age and hair length.

For our additional LSI experiment on StyleGAN2 with setup improvements, see Appendix I.

Transformations of the Objective Function. We highlight two issues that must be addressed by
transforming the objective in each domain. First, we note that the problem definition in each of our
domains contains an objective f that must be minimized. In contrast, the QD problem definition
specifies an objective f that must be maximized. Second, the QD-score metric, which measures
the performance of QD algorithms, requires a non-negative objective function. Following prior
work (Fontaine et al., 2020; Fontaine & Nikolaidis, 2021a), we transform the objective f via a linear
transformation: f ′ = af + b. The linear transformation maps function outputs to the range [0, 100].

In the linear projection domain, we estimate the largest objective value for the sphere and Ras-
trigin function within the region [−5.12, 5.12] for each solution component θi. We compute
f(−5.12,−5.12, ...,−5.12) for each objective as the maximum. The minimum of each function is 0.
We calculate the linear transformation as:

f ′(θ) = 100 · f(θ)− fmax

fmin − fmax
(8)

For our new plateau objective, all solution points within the region [−5.12, 5.12]n have objective
value of 0. For this objective we set fmin = 0 and fmax = 100 and apply the transformation in Eq. 8.

For the arm domain we select fmin = 0 and fmax = 1, and in the LSI domain we select fmin = 0
and fmax = 10. We select these values to match Fontaine & Nikolaidis (2021a).

C IMPLEMENTATION

We replicate the implementation details of prior work (Fontaine & Nikolaidis, 2021a).

Archives. For the linear projection and arm repertoire domains, we initialize an archive of 100× 100
cells for all algorithms. For latent space illumination we initialize an archive of 200× 200 cells for
all algorithms, following previous work (Fontaine & Nikolaidis, 2021a).
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LP (sphere) LP (Rastrigin) LP (plateau) Arm Repertoire
Algorithm QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage

CMA-MEGA 75.32 100.00% 63.07 100.00% 100.00 100.00% 75.21 75.25%
CMA-MAEGA 75.39 100.00% 63.06 100.00% 100.00 100.00% 79.27 79.35%

Table 3: Mean QD-score and coverage values after 10,000 iterations for each DQD algorithm in the
LP and arm repertoire domains.

LSI (StyleGAN) LSI (StyleGAN2)
Algorithm QD-score Coverage QD-score Coverage

CMA-MEGA 16.08 22.58% 9.17 14.91%
CMA-MAEGA 16.20 23.83% 11.51 18.62%

Table 4: Mean QD-score and coverage values after 10,000 iterations for each DQD algorithm in the
LSI (StyleGAN) and LSI (StyleGAN2) domains.

Metrics. We use the sum of f values of all cells in the archive, defined as the QD-score Pugh
et al. (2015), as a metric for the quality and diversity of solutions. Following Fontaine & Nikolaidis
(2021a), we normalize the QD-score by the total number of cells, both occupied and unoccupied, to
make QD-score invariant to the resolution of the archive. We additionally compute the coverage,
defined as the number of occupied cells in the archive divided by the total number of cells.

Computational Resources. We ran all trials of the linear projection and arm repertoire domains on
an AMD Ryzen Threadripper 32-core (64 threads) processor. A run of 20 trials in parallel takes about
20 minutes for the linear projection domain and 25 minutes for the arm repertoire domain. For the
latent space illumination domain, we accelerate the StyleGAN+CLIP pipeline on a GeForce RTX
3090 Nvidia GPU. One trial for latent space illumination takes approximately 2 hours and 30 minutes
for StyleGAN and approximately 3 hours and 30 minutes for StyleGAN2. In all domains, runtime
increases when an algorithm obtains better coverage, because we iterate over the archive when QD
statistics are calculated.

Software Implementation. We use the open source Pyribs (Tjanaka et al., 2021) library for all
algorithms. We implemented the CMA-MAE and CMA-MAEGA algorithms using the same library.

D COVARIANCE MATRIX ADAPTATION MAP-ELITES VIA A GRADIENT
ARBORESCENCE (CMA-MAEGA)

In this section, we provide information of the CMA-MEGA differentiable quality diversity (DQD)
algorithm, and we derive CMA-MAE’s DQD counterpart: CMA-MAEGA.

CMA-MEGA. Covariance Matrix Adaptation MAP-Elites via Gradient Arborescence (CMA-MEGA)
solves the DQD problem, where the objective f and measures m are first-order differentiable.
Like CMA-ME, the algorithm maintains a solution point θ ∈ Rn and a MAP-Elites archive.
CMA-MEGA samples new solutions by perturbing the search point θ via the objective and mea-
sure gradients. However, the contribution of each gradient is balanced by gradient coefficients c:
θi = θ + c0∇f(θ) +

∑k
j=1 cj∇mj(θ). These coefficients are sampled from a multivariate Gaus-

sian distribution N(µ,Σ) maintained by the algorithm. After sampling new candidate solutions
θi, the solutions are ranked via the improvement ranking from CMA-ME. CMA-MEGA updates
N(µ,Σ) via the CMA-ES update rules and the algorithm steps θ also in the direction of largest
archive improvement. The authors showed that CMA-MEGA approximates a natural gradient step of
the QD objective (Eq. 1), but with respect to the gradient coefficients.

CMA-MAEGA. We note that our augmentations to the CMA-ME algorithm only affects how we
replace solutions in the archive and how we calculate ∆i. Both CMA-ME and CMA-MAEGA
replace solutions and calculate ∆i identically, so we apply the same augmentations from CMA-ME
to CMA-MEGA to form a new DQD algorithm, CMA-MAEGA. Algorithm 2 shows the pseudo-code
for CMA-MAEGA with the differences from CMA-MEGA highlighted in yellow.
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Algorithm 2 Covariance Matrix Adaptation MAP-Annealing via a Gradient Arborescence
(CMA-MAEGA)
CMA-MAEGA (evaluate,θ0, N, λ, η, σg, minf , α)

input : An evaluation function evaluate that computes the objective, the measures, and the
gradients of the objective and measures, an initial solution θ0, a desired number of
iterations N , a branching population size λ, a learning rate η, an initial step size for
CMA-ES σg , a minimal acceptable solution quality minf , and an archive learning rate α.

result :Generate N(λ+ 1) solutions storing elites in an archive A.

1 Initialize solution parameters θ to θ0, CMA-ES parameters µ = 0, Σ = σgI , and p, where we
let p be the CMA-ES internal parameters.

2 Initialize the archive A and the acceptance threshold te with minf for each cell e.
3 for iter ← 1 to N do
4 f,∇f ,m,∇m ← evaluate(θ)
5 ∇f ← normalize(∇f ),∇m ← normalize(∇m)
6 if f > te then
7 Replace the current elite in cell e of the archive A with θi
8 te ← (1− α)te + αf
9 end

10 for i← 1 to λ do
11 c ∼ N (µ,Σ)

12 ∇i ← c0∇f +
∑k

j=1 cj∇mj

13 θ′
i ← θ +∇i

14 f ′, ∗,m′, ∗ ← evaluate(θ′
i)

15 ∆i ← f ′ − te
16 if f ′ > te then
17 Replace the current occupant in cell e of the archive A with θi
18 te ← (1− α)te + αf ′

19 end
20 end
21 rank ∇i by ∆i

22 ∇step ←
∑λ

i=1 wi∇rank[i]
23 θ ← θ + η∇step
24 Adapt CMA-ES parameters µ,Σ,p based on improvement ranking ∆i

25 if there is no change in the archive then
26 Restart CMA-ES with µ = 0,Σ = σgI .
27 Set θ to a randomly selected existing cell θi from the archive
28 end
29 end

Experiments. We compare CMA-MEGA and CMA-MAEGA in the five benchmark domains. Table 3
and Table 4 shows the QD-score and coverage values for each algorithm and domain, averaged over 20
trials for the linear projection (LP) and arm repertoire domains and over 5 trials for the LSI domains.
We conducted a two-way ANOVA to examine the effect of the algorithm and domain (LP (sphere),
LP (Rastrigin), LP (plateau), arm repertoire, LSI (StyleGAN), and LSI (StyleGAN2) on the QD-score.
There was a significant interaction between the search algorithm and the domain (F (5, 168) =
165.7, p < 0.001). Simple main effects analysis with Bonferroni corrections showed that CMA-
MAEGA outperformed CMA-MEGA in the LP (sphere), arm repertoire, and LSI (StyleGAN2)
domains. There was no statistically significance difference between the two algorithms in the LP
(Rastrigin), LP (plateau), and LSI (StyleGAN) domains.

We attribute the absence of a statistical difference in the QD-score between the two algorithms on
the LP (Rastrigin) and LP (plateau) domains on the perfect coverage obtained by both algorithms.
Thus, any differences in QD-score are based on the objective values of the solutions returned by each
algorithm. In LP (plateau), the optimal objective for each cell is easily obtainable for both methods.
The LP (Rastrigin) domain contains many local optima, because of the form of the objective function
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(Eq. 5). CMA-MEGA will converge to these optima before restarting, behaving as a single-objective
optimizer within each local optimum. Because of the large number of local optima in the domain, it
results in higher QD-score.

In the LSI (StyleGAN) domain, we attribute similar performance between CMA-MEGA and
CMA-MAEGA to the restart rules used to keep each search within the training distribution of
StyleGAN. On the other hand, in the LSI (StyleGAN2) domain, we regularize the search space by
an L2 penalty in latent space, allowing for a larger learning rate and a basic restart rule for both
algorithms, while still preventing drift out of the training distribution of StyleGAN2. Because of
the fewer restarts, CMA-MAEGA can take advantage of the density descent property, which was
shown to improve exploation in CMA-MAE, and outperform CMA-MEGA. We note that because
StyleGAN2 has a better conditioning on the latent space (Karras et al., 2020b), it is better suited for
gradient-based optimizers, which helps better distinguish between the two algorithms.

E THEORETICAL PROPERTIES OF CMA-MAE

Theorem E.1. The CMA-ES algorithm is equivalent to CMA-MAE when α = 0, if CMA-ES restarts
from an archive solution.

Proof. CMA-ES and CMA-MAE differ only on how they rank solutions. CMA-ES ranks solutions
purely based on the objective f , while CMA-MAE ranks solutions by f − te, where te is the
acceptance threshold initialized by minf . Thus, to show that CMA-ES is equivalent to CMA-MAE
for α = 0, we only need to show that they result in identical rankings.

In CMA-MAE, te is updated as follows: te ← (1− α)te + αf . For α = 0, te = minf is invariant
for the whole algorithm: te ← 1te + 0f = te. Therefore, CMA-MAE ranks solutions based on
f −minf . However, comparison-based sorting is invariant to order-preserving transformations of the
values being sorted Hansen (2016). Thus, CMA-ES and CMA-MAE rank solutions identically.

Next, we prove that CMA-ME is equivalent to CMA-MAE with the following caveats. First, we
assume that CMA-ME restarts only with the CMA-ES restart rules, rather than the additional “no
improvement” restart condition from Fontaine et al. (2020). Second, we assume that both CMA-ME
and CMA-MAE leverage µ selection rather than filtering selection.

Lemma E.2. During execution of the CMA-MAE algorithm with α = 1, the threshold te is equal to
f(θe) for cells that are occupied by a solution θe and to minf for all empty cells.

Proof. We will prove the lemma by induction. All empty cells are initialized with te = minf ,
satisfying the basis step. Then, we will show that if the statement holds after k archive updates, it
will hold after a subsequent update k + 1.

Assume that at step k we generate a new solution θi mapped to a cell e. We consider two cases:

Case 1: The archive cell e is empty. Then, f(θi) > minf and both CMA-ME and CMA-MAE
will place θi in the archive as the new cell occupant θe. The threshold te is updated as te =
(1− α)te + αf(θe) = 0minf + 1f(θe) = f(θe).

Case 2: The archive cell e contains an incumbent solution θe. Then, either f(θi) ≤ f(θe) or
f(θi) > f(θe). If f(θi) ≤ f(θe), then the archive does not change and the inductive step holds
via the inductive hypothesis. If f(θi) > f(θe), then θi becomes the new cell occupant θe and te is
updated as te = (1− α)te + αf(θe) = 0te + 1f(θe) = f(θe).

Theorem E.3. The CMA-ME algorithm is equivalent to CMA-MAE when α = 1 and minf is an
arbitrarily large negative number.

Proof. Both CMA-ME and CMA-MAE rank candidate solutions θi based on improvement values
∆i. While CMA-ME and CMA-MAE compute ∆i differently, we will show that for α = 1, the
rankings are identical for the two algorithms.

We assume a new candidate solution mapped to a cell e. We describe first the computation of ∆i for
CMA-ME. CMA-ME ranks solutions that discover an empty cell based on their objective value. Thus,
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if θi discovers an empty cell, ∆i = f(θi). On the other hand, if θi is mapped to a cell occupied
by another solution θe, it will rank θi based on the improvement ∆i = f(θi)− f(θe). CMA-ME
performs a two-stage ranking, where it ranks all solutions that discover empty cells before solutions
that improve occupied cells.

We now show the computation of ∆i for CMA-MAE with α = 1. If θi discovers an empty cell
∆i = f(θi) − te and by Lemma E.2 ∆i = f(θi) −minf . If θi is mapped to a cell occupied by
another solution θe, ∆i = f(θi)− te and by Lemma E.2 ∆i = f(θi)− f(θe).

Comparing the values ∆i between the two algorithms we observe the following: (1) If θi discovers
an empty cell, ∆i = f(θi)−minf for CMA-MAE. However, minf is a constant and comparison-
based sorting is invariant to order preserving transformations (Hansen, 2016), thus ranking by
∆i = f(θi) − minf is identical to ranking by ∆i = f(θi) performed by CMA-ME. (2) If θi
is mapped to a cell occupied by another solution θe, ∆i = f(θi) − f(θe) for both algorithms.
(3) Because minf is an arbitrarily large negative number f(θi) −minf > f(θi) − f(θe). Thus,
CMA-MAE will always rank solutions that discover empty cells before solutions that are mapped to
occupied cells, identically to CMA-ME.

We next provide theoretical insights on how the discount function fA smoothly increases from a
constant function minf to CMA-ME’s discount function as α increases from 0 to 1. We show this
for the special case of a fixed sequence of candidate solutions.
Theorem E.4. Let αi and αj be two archive learning rates for archives Ai and Aj such that
0 ≤ αi < αj ≤ 1. For two runs of CMA-MAE that generate the same sequence of m candidate
solutions {S} = θ1,θ2, ...,θm, it follows that fAi

(θ) ≤ fAj
(θ) for all θ ∈ Rn.

Proof. We prove the theorem via induction over the sequence of solution additions. fA is the
histogram formed by the thresholds te over all archive cells e in the archive. Thus, we prove
fAi
≤ fAj

by showing that te(Ai) ≤ te(Aj) for all archive cells e after m archive additions.

As a basis step, we note that Ai equals Aj as both archives are initialized with minf .

Our inductive hypothesis states that after k archive additions we have te(Ai) ≤ te(Aj), and we need
to show that te(Ai) ≤ te(Aj) after solution θk+1 is added to each archive.

Our solution θk+1 has three cases with respect to the acceptance thresholds:

Case 1: f(θk+1) ≤ te(Ai) ≤ te(Aj). The solution is not added to either archive and our property
holds from the inductive hypothesis.

Case 2: te(Ai) ≤ f(θk+1) ≤ te(Aj). The solution is added to Ai, but not Aj , thus t′e(Aj) = te(Aj).
We follow the threshold update: t′e(Ai) = (1− αi)te(Ai) + αif(θk+1). Next, we need to show that
t′e(Ai) ≤ t′e(Aj) to complete the inductive step:

(1− αi)te(Ai) + αif(θk+1) ≤ f(θk+1) ⇐⇒
(1− αi)te(Ai) ≤ (1− αi)f(θk+1) ⇐⇒

te(Ai) ≤ f(θk+1) as 1− αi ≥ 0

The last inequality holds true per our initial assumption for Case 2. From the inductive hypothesis,
we have f(θk+1) ≤ te(Aj) = t′e(Aj).

Case 3: te(Ai) ≤ te(Aj) ≤ f(θk+1). The solution θk+1 is added to both archives. We need to
show that t′e(Ai) ≤ t′e(Aj):

t′e(Ai) ≤ t′e(Aj) ⇐⇒
(1− αi)te(Ai) + αif(θk+1) ≤ (1− αj)te(Aj) + αjf(θk+1) (9)

We can rewrite Eq. 9 as:

(1− αj)te(Aj)− (1− αi)te(Ai) + αjf(θk+1)− αif(θk+1) ≥ 0 (10)
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First, note that:

(1− αj)te(Aj)− (1− αi)te(Ai) ≥ (1− αj)te(Ai)− (1− αi)te(Ai)

= (1− αj − 1 + αi)te(Ai)

= (αi − αj)te(Ai).

Thus:
(1− αj)te(Aj)− (1− αi)te(Ai) ≥ (αi − αj)te(Ai) (11)

From Eq. 10 and 11 we have:

(1− αj)te(Aj) + αjf(θk+1)− (1− αi)te(Ai)− αif(θk+1)

≥ (αi − αj)te(Ai) + (αj − αi)f(θk+1)

= (αj − αi)(f(θk+1)− te(Ai))

As αj > αi and f(θk+1) ≥ te(Ai), we have (αj − αi)(f(θk+1) − te(Ai)) ≥ 0. This completes
the proof that Eq. 10 holds.

As all cases in our inductive step hold, our proof by induction is complete.

Next, we wish to provide insights about the exploration properties of CMA-MAE for an archive
learning rate α between 0 and 1, when the objective f is constant. Consider an approximate density
descent algorithm that is identical to CMA-ME, but differs by how solutions are ranked. Specifically,
the algorithm maintains a histogram of occupancy counts oe for each cell e, with oe representing the
number of times a solution was generated in that cell. This algorithm descends the density histogram
by ranking solutions based on the occupancy count of the cell that the solution maps to, where
solutions that discover less frequently visited cells are ranked higher.

Lemma E.5. The threshold te after k additions to cell e forms a strictly increasing sequence for a
constant objective function f(θ) = C for all θ ∈ Rn, when 0 < α < 1 and minf < C.

Proof. To show that te after k additions to cell e forms a strictly increasing sequence, we write a
recurrence relation for te after k solutions have been added to cell e. Let te(k) = (1 − α)te(k −
1) + αf(θi) and te(0) = minf be that recurrence relation. To show the recurrence is an increasing
function, we need to show that te(k) > te(k − 1) for all k ≥ 0.

We prove the inequality via induction over cell additions k. As a basis step, we show te(1) > te(0):
(1− α)minf + αC > minf ⇐⇒ minf −minf − α ·minf + αC ⇐⇒ αC > α ·minf . As
C > minf and α > 0, the basis step holds.

For the inductive step, we assume that te(k) > te(k − 1) and need to show that te(k + 1) > te(k):
te(k + 1) > te(k) ⇐⇒ (1 − α)te(k) + αC > (1 − α)te(k − 1) + αC ⇐⇒ (1 − α)te(k) >
(1− α)te(k − 1) ⇐⇒ te(k) > te(k − 1).

Theorem E.6. The CMA-MAE algorithm optimizing a constant objective function f(θ) = C for all
θ ∈ Rn is equivalent to the approximate density descent algorithm, when 0 < α < 1 and minf < C.

Proof. We will prove that for an arbitrary archive A with both the occupancy count for each cell oe
and the threshold value te computed with arbitrary learning rate 0 < α < 1, CMA-MAE results in the
same ranking for an arbitrary batch of solutions {θi} as the approximate density descent algorithm.

We let θi and θj be two arbitrary solutions in the batch mapped to cells ei and ej . Without of loss of
generality, we let oei ≤ oej . The approximate density descent algorithm will thus rank θi before θj .
We will show that CMA-MAE results in the same ranking.

If oei ≤ oej , and since te is a strictly increasing function from Lemma E.5: tei(oei) ≤ tej (oej ). We
have tei(oei) ≤ tej (oej ) ⇐⇒ C − tei(oei) ≥ C − tej (oej ). Thus, the archive improvement by
adding θi to the archive is larger than the improvement by adding θj and CMA-MAE will rank θi
higher than θj , identically with density descent.
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While Theorem E.6 assumes a constant objective f , we conjecture that the theorem holds true
generally when threshold te in each cell e approaches the local optimum within the cell boundaries.

Conjecture E.7. The CMA-MAE algorithm becomes equivalent to the density descent algorithm for
a subset of archive cells for an arbitrary convex objective f , where the cardinality of the subset of
cells increases as the number of iterations increases.

We provide intuition for our conjecture through the lense of the elite hypervolume hypothesis (Vas-
siliades & Mouret, 2018). The elite hypervolume hypothesis states that optimal solutions for the
MAP-Elites archive form a connected region in search space. Later work (Rakicevic et al., 2021),
connected the elite hypervolume hypothesis to the manifold hypothesis (Fefferman et al., 2016)
in machine learning, stating that the elite hypervolume can be represented by a low dimensional
manifold in search space.

For our conjecture, we assume that the elite hypervolume hypothesis holds and there exists a smooth
manifold that represents the hypervolume. Next, we assume in the conjecture that f is an arbitrary
convex function. As f is convex, early in the CMA-MAE search the discount function fA will be
flat and the search point θ will approach the global optimum following CMA-ES’s convergence
properties (Hansen & Ostermeier, 1997; Hansen et al., 2003), where the precision of convergence
is controlled by archive learning rate α. By definition, the global optimum θ∗ is within the elite
hypervolume as no other solution of higher quality exists within its archive cell. Assuming the
elite hypervolume hypothesis holds, a subset of adjacent solutions in search space will also be in
the hypervolume due to the connectedness of the hypervolume. As fA increases around the global
optimum, we conjecture that the function f(θ∗)− fA(θ

∗) will form a plateau around the optimum,
since it will approach the value f(θi)− fA(θi) of adjacent solutions θi. By Theorem E.6 we have
a density descent algorithm within the plateau, pushing CMA-MAE to discover solutions on the
frontier of the known hypervolume.

Finally, we remark that our conjecture implies that f − fA tends towards a constant function in the
limit, resulting in a density descent algorithm across the elite hypervolume manifold as the number of
generated solutions approaches infinity. We leave a formal proof of this conjecture for future work.

F THEORETICAL PROPERTIES OF CMA-MAEGA

In this section, we investigate how the theoretical properties of CMA-MAE apply to CMA-MAEGA.
While many of the properties are nearly a direct mapping, we note that, while CMA-MAE is equivalent
to the single-objective optimization algorithm CMA-ES for α = 0, there is no single-objective
counterpart to CMA-MAEGA. To make the direct mapping easier, we introduce a counterpart: the
gradient arborescence ascent algorithm.

The gradient arborescence ascent algorithm is similar to CMA-MEGA, but without an archive. Like
CMA-MEGA, the algorithm assumes a differentiable objective f and differentiable measures m.
However, the algorithm leverages the objective and measure function gradients only to improve the
optimization of the objective f , rather than to find solutions that are diverse with respect to measures
m. As with CMA-MEGA, the gradient arborescence algorithm branches in objective-measure space.
However, the algorithm ranks solutions purely by the objective function f and adapts the coefficient
distribution N(µ,Σ) towards the natural gradient of the objective f .

Next, we prove properties of CMA-MAEGA that directly follow from the properties of CMA-MAE.

Theorem F.1. The gradient arborescence ascent algorithm is equivalent to CMA-MAEGA when
α = 0, if gradient arborescence ascent restarts from an archive elite.

Proof. We note that CMA-MAEGA and the gradient arborescence ascent algorithm differ only in
how they rank solutions, and we note that the differences between CMA-MAE and CMA-ES mirror
the differences between CMA-MAEGA and gradient arborescence ascent algorithm. So by directly
adapting the proof of Theorem E.1, we complete our proof.

Theorem F.2. The CMA-MEGA algorithm is equivalent to CMA-MAEGA when α = 1 and minf is
an arbitrarily large negative number.
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Proof. We note that CMA-MAEGA and the CMA-MEGA algorithm differ only in how they rank
solutions and how they update the archive A, and we note that the differences between CMA-MAE
and CMA-ME mirror the differences between CMA-MAEGA and CMA-MEGA. So by directly
adapting the proof of Theorem E.3, we complete our proof.

Theorem F.3. Let αi and αj be two archive learning rates for archives Ai and Aj such that
0 ≤ αi < αj ≤ 1. For two runs of CMA-MAEGA that generate the same sequence of m candidate
solutions {S} = θ1,θ2, ...,θm, it follows that fAi

(θ) ≤ fAj
(θ) for all θ ∈ Rn.

Proof. We note that CMA-MAE and CMA-MAEGA update the archive A in exactly the same way.
Therefore, the proof follows directly by adapting the proof of Theorem E.4 to CMA-MAEGA.

Next, we wish to show that CMA-MAEGA results in density descent in measure space. However, we
need a counterpart to the approximate density descent algorithm we defined in Theorem E.6.

Consider an approximate density descending arborescence algorithm that is identical to CMA-MEGA,
but differs by how solutions are ranked. Specifically, we assume that this algorithm maintains an
occupancy count oe for each cell e, which is the number of times a solution was generated in that
cell. The density descent algorithm ranks solutions based on the occupancy count of the cell that the
solution maps to, where solutions that discover less frequently visited cells are ranked higher. The
algorithm takes steps in search space Rn that minimize the approximate density function defined by
the archive and adapts the coefficient distribution N(µ,Σ) towards coefficients that minimize the
density function.
Theorem F.4. The CMA-MAEGA algorithm optimizing a constant objective function f(θ) = C
for all θ ∈ Rn is equivalent to the approximate density descending arborescence algorithm, when
0 < α < 1 and minf < C.

Proof. The proof of Theorem E.6 relies only on how CMA-MAE updates the archive A and accep-
tance threshold te. The proof of this theorem follows directly by adapting the proof of Theorem E.6
to CMA-MAEGA.

G DERIVATION OF THE CONVERSION FORMULA FOR THE ARCHIVE
LEARNING RATE

In this section, we derive the archive learning rate conversion formula α2 = 1− (1−α1)
r mentioned

in Section 7 of the main paper, where r is the ratio between archive cell counts, and α1 and α2 are
archive learning rates for two archives A1 and A2.

Given an archive learning rate α1 for A1, we want to derive an equivalent archive learning rate α2 for
A2 that results in robust performance when CMA-MAE is run with either A1 or A2. A principled way
to derive a conversion formula for α2 is to look for an invariance property that affects the performance
of CMA-MAE and that holds when CMA-MAE generates solutions in archives A1 and A2.

Since CMA-MAE ranks solutions by f − fA, we wish for fA to increase at the same rate in the two
archives. Since fA(θ) = te, where te is the cell that a solution θ maps to, we select the average
value of the acceptance thresholds te over all cells in each archive as our invariant property.

We assume an arbitrary sequence of N solution additions θ1,θ2, ...,θN , evenly dispersed across the
archive cells. We then specify te as a function that maps k cell additions to a value te in archive cell
e.3 Equation 12 then defines the average value of te across the archive after N additions to an archive
A with M cells.

1

M

M∑
i=1

te

(
N

M

)
(12)

Then, equation 13 defines the invariance we want to guarantee between archives A1 and A2.
3Here we abuse notation and view te as a function instead of threshold for simplicity and to highlight the

connection to the threshold value te.
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1

M1

M1∑
i=1

te

(
N

M1

)
=

1

M2

M2∑
i=1

te

(
N

M2

)
(13)

In Eq. 13, we let M1 and M2 the number of cells in archives A1 and A2, and we assume that M1 and
M2 divide N . To solve for a closed form of α2 subject to our invariance, we need a formula for the
function te. Similar to Lemma E.5, we can represent the function te as a recurrence relation after
adding k solutions to cell e of an archive A.

te(0) = minf

te(k) = (1− α)te(k − 1) + αf(θk) (14)

Next, we look to derive a closed form for te(k) for an archive A as a way to manipulate Equation 13.
However, solving for te(k) when f is an arbitrary function is difficult, because different regions of
the archive will change at different rates. Instead, we solve for the special case when f(θ) = C and
minf < C, where C ∈ R is a constant scalar. To solve for a closed form of the recurrence te(k), we
leverage the recurrence unrolling method (Graham et al., 1989), allowing us to guess the closed form
in Equation 15.

te(1) = (1− α)te(0) + αC = (1− α)minf + αC

te(2) = (1− α)te(1) + αC = (1− α)[(1− α)minf + αC] + αC

= (1− α)2minf + (1− α)αC + αC

te(3) = (1− α)te(2) + αC

= (1− α)[(1− α)2minf + (1− α)αC + αC] + αC

= (1− α)3minf + (1− α)2αC + (1− α)αC + αC

...

te(k) = (1− α)kminf +

k−1∑
i=0

(1− α)iαC (15)

We recognize the summation in Equation 15 as a geometric series. As 0 < α < 1, we rewrite the
summation as follows.

te(k) = (1− α)kminf +

k−1∑
i=0

(1− α)iαC

= (1− α)kminf + αC

(
1− (1− α)k

1− (1− α)

)
= (1− α)kminf + αC

(
1− (1− α)k

α

)
= (1− α)kminf + C − C(1− α)k

= (minf − C)(1− α)k + C

= C − (C −minf )(1− α)k (16)

Next, we prove that the closed form we guessed is the closed form of the recurrence relation.
Theorem G.1. The recurrence relation te(0) = minf and te(k) = (1− α)te(k − 1) + αC has the
closed form te(k) = C − (C −minf )(1− α)k, where 0 < α < 1 and minf < C.

Proof. We show the closed form holds via induction over cell additions k.
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As a basis step we show that te(0) = C − (C −minf )(1− α)0 = C − (C −minf ) = minf .

For the inductive step, suppose after j insertions into the archive A in cell e our closed form holds.
We show that the closed form holds for j + 1 insertions.

te(j + 1) = (1− α)te(j) + αC

= (1− α)[C − (C −minf )(1− α)j ] + αC

= C(1− α)− (C −minf )(1− α)j+1 + αC

= C − αC + αC − (C −minf )(1− α)j+1

= C − (C −minf )(1− α)j+1 (17)

As our basis and inductive steps hold, our proof is complete.

The closed form from Theorem G.1 allows us to derive a conversion formula for α2 via our invariance
formula in Equation 13.

1

M1

M1∑
i=1

te

(
N

M1

)
=

1

M2

M2∑
i=1

te

(
N

M2

)
M1

M1

(
C − (C −minf )(1− α1)

N
M1

)
=

M2

M2

(
C − (C −minf )(1− α2)

N
M2

)
(C −minf )(1− α1)

N
M1 = (C −minf )(1− α2)

N
M2

(1− α1)
N
M1 = (1− α2)

N
M2

(1− α1)
M2
M1 = (1− α2)

α2 = 1− (1− α1)
M2
M1 (18)

We remark that our conversion formula is not dependent on the number of archive additions N .

Although our conversion formula assumes f to be a constant objective, we conjecture that the formula
holds generally for a convex objective f .

Conjecture G.2. The archive learning rate conversion formula results in invariant behavior of
CMA-MAE for two arbitrary archives A1 and A2 with archive resolutions M1 and M2, for a convex
objective f .

Our intuition is similar to the intuition behind Conjecture E.7, where we assume the elite hypervolume
hypothesis holds (Vassiliades & Mouret, 2018). At the beginning of the CMA-MAE search, fA is
a constant function and CMA-MAE optimizes for the global optimum, following the convergence
properties of CMA-ES (Hansen & Ostermeier, 1997; Hansen et al., 2003). Eventually, the cells
around the global optimum become saturated and the function f − fA forms a plateau around the
global optimum. The invariance described in Eq. 13 implies that the fA1

and fA2
will increase at

the same rate within the flat region of the plateau. Let θp be an arbitrary solution in the plateau and
θ′ be a solution on the frontier of the known hypervolume. The plateau of each archive Ai expands
when the solutions on the frontier of the elite hypervolume achieve a larger f(θ′) − fAi(θ

′) than
the plateau f(θp)− fAi(θp). We conjecture that the plateau will expand at the same rate in the two
archives as fA1 and fA2 increase at the same rate for the plateau region, due to our invariance in
Eq. 13.

We speculate that our conjecture explains why we observe invariant behavior across archive resolutions
in the experiments of Section 7, even though f is not a constant function in the linear projection and
arm repertoire domains.
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H A BATCH THRESHOLD UPDATE RULE FOR MAP-ANNEALING

In this paper, we presented an annealing method for updating a QD archive in the CMA-MAE
algorithm, following the standard QD formulation where we add a single solution to the archive at a
time. However, the recently developed QDax library (Lim et al., 2022) assumes that the updates to the
archive happen in batch. In this section, we show that the archive update within a batch is dependent
on the order that the solutions are processed. We then propose a candidate threshold update rule that
is invariant to the order the solutions are processed within a batch update.

First, we show that the order solutions are added to the archive affects the current threshold update.
Consider two solutions θ1 and θ2 that we add to the archive in a single batch. If θ1 is added
before θ2, then the threshold update becomes t′e = (1 − α)[(1 − α)te + αf(θ1)] + αf(θ2) =
(1−α)2te + (1−α)αf(θ1) +αf(θ2). If θ2 is added before θ1, then the threshold update becomes
t′′e = (1− α)[(1− α)te + αf(θ2)] + αf(θ1) = (1− α)2te + (1− α)αf(θ2) + αf(θ1).

To compare t′e to t′′e , we compute t′e − t′′e :

t′e − t′′e = (1− α)2te + (1− α)αf(θ1) + αf(θ2)

= [(1− α)2te + (1− α)αf(θ2) + αf(θ1)]

= (1− α)α[f(θ1)− f(θ2)] + α[f(θ2)− f(θ1)]

= [(1− α)α− α][f(θ1)− f(θ2)]

= −α2[f(θ1)− f(θ2)]

From the above derivation, we see that the difference between thresholds is dependent on the solution’s
objective values when added to the archive in different order. This means when adding solutions to
the archive in a batch, the update is dependent on the solution order in the batch.

Our goal is to make the threshold update invariant to the order the solutions are added to the archive.
First, consider a subset of the batch that contains c solutions all landing in the same cell of the archive
and exceeding the current threshold te. Adding the solutions in batch order results in the following
threshold update:

t′e = (1− α)cte +

c∑
j=1

(1− α)c−jαf(θj)

Let X be a random variable corresponding to the threshold for a given permutation of the batch. To
become invariant to the batch addition, we will change the threshold update to be E[X], the expected
value of t′e across all random permutations of the batch.

Let Xi be a random variable corresponding to the contribution of only f(θi) to the threshold update
and Y be a constant random variable corresponding to the contribution of the previous threshold. As
expectation is linear, we have E[X] = E[Y ] +

∑c
j=1 E[Xj ]. Next, we compute the value of E[Xi]

for an arbitrary solution θi in the batch:

E[Xi] =

c∑
j=1

Pr(θi is at position j in the batch)(1− α)c−jαf(θi)

=

c∑
j=1

(c− 1)!

c!
(1− α)c−jαf(θi)

=

c∑
j=1

1

c
(1− α)c−jαf(θi)

Next, we rework E[X] into a simpler formula, where f∗ =
∑c

k=1 f(θk)

c :
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E[X] = E[Y ] +

c∑
j=1

E[Xj ]

= (1− α)cte +

c∑
k=1

c∑
j=1

1

c
(1− α)c−jαf(θk)

= (1− α)cte +

c∑
j=1

(1− α)c−jα
1

c

c∑
k=1

f(θk)

= (1− α)cte +

c∑
j=1

(1− α)c−jαf∗

= (1− α)cte + αf∗
c−1∑
j=0

(1− α)j

= (1− α)cte + αf∗ 1− (1− α)c

α
= (1− α)cte + f∗(1− (1− α)c)

We propose the above expectation as the batch threshold update rule, where f∗ is the average objective
value for all solutions in the batch that exceed the threshold te for a given cell. We observe that the rule
is independent of the solution order. Furthermore, if α = 0, the update becomes te, and Theorem 5.1
still holds. If α = 1, the update becomes f∗, which is the average of solutions that increase the
threshold. We view this update as a smooth parallel addition compared to CMA-ME, which would
add the best solution from the batch for any solution order. We leave exploring alternative batch
update rules for future work.

I ON IMPROVING THE QUALITY OF LATENT SPACE ILLUMINATION

We describe the limitations arising from the exact problem setup for our main experiments, adopted
from previous work (Fontaine & Nikolaidis, 2021a), on producing high-quality images. We then
discuss ideas from the generative art community for improving the setup and an additional experiment
that incorporates these ideas to generate high-quality and diverse images.

I.1 MAIN LSI EXPERIMENTS

In the main latent space illumination (LSI) experiments in section 6, we showed that CMA-MAE
outperformed the other QD algorithms according to standard QD metrics following the exact setup of
prior work (Fontaine & Nikolaidis, 2021a)

In the these experiments, we used latent space illumination as purely an optimization benchmark.
However, obtaining high performance on LSI as a benchmark can be a competing objective with
producing high quality images.

First, finding solutions that result in a high objective value does not always result in high quality
images that match the text prompt. For example, a QD algorithm can find images that result in CLIP
reporting a high similarity score by leaving the training distribution of StyleGAN.

Furthermore, we use the CLIP loss as a measure function, thus a QD algorithm attempts to both
decrease and increase the loss function to cover the measure space. Increasing the loss function
results in minimizing similarity with the text prompt, which can be attained by unrealistic images.

In the main LSI experiments all derivative-free QD algorithms would drift out of the latent distribution
and produce archives of low image quality. We found that CMA-MAE would stay in the latent
distribution longer before drifting out of distribution during exploration, due to the low archive
learning rate α prioritizing the objective.
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To address drifting out of distribution, we adopt a “timeout” restart rule proposed by other evolution
strategy-based quality diversity algorithms (Colas et al., 2020; Paolo et al., 2021). A timeout restart
rule runs for a fixed number of iterations before restarting. We add to the basic restart rule of
CMA-MAE (Appendix A) an additional criterion for restarting based on the timeout restart rule. To
generate all the LSI collages in section K, we use a timeout of 50 iterations for both CMA-MAE and
CMA-MAEGA.

While we retained the same setup as in previous work for comparison purposes, we can change the
setup by adopting ideas from the generative art community to produce very high quality images. We
describe these ideas in section I.2.

I.2 INNOVATIONS FROM THE GENERATIVE ART COMMUNITY

Beyond the specifics of the QD optimization algorithm, many aspects of latent space illumination can
be improved. For example, prior work Frans et al. (2021) on guiding single-objective optimization
with CLIP notes that the gradients that CLIP provides can be noisy and recommends data augmenta-
tions of the generated images, such as tiling or translating each image, before being passed to CLIP.
This change can help smooth the gradients for gradient descent optimizers like Adam and can make
the generated images retained by the archive match their text prompts more accurately.

Prior work on optimizing the latent space of VQ-GAN (Crowson et al., 2022) also notes that CLIP
will not always provide smooth optimization gradients, nor accurate objective values. The authors
recommend a different data augmentation, by creating a batch of random cutouts of the generated
image and passing those images to CLIP, which produces smoother gradients and objective values.
The paper also recommends regularizing the latent codes so that they become attracted to the
Gaussian ball that captures the training disribution of the GAN. Both these techniques could improve
the qualitative performance of latent space illumination.

Finally, we used the first version of StyleGAN (Karras et al., 2019) that was used in previous
work (Fontaine & Nikolaidis, 2021a). Recent versions of StyleGAN (Karras et al., 2020b;a; 2021)
can further improve the quality of the generated images.

We describe details of the improved setup in section I.3.

I.3 IMPROVING QUALITY OF GENERATED IMAGES

To improve image quality, we include an additional experiment where we run each QD algorithm
with a configuration inspired by the above findings from the generative art community.

First, we replace StyleGAN (Karras et al., 2019) with StyleGAN2 (Karras et al., 2020b), which
produces better images and has a well-conditioned latent space for optimization.

Next, we change the latent space being optimized by QD. First note, that the StyleGAN architecture
has multiple latent spaces to be optimized. StyleGAN consists of both a z-space latent space of size
512 and a mapping network that maps to 18 latent codes of size 512 at different levels of detail in the
final image. This 18× 512 tensor is known as w-space. The original LSI experiments of Fontaine &
Nikolaidis (2021a) were based of a blogpost (Perez, 2021) that respresented the search space for LSI
as a single 512 dimensional vector whose weights were shared for each level of detail in w-space. In
this experiment, we will optimize the full n = 18× 512 = 9216 w-space with each QD algorithm
for fine grain control of the generated images.

Instead of using restarts in the StyleGAN experiments to keep the search within latent space, we adopt
the w-space regularization of Crowson et al. (2022). We compute an average w-space position by
sampling 104 points sampled fromN (0, I) in z-space, then passing these points through the mapping
network to find their position in w-space. We compute the standard error across each dimension.
To regularize the latent space, we compute the distance from this w-space Gaussian distribution. If
the distance from mean exceeds the Gaussian ball of highest density, we apply an L2 penalty to the
objective f to move the search back into the training distribution.

The LSI experiments from prior work (Fontaine & Nikolaidis, 2021a) downsample from the
1024× 1024 images produced by StyleGAN to the 224 × 224 images required for input to the
CLIP model. Following prior work (Crowson et al., 2022), we adopt the cutout technique that clips
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32 images from the StyleGAN output of varying sizes, downsamples each cutout to 224 × 224,
and passes each of these 224× 224 cutouts to CLIP for evaluation. The loss becomes the average
of the CLIP loss for all cutouts. This technique has been shown to smooth gradients for CLIP in
single-objective latent space optimization.

Instead of starting the search at the latent code 0, we sample 512 latent codes fromN (0, I) in z-space
then select the image resulting in the highest objective value as the starting w-space latent code.

Finally, the prior LSI experiments leveraged the text prompt “A small child.” as a proxy for age.
However, this text prompt only specifies one end of the age measure. To correct this issue, we can
pair a positive text prompt “A small child.” with a negative text prompt “An elderly person.” as a
proxy for age. We compute the measure output by subtracting one CLIP loss from the other.

We run the improved LSI experiment with the text descriptor “A photo of the face of Tom Cruise.” as
an objective, the text pair “A photo of Tom Cruise as a small child.” and “A photo of Tom Cruise as
an elderly person.” as a proxy measure for age, and “A photo of Tom Cruise with short hair.” and “A
photo of Tom Cruise with long hair.” as a proxy measure for hair length.

Fig. 4 shows photos of Tom Cruise at varying hair lengths and ages, generated by the CMA-MAEGA
algorithm in a single run.

J ON THE EFFECT OF THRESHOLD INITIALIZATION

In this paper we introduce two hyperparameters for our proposed CMA-MAE algorithm: the archive
learning rate α and a threshold initialization minf . In this section we discuss the effect of different
minf initializations on the performance and behavior of CMA-MAE. Finally, we run an ablation on
minf , similar to the ablation on archive learning rate α in Section 7.

First, consider the effect of minf on the extreme cases of the CMA-MAE. When α = 0, then
according to Theorem E.1, CMA-MAE behaves identically to CMA-ES, and minf has no effect on
the behavior of CMA-MAE. Conversely when α = 1, then according to Theorem E.3, CMA-MAE
behaves identically to CMA-ME when minf approaches an arbitrarily large negative number. As
minf increases for α = 1, CMA-MAE will rank some solutions that discover existing cells higher
than solutions that discover new, empty cells, thus it will behave differently than CMA-ME.

Next, we discuss the behavior for 0 < α < 1. Recall the elite hypervolume hypothesis (Fefferman
et al., 2016), which states that optimal solutions for the MAP-Elites archive form a connected region
in search space, the elite hypervolume. According to the proof sketch of Conjecture E.7, early in the
search CMA-MAE behaves identically to CMA-ES to find a solution point on the elite hypervolume.
As the thresholds of cells around this solution point become saturated, the objective f − fA forms
a plateau around the local optimum. Within the plateau, CMA-MAE triggers the density descent
property of Theorem E.6 and evenly explores the known elite hypervolume until the plateau in f −fA
dips below the frontier of the known hypervolume. This causes the known hypervolume to expand
until all cells of the archive are filled.

Next, we discuss how the selection of minf affects the rate of expansion of the elite hypervolume.
First, we consider two solution points: θ1 represents a local optimum in the elite hypervolume and
θ2 represents a nearby point mapped to a different archive cell with a smaller objective value, or
formally f(θ1) > f(θ2) and ∥θ1 − θ2∥2 ≤ ϵ. We let fA(θ1) = te1 and fA(θ2) = te2 , where te1
and te2 represent the thresholds of the cells that θ1 and θ2 map to, respectively. Both thresholds te1
and te2 are initialized with minf .

We first examine the case where minf > f(θ1) > f(θ2). Here, the thresholds te1 and te2 will not
change and none of the two solutions points will be added to the archive. CMA-MAE will then only
optimize for the objective value and behave identically to CMA-ES.

The second case is f(θ1) > minf > f(θ2). Here, θ2 will not get added to the archive and
te2 = minf will not change, while te1 will increase based on the update rule te1 ← (1−α)te1+f(θ1).
Recall that CMA-MAE ranks solutions based on improvement ∆i = f(θi)− tei . We observe that
∆2 = f(θ2)−minf < 0, while ∆1 = f(θ1)− te1 > 0, thus there is no incentive for CMA-MAE
to optimize for θ2 and it will instead optimize for the solution point θ1 that has the highest objective
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value. We observe that minf then acts as a constraint that prevent exploration of measure space
regions with objective values below minf .

Finally, we let f(θ1) > f(θ2) > minf . Initially, θ1 will be ranked higher than θ2, since ∆1 =
f(θ1)− te1 = f(θ1)−minf and ∆2 = f(θ2)− te2 = f(θ2)−minf , thus ∆1 > ∆2. CMA-MAE
will thus optimize for θ1, but ∆1 will decrease because of the update rule te1 ← (1− α)te1 + f(θ1).

Next, we compute how many steps it will take for ∆1 = ∆2. When ∆1 = ∆2, a plateau forms for
f − fA and CMA-MAE transitions from optimizing like CMA-ES to expanding the frontier of the
known hypervolume via density descent. We leverage Theorem G.1 that yields a closed form for
updating a cell k times for a fixed objective value C: te(k) = C − (C −minf )(1− α)k.

Let k1 and k2 be the number of times the cells containing θ1 and θ1 are sampled, respectively. We
note that CMA-MAE behaves like CMA-ES until we reach the density descent property, therefore
the cell containing θ1 will be sampled more times than the cell containing θ2 and k1 > k2, where
the gap k1 − k2 grows as more optimization steps are taken.

∆1 = ∆2

f(θ1)− te1 = f(θ2)− te2

f(θ1)− [f(θ1)− (f(θ1)−minf )(1− α)k1 ] = f(θ2)− [f(θ2)− (f(θ2)−minf )(1− α)k2 ]

(f(θ1)−minf )(1− α)k1 = (f(θ2)−minf )(1− α)k2

(1− α)k1

(1− α)k2
=

f(θ2)−minf

f(θ1)−minf

(1− α)k1−k2 =
f(θ2)−minf

f(θ1)−minf

k1 − k2 =
log

f(θ2)−minf

f(θ1)−minf

log (1− α)

k1 − k2 =
log

f(θ1)−minf

f(θ2)−minf

− log (1− α)
(19)

We note that − log (1− α) is a positive value as 1− α < 1. We see that the number of times that θ1
needs to be sampled more than θ2 depends on the log ratio of the gaps between the objective values
and minf and on the learning rate α.

As minf decreases, number of optimization steps required to reach the plateau property approaches
0 asymptotically. While this shows that minf does have an effect on the behavior of the algorithm,
since minf appears on the log ratio, we expect the effect of changing minf to be small.

We ran an ablations study by varying minf on the linear projection and arm repertoire domains. We
explore different values of minf ∈ {−80,−40, 0, 40, 80}. We ran each experimental setup for 20
trials each and report the results in Table 5.

We note that each domain remaps the objective values to the range [0, 100]. For minf smaller than
the range, we observe that changing minf has a negligible effect on performance. On the other hand,
positive values for minf constrain the search to solutions with f ≥ minf (see Fig. 9), thus coverage
decreases. These results match our theoretical analysis.

We note that in the LP (plateau) all optimal solutions for each cell are 100 and Arm Repertoire domain
all optimal solutions for each cell are close to 100. Since all minf values in our range are below 100,
we do not observe any effects on performance, even for positive values of minf .
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LP (sphere) LP (Rastrigin) LP (plateau) Arm Repertoire
minf (CMA-MAE) QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage

-80 64.74 83.73% 52.23 81.65% 77.20 77.24% 78.97 79.25%
-40 64.94 83.83% 52.53 81.40% 78.25 78.28% 79.02 79.26%

0 64.99 83.52% 52.69 80.56% 79.29 79.31% 79.06 79.27%
40 63.82 80.08% 48.61 68.45% 80.18 80.19% 79.06 79.23%
80 39.41 43.92% 10.03 11.04% 81.42 81.42% 78.99 79.11%

Table 5: Mean QD metrics after 10,000 iterations for CMA-MAE with varying minf initialization.

LP (sphere)

LP (Rastrigin)

Figure 9: Example heatmaps from the minf ablation. When minf exceeds the objective value for
solutions in the elite hypervolume, minf acts as a constraint on exploration and CMA-MAE focuses
on regions of the elite hypervolume that exceed minf in objective value.
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Figure 10: The percentage of cells in the y-axis with objective values larger than or equal to a
threshold specified in the x-axis, with 95% confidence intervals. The percentage is the number of
filled cells (filtered by the threshold) over the archive size. A larger area under each curve indicates
better performance.

K ADDITIONAL RESULTS

K.1 GENERATED ARCHIVES AND ADDITIONAL METRICS

Table 6 presents the values of the QD-score, coverage, and best solution for each algorithm and
domain. We used α = 0.01 for CMA-MAE, identically to the main experiments. Similarly to
Fontaine & Nikolaidis (2021a), we disambiguate the quality of solutions found and coverage by
showing for MAP-Elites, MAP-Elites (line), CMA-ME and CMA-MAE the percentage of cells
(y-axis) that have objective value greater than the threshold specified in the x-axis (Fig. 10).

K.2 EXAMPLE ARCHIVES

Fig. 11 -15 show example archives for each algorithm and domain.
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CMA-MEMAP-Elites CMA-MEGA

0

100

Linear Projection (sphere)

CMA-MAEMAP-Elites (line) CMA-MAEGA

Figure 11: Example archives for each algorithm for the linear projection (sphere) domain.

CMA-MEMAP-Elites CMA-MEGA

0

100

Linear Projection (Rastrigin)

CMA-MAEMAP-Elites (line) CMA-MAEGA

Figure 12: Example archives for each algorithm for the linear projection (Rastrigin) domain.
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CMA-MEMAP-Elites CMA-MEGA

0

100

Linear Projection (Plateau)

CMA-MAEMAP-Elites (line) CMA-MAEGA

Figure 13: Example archives for each algorithm for the linear projection (plateau) domain.

CMA-MEMAP-Elites CMA-MEGA

99

100

Arm Repertoire

CMA-MAEMAP-Elites (line) CMA-MAEGA

Figure 14: Example archives for each algorithm for the arm repertoire domain.

K.3 ADDITIONAL EXPERIMENTS IN THE LSI DOMAIN

We include the same additional experiments in the LSI (StyleGAN) domain as Fontaine & Nikolaidis
(2021a). The first additional experiment has objective prompt “A photo of Jennifer Lopez” and
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CMA-MEMAP-Elites CMA-MEGA

0

100

Latent Space Illumination (StyleGAN)

CMA-MAEMAP-Elites (line) CMA-MAEGA

Figure 15: Example archives for each algorithm for the LSI (StyleGAN) domain.

MAP-Elites CMA-MEGA

0

100

Latent Space Illumination (StyleGAN2)

MAP-Elites (line) CMA-MAEGA

Figure 16: Example archives for each algorithm for the LSI (StyleGAN2) domain.

measure prompts “A small child.” and “A woman with long blonde hair.” The second has objective
prompt “A photo of Elon Musk” and measure prompts “A person with red hair.” and “A man with
blue eyes.” Table 7 shows the results of the additional runs, as well as the Beyoncé run, with objective
prompt “A photo of Beyonce.”, from the main paper.

K.4 ADDITIONAL RESULTS FOR VARYING RESOLUTIONS

Fig. 17 shows the QD-score and coverage of CMA-MAE with resolution-dependent archive learning
rate and the baselines, for each benchmark domain. For CMA-MAE, we set the resolution dependent
archive learning rate α using the conversion formula from Appendix G, with α1 = 0.01 for resolution
100× 100.
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Linear Projection (sphere) Linear Projection (plateau) Arm RepertoireLinear Projection (Rastrigin)
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Figure 17: Final QD-score and coverage of each algorithm for 25 different archive resolutions.
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Figure 18: A latent space illumination collage generated by CMA-MAE for the objective “A photo of
Beyonce.” and for measures “A small child.” and “A woman with long blonde hair.” The axis values
indicate the score returned by the CLIP model, where lower score indicates a better match.

K.5 QUALITATIVE RESULTS IN THE LSI DOMAIN

We present example collages for CMA-MAE (Fig. 19, 20), 18) and for CMA-MAEGA (Fig. 21, 22)
for the LSI (StyleGAN) domain. We also include collages of each run of all algorithms for all
runs of LSI (StyleGAN) and LSI (StyleGAN2) in the anonymous Dropbox link: https://www.
dropbox.com/sh/7e22190k3p4zh69/AACcAKV7_Xgi4IMrhzxkCz5ca?dl=0.
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Figure 19: A latent space illumination (StyleGAN) collage generated by CMA-MAE for the objective
“A photo of Jennifer Lopez.” and for measures “A small child.” and “A woman with long blonde hair.”
The axes values indicate the score returned by the CLIP model, where lower score indicates a better
match.
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Figure 20: A latent space illumination (StyleGAN) collage generated by CMA-MAE for the objective
“Elon Musk with short hair.” and for measures “A man with blue eyes.” and “A person with red hair.”
The axes indicate the score returned by the CLIP model, where lower score indicates a better match.
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Linear Projection (sphere)
Algorithm QD-score Coverage Best

MAP-Elites 41.64 ± 0.06 50.80 ± 0.09% 98.63 ± 0.01
MAP-Elites (line) 49.07 ± 0.03 60.42 ± 0.05% 99.43 ± 0.01
CMA-ME 36.50 ± 0.31 42.82 ± 0.40% 100.00 ± 0.00
CMA-ME∗ 45.07 ± 0.07 55.11 ± 0.10% 99.23 ± 0.02
CMA-ME (imp, opt) 37.10 ± 0.37 43.62 ± 0.45% 100.00 ± 0.00
CMA-MAE 64.86 ± 0.04 83.31 ± 0.07% 99.59 ± 0.01
CMA-MEGA 75.32 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00
CMA-MAEGA 75.39 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00

Linear Projection (Rastrigin)
Algorithm QD-score Coverage Best

MAP-Elites 31.43 ± 0.07 47.88 ± 0.12% 82.16 ± 9,11
MAP-Elites (line) 38.29 ± 0.05 56.51 ± 0.09% 85.71 ± 0.07
CMA-ME 38.02 ± 0.11 53.09 ± 0.16% 97.59 ± 0.06
CMA-ME∗ 35.06 ± 0.05 53.01 ± 0.12% 83.47 ± 0.08
CMA-ME (imp, opt) 34.87 ± 0.24 48.93 ± 0.40% 98.18 ± 0.03
CMA-MAE 52.65 ± 0.06 80.46 ± 0.11% 95.90 ± 0.25
CMA-MEGA 63.07 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00
CMA-MAEGA 63.06 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00

Linear Projection (plateau)
Algorithm QD-score Coverage Best

MAP-Elites 47.07 ± 0.17 47.07 ± 0.17% 100.00 ± 0.00
MAP-Elites (line) 52.20 ± 0.19 52.20 ± 0.19% 100.00 ± 0.00
CMA-ME 34.54 ± 0.35 34.54 ± 0.35% 100.00 ± 0.00
CMA-ME∗ 51.11 ± 0.25 51.11 ± 0.25% 100.00 ± 0.00
CMA-ME (imp, opt) 31.91 ± 0.43 31.91 ± 0.43% 100.00 ± 0.00
CMA-MAE 79.27 ± 0.21 79.29 ± 0.21% 100.00 ± 0.00
CMA-MEGA 100.00 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00
CMA-MAEGA 100.00 ± 0.00 100.00 ± 0.00% 100.00 ± 0.00

Arm Repertoire
Algorithm QD-score Coverage Best

MAP-Elites 71.40 ± 0.03 74.09 ± 0.04% 97.38 ± 0.03
MAP-Elites (line) 74.55 ± 0.02 75.61 ± 0.02% 99.16 ± 0.01
CMA-ME 75.82 ± 0.11 75.89 ± 0.11% 100.00 ± 0.00
CMA-ME∗ 75.68 ± 0.04 76.13 ± 0.03% 99.78 ± 0.01
CMA-ME (imp, opt) 75.91 ± 0.07 75.99 ± 0.07% 100.00 ± 0.00
CMA-MAE 79.03 ± 0.02 79.24 ± 0.02% 99.93 ± 0.00
CMA-MEGA 75.21 ± 0.13 75.25 ± 0.13% 100.00 ± 0.00
CMA-MAEGA 79.27 ± 0.02 79.35 ± 0.02% 100.00 ± 0.00

Latent Space Illumination (StyleGAN)
Algorithm QD-score Coverage Best

MAP-Elites 12.85 ± 0.10 19.42 ± 0.16% 71.42 ± 0.14
MAP-Elites (line) 14.40 ± 0.09 21.11 ± 0.11% 73.04 ± 0.05
CMA-ME 14.00 ± 0.62 19.57 ± 0.90% 74.11 ± 0.08
CMA-MAE 17.67 ± 0.27 25.08 ± 0.40% 73.48 ± 0.18
CMA-MEGA 16.08 ± 0.37 22.58 ± 0.57% 74.95 ± 0.27
CMA-MAEGA 16.20 ± 0.41 23.83 ± 0.46% 75.52 ± 0.22

Latent Space Illumination (StyleGAN2)
Algorithm QD-score Coverage Best

MAP-Elites -276.18 ± 32.00 4.48 ± 0.18% -936.96 ± 35.91
MAP-Elites (line) -827.25 ± 25.99 8.81 ± 0.04% -236.65 ± 13.35
CMA-MEGA 9.18 ± 0.18 14.91 ± 0.12% 67.48 ± 0.09
CMA-MAEGA 11.51 ± 0.09 18.62 ± 0.16% 66.17 ± 0.08

Table 6: Results: The QD-score, coverage, and best solution after 10,000 iterations for each algorithm
and domain with standard errors. Larger values are better across all metrics.
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LSI (StyleGAN): Beyoncé
Algorithm QD-score Coverage Best

MAP-Elites 12.85 ± 0.10 19.42 ± 0.16% 71.42 ± 0.14
MAP-Elites (line) 14.40 ± 0.09 21.11 ± 0.11% 73.04 ± 0.05
CMA-ME 14.00 ± 0.62 19.57 ± 0.90% 74.11 ± 0.08
CMA-MAE 17.67 ± 0.27 25.08 ± 0.40% 73.48 ± 0.18
CMA-MEGA 16.08 ± 0.37 22.58 ± 0.57% 74.95 ± 0.27
CMA-MAEGA 16.20 ± 0.41 23.83 ± 0.46% 75.52 ± 0.22

r

LSI (StyleGAN): Jennifer Lopez
Algorithm QD-score Coverage Best

MAP-Elites 12.51 ± 0.28 19.18 ± 0.48% 70.87 ± 0.27
MAP-Elites (line) 14.73 ± 0.06 21.60 ± 0.08% 73.50 ± 0.13
CMA-ME 15.24 ± 0.37 20.86 ± 0.50% 75.39 ± 0.09
CMA-MAE 18.33 ± 0.16 25.42 ± 0.24% 75.10 ± 0.17
CMA-MEGA 17.06 ± 0.10 23.40 ± 0.14% 76.02 ± 0.08
CMA-MAEGA 16.45 ± 0.27 23.60 ± 0.49% 76.42 ± 0.13

LSI (StyleGAN): Elon Musk
Algorithm QD-score Coverage Best

MAP-Elites 13.88 ± 0.11 23.15 ± 0.14% 69.76 ± 0.07
MAP-Elites (line) 16.54 ± 0.28 25.73 ± 0.31% 72.63 ± 0.28
CMA-ME 18.96 ± 0.17 26.18 ± 0.24% 75.84 ± 0.10
CMA-MAE 22.10 ± 0.31 30.89 ± 0.44% 75.25 ± 0.20
CMA-MEGA 21.82 ± 0.18 30.73 ± 0.15% 76.89 ± 0.15
CMA-MAEGA 19.99 ± 0.21 30.12 ± 0.42% 77.25 ± 0.18

Table 7: Results from additional runs for Beyoncé, Jennifer Lopez, and Elon Musk
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Figure 21: A latent space illumination (StyleGAN) collage generated by CMA-MAEGA for the
objective “A photo of Jennifer Lopez.” and for measures “A small child.” and “A woman with long
blonde hair.” The axes values indicate the score returned by the CLIP model, where lower score
indicates a better match.
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Figure 22: A latent space illumination (StyleGAN) collage generated by CMA-MAEGA for the
objective “Elon Musk with short hair.” and for measures “A man with blue eyes.” and “A person with
red hair.” The axes values indicate the score returned by the CLIP model, where lower score indicates
a better match.
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