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ABSTRACT

The latent space of autoencoders has been improved for clustering image data by
jointly learning a t-distributed embedding with a clustering algorithm inspired by
the neighborhood embedding concept proposed for data visualization. However,
multivariate tabular data pose different challenges in representation learning than
image data, where traditional machine learning is often superior to deep tabular
data learning. In this paper, we address the challenges of learning tabular data in
contrast to image data and present a novel Gaussian Cluster Embedding in Au-
toencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with
multivariate Gaussian clusters. Unlike current methods, the proposed method de-
fines the Gaussian embedding and the target cluster distribution independently to
accommodate any clustering algorithm in representation learning. A trained G-
CEALS model is used to extract a quality embedding for unseen test data. Based
on the embedding clustering accuracy, the average rank of the proposed G-CEALS
method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster
embedding methods on seven tabular data sets. This paper shows one of the first
algorithms to jointly learn embedding and clustering for improving the represen-
tation of multivariate tabular data in downstream clustering.

1 INTRODUCTION

Deep learning has replaced traditional machine learning in many data-intensive research and ap-
plications due to its ability to perform concurrent and efficient representation learning and classi-
fication. This concurrent learning approach outperforms traditional machine learning that requires
handcrafted features to perform supervised classification (Lin et al., 2020; Alam et al., 2020). How-
ever, representation learning via supervisory signals from ground truth labels may be prone to over-
fitting Ying (2019) and adversarial attacks (Huang et al., 2017). Moreover, human annotations for
supervised representation learning and classification may not be available in all data domains or
for all data samples. To address these pitfalls, representation learning via unsupervised clustering
algorithms may be a strong alternative to supervised learning methods.

The limitation of supervised representation learning may be overcome using self-supervision or
pseudo labels that do not require human-annotated supervisory signals (Boubekki et al., 2021; Caron
et al., 2018). In a self-supervised autoencoder, the objective is to preserve all information of input
data in a low-dimensional embedding for data reconstruction. However, embeddings for data re-
construction do not emphasize representations essential for downstream classification or clustering
tasks. Therefore, unsupervised methods have been proposed for jointly learning embedding with
clustering to yield clustering friendly representations (Xie et al., 2016; Guo et al., 2017; Moradi
Fard et al., 2020; Mrabah et al., 2020; Yang et al., 2017). The existing cluster embedding litera-
ture suggests several strict assumptions about clustering algorithms (k-means), cluster distributions
(t-distribution), and data modality (image data). While deep representation learning of image data
is well studied using convolutional neural networks (CNN), deep learning has not seen much suc-
cess with structured tabular data. There is strong evidence in the literature that traditional machine
learning still outperforms deep models in learning tabular data (Kohler et al., 2019; Smith et al.,
2020; Borisov et al., 2021; Kadra et al., 2021; Shwartz-Ziv & Armon, 2022). In this paper, we re-
view the assumptions made in the cluster embedding literature and revise those assumptions for the
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representation learning of tabular data. Accordingly, a novel joint learning framework is proposed
considering the architectural and algorithmic differences in learning image and tabular data.

The remainder of this manuscript is organized as follows. Section 2 provides a review of the state-of-
the-art literature on deep cluster embedding. Section 3 introduces tabular data with some theoretical
underpinnings of neighborhood embedding and cluster embedding in support of our proposed rep-
resentation learning framework. Section 4 outlines the proposed joint cluster embedding framework
to obtain a quality representation of tabular data for downstream clustering or classification. Section
5 summarizes the tabular data sets and experiments for evaluating the proposed joint learning frame-
work. Section 6 provides the results following the experiments and compares our proposed method
with similar methods in the literature. Section 7 summarizes the findings with additional insights
into the results and limitations. The paper concludes in Section 8.

2 RELATED WORK

One of the earliest studies on cluster embedding, Deep Embedded Clustering (DEC) Xie et al.
(2016), is inspired by the seminal work on t-distributed stochastic neighborhood embedding (t-
SNE) (Van Der Maaten & Hinton, 2008). The DEC approach first trains a deep autoencoder by
minimizing the data reconstruction loss. The trained encoder part (excluding the decoder) is then
fine-tuned by minimizing the Kullback-Leibler (KL) divergence between a t-distributed cluster dis-
tribution (Q) on the embedding and a target distribution (P). The target distribution is obtained via
a closed-form solution by taking the first derivative of the KL divergence loss between P and Q
distributions with respect to P and equating it to zero. Therefore, the assumption of t-distribution
holds for both Q and P distributions in similar work. The k-means clustering in the DEC approach
is later replaced by spectral clustering to improve the quality of embedding in terms of clustering
performance (Duan et al., 2019). The DEC approach is also enhanced by an improved DEC (IDEC)
framework (Guo et al., 2017). In IDEC, the autoencoder reconstruction loss and the KL divergence
loss are jointly minimized to update the weights of a deep autoencoder and produce the embed-
ding. Similar approaches, including t-distributions, k-means clustering, and KL divergence loss, are
adopted in joint embedding and cluster learning (JECL) for multimodal representation learning of
text-image data pairs (Yang et al., 2020). The Deep Clustering via Joint Convolutional Autoencoder
(DEPICT) approach learns image embedding via a de-noising autoencoder (Dizaji et al., 2017). The
embedding is mapped to a softmax function to obtain a cluster distribution or likelihood (Q) in-
stead of assuming a distribution. Following a series of mathematical derivations and assumptions,
their final learning objective includes a cross-entropy loss involving P and Q distributions and an
embedding reconstruction loss for each layer of the convolutional autoencoder.

A general trend in the cluster embedding literature shows that K-means is the most common cluster-
ing method (Xie et al., 2016; Guo et al., 2017; Mrabah et al., 2020; Moradi Fard et al., 2020; Zhang
et al., 2019; Yang et al., 2020; Dizaji et al., 2017). The assumption of t-distributed cluster embedding
made in the DEC method Xie et al. (2016) continues to appear in the literature Ren et al. (2019);
Enguehard et al. (2019); Guo et al. (2017); Duan et al. (2019); Yang et al. (2020); Wu et al. (2022)
without any alternatives. The assumption of t-distribution is originally made in the t-SNE algorithm
for data visualization using neighborhood embedding maps (Van Der Maaten & Hinton, 2008). We
argue that the assumptions of neighborhood embedding for data visualization are not aligned with
the requirements of cluster embedding. Moreover, cluster embedding methods proposed in the liter-
ature are invariably evaluated on benchmark image data sets. The methods for image learning may
not be optimal or even ready to learn tabular data representations. To the best of our knowledge,
similar cluster embedding methods have not been studied on multivariate tabular data.

2.1 CONTRIBUTIONS

This paper is one of the first to investigate the performance of joint cluster embedding methods
on tabular data. The limitations of state-of-the-art joint cluster embedding methods are addressed to
contribute a new cluster embedding algorithm as follows. First, we replace the current assumption of
t-distributed embedding with a mixture of multivariate Gaussian distributions for multivariate tabular
data by providing a theoretical underpinning for this choice. Second, a new cluster embedding
algorithm is proposed using multivariate Gaussian distributions that can jointly learn distributions
with any clustering algorithm. Third, we define the target cluster distribution on the tabular data
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space instead of deriving it from the embedding because traditional machine learning of tabular data
is still superior to deep learning and can add complementary benefits to the embedding learned via
an autoencoder. Therefore, our embedding and target distributions are independent of each other to
flexibly learn any target cluster distribution depending on the application domain.

3 THEORETICAL BACKGROUND

This section provides preliminaries on tabular data in contrast to image data. We draw multiple
contrasts between neighborhood embedding proposed for data visualization and cluster embedding
proposed for representation learning to underpin our proposed approach.

3.1 PRELIMINARIES

A tabular data set is represented in a matrix X ∈ ℜn×d with n i.i.d samples in rows. Each sam-
ple (Xi) is represented by a d-dimensional feature vector, Xi ∈ ℜd = {x1, x2, . . . , xd}, where i
= {1, 2, . . . , n}. Compared to a pixel distribution P (I) of an image I , tabular data contain multi-
variate distributions P (x1, x2, . . . , xd) of heterogeneous variables often in relatively lower dimen-
sions. Although sequential (genomics) or time-series data can be high-dimensional and structured in
data tables, those require special learning architectures. In general, tabular data in business, health
records, and many domains fail to take advantage of deep convolutional learning due to the absence
of sequential patterns or image-like spatial regularities. Therefore, tabular data sets are identified
as the last ”unconquered castle” for deep learning Kadra et al. (2021), where traditional machine
learning methods are still competing strongly against advanced neural network architectures Kadra
et al. (2021); Borisov et al. (2021). Unlike image learning, there is a need for robust tabular data
learning methods to outperform the superior traditional machine learning or clustering methods.

3.2 NEIGHBORHOOD EMBEDDING

A neighborhood embedding is a low-dimensional map that preserves the similarity between data
points (xi and xj) observed in a higher dimension. Maaten and Hinton propose a Student’s t-
distribution to model the similarity between samples in neighborhood embedding (zi, zj) of high-
dimensional data points (xi and xj) for data visualization (Van Der Maaten & Hinton, 2008). First,
the similarity between two sample points (xi and xj) in the high dimension is modeled by a Gaussian
distribution, pij in Equation 1. Similar joint distribution can be defined for a pair of points in the
low-dimensional embedding (zi, zj) as qij below.

pij =
exp(−||xi − xj ||2/2σ2)∑
k ̸=l exp(−||xk − xl||2/2σ2)

, qij =
exp(−||zi − zj ||2/2σ2∑

k ̸=l exp(−||zk − zl||2/2σ2)
(1)

The divergence between the target (pij) and embedding (qij) distributions is measured using a KL
divergence loss, which is minimized to iteratively optimize the neighborhood embedding.

KL (P ||Q) =
∑
i

∑
j

pij log
pij
qij

(2)

To facilitate high-dimensional data visualization in two dimensions (2D), the embedding distribution
(qij) is modeled by a Student’s t-distribution, as shown in Equation 3. One primary justification for t-
distribution is its heavier tails compared to a Gaussian distribution. A heavier tail aids in an efficient
mapping of outliers observed in high dimensional space to the 2D space for data visualization.

qij =
(1 + ||zi − zj ||)−1∑
k ̸=l(1 + ||zk − zl||)−1

(3)

Therefore, data points placed at a moderate distance in high-dimension are pulled farther by a t-
distribution to aid visualization in 2D space. In the context of cluster embedding, we argue that
the additional separation between points in low dimensions may alter their cluster assignments. To
illustrate this phenomenon, we project high-dimensional deep convolutional image features on 2D
using 1) t-SNE and 2) two principal components, as shown in Figure 2 (Appendix A). The scattering
of data points is evident in the t-SNE mapping, where one blue point appears on the left side of the
figure leading to a wrong cluster assignment, unlike the PCA mapping (Figure 2 (b) in Appendix A).
In general, the expectations of data visualization and clustering tasks are different, as highlighted in
Table 4 (Appendix A), which should be considered in respective representation learning.
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3.3 CLUSTER EMBEDDING

Cluster embedding is achieved by infusing cluster separation information into the low-dimensional
latent space. While neighborhood embedding is initialized by sampling from a Gaussian distribution,
cluster embedding methods use embedding learned from an autoencoder’s latent space. However,
the current cluster embedding methods use the same t-distribution (Equation 3) to define the embed-
ding distribution (qij), similar to neighborhood embedding. The target distribution (pij) is derived
as a function of qij , as shown below.

sij =
q2ij∑
i qij

, pij =
sij∑
j sij

. (4)

While pair-wise sample distances in neighborhood embedding have a complexity of O (N2), the
distances from the centroids in embedding are O(N*K). Here, K is the number of clusters, which is
much smaller than the number of samples (N). While an outlier point results in N large distances
(extremely small pij values) in neighborhood embedding, there will be much fewer (K<<N) of
those large distances in cluster embedding. Therefore, the effect of outliers on cluster embedding
can be assumed to be much lower compared to the assumption in neighborhood embedding.

4 PROPOSED METHOD

We propose a novel cluster embedding method, Gaussian Cluster Embedding in Autoencoder Latent
Space (G-CEALS), by replacing the t-distribution (Equation 3) with a multivariate Gaussian distri-
bution and the target distribution (Equation 4) with the Gaussian likelihood of individual tabular data
samples (Xi) belonging to a given cluster (Cj) as P (Xi | Cj) or pij . Two clustering algorithms are
used separately in training and evaluating the proposed joint cluster embedding method: 1) k-means
and 2) Gaussian mixture model (GMM). The clustering on tabular data space (Xi ∈ ℜd) yields
K cluster assignments for individual samples. Each cluster j is characterized by a centroid vector
(µj ∈ ℜd) and a covariance matrix (Σj ∈ ℜdxd). Because the dimensionality of tabular data is not
as large as image data, Σ and µ parameters can be reasonably sized for computation. Therefore, the
soft cluster assignment (Sx(i, j)) for individual samples can be obtained using a Gaussian kernel,
which is the negative exponent of the Mahalanobis distance (dx(i, j)) between the point (Xi) and
the j-th cluster centroid vector, as shown in Equations 5 and 6.

dx(i, j) =
√

(Xi − µx
j ) Σ

−1
x (Xi − µj)T (5)

Sx(i, j) = exp (−d2x(i, j)) (6)

To ensure that the sum of all soft cluster assignments equals one for a given sample, we obtain a
joint cluster distribution, P (xi, µj) or pij , as shown in Equation 7. We set pij , obtained via superior
traditional machine learning, as the target distribution to improve the autoencoder embedding (zi) of
tabular data. Similarly, the embedding distribution (qij) can be obtained using soft Gaussian cluster
assignments (Sz) on the low-dimensional latent space (zi), as shown in Equation 7.

pij =
Sx(i, j)∑
j Sx(i, j)

, qij =
Sz(i, j)∑
j Sz(i, j)

(7)

Therefore, our P and Q distributions are independent, unlike the current cluster embedding methods.
Additionally, the covariance of the target (Σx) and embedding (Σz) distributions can regulate the
scatter or compactness of data clusters, which is impossible with t-distributed embedding.

4.1 LOW-DIMENSIONAL EMBEDDING OPTIMIZATION

A single-layer autoencoder is trained to encode the input (X) to a latent space (Z), which is then
decoded to reconstruct the original input (X̂i), as shown in Equation 8.

Lauto = argmin
θ,Φ

N∑
i=1

||Xi − X̂i||22. (8)
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Algorithm 1 Proposed G-CEALS Algorithm
Input: d-dimensional tabular data, X ∈ ℜn×d, where Xi ∈ ℜd

Output: Tabular data embedding, Z ∈ ℜn×m, m<<d
j − th cluster parameters, {µx

j , Σx
j } ← K-means or GMM clustering of X

pij ← {µx
j , Σx

j }, in Equation 7
Initialize: W 0 ={Wencoder, Wdecoder}
for t = 1→ n epochs do
{X̂ , Zt} ← Encoder (X , W t

encoder)
{µz

j , qij} ← K-means or GMM clustering of Zt and using qij in Equation 7
L← Lauto + γ ∗ Lcluster, measure the loss terms in Equation 9
W t← AutoEncoder (W t−1), update weights minimizing the joint loss in Equation 9

end for

Data set Sample size Dimensions Classes Domain

Breast Cancer 569 30 2 Diagnostic
Dermatology 358 34 6 Histopathological
E. coli 336 7 8 Protein cell
TUANDROMD 4465 241 2 Android malware
Mice Protein 552 78 8 Protein expression
Olive 572 10 3 Food & beverage
Vehicle 846 18 4 Silhouette features

Table 1: Summary of tabular data sets used for comparing clustering performance

Here, θ and Φ denote the trainable parameters of the encoder and decoder, respectively. The embed-
ding obtained following each epoch of training is clustered using a clustering algorithm to obtain the
cluster parameters (µ, Σ) and the embedding distribution (qij). Given the target distribution (pij)
(Equation 7), one of the learning objectives of G-CEALS is to minimize the KL divergence between
P and Q distributions (Lcluster), as shown in Equation 9 below. The overall learning objective of
G-CEALS is to update the autoencoder’s weights by minimizing a joint cost function, the encoder
reconstruction loss and the KL divergence loss, as below.

L = Lauto + γ ∗ Lcluster

= argmin
θ,Φ

N∑
i=1

||Xi − X̂i||22 + γ ∗
N∑
i=1

K∑
j=1

pij log
pij
qij

(9)

Here, γ is a trade-off hyperparameter to balance the contribution of cluster divergence Lcluster

during representation learning. The G-CEALS algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

All experimental steps and algorithms are implemented and evaluated in Python. The neural net-
works are built using the PyTorch package, and clustering modules are developed using the sci-kit-
learn package1 We evaluate the proposed and baseline methods on seven multi-domain and multi-
variate tabular data sets. A summary of these tabular data sets is provided in Table 1.

5.1 BASELINE METHODS

All existing cluster embedding methods are benchmarked on image data sets, mainly using 2D filters
in deep CNN architectures. Compared to 2D image data, limited sample size and dimensionality of
tabular feature vectors will require a simpler architecture due to overfitting and 1D filters instead
of 2D image filters. For example, the latent space size is set to 256 for image learning, whereas
the input dimension of tabular data can be as low as 10. We detail in Appendix B why existing
methods for image learning are not suitable to apply directly on tabular data sets. Considering

1The source code will be shared publicly and kept private for anonymity during peer review.
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Figure 1: Five-fold cross-validation scheme for training and tuning the model with the best γ value
(Equation 9). The clustering accuracy is reported on the embedding of the left-out test data fold.

these factors, we compare our method against four baseline methods. First, the k-means and GMM
clustering are performed on input tabular data (X) because traditional machine learning methods
are known to produce competitive results on tabular data, unlike image data. Second, a two-stage
method is used: 1) the embedding (Z) extraction by training a single-layer autoencoder and then
2) perform clustering on Z (Peng et al., 2016; Tian et al., 2014). Third, embedding learning and
clustering are performed jointly on tabular data. We compare fully-connected autoencoder (FC-
AE) and CNN autoencoder (similar to the DEPICT method Dizaji et al. (2017)) in single-layer and
three-layer settings to investigate the best learning architecture for tabular data. Fourth, despite the
challenges in adapting image learning methods to tabular data learning (Appendix B), we use two
pioneering methods for cluster embedding, DEC Xie et al. (2016), IDEC Guo et al. (2017), and a
more recent method (deep k-means) DKM Moradi Fard et al. (2020) for tabular data to compare
with our proposed method. Although deep and sophisticated autoencoder architectures proposed
in the literature (stacked, variational, adversarial, convolutional) can be compared in an exhaustive
search for the best method, it will introduce architectural bias in our claim for the best algorithm.
Therefore, we use a common single-layer autoencoder to make a fair comparison between our and
the baseline algorithms, especially considering the size and dimensionality of tabular data.

5.2 EVALUATION

The proposed G-CEALS model training involves self-supervised data reconstruction and unsuper-
vised clustering without requiring any ground truth. However, existing studies show that the hyper-
parameter (γ in Equation 9) value is data-dependent and is tuned based on clustering accuracy that
requires ground truth labels. The quality of cluster embedding is evaluated in downstream clustering
tasks using two standard metrics: clustering accuracy (ACC) Kuhn (1955) and normalized mutual
information (NMI) Estévez et al. (2009). We follow the same metrics for hyperparameter tuning
and cluster embedding evaluation. However, existing methods report the clustering accuracy on the
same training data set because of the unsupervised nature of the problem. In contrast, we use a
semi-supervised five-fold cross-validation scheme to obtain reproducible and transferable learning
for downstream clustering or classification. As shown in Figure 1, four data folds are used in unsu-
pervised training and supervised tuning, which is then used to obtain the embedding of a left-out test
data fold. We report the average ACC and NMI scores across the five left-out data folds to compare
the proposed and baseline methods. These metrics score between 0 (failure) and 1 (perfect clusters).
For all evaluation purposes, the cluster number is set to the number of class labels for a given data
set. The scores are multiplied by 100 to represent the numbers in percentage.

6 RESULTS

All experiments are conducted on a Dell Precision 5820 workstation running Ubuntu 20.04 with
64GB RAM and an NVIDIA GeForce RTX 3080 GPU with 10GB memory. We standardize all
tabular data using the mean and standard deviation of individual variables before training the au-
toencoder or performing clustering.
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Data set GMM K-means GMM K-means DEC IDEC DKM G-CEALS G-CEALS
on X on X on Z on Z GMM K-means

Breast cancer ACC 89.8 (4.6) 90.2 (4.3) 82.2 (7.4) 82.8 (5.7) 68.0 (3.0) 86.0 (3.6) 64.2 (3.9) 91.2 (4.8) 85.8 (3.3)
NMI 55.4 (17.6) 56.2 (17.0) 40.6 (19.6) 39.2 (15.9) 9.2 (6.2) 44.4 (11.3) 2.7 (7.2) 59.2 (18.1) 43.8 (10.6)

Dermatology ACC 76.8 (8.8) 76.2 (9.2) 72.2 (8.8) 63.0 (4.7) 50.4 (7.4) 76.6 (12.2) 23.2 (0.5) 77.2 (9.8) 76.4 (10.1)
NMI 82.4 (4.2) 83.4 (5.0) 73.4 (5.0) 70.8 (4.4) 45.2 (6.9) 80.6 (7.2) 3.5 (0.3) 77.6 (5.8) 77.4 (5.4)

E. coli ACC 29.4 (4.5) 29.2 (3.2) 30.6 (4.7) 29.0 (4.0) 26.2 (2.1) 32.6 (3.7) 35.4 (2.9) 32.2 (3.7) 31.6 (3.7)
NMI 19.6 (6.6) 18.4 (5.6) 17.8 (6.5) 18.6 (6.3) 15.0 (5.3) 17.4 (6.3) 14.1 (2.7) 18.0 (6.8) 17.4 (3.1)

TUANDROMD ACC 79.1 (1.7) 79.1 (1.7) 77.4 (2.6) 77.2 (3.6) 79.2 (1.5) 82.0 (4.1) 48.7 (11.3) 83.4 (6.6) 40.8 (4.0)
NMI 0.5 (0.2) 0.6 (0.1) 1.6 (2.1) 0.5 (0.2) 0.8 (0.7) 13.8 (9.7) 6.8 (5.6) 18.8 (23.8) 36.0 (3.3)

Mice protein ACC 40.8 (1.7) 40.2 (5.7) 36.4 (5.1) 35.0 (2.5) 34.8 (3.1) 35.6 (2.3) 17.2 (2.7) 42.0 (1.8) 40.6 (1.7)
NMI 42.0 (3.2) 40.6 (4.5) 31.6 (3.8) 34.2 (4.2) 30.8 (6.2) 35.6 (3.6) 3.1 (9.1) 40.4 (3.0) 38.0 (3.9)

Olive ACC 67.2 (11.5) 71.4 (10.8) 57.6 (11.2) 59.4 (12.7) 55.8 (5.5) 77.2 (4.0) 56.5 (0.0) 70.8 (7.9) 73.6 (6.4)
NMI 39.4 (12.6) 43.2 (11.7) 30.0 (13.2) 32.6 (14.0) 25.4 (5.5) 49.4 (5.2) 0.0 (0.0) 42.6 (9.0) 47.0 (6.6)

Vehicle ACC 39.4 (2.9) 37.2 (1.7) 39.0 (2.6) 39.0 (2.8) 41.4 (3.3) 42.8 (3.4) 31.1 (5.6) 41.2 (3.3) 44.2 (3.5)
NMI 13.6 (1.0) 12.4 (1.6) 13.2 (1.5) 13.0 (1.7) 12.8 (1.5) 17.6 (3.8) 6.4 (6.3) 11.8 (2.8) 14.6 (2.2)

Table 2: Clustering accuracy (ACC) and normalized mutual information (NMI) scores of proposed
and baseline methods. Z = autoencoder latent space without joint learning. X = tabular data space.
The DKM method is used on tabular data set without customizing this image learning method for
tabular data. Otherwise, a single-layer autoencoder without pre-training is used for all representation
learning methods to avoid architectural bias in comparing the algorithms.

6.1 LEARNING ARCHITECTURE AND MODEL SELECTION

We compare the performance of fully connected autoencoders (FC-AE) and convolutional autoen-
coders (CNN-AE) in single- and three-layer architectures for our tabular data sets. Table 5 in Ap-
pendix C clearly shows the superiority of single-layer FC-AE architecture over CNN and deeper
architectures, which we select in our subsequent analysis. A single-layer autoencoder maps a d-
dimensional tabular data sample to a five-dimensional autoencoder latent space (d>5), considering
the range of dimensionality of our tabular data sets (seven to 241). For all experiments, the learning
rate is set to 0.0001 with an Adam optimizer. The best autoencoder model jointly trained clustering
is selected by searching the best epoch point and γ value while training it for a maximum of 5000
epochs. The best gamma value is searched from a range between 0.1 and 1.0. Table 6 in Appendix D
shows example training epochs and gamma values that yield the best clustering accuracy on training
data folds.

6.2 CLUSTERING OF TABULAR DATA VERSUS LATENT SPACE

Tables 2 and 3 show clustering scores and rank ordering for nine methods, respectively. Traditional
clustering (K-means and GMM) on tabular data yields the top three scores for the dermatology,
breast cancer, mice protein, and olive data sets. This finding is at odds with the previous finding
that direct clustering of images in pixel space yields the worst performance. This is because tabular
data sets have relatively lower dimensionality and the absence of regularity in patterns makes such
data still suitable for traditional machine learning. For example, these clustering methods yield
the worst (<1.0, max. 100) NMI scores for the highest dimensional (241) TUANDROMD data
set. Alternatively, clustering methods (GMM, K-means) can be applied to the autoencoder’s latent
space (Z). A trained autoencoder is used to obtain the embedding on test data folds. The test data
embedding is then clustered using GMM and K-means, which are presented as GMM on Z and K-
means on Z in Table 2, respectively. Except for the E. coli data set, GMM on Z performs worse than
GMM clustering of other data sets. Similarly, K-means clustering of tabular data yields substantially
better accuracy than K-means clustering of Z, except for the vehicle data set.

6.3 CLUSTERING OF JOINT CLUSTER EMBEDDING

The autoencoder latent space Z is jointly learned with data cluster distributions in this method. Our
results on tabular data are reproduced using two pioneering cluster embedding methods: DEC Xie
et al. (2016) and IDEC Guo et al. (2017). The DEC method appears to be among the worst of
nine methods presented in Table 2, except for the vehicle data set. Therefore, a method proposed
for image learning may not perform equally well on tabular data. However, the improved DEC
(IDEC) method shows substantial improvement over the DEC method. The IDEC method always
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Data set GMM K-means GMM K-means DEC IDEC DKM CNN Proposed
on X on X on Z on Z GMM G-CEALS

Breast cancer 4 3 7 6 8 5 9 1 2
Dermatology 2 4 6 7 8 3 9 5 1
E. coli 5 6 4 7 9 2 1 8 3
TUANDROMD 5 6 7 8 4 2 9 3 1
Mice protein 2 3 5 7 8 6 9 4 1
Olive 4 2 7 5 9 1 8 6 3
Vehicle 5 8 6 7 3 2 9 4 1

Average 3.9 (1.3) 4.6 (2.0) 6.0 (1.1) 6.7 (0.9) 7.0 (2.3) 3.0 (1.7) 7.7 (2.8) 4.4 (2.1) 1.4 (0.7)

Table 3: Data set-specific and average ranks of the proposed and baseline methods based on cluster-
ing accuracy. CNN-GMM is a single convolutional layer autoencoder trained jointly with GMM via
the proposed algorithm. The DKM method is used without any customization or pretraining.

outperforms the GMM on Z except for the mice protein data set. K-means clustering on Z is always
inferior to the IDEC method. The IDEC is the best of all methods for the olive data sets. Unlike DEC
and IDEC methods, we do not modify the DKM method for the tabular data sets. Using the original
image learning architecture (500-500-2000 neurons) on tabular data, the DKM method yields the
worst of all clustering accuracy with a zero NMI score for the olive data set. However, it performs
the best for the Ecoli data set with the lowest dimensionality (8) of all data sets.

6.4 PROPOSED G-CEALS METHOD

Table 2 shows that our proposed G-CEALS method jointly trained with GMM clustering (ACC:
91.2) outperforms the second-best method, K-means clustering (ACC: 90.2), for the breast cancer
data set. The proposed G-CEALS method with GMM clustering (ACC: 77.2) also outperforms the
second-best method, GMM clustering (ACC: 76.8) for the dermatology data set. For the E. coli data
set, the proposed method (ACC: 32.2) is on par with the second-best method, IDEC (ACC: 32.6).
The G-CEALS method (ACC: 83.4) outperforms the second-best IDEC (ACC:82.0) method on the
TUANDROMD data set. The proposed method with GMM clustering (ACC: 42.0) again outper-
forms the second-best method, GMM clustering (ACC: 40.8), on the mice protein data set. Only for
the Olive data set, the IDEC method (ACC: 77.2) outperforms the proposed G-CEALS method with
K-means clustering (ACC: 73.6). However, the G-CEALS method with K-means clustering (ACC:
44.2) outperforms the second best method, IDEC (ACC: 42.8) on the vehicle data set. Table 3 shows
that the proposed G-CEALS method ranks the best method on four of the seven data sets. For the
other three data sets, G-CEALS ranks among the top three. The average ranking reveals that our
method (average rank: 1.4) substantially outperforms the second-best (IDEC, average rank: 3.0)
and the third-best method: GMM clustering of tabular data (average rank: 3.9).

7 DISCUSSION OF RESULTS

The paper is one of the first studies to jointly learn embedding and clustering in an autoencoder
latent space with tabular data. The findings of this article can be summarized as follows. First,
traditional clustering on tabular data is competitive with clustering on the autoencoder latent space.
Our method outperforms these superior methods for clustering. Second, joint embedding learning
with a cluster distribution (IDEC and our method) shows improved data representation over all
disjoint learning methods (DEC, K-means on Z, GMM on Z) and GMM/K-means clustering on
tabular data. Including the DKM method, cluster embedding methods yield the best performance
on all seven tabular data sets. Third, our assumption of Gaussian clusters and an independent target
distribution have improved the clustering accuracy over the methods using t-distributed clusters and
all other baselines on average. We elaborate on these findings in the following sections.

7.1 IMAGE VERSUS TABULAR DATA EMBEDDING

In computer vision, clustering images on high-dimensional image pixel space is ineffective, as re-
ported in previous studies. On the other hand, deep learning methods simultaneously and efficiently
achieve dimensionality reduction, feature learning via convolution operations, and classification in

8
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an end-to-end framework. In contrast, tabular data sets appear with relatively smaller sample sizes
and dimensionality than image data and do not contain regularity in features to leverage the benefit
of convolutional feature extraction. Our results confirm that deep models with three hidden lay-
ers or convolutional networks or clustering on autoencoder embedding are not effective for tabular
data. This finding confirms the superiority of traditional machine learning on tabular data over deep
learning. However, our proposed representation learning method outperforms the superior clustering
method to demonstrate that tabular data need special algorithms to perform effectively with neural
network-based learning architectures. G-CEALS performs good with the GMM clustering algo-
rithm may be due to the multivariate Gaussian modeling of the embedding distributions. Clustering
on autoencoder embedding (Z) is unsatisfactory because the reconstruction loss may have altered
the cluster distribution in the latent space. Therefore, setting the superior cluster distribution on
tabular data space as the target may have helped in improving the quality of the cluster embedding.
The G-CEALS method is designed for tabular data and may not be appropriate for images because
the target distribution would be ineffective on pixel space. Overall, the cluster embedding of tabular
data requires a learning algorithm and architecture distinct from those proposed for image data.

7.2 TRADE-OFF BETWEEN DATA RECONSTRUCTION AND CLUSTER DIVERGENCE LOSS

We observe that one of the first successful deep cluster embedding methods proposed for image
clustering (DEC Xie et al. (2016)) performs the worst among all approaches with tabular data sets 3.
The DEC method first pretrains an autoencoder and then separately finetunes the KL divergence loss
after modeling a t-distributed embedding for clustering. There is no γ parameter because the Lauto

and Lcluster optimizations happen separately in DEC. Conversely, the introduction of γ parameter
in IDEC and our method has substantially improved the quality of cluster embedding. While the
autoencoder reconstruction loss Lauto retains all information in the latent space, Lcluster (Equation
9) disrupts the latent space to learn the clusters. A disproportionate contribution of these two loss
terms can collapse the cluster distribution in the embedding leading to poor cluster performance.
Therefore, tuning the γ parameter is a crucial step in cluster embedding methods.

7.3 G-CEALS VERSUS OTHER METHODS

Our results show that the IDEC method performs better in cases where the clustering on tabular
data space is substantially worse (E. coli and Olive data sets in Table 3). It may be because the
IDEC method does not learn from the cluster distribution on the tabular data space, similarly to the
proposed G-CEALS method. In IDEC, the target distribution is derived from the t-distributed em-
bedding instead. Overall, finding an appropriate target distribution for optimizing the KL divergence
loss remains an open problem for future work. Another common observation is that the Olive and E.
coli data sets have the lowest dimensionality among the seven tabular data sets (Table 1) with only
ten and seven variables, respectively. Therefore, it may be inferred that the IDEC method is superior
to the proposed G-CEALS method when the dimensionality of tabular data is less than ten. For
tabular data sets with the highest dimensionality ( TUANDROMD (241) and mice protein (78)), the
G-CEALS method outperforms the IDEC method as the best-performing method. This observation
suggests that Gaussian embedding may be more suitable over its t-distributed counterparts when a
tabular data set has higher dimensionality.

8 CONCLUSIONS

This paper presents a novel cluster embedding method in one of the first studies on tabular data sets.
The superiority of our G-CEALS method suggests that multivariate Gaussian distribution is superior
to the widely used t-distribution assumption for learning tabular data embedding. Our findings show
that tabular data sets require learning algorithms and architectures distinct from those proposed for
image learning. This data-centric learning approach may improve a deep model’s performance on
tabular data over its currently known superior machine learning counterparts. The proposed joint
learning framework provides a promising representation learning of tabular data over its superior
machine learning counterparts.

9
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A CLUSTER EMBEDDING VERSUS NEIGHBORHOOD EMBEDDING
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Figure 2: Two-dimensional embeddings of high dimensional image features extracted from a deep
convolutional neural network

t-SNE DEC Xie et al. (2016)/
Van Der Maaten & Hinton (2008) IDEC Guo et al. (2017)

Purpose Neighborhood embedding Cluster embedding

Low-dimensional Sampled from Gaussian Autoencoder
embedding (zi) with low σ2 latent space

Distance or similarity Between sample Between point & cluster
measure points (xi, xj) centroid (xi, µj)

Embedding t-distribution, t-distribution,
distribution (qij) α = 1 α = 1

Target Gaussian in high-dimensional A function of
distribution (pij) space (x) t-distributed qij

Learning zi+1 = zi +
d KLD(p,q)

d(zi)
wi+1 = wi +

d KLD(p,q)
d(w)

Purpose Visualization in d = 2 Clustering in d > 2

Table 4: Comparison between neighborhood embedding proposed in t-SNE for data visualiza-
tion Van Der Maaten & Hinton (2008) and cluster embedding proposed in DEC Xie et al. (2016)
inspired by t-SNE. α = degrees of freedom of t-distribution, d = dimension of low-dimensional em-
bedding. W represents the trainable parameter of an autoencoder.

B IMAGE VERSUS TABULAR DATA CLUSTER EMBEDDING METHODS

Caron et al. learned visual features from images using AlexNet and VGG-16 after Sobel filtering
for color removal and contrast enhancement, which do not apply to tabular data (Caron et al., 2018).
Their deepCluster architecture had five convolutional layers with up to 384 2D image filters to learn
image texture. Transfer learning of tabular data, similarly to VGG-16 on images, is not intuitive
because tabular datasets (e.g., from health records data to criminal justice data) do not share com-
mon transferable textures or patterns like images. Furthermore, these deep architectures can easily
overfit data with limited sample size and dimensionality, similarly to tabular data sets. The DE-
PICT method used a convolutional denoising autoencoder for reconstructing original images from
corrupted images (Dizaji et al., 2017). Because similar image corruption is not trivial on data ta-
bles, we used standard CNN autoencoders with single and three layers as baseline methods (Table
5 - Appendix C). The deep clustering network (DCN) method used a fully-connected deep neural
network (FC-DNN) with 2000, 1000, 1000, 1000, and 50 neurons for learning high-dimensional
image data (Yang et al., 2017), whereas tabular data can have as low as ten features. They avoided
CNN architecture for image learning - ”to concentrate on their DCN algorithm to provide a proof-
of-concept rather than exhausting the possibilities of combinations”. However, they leveraged the
architectural benefit of a stacked deep autoencoder instead of using a regular autoencoder model,
which can mask the original contribution of the algorithm. Similarly, the deep k-means (DKM)
method used FC-DNN instead of CNN for image learning (Moradi Fard et al., 2020). The authors
of DKM compared their method only against the methods that used FC-DNN (excluding all CNN
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based methods) to avoid architectural bias. However, we use the original DKM method to reproduce
cluster embedding on tabular data. The suboptimal performance of DKM in Tables 2 and 3 sug-
gests the need for customizing these architectures for learning tabular data. Recently, Mrabah et al.,
in their Dynamic Autoencoder (DynAE) method, used image augmentation (shifting and rotation),
which is not intuitive with tabular data, and a 2D convolutional adversarial autoencoder for image
data, which needs substantial customization of the adversarial network for learning 1D feature vec-
tors in tabular format (Mrabah et al., 2020). One main limitation of the DynAE and DKM methods
is that the latent dimension is restricted to the number of clusters, whereas our method is proposed
for any latent dimension.

In general, the architectural benefits include a) stacked vs. variational vs. adversarial vs. convo-
lutional autoencoders, b) CNN vs. DNN, c) with vs. without pretraining, d) deep vs. shallow are
explored to exhaustively search the best model, which do not provide a fair ground to prove an al-
gorithm’s performance or the hypothesis regarding the proposed embedding distribution. Therefore,
to focus on our hypothesis and algorithm contributions at this early stage of tabular data learning
research, we avoid exhaustive model search using special autoencoders (stacked, variational, adver-
sarial, convolutional), model pretraining, data augmentations, and deepening of the network. There-
fore, we used the same single-layer standard autoencoder architecture to fairly compare against the
baseline algorithms.

C COMPARISON BETWEEN LEARNING ARCHITECTURES.

Data set FC-AE FC-AE CNN CNN CNN FC-AE
GMM K-means GMM K-means GMM GMM

NHL 1 1 1 1 3 3

Breast cancer ACC 91.2 (4.8) 85.8 (3.3) 92.6 (3.3) 89.8 (4.3) 62.7 (3.1) 85.4 (12.0)
NMI 59.2 (18.1) 43.8 (10.6) 63.8 (11.7) 55.4 (11.2) 0.0 (0.0) 49.4 (24.0)

Dermatology ACC 77.2 (9.8) 76.4 (10.1) 75.7 (5.4) 72.3 (4.9) 31.0 (3.8) 74.3 (6.6)
NMI 77.6 (5.8) 77.4 (5.4) 77.8 (4.5) 76.1 (4.5) 0.0 (0.0) 82.9 (5.0)

E. coli ACC 32.2 (3.7) 31.6 (3.7) 27.7 (2.3) 29.2 (2.5) 34.2 (4.6) 32.4 (1.5)
NMI 18.0 (6.8) 17.4 (3.1) 17.7 (4.2) 17.1 (3.7) 13.3 (3.3) 15.6 (3.2)

TUANDROMD ACC 83.4 (6.6) 40.8 (4.0) 79.4 (1.6) 79.6 (1.2) 79.4 (1.6) 80.6 (4.5)
NMI 18.8 (23.8) 36.0 (3.3) 0.4 (0.2) 2.3 (1.0) 0.4 (0.2) 7.9 (14.6)

Mice protein ACC 42.0 (1.8) 40.6 (1.7) 37.7 (2.2) 36.2 (3.0) 18.8 (2.4) 39.9 (2.1)
NMI 40.4 (3.0) 38.0 (3.9) 36.4 (1.3) 33.3 (2.7) 0.0 (0.0) 40.8 (3.3)

Olive ACC 70.8 (7.9) 73.6 (6.4) 58.9 (5.5) 71.2 (10.6) 56.5 (6.1) 66.8 (8.7)
NMI 42.6 (9.0) 47.0 (6.6) 30.7 (6.9) 44.4 (10.2) 0.0 (0.0) 39.8 (10.4)

Vehicle ACC 41.2 (3.3) 44.2 (3.5) 40.8 (2.2) 42.4 (4.6) 40.7 (4.3) 42.1 (4.2)
NMI 11.8 (2.8) 14.6 (2.2) 11.5 (2.3) 13.5 (4.9) 12.7 (1.9) 14.8 (3.4)

Table 5: Comparing fully-connected autoencoder (FC-AE) with CNN-autoencoder for the proposed
G-CEALS algorithm in single or three-layer settings. NHL = Number of hidden or convolutional
layers.

D TUNING MODEL HYPERPARAMETERS

Data set Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

IDEC 0.5 0.3 0.2 0.9 0.4
Best γ G-CEALS with GMM 0.5 0.2 0.4 0.1 0.7

G-CEALS with K-means 0.5 0.3 0.2 0.9 0.4

IDEC 714 2911 1552 2319 3237
Best epoch point G-CEALS with GMM 285 2231 135 3572 749

G-CEALS with K-means 791 38 1549 2039 2315

Table 6: Hyperparameter values selected in five-fold cross-validation of the breast cancer data set.
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