Under review as a conference paper at ICLR 2026

SIMILARITY AS REWARD ALIGNMENT: ROBUST
AND VERSATILE PREFERENCE-BASED REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Preference-based Reinforcement Learning (PbRL) entails a variety of approaches
for aligning models with human intent to alleviate the burden of reward engineer-
ing. However, most previous PbRL work has not investigated the robustness to
labeler errors, inevitable with labelers who are non-experts or operate under time
constraints. We introduce Similarity as Reward Alignment (SARA), a simple
contrastive framework that is both resilient to noisy labels and adaptable to diverse
feedback formats. SARA learns a latent representation of preferred samples and
computes rewards as similarities to the learned latent. On preference data with
varying realistic noise rates, we demonstrate strong and consistent performance on
continuous control offline RL benchmarks, while baselines often degrade severely
with noise. We further demonstrate SARA’s versatility in applications such as
cross-task preference transfer and reward shaping in online learning.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms rely on carefully engineered reward functions in order to
produce the desired behaviors for a task of interest (Sutton & Barto, [2018}; [Dann et al.,|[2023). In
complex real-world settings, reward engineering requires various sensors, such as motion trackers
(Bin Peng et al.l |2020) or computer visions systems (Devin et al [2018)), as well as tedious hand-
crafting to fine-tune such functions (Zhu et al., |2020) and ensure safe behavior (Kim et al., 2023]).
To mitigate reward engineering challenges, Preference-based RL (PbRL) algorithms have garnered
increased attention in recent years. In a PbRL setting, human labelers provide feedback on a dataset
of agent behaviors, and the PbRL algorithms aim to learn agent models that produce behavior better
aligned to the preferences. Prominent examples include Large Language Model (LLM) fine-tuning
(Ziegler et al.||2020; OpenAl et al.| 2024} Ouyang et al., [2022; DeepSeek-Al et al.| 2025) as well as
robotics and simulated control (Sadigh et al., 2017; |Christiano et al., 2017).

PbRL methods can learn a reward function from human feedback to use in downstream RL, but they
face the challenge of accurately representing preferences from limited data (Wirth et al., 2017). Many
prior works leverage preference labels on trajectory pairs by applying the Bradley-Terry (BT) model
(Bradley & Terryl, [1952):

exp (3, 7(st, ai39))

P10 O = ey (5, ok, ok ) + exp (5, P )

where ¢! and ¢ are sampled preferred and non-preferred trajectories, respectively, and 7, is a
learnable reward function. The BT model is often used to learn an explicit reward function 7
(Christiano et al., 2017} |Lee et al., [2021b; [III & Sadigh, [2022} |(Ouyang et al., [2022; Kim et al., [2023)
or re-formulated to learn a policy without a reward model (Hejna et al., 2024; |Hejna & Sadigh, |2023;
An et al.| [2023; Kang et al.| [2023; Rafailov et al.} 2023} [Kuhar et al., [2023).

In both cases, the BT model formulations come with assumptions and limitations, discussed by
previous works (Sun et al.| 2025} Tang et al.| 2024} [Munos et al., [2024} |Azar et al.,[2024; Ye et al.,
2024). The BT model assumes that human preferences are transitive, an assumption which has been
undermined by psychology research (Ye et al., 2024; [Tversky, |1969; May, 1954). |Azar et al.| (2024)
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Figure 1: SARA framework: Step 1 (training): preferred and non-preferred trajectories (o, ; and
o) are extracted from preference data. The first Transformer encodes each trajectory into a single
token to give us representations u,; and u,, ;. We then divide the set of preferred {upy,;} into 2
subsets (and likewise for {u,, ;}). The second Transformer allows attention between the u; of the
same subset. It encodes each subset into a single latent, so we then have z,,z2, z,,, z2. The SimCLR
contrastive loss pushes together the two z’; latents, pushes together the two z”, and pushes apart the
z’; from z*. Step 2 (infer): Pass all preferred trajectories through SARA encoder to get z,, a fixed
representation of preference. Step 3 (RL rewards): in RL training, sample trajectory o;. Compute
reward for o as cosine similarity to preferred latent, z,.

showed that the BT reward models can overfit to the relative rankings in the trajectory pairs, resulting
in agent behavior that also overfits to the preferred ranked trajectory. Overfitting is particularly
problematic when labels are noisy or behaviors are similar. Labeling errors occur when annotators
are time-constrained or non-experts (Ye et al., 2024} (Cheng et al.|2024). Realistic error rates are
between 5-38% (Sun et al.}|2025)), as evidenced by an observed 25% disagreement rate among labelers
(Dubois et al., {2023} |Coste et al.,[2024). Prior work demonstrated that even a 10% label error rate can
significantly degrade RL performance (Lee et al., |2021a} |Cheng et al.,|2024)). |Sun et al.|(2025) show
that the BT-model is not a necessary choice for a reward modeling approach, and BT-based models
result in underperforming behaviors when labeling error rates are above 10%.

In contrast to most previous work, we assume the presence of labeling mistakes and similar behaviors
in ranked pairs, so we avoid learning BT-modeled rewards based on the relative labels. To this end,
we introduce Similarity as Reward Alignment (SARA), a robust and flexible PbRL framework (see
Figure [I] for an overview). SARA acknowledges that even with noise, discerning patterns exist in
the preferred set as a whole and employs contrastive learning to obtain a representation for this set.
SARA then computes rewards at each timestep based on the encoded trajectory’s similarity to the
representation of the preferred trajectories. Despite its simplicity, it handles noisy or ambiguous
preference data reliably, and to our knowledge, our framework is novel in the PbRL literature. Our
contributions and findings are:

Strong performance and robustness. Compared to state-of-the-art baselines, SARA achieves
competitive or superior performance using human-labeled preference datasets. We vary the preference
data by injecting label noise (0%, 10%, 20%, 40% error rates). SARA results in consistent policy
evaluation returns from 0-20% error rates, whereas baseline models fluctuate up to 73%. At the largest
error rate 40%, SARA’s policy returns degrade but still outperforms or is on par with baselines on
most datasets examined. Moreover, we demonstrate that SARA inferred transition rewards correlate
better with the environmental transition rewards (unknown at training time) compared to SOTA
reward based methods. This is true at all error rates, indicating SARA’s robustness to learning
preference patterns. We also experiment on human preference data with equally preferred pairs
omitted and script labeled preference data, in which preference labels are based on true environment
rewards. We again show consistent policy evaluations rewards compared to baselines.

Versatile preference modeling. Though our primary focus is a robust PbRL framework, we can
further leverage our transition rewards in underexplored applications. We show we can transfer
preferences from one locomotion dataset (hopper) to another (walker2d). We also conduct reward
shaping in online RL using a cherry-picked preference set rather than ranked pairs. BT based
reward models could in principle be used for these applications too, but most works do not apply
their models in these unique ways. BT based models also require ranked pairs, so they are not
naturally applicable to the feedback format of a cherry-picked preference set. The methods that do
not learn an explicit reward network, as in (Kang et al., [2023; [Hejna et al., |2024; |An et al., 2023}
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Kuhar et al., [2023), typically can not provide reward values for sampled trajectories. Therefore, our
versatility contributions are the following: 1) our demonstrated effectiveness in using SARA rewards
for applications beyond offline RL benchmarks, and 2) our ability to work with different feedback
formats as demonstrated in the online RL experiment.

In summary, SARA shows more stable performance compared to baselines using preference datasets
with varying error rates. SARA inferred rewards correlate better with environmental rewards. Beyond
robustness, SARA offers versatility by enabling cross-task preference transfer and reward shaping in
online RL, while not requiring the restrictive paired feedback format for BT models.

2 RELATED WORK

Preference-based RL Enabling development and comparison of PbRL algorithms, Kim et al.| (2023)
provided both expert-human labeled and script-labeled preference datasets for D4RL offline bench-
mark tasks. They also proposed the Preference Transformer (PT) reward model trained with a
BT-based loss function to learn from preference data. As reward models can fail to capture true
underlying preferences with limited data, subsequent works developed methods that avoid learning
a reward model (Hejna & Sadigh, 2023} [Hejna et al.| 2024} |An et al.| 2023} [Kang et al., 2023}
Kuhar et al.| [2023; |Kim et al., [2024; Zhang et al., 2024). Inverse Preference Learning (Hejna &
Sadighl [2023) reformulates the BT model in terms of the RL Q-function, and can be used both in
online and offline learning. In a similar vein of avoiding reward modeling, Offline Preference-guided
Policy Optimization (OPPO) learns a trajectory encoder, an optimal latent, and learns a Decision
Transformer policy conditioned on the latents (Kang et al., 2023)).

Contrastive learning in PbRL Contrastive Preference Learning (CPL) generalizes the BT model
and uses contrastive learning on the discounted sum of log policy for preferred and non-preferred
segments (Hejna et al.,[2024). CPL reformulates policy learning as a supervised learning objective
rather than RL. Direct Preference-based Policy Optimization (DPPO) learns a BT-based preference
predictor network, infers preferences for a full offline dataset, and lastly conducts contrastive learning
to align policy predictions with the inferred preferred trajectories (An et al.| [2023). Learning to
Discern (L2D) conducts contrastive learning between trajectories of different labels (Kuhar et al.,
2023)). They then train a network with a BT-based loss, and its output is mapped to labels to filter low
quality trajectories for downstream Imitation learning (IL).

Robustness in PbRL Though robustness techniques have been studied extensively in supervised
learning contexts (Wang et al.|[2021; |Zhang et al., 2018} Han et al.} 2018} [Lukasik et al.| [2020; |Song
et al., [2023)), relatively little attention has been given in PbRL to the effect of labeling noise. [Cheng
et al.[(2024)) developed a PbRL method to filter out noisy preferences by defining a time dependent
threshold for KL-divergence between predicted preference and the provided label. However, this
framework involves querying human preferences iteratively online during policy training; it is not
straightforward to adapt to our setting, in which the preference set is fixed and new queries cannot
be sampled. [Sun et al.| (2025) examine preference learning in an LLM context, and they showed
theoretically that BT formulations are not necessary. Instead of a BT loss that predicts the probability
of preferring one response over another, they propose a simple classifier approach of predicting binary
response preference. Compared against BT based approaches, they showed improved performance
on LLM human value metrics for label error rates above 10%.

Our work diverges from these previous works as follows: As discussed in Section[I} the vast majority
of PbRL works rely on BT assumptions. Our work prioritizes representation learning and avoids
BT-modeling due to the potential to overfit (Azar et al., [2024), especially problematic with noisy
comparison labels (Sun et al.l 2025). Unlike the methods that do not learn an explicit reward
function (Kang et al., 2023 [Hejna et al., [2024; |An et al., 2023} [Kuhar et al., 2023)), we use our
representations to provide rewards which enables versatility to off-the-shelf offline and online RL
algorithms (advantageous as discussed in Section|[I). Also, if the problem setup has a known task
reward, as occurring in a robotics setting, our method allows easy reward shaping by adding task
rewards to preference inferred rewards. The classifier approach proposed by |Sun et al.|(2025) lays
out a theoretical foundation for a non-BT approach. However, they focus on the LLM bandit setting
whereas we focus on RL environments, with multi-step state/action trajectories. Whereas they focus
on label classification, we focus on representation learning and infer rewards cheaply afterwards.
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3  SIMILARITY AS REWARD ALIGNMENT (SARA)

We first review the PbRL setup. We then describe the SARA model, comprising a contrastive
transformer encoder to learn a preferred set representation and a reward inference method. Appendix|H
provides details and hyperparameters.

Preliminaries In the RL paradigm, an agent at timestep ¢ and state s, interacts with the environment
by choosing an action a;. The action is chosen via its policy a; = m(s;) which is a mapping from
state to action. The environment provides reward r(s;, a;) and transitions the agent to the next
state s;+1. RL algorithms aim to learn a policy that maximizes the discounted cumulative reward,
Ry =3 7 o Y*r(st4k, asrr) with discount factor .

To address the reward engineering problem (Sutton & Bartol |2018;|Dann et al.,2023)), PbRL leverages
human labeled preferences to learn policies that align with human intent (Wirth et al.,[2017)). Several
previous approaches (Christiano et al., [2017; |[Kim et al., [2023; Hejna & Sadigh, |2023; Hejna et al.,
2024; |An et al., 2023} |Kang et al., 2023)) assume that human feedback is given in the form of
preferences over trajectory pairs. Each trajectory segment o consists of H state-action transitions:
o ={(s0,a0),(s1,a1),..,(sg—_1,am—1)}. Given a pair of segments (¢°, o!), a human annotator
provides a preference label y € {0,0.5,1}. The labels y = 0 and y = 1 indicate 0° = o' and
ol = oY, respectively. The neutral preference y = 0.5 designates equal preference between the two
trajectories.

SARA contrastive encoder The SARA encoder produces a single latent representation of all
preferred labeled trajectories in the preference dataset. The SARA encoder addresses noisy preference
learning by learning robust set-level representations that distinguish preferred from non-preferred
behaviors, rather than relying on potentially unreliable pairwise comparisons.

We assume access to two sets of trajectories: a set of preferred trajectories and a set of non-preferred
trajectories. In contrast to standard approaches, we do not require trajectories to be given in pairs,
allowing the sets to have different sizes. When working with datasets that provide labeled pairs, we
break apart the pairs to form these two sets, discarding the specific pairwise rankings. For pairs with
neutral preference (y = 0.5), we include both trajectories in both sets.

Our contrastive encoder processes trajectories through a two-stage architecture. In the first stage,
each trajectory passes through Transformer Encoder 1 (Figure |l with positional encoding of time,
followed by average pooling over timesteps to produce a single encoding per trajectory. This yields
trajectory encodings u,, ; and u, ; for preferred and non-preferred trajectories, respectively.

In the second stage, we randomly partition trajectory encodings within each category (preferred/non-
preferred) into k£ = 2 subsets. Each subset then passes through Transformer Encoder 2, allowing
trajectories within the same subset to attend to each other. This produces set-level encodings z’; and

z" for each preferred and non-preferred subset, respectively. We need a minimum of k& = 2, so that
we have at least one positive example for the contrastive loss. The model shows low sensitivity to the
choice of k provided sufficient trajectories exist in each subset (see Appendix [A).

We train the encoder using the SimCLR contrastive loss (Chen et al.l 2020) to pull together preferred
subset representations z’; while pushing apart preferred and non-preferred representations. Let the

outputs of the SARA encoder be P = {z}, ..., z{j} and N = {2z}, ..., 2} and cos denote cosine
similarity.

Then SimCLR loss is given as:
1 k _ k _
Lol = % (Z L(Z;)) + ZL(Z:L)> :

where for example,

N exp(cos(z), )/7) |
J#i Zexp(cos(z;,zg)/r) + Zexp(cos(z;,zfl)/ﬂ
i =1

The £(z¢) is defined analogously.
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We randomize the composition of trajectories in each subset at every training epoch. This random-
ization strategy forces the encoder to learn generalizable patterns that distinguish preferred from
non-preferred behavior rather than overfitting to specific trajectory pairings.

This approach provides several key advantages. The transformer architecture naturally develops
robustness to mislabeled or ambiguous trajectories by learning to downweight patterns that do not
reliably distinguish preference categories. Additionally, the architecture handles variable numbers of
trajectories within each set. This allows us to train on subsets and then feed in the full set of preferred
trajectories at inference.

SARA reward inference At inference time, we encode the complete set of preferred trajectories to
obtain z, our fixed preference representation. This frozen preferred representation then serves as the
basis for computing similarity rewards in downstream tasks, providing a stable reference point that
captures the essential characteristics of preferred behavior patterns. For each trajectory up to time ¢,
we get the latent z; = £(o¢), where £ is the trained and frozen encoder. Then we simply compute
the reward at time ¢ as: r; = cos(z, z;) using our frozen preferred latent (Figure Step 3). Thisis a
simple yet novel proposal for reward estimation from preferences.

SARA reward: theoretical justification |[Sun et al.|(2025) examined preference learning in a LLM
context, and they noted that BT formulations are not necessary. Instead of a BT loss that predicts
the probability of preferring one response over another, they proposed a simple classifier approach
of predicting preference (1 or 0 labeling) for the responses. They showed that such an approach
preserves the ordering of the underlying true reward function, and that it is sufficient for downstream
LLM alignment. Thus, instead of predicting the BT P[o! = ¢; 1] for a reward model parameterized
by %, it is sufficient to predict the probability to be preferred P[o?; ] with i € {0,1} (Sun et al.,
2025). In the next paragraph, we show that our approach implicitly does the same.

While our work focuses on representation learning followed by reward inference, their model focuses
on classification for learning an explicit reward model. Nonetheless, their work provides theoretical
grounding for our proposal that we learn based on individual trajectory labelings of preferred vs.
non-preferred rather than learning the BT-based relative rankings. After training SARA, we conduct
inference on a newly sampled trajectory o;. We pass o through our trained SARA encoder to get 2;.
We then propose the following model to estimate the probability of the sampled trajectory o; being
preferred, given its latent representation:

exp(cos(z, z;)) 1

exp(cos(z, z)) + exp(cos(zt, 2};)) ! + exp(— [cos(z, 25) — cos(z4, z;;)D .

P(p|z) =

Such a probability function is a natural choice because the SimCLR loss aligns and separates latents
using exponentiated cosine similarities. In RL we want to incentivize actions that have high probability
of being preferred. Therefore, we simply set our reward equal to r; = cos(z;, z,) — a cos(z¢, z;,),
where o > 0 is a hyperparameter to control the trade-off between the two terms. Empirically, we
found @ = 0 to be optimal in all our experiments (both the offline and the online reward shaping
experiments). With that, we recover our proposed reward in SectionE} Similar to [Sun et al.| (2025)),
we score trajectories on their alignment with preferred trajectories rather than relying on potentially
noisy relative labels.

Our approach represents a departure from pairwise modeling of the BT model. We provide mechanis-
tic justifications in Section[3]

4  OFFLINE RL EXPERIMENTS

In this section we address the following questions: First, how does using SARA inferred rewards
compare to prior PbRL algorithms in the domain of offline RL? Secondly, how does SARA perform
when the dataset is modified, i.e. neutral preferences are excluded or labeling mistakes occur?

Setup Similar to past works (Kim et al.| [2023} |An et al.l 2023)), we evaluate our framework in
the offline setting on the following DARL benchmark datasets: Mujoco locomotion (4 datasets),
Franka Kitchen (2 datasets), Adroit (2 datasets) (Fu et al., 2021} |Gupta; muj)). For the Mujoco and



Under review as a conference paper at ICLR 2026

Table 1: Average normalized policy evaluation rewards (8 seeds) under different human preference
mistake rates. Values in bold are the highest per row; underlined are within 1% of the best. The +
denotes standard deviation.

Task Err Rate ‘ Oracle PT PT+ADT DPPO SARA
hopper-med-repla 0% 0226 +13.6 74.48 £21.3 80.24 +16.1 68.98 +184 84.68 +3.1
PP play 20% 4977 £257 62.87 4240 68.67 £198 82.94 +58
hobper-med-expert 0% 80.82 +445 89.64 +28.3 71.33 +406 108.09 £10.8 80.45 +48.1
pp P 20% 68.14 £362 79.02 +21.0 28.92 +20.1 85.16 +17.0
walker2d-med-repla 0% 77.53 4155 7443 £80 75.68 £83 47.21 £28.0 78.21 £5.8
PEY 0% 7173 4107 7442 £126 41.00 £268 76.29 +132
walker2d-med-expert 0% 107.57 +85 109.74 +1.1 109.98 +1.0 108.73 +£0.4 108.35 +54
P 20% 109.37 +15 109.53 +1.6 108.78 +0.4 108.37 +5.7
halfcheetah-med-repla 0% 42.68 425 4094 427 42.85 +1.7 3994 £43  41.65 £2.0
play 20% 41.16 £19 4225 +22 3859 +69 42.08 +2.1
halfcheetah-med-expert 0% 86.26 +14.1 86.62 +142 89.46 +94 92.18 +85 86.56 +13.5
p 20% 87.97 £11.1 89.18 104 92.32 +7.6 88.41 +104
Kitchen-partial 0% 44.88 4314 59.45 +£156 61.68 +£152 40.39 +189 64.84 +13.2
p 20% 58.55 +186 60.55 +16.7 38.44 +193 64.18 +15.4
Kitchen-mixed 0% 54.02 164 5332 +98 53.48 +9.7 43.63 +£179 50.51 +64
20% 44.65 +£169 41.60 £205 46.05 +184 49.02 +13.5

Adroit tasks, we use the preference datasets provided by |[Kim et al.| (2023). We use the datasets
by |An et al.| (2023)) for the Kitchen tasks. All preference datasets comprise a limited subset of
labeled trajectory pairs (100-500 pairs, depending on the dataset) relative to the full number of offline
trajectories. The Adroit and Kitchen tasks have high dimensional state/action spaces (69 state+action
dimensions) relative to the Mujoco tasks (14-23 state+action dimensions). Thus, our experiments
comprise a variety of task environments, labeler sources, and state-action dimensionalities. We did
not experiment on AntMaze due to a critical bug noted by [An et al.| (2023) (Appendix [I). Additional
details on the preference and full offline datasets can be found in Appendix[E.T} The policy evaluation
rewards exhibit high variance and are quite similar across models for the Adroit tasks, so we defer
the Adroit results to Appendix

Evaluation Metrics After training on preference datasets, we infer the rewards r;, for all transitions
in the full offline dataset as discussed in Section[3] We then evaluate alignment of our learned rewards
to the given preference criteria via two metrics: 1) Pearson correlation between inferred rewards and
the environment rewards and 2) policy evaluation returns after offline RL training with the reward
inferred offline dataset. The first metric, used also by (Choi et al.| (2024)); [Zhang et al.| (2024); [Liu
et al.| (2025), is valid because the preference criteria given to the human labelers aligns closely to
the crafting of the environment reward functions. For example, the hopper environment rewards in
proportion to the velocity of its movement and remaining in a stable upright position hop|(b) Likewise,
the preference criteria is given that hopper moves as far as possible and lands steadily (Appendix C
of Kim et al.|(2023)). The human preference criteria and the environment reward function incentivize
the same behavior, so the correlation to the environment reward is a proxy for adherence to the
preference labels.

For the policy evaluation returns, we conduct offline RL training with the state-of-the art Implicit
Q-Learning (IQL) algorithm (Kostrikov et al.l [2022), as in several prior PbRL works (Kim et al.,
2023; Kostrikov et al., [2022). We adapt the OfflineRL-kit IQL implementation for our purposes
(Sunl 2023)), and we match preprocessing steps and hyperparameters to the recommended values in
(Kostrikov et al.,[2022; |Kim et al.} [2023)) (Appendix . We train SARA+IQL and baselines on 8 seeds
with multiple evaluation episodes (see Appendix [G.2|for reward normalization method and reward
reporting method). We also provide our results for the oracle IQL, which uses the true environmental
rewards rather than preference based rewards.
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We compare against the following baselines. The first two baselines (PT, PT+ADT) learn a reward
model from the preference dataset and then conduct IQL training. The last baseline does not learn an
explicit reward model (DPPO).

¢ Preference Transformer (PT): As in our model, PT uses a transformer backbone (Kim et al.}
2023)). Unlike our model, PT learns an explicit reward model with a BT based loss.

* PT with Adaptive Denoising Training (PT+ADT): We introduce this novel application of ADT as
a baseline. In each training step, ADT drops a 7(¢) fraction of queries with the largest cross-entropy
loss, where 7(t) = min(yt, Tmax) (Wang et al., 2021). We set Typax = 0.3 and v = 0.003 for
our datasets. Prior works have considered ADT in the setting of iterative online human feedback
(Cheng et al.,[2024), but to our knowledge we are the first to apply ADT to learning the PT reward
model.

* Direct Preference-based Policy Optimization (DPPO): As in our model, DPPO relies on con-
trastive learning and does not learn an explicit reward model. However, the contrastive learning
is used to learn the policy directly and aims to align policy predictions with inferred preferred
trajectories (An et al.,|2023)) (see Section [2| for additional details).

Preference data with labeling noise On the original unmodified preference sets, SARA either
outperforms or is on-par with baseline methods (Table[I)). We take these preference datasets and
randomly flip 10%, 20%, and 40% of the non-neutral labels. These error rates are in accordance with
realistic error rates noted in prior literature, as discussed in Section [I] (page 2 top). As shown in Table
the IQL policy with SARA computed rewards substantially outperforms baselines in the 20% case.
Due to space constraints, we show results for the 10% and 40% error rates in Appendix [B.2]

Table|/|shows variation in model performance as a result of tuning error rates between 0-40%. Our
method’s robustness is evidenced by the consistency it shows as noise rate is varied. For example,
PT’s performance drops from 74.48 to 49.77 as mistake rate goes from 0 to 20%. On the other
hand, SARA only drops from 84.66 to 82.94. Likewise, DPPO has impressive performance on the
hop-medium-expert datasets at low (0, 10%) error rates). We infer that DPPO is able to match expert
trajectories in such datasets with many examples. However, DPPO suffers tremendously by dropping
to 28.92 at 20% error rate. Finally, our novel implementation of PT+ADT also provides significant
improvement over PT.

Table 2: Mean normalized policy evaluation rewards across six preference labeling conditions (4
error rates, excluding neutral preferences, and script labeled). The + denotes standard deviation
across labeling conditions, and it accounts for both seed variance and labeling variance. We bold the
highest mean and lowest standard deviation in each row.

Task PT PT+ADT DPPO SARA

hopper-med-replay 65.73 £2549  71.29+24.02 57.31+£26.71 81.49 £ 14.64
hopper-med-expert 68.73 £36.17  77.09 £ 33.96  83.92 +36.05 85.22 £ 34.68
walker2d-med-replay =~ 72.35 £ 12.65  72.58 £ 16.25 43.93 +28.13  75.95 £+ 11.29
walker2d-med-expert  107.10 £9.41 106.42 £+ 10.82 108.73 +0.42 108.70 &+ 4.57
kitchen-partial 59.69 £17.90 60.76 £17.06  38.50 + 18.51 61.01 £ 17.93
kitchen-mixed 49.85 +15.53 48,57+ 1621 45.68 £17.97 49.03 £ 11.40

Robustness to dataset variants Here we analyze our model’s consistency across varying preference
labeling conditions as further evidence of robustness. In addition to the four error rates, we also
examined two additional labeling conditions: excluding neutral queries and labeling by a script oracle.
In many realistic applications, labelers are often presented with queries where the two options are
quite similar. In some designs, for example current OpenAl GPT models, the labeler is forced to pick
a preferred option. In others, as in the dataset by Kim et al.[(2023]), the labelers are allowed to indicate
indifference (Appendix [E.T| provides percentage of neutral queries per dataset). The performance
of the learned policy should ideally not have strong sensitivity to such choices. A PbRL framework
exhibits robustness by its ability to discern patterns of preferences, and those learned patterns should
not be contingent on whether or not neutrality is allowed. Script labeling, in which an oracle with
knowledge of task rewards picks binary preferences based on comparisons of total returns, has also
been examined in prior works (Kim et al., 2023} Zhang et al., 2024} |Kang et al., [2023}; |Christiano
et al., 2017;Cheng et al.,|2024). As human labelers are known to disagree at rates up to 25% (Dubois
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Table 3: Pearson correlation coefficients between transition rewards and environment provided
rewards (unknown at training). Values are averages & standard deviation are shown.

Task Error Rate PT PT+ADT SARA
hobper-med-repla 0% 0.04 (£0.03) 0.08 (£0.06)  0.39 (+0.04)
PP play 20% 0.03 (£0.03)  0.04 (£0.05)  0.36 (+0.05)
hopper-med-expert 0% -0.09 (£0.09)  0.14 (+0.100  0.55 (+0.14)
PP p 20% 0.08 (+0.07) 0.02 (£0.13)  0.14 (+0.55)
0% 0.34 (£0.08) 0.50 (£0.06)  0.73 (£0.02)
walker2d-med-replay 20% 0.19 (£0.03)  0.36 (2007  0.56 (£0.20)
0% 0.50 (£0.09)  0.73 (+0.01)  0.84 (+0.05)
walker2d-med-expert 20% 0.11 (£0.07)  0.48 (£0.10)  0.81 (£0.05)
. . 0% 0.22 (40.09) 0.13 (£0.07)  0.39 (+0.36)
kitchen-partial 20% -0.10 (£0.06)  -0.15 (&0.11)  0.30 (20.28)
. . 0% 0.01 (+£0.08)  -0.10 (+0.11)  0.06 (+0.35)
kitchen-mixed 20% -0.26 (£0.17)  -0.44 (£0.06)  0.03 (+0.35)

et al., 2023 |Coste et al., [2024), performance on script labeling provides another method of comparing
models. See Appendix for tables with exact values and error bars.

To measure robustness across labeling conditions, we show the mean normalized episode evaluation
returns and standard deviation across the six labeling conditions (Table[2). We bold the highest mean
and lowest standard deviation in each row. While baselines may exhibit better performance in mean
or standard deviation as one-offs, SARA is the method that provides robustness most frequently. In
cases where SARA loses compared to baselines, the margin by which it loses is quite small. We
believe this evidences SARA’s consistency in response to perturbations of the preference dataset.

Correlation with environment transition rewards SARA demonstrates substantially better Pearson
correlation with environment rewards compared to baselines at all error rates (Table [3] [6). We
conducted this analysis on full offline datasets at the transition level. Note that DPPO is excluded as
it is a reward-free method.

As detailed in the Evaluation paragraph of this section, this metric provides insight on alignment to
the given preference labeling criteria. However, this correlation advantage does not always result in a
better policy. SARA’s better correlation consistently translates to better policy performance on hopper
replay and walker replay datasets, where it achieves higher policy rewards with far lower variance
than PT and PT+ADT. However, on the hopper-medium-expert at 0%, PT correlates poorly to the
environmental transition level rewards but does better than the IQL oracle in evaluation policy returns.
We think that, due to the high annotation quality on this dataset with many expert trajectories, PT
provides a reward model that leads to better policy learning in the IQL algorithm than the environment
provided rewards. This comparison highlights that PbRL reward models on high quality expert data
can drive better policy learning than the environment rewards.

On the other hand, SARA still learns distinguishing patterns of preference in the hopper expert case.
By focusing on consensus signals, SARA likely sacrifices the ability to learn the better preference
reward model for policy learning that PT was able to learn in this case of high annotation quality.
However, SARA benefits by focusing on these general patterns in that its policy performance does
not degrade as annotation quality decreases. Thus, SARA does not displace the benefits of BT reward
models in such high quality data scenarios, but rather it offers an alternative and more robust learning
mechanism in the often occurring case of non-expert data.

5 A MECHANISTIC ANALYSIS OF SARA’S ROBUSTNESS TO NOISE

A theoretical proof for both the BT and SARA models in noisy settings would require a statement
about the convergence of optimal solutions on data with label noise, which is a non-convex optimiza-
tion problem. Currently, formal convergence proofs for preference learning under noise represents
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a significant open challenge in the field. The difficulty of providing a such a proof is evidenced by
BT model literature itself. The BT model was originally proposed for ranking sports teams, and its
theoretical foundation in PbRL is underexplored (Sun et al.| | 2025])), despite the prominent applications
in LLM fine tuning. Likewise, we cannot supply a proof either, but we provide reasoning for SARA’s
robustness compared to BT models, followed by empirical validation with ablation experiments.

The BT mOdel lea‘rns an underlying t-SNE Visualization of Encoder Latents: Hopper Replay Preference Data
reward model that captures preference -

for one individual trajectory over an- | - gfé};"rffmﬁr o i
other. The key difference is that o X E ‘o o

SARA intentionally only focuses on

what makes the set of preferred differ- D " &0 . & . o £
ent from the set of non-preferred, and % , &?‘;* 2 % 39%8‘& ot ot | I :
it does not prioritize learning a good &%" & ¥ | |GV cPesgdary NG
representation at the individual trajec- | g 2 " w5

tory level. The focus then is not about % - — S — :

0
t-SNE Dimension 1

learning to represent an individual tra-

jectory but rather learning which pat- )
terns to ignore and which to attend. Figure 2: T-SNE embedding of the latents for the hopper-

medium-replay-v2 preference data, either colored by prefer-
In the BT approach, a reward model  ence (left) or true reward (right).
is learned explicitly by maximizing
likelihood of observed preferences: max,. Z(L ;) Yiglog P [0; > 0j;7] . Then each mislabeled pair
(¢, j) directly corrupts the gradient: V,. log P[o; > 0;;7] = —yV, log P[o; > o;;r]. The coefficient
sigmoid (7 (o) —7(0;))

T = sigmoid(—(r(o:)—r(0;)))

is always positive and blows up for large reward differences.

By contrast, SARA does not model individual comparisons. Its set-based contrastive objective
encourages the encoder to learn aggregate patterns that consistently distinguish the preferred set
from the non-preferred set. Even if some trajectories in the preferred set are mislabeled, the encoder
must still produce a set representation z, that is dissimilar from the non-preferred set. To do so, the
contrastive objective drives the following:

* Encoder 1 places low attention weight on portions of mislabeled trajectories that resemble
the non-preferred set. It focuses instead on transitions shared by the majority of correctly
labeled preferred trajectories.

* Encoder 2 aggregates these per-trajectory latents into a consensus representation that
maximally separates the two sets.

In this way, the contrastive objective naturally aggregates to a dominant structure in the preferred set,
rather than directly following gradients of individual noisy labels as BT does. Even when mislabeling
occurs, the resulting z; is still a latent that shows low similarity to the non-preferred sets and high
similarity to subsets of preferred.

This is underscored by inspecting visual embeddings of the learned representations. Figure 2]
shows t-SNE embeddings of SARA learned latents for the human labeled hopper-medium-replay-v2
preference dataset from [Kim et al.| (2023). As encouraged by the contrastive learning objective,
the encoder achieves good separation and clustering between most preferred and non-preferred
trajectories, and the group embeddings z;, and z;, are centrally located within their respective clusters.
However, some trajectories are not close to zj, nor z;,, though they are labeled as such. Comparing
the plots in Figure[2] we see that these separated trajectories exhibit a low environmental trajectory
reward (unknown to SARA). Therefore, the SARA encoder can learn overall patterns but it does not
artificially align poor quality trajectories to the preferred set even when the human labelers designate

them as preferred.

Ablation We claim our set based encoding with contrastive learning is the key behind our robustness.
To support this claim, we ablate the set idea and do contrastive learning on the individual trajectory
representations. Our ablation, BT Contrastive, results in significantly lower policy returns at varying
label error rates (Tabled). BT Contrastive includes the following steps: 1) The transformer encodes
the trajectories o, ; and o, ; to u, ; and u,, ;. The contrastive learning is done between all pairs of
individual trajectory encodings (not set encodings). Then 2) we learn a BT reward model, r,,, using
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Table 4: Comparison of SARA and BT Contrastive across datasets with different error rates.

Task Error Rate SARA BT Contrastive
10% 83.66 (+3.5) 65.21 (£22.3)
hopper-med-replay 20% 82.94 (+5.8) 64.19 (+22.0)
40% 65.82 (+28.9) 60.03 (£25.8)
10% 84.95 (+32.4) 80.65 (£29.4)
hopper-med-expert 20% 85.16 (£17.0) 86.93 (+21.8)
40% 83.38 (+26.2) 79.92 (£27.9)
10% 78.18 (+7.9) 66.13 (+15.2)
walker2d-med-replay  20% 76.29 (+13.2) 57.17 (£23.0)
40% 68.32 (+18.6) 64.94 (16.1)
10% 108.66 (£3.7) 109.51 (+0.7)
walker2d-med-expert  20% 108.37 (£5.7) 109.34 (+1.3)
40% 109.02 (+4.2) 107.90 (£9.2)

the given preference set labels and their learned latents: Plo, ; = 0, 4;9%] = Plu,; = uy,,;; ). In
step 1 we match the encoder capacity to the original SARA encoder.

As an exception to the performance degradation, we see that BT Contrastive is on par with SARA on
hopper-medium-expert at 20%. This result consistent with analysis by |Sun et al.|(2025), who notes
that BT models can still perform well when annotation quality is high.

Data Scaling We reduce the amount of preference data by half. Appendix [D|shows that in the low
data regime (50% of preference data) with label noise (20% error rate), SARA provides a substantial
robustness advantage against the Bradley-Terry based PT model. However, our experiment shows
SARA is less performant against PT in the low data regime with 0% error.

6 ADDITIONAL EXPERIMENTAL APPLICATIONS

We leverage our framework for additional application areas: cross-task preference transfer and online
RL with reward shaping. Due to space constraints, we provide experiment details and results in

Appendix [C]

7 CONCLUSION

Summary SARA is a novel algorithm that prioritizes robustness by estimating preference-based
rewards via similarity with a contrastively learned latent. Rather than relying on BT-based rewards,
SARA assumes presence of noisy labeling and learns a representation of preferences. SARA shows
comparable or improved performance over SOTA baselines on preference sets between 0-40% label
error rate and consistent performance across these variants. SARA outperforms BT based models on
correlation with environmental rewards. We leverage SARA’s strong reward estimates for additional
applications, such as online RL and differing feedback format (Appendix [C).

Limitations and future work  Our problem setup is one specific preference criteria per task; |Kim
et al.[(2023); |An et al.| (2023) provide the criteria given to their labelers. However, SARA can be
straight-forwardly applied towards the problem of heterogenous preference criteria. For our problem
setup, we assumed two subset categories for Transformer Encoder 2, preferred and non-preferred.
With multiple criteria, such as preferred-fast, preferred-slow, non-preferred, we would now have
three categories which we train contrastively. Testing this would require creating multi-criteria RL
preference datasets; we recommend this as a direction for future work.

To apply SARA to LLMs, we suggest adapting SARA for querying human preferences iteratively
online during policy training. Doing so would require fine-tuning the encoder online as a human
labeler provides feedback throughout policy training.

10
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8 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we have taken the following steps. Sections [ and provide
details of architecture and hyperparameters. Upon acceptance, we plan to link our github repository in
the paper. In addition to providing source code for our own model, our github repository additionally
provides a user friendly pipeline script to train our model, the baselines, and the oracle on all our
seeds and on all our dataset variants. By doing so we facilitate reproducibility of our own work as
well as baseline models.
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A SENSITIVITY TO NUMBER OF SUBSETS PER CATEGORY (PARAMETER K)

As detailed in Section [5] our key innovation is to learn a representation for the set of preferred
trajectories. The Transformer Encoder 2 of Figure [I] encodes a set of trajectories, where now
trajectory representations within the set can attend to one another. We need at least one positive set
encoding for each category (preferred and non-preferred) for the contrastive loss. This necessitates
that we divide up the preferred trajectory encodings and non-preferred trajectory encodings in at
minimum k=2 subsets. In each epoch, we shuffle the compositions of trajectories in each subset
to avoid overfitting the representation to an exact subset composition. We used k=2 in all our
experiments, but here we ablate the choice of k and show the model is not sensitive when k is low.
We note that the k value is used as a training hyperparameter, not as an evaluation parameter. After
training, we set k=1 (one set of preferred) and feed all preferred trajectories through the SARA
encoder to infer zy,.

Table 5: Average normalized policy evaluation rewards (across 8 seeds), using human-labeled
preference data (without mistakes). We vary the number of subsets k per category during training the
SARA encoder. The & denotes standard deviation.

Task k=2 k=3 k=4 k=16
hopper-medium-replay-v2  84.68 (+3.1) 85.00 (+33) 84.48 (440 76.78 (+18.9)

When k is equal to the number of trajectories in each category (preferred or non-preferred), then one
set is just a single trajectory. This is equivalent to contrastive learning on individual trajectories rather
than sets of trajectories, as done in our ablation experiment in Section [5}

As we approach large k, we are approaching the regime of of contrastive learning between individual
trajectories. Thus we see significant performance degradation at k=16. The results are not sensitive
for lower values of k (i.e. 2,3,4).

B ADDITIONAL OFFLINE RL RESULTS

B.1 PEARSON CORRELATIONS WITH ENVIRONMENT REWARDS

The main paper provides results at 0% and 20% error rates. Here we provide the additional Pearson
correlations for models trained on preference data with 10% and 40% error rates as well.

B.2 LOCOMOTION AND KITCHEN TASKS

The main paper provides the tables for human-labeled preference sets with 0 and 20% error. Here we
provide the tables for human-labeled preference sets with 10 and 40% error. We also show the results
without neutral preferences and script labeled preference sets.

B.3 OFFLINE RL RESULTS ON ADROIT TASKS

We also applied our framework to the Adroit tasks, with preference datasets for pen-cloned-v1 and
pen-human-v1 provided by Kim et al.|(2023). DPPO underperforms compared to other methods on
pen-human-v1, but otherwise the mean evaluation policy rewards are similar across models (Tables
[10} . [12] and [T3). Variance is also quite high for all models. This is explained by within seed
variance among the 10 evaluation eplsodes at each epoch, presumably due to randomized initial start
states, as opposed to across seed variance. Among the 10 evaluation episodes at each epoch, we
acquire maximum normalized episode returns of 179 and minimum returns between -2 to -4.
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Table 6: Pearson correlation coefficients between transition rewards and environment provided
rewards (unknown at training). Each model was trained across 8 seeds; averages + standard deviation
are shown, with highest values in each row in bold.

Task Error Rate PT PT+ADT SARA
0% 0.04 (£0.03)  0.08 (£0.06)  0.39 (+0.04)
hop-medium-renla 10% 0.08 (+0.03)  0.06 (£0.08)  0.19 (+0.08)
P play 20% 0.03 (£0.03)  0.04 (£0.05  0.36 (+0.05
40% -0.04 (x0.02) -0.03 (+0.06)  0.02 (+0.22)
0% -0.09 (009 0.14 (+0.100  0.55 (+0.14)
hop-medium-expert 10% -0.01 (008 0.16 (£0.08)  0.28 (+0.36)
P p 20% 0.08 (+0.07  0.02 (+0.13)  0.14 (+0.55)
40% 0.04 (+0.05)  0.06 (+0.149  0.13 (0.38)
0% 0.34 (+0.08)  0.50 (£0.06)  0.73 (+0.02)
walk-medium-renla 10% 0.27 +0.06)  0.36 (£0.06)  0.70 (0.03)
Py 209% 0.19 (£0.03)  0.36 (£007)  0.56 (+0.20)
40% 0.04 (£0.02)  0.12 (+£0.08)  0.32 (+0.23)
0% 0.50 (£0.09)  0.73 (xoon  0.84 (+0.05)
walk-medium-expert 10% 0.33 (007  0.65 (=005  0.86 (+0.03)
Pert 0% 0.11 1007  0.48 (x0.100  0.81 (+0.05)
40% -0.14 (003 -0.09 (+0.05  0.51 (+0.37)
0% 0.22 (£0.09)  0.13 (£007)  0.39 (+0.36)
Kitchen-partial 10% 0.07 (+0.08) -0.01 (0070  0.36 (+0.31)
P 20% -0.10 (x006) -0.15 (+0.11)  0.30 (+0.28)
40% -0.15 (009 -0.18 (+0.13)  0.22 (+0.38)
0% 0.01 (+0.08) -0.10 (x0.11y  0.06 (+0.35)
Kitchen-mixed 10% -0.26 (0.08) -0.34 (+0.06) -0.14 (+0.33)
20% -0.26 (x017)  -0.44 (+0.06)  0.03 (+0.35)
40% -0.24 (+0.08) -0.49 (+0.07  0.02 (+0.33)

C ADDITIONAL APPLICATIONS TO SUPPORT VERSATILITY STATEMENTS

Filtering low quality trajectories for downstream imitation learning As ground truth rewards
may be unknown, we examine whether the SARA encoder can identify low quality trajectories
from preference data. Human preference labels and ground truth rewards frequently do not align
(Kim et al., [2023)), so many poor quality trajectories may be labeled preferred (y = 1). Figure
shows a t-SNE plot of SARA learned latents for the human labeled hopper replay preference dataset
from Kim et al.| (2023)). We exclude the neutral queries from the original preference dataset, but
we otherwise do not corrupt or modify the dataset in any way. As encouraged by the constrastive
learning objective, the encoder achieves good separation and clustering between most preferred and
non-preferred trajectories, and the group embeddings z;, and z;, are centrally located within their
respective clusters. However, some trajectories are not close to z,, nor z,,, though they are labeled as
such. Comparing the plots in Figure 2] we see that these separated trajectories exhibit a low ground
truth reward. Therefore, the SARA encoder can learn overall patterns but it does not artificially
align poor quality trajectories to the preferred set even when the human labelers designate them as
preferred. We can further exploit the encoder results to filter low quality trajectories. After training
the encoder, we merely need to filter out trajectories with large distance in latent space from both z;,
and z},. Kuhar et al.[(2023)) notes that filtering should lead to a better policy in downstream IL. As IL
is outside the scope of this work, we defer such analysis to future works.

Transfer of preferences to morphologically harder task We investigate whether the preference
dataset for a morphologically simple task can be used to infer rewards for a harder task. We take the
preference dataset from Kim et al.| (2023) for trajectories from hopper-medium-replay-v2. Our goal
is to learn the SARA encoder on this preference set and then infer rewards for the walker-medium-
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Table 7: Average normalized policy evaluation rewards (8 seeds) under different human preference
mistake rates. Oracle IQL results are constant across mistake rates and shown once in grey. Values in
bold are the highest per row; underlined are within 1% of the best. The 4 denotes standard deviation.

Task Err Rate Oracle PT PT+ADT DPPO SARA
0% 92.26 +136 74.48 £21.3 80.24 +16.1 68.98 +184 84.68 +3.1
hon-med-repla 10% 86.31 £79 77.14 £185 70.76 166 83.66 +35
p play 20% 49.77 4257 62.87 +240 68.67 +198 82.94 158
40% 58.72 +17.9 53.87 £209 32.51 +232 65.82 +28.9
0% 80.82 +445 89.64 +283 71.33 +406 108.09 +108 80.45 +4s.1
hob-med-expert 10% 78.54 +30.1 80.69 +273 100.32 +204 84.95 +324
p p 20% 68.14 +362 79.02 +210 28.92 +29.1 85.16 +17.0
40% 53.10 +249 70.00 £292 55.11 +82 83.38 +26.2
0% 77.53 +155 74.43 £80 75.68 +83 47.21 +280 78.21 +5.8
walker2d-med-repla 10% 74.59 +6.7 64.42 +282 47.18 £27.0 78.18 +7.9
play 20% 71.73 +107 7442 +126 41.00 268 76.29 +13.2
40% 61.52 +193 67.86 +163 28.07 +279 68.32 +18.6
0% 107.57 +85 109.74 +1.1 109.98 +1.0 108.73 +04 108.35 +54
walker2d-med-expert 10% 109.89 +1.1 109.85 +35 108.75 +04 108.66 +36
P 20% 109.37 +1.5 109.53 +1.6 108.78 +04 108.37 +5.7
40% 93.69 +169 89.83 +18.7 108.55 +05 109.02 +4.2
0% 44.88 +314 59.45 +156 61.68 £152 40.39 +189 64.84 +13.2
Kitchen-partial 10% 59.30 +182 60.27 150 37.27 £175 62.50 +14.2
p 20% 58.55 +186 60.55 +16.7 38.44 +193 64.18 +154
40% 50.86 +21.7 58.67 +18.7 36.84 +175 54.69 +2338
0% 54.02 +164 53.32 +98 53.48 +9.7 43.63 £17.9 50.51 +64
Kitchen-mixed 10% 53.36 +9.7 48.71 +138 44.96 +201 50.27 +7.9
20% 44.65 +169 41.60 +205 46.05 +184 49.02 +135
40% 49.53 +198 46.41 +205 49.30 +148 42.73 +163

Table 8: Average normalized policy evaluation rewards (across 8 seeds), using human-labeled
preference data without neutral preferences. Values in bold are best (highest reward) in each row
and underlined are within 1% of best. The + denotes standard deviation.

Task IQL (Oracle) ‘ PT PT+ADT DPPO SARA

hopper-med-replay 92.26 +13.6 86.67 47  83.06 +88  70.18 £199  84.43 143
hopper-med-expert 80.82 +44.5 59.90 +462  74.53 +417  108.88 +95  80.93 +439

walker2d-replay 77.53 +155 75.14 £39  76.69 +65  47.87 276  78.21 +538
walker2d-med-expert  107.57 +85 | 110.09 +46 109.61 +22 108.77 +04 108.91 +34
kitchen-partial 44.88 +314 | 61.64 +150  60.78 +151  39.77 +189  63.79 +14.6
kitchen-mixed 54.02 +164 | 50.66 +13.8 5211 +125 4535 +179  51.80 +7.2

replay-v2 dataset. SARA reward inference relies on feeding walker trajectories into the learned
encoder, so we map the state and action space dimensions of the hopper to that of the walker. We do
so by crudely assuming that preferences for the hopper state-action trajectories can transfer to the
additional degrees of freedom in the walker due to the symmetry of the joints (see Appendix [H|for
details).

After doubling the joint angles, velocities, and torques in the hopper replay preference set, we then
train the SARA encoder with this modified set. Next we take the full offline walker replay set and
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Table 9: Average normalized policy evaluation rewards (across 8 seeds), using script-labeled
preference data. Values in bold are best (highest reward) in each row and underlined are within 1%
of best. The + denotes standard deviation.

Task IQL (Oracle) \ PT PT+ADT DPPO SARA
hopper-med-replay 92.26 +136 | 38.43 +198  70.55 +33.8 3275 +226  87.43 +84
hopper-expert 80.82 +44.5 63.03 £345 86.96 +359  102.19 +244  96.43 +279

walker2d-med-replay ~ 77.53 +155 | 76.69 +140 76.40 +11.0 5227 +247  76.51 +64
walker2d-med-expert ~ 107.57 <85 | 109.80 +1.9 109.74 10 108.81 +04  108.88 +4.6
kitchen-partial 4488 4314 | 68.32 122 62.58 +206  38.28 +186  56.05 +£209
kitchen-mixed 54.02 164 | 47.58 +182  49.10 143 4477 +178  49.84 +11.2

Table 10: Average normalized policy evaluation rewards (across 8 seeds), using human-labeled
preference data with 20% label error rate. Values in bold are best (highest reward) in each row.
The =+ denotes standard deviation.

Task IQL (Oracle) ‘ PT PT+ADT DPPO SARA

pen-human-vl  85.19 (+62.1) | 81.91 (645 79.42 (£632) 71.99 (625 83.04 (+63.6)
pen-cloned-vl  81.49 (+626) | 69.30 (£638) 67.66 (£64.1) 72.64 (+64.4) 69.78 (+63.0)

Table 11: Average normalized policy evaluation rewards (across 8 seeds), using human-labeled
preference data with neutral preferences. Values in bold are best (highest reward) in each row.
The + denotes standard deviation.

Task IQL (Oracle) ‘ PT PT+ADT DPPO SARA

pen-human-vl  85.19 (+62.1) | 80.84 (£63.1) 82.80 (£624) 76.97 (+643) 81.89 (632
pen-cloned-vl  81.49 (+626) | 70.28 (£64.6) 69.70 (+638) T2.13 (+64.5) 69.72 (+£63.4)

Table 12: Average normalized policy evaluation rewards (across 8 seeds), using human-labeled
preference data without neutral preferences. Values in bold are best (highest reward) in each row
and underlined are within 1% of best. The & denotes standard deviation.

Task IQL (Oracle) | PT PT+ADT DPPO SARA

pen-human-vl  85.19 (+62.1) | 83.59 (+628) 85.06 (£61.7) 75.51 (+63.8) 81.52 (+62.4)
pen-cloned-vl  81.49 (+626) | 70.18 (£64.0) 69.70 (£643) 70.95 (656) T1.07 (&64.3)

Table 13: Average normalized policy evaluation rewards (across 8 seeds), using script-labeled
preference data. Values in bold are best (highest reward) in each row and underlined are within 1%
of best. The + denotes standard deviation.

Task IQL (Oracle) \ PT PT+ADT DPPO SARA

pen-human-vl  85.19 (+62.1) | 81.67 (+628) 82.80 (+63.8) 71.62 (+66.0) 83.06 (+63.0)
pen-cloned-vl  81.49 (+626) | 76.88 (£653) 74.30 (£653) 75.41 (+64.6) 73.38 (&65.6)

infer rewards using this encoder learned from the hopper preferences. This cross-task transfer of
preferences enables policy learning with these estimated rewards (Figure [3). Remarkably, the IQL
learned policy from cross-task preferences performs only slightly worse than the SARA model using
the walker replay preference set. Both exhibit lower variance than using the true task reward.
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IQL Policy Eval Reward: walker2d-medium-replay-v2
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Figure 3: Walker2d IQL eval rewards, running average and 8 seeds (see Section[G.2). Shading
indicates standard deviation. The policy is learned on the walker replay dataset. SARA rewards from
training on hopper replay preferences perform almost as well as SARA rewards with training on the
walker replay preferences.

Hejna et al.| (2020) investigated transfer learning of a policy from a simple agent to a more complex
one with environment provided rewards, not preference aligned rewards. proposed
an optimal transport method to transfer preferences, but their framework is limited to tasks with
equivalent state-action space. To our knowledge, our cross-task preference transfer to a larger state-
action space is novel, and we do so without any changes to the SARA architecture or hyperparameters.

Cosine Similarity

Policy without PbRL Inferred Reward

0.75
M a e
-0.25

Policy with PbRL Inferred Reward

Figure 4: Left: After training SARA encoder, we divide up the trajectories by their label (preferred vs
non-preferred) and by the target location. Note that the training set has the extra hard target location
for the non-preferred but not preferred. Target location is not explicitly fed into the model and many
trajectories are the same between the two sets. Right: With task reward alone, the learned policy
takes the shortest path going clockwise to the hard target location. Including the preference inferred
award enables a learned policy traversing in counter-clockwise direction.
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Online RL with reward shaping In contrast to previous sections, we now consider the scenario of
some known but under-specified task reward. For instance, consider a robotics application in which
a policy is trained to achieve some task, such as reaching an object. In many realistic applications,
such task-driven reward functions can result in policies that have undesirable patterns of movement,
such as rapid or jerky actions (Escontrela et al}[2022). Such movements may not only be visually
unappealing but can also damage the robot. Prior works employed complicated reward shaping
techniques to overcome these issues 2022). Here we test whether the SARA inferred
rewards can shape the task reward in online RL learning.

We set up the following problem using the Deepmind Control Suite Reacher task (Tunyasuvunakool|
let all 2020}, [Laskin et al.l [2021). Let us assume a human labeler decided that counterclockwise
movements are always preferable, perhaps due to a realistic engineering constraint or potential
environmental obstructions limiting clockwise movement. The human labeler picks the preferred
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set of trajectories (all counterclockwise) for an easy target. The human labeler deems non-preferred
any trajectories from the policy trained on the task reward. These are sometimes clockwise and
sometimes counterclockwise depending on which has the fewest steps to target. Therefore, when the
target is in the upper half, we have many trajectories for which the preferred and non-preferred sets
overlap. This setup requires SARA to disentangle the preferred from non-preferred styles even when
there are some strong similarities between the two groups.

The encoder is not explicitly given the counter-clockwise preference, so we evaluate what it implicitly
learns by comparing with non-preferred movements. After training we split up trajectories by category
(preferred vs non-preferred) and target location to view the similarity map shown in Figure[d] Despite
overlaps between categories, SARA learns where preferred and non-preferred behaviors align or
diverge. This result arises from the subset contrastive encoding and shuffling detailed in Section

Next we test whether these learned patterns transfer to the harder task of the small target shown in
Figure ] We learn online using the Deep Deterministic Policy Gradient algorithm (Lillicrap et al,
2016). We add the known task reward to the SARA inferred reward. In the absence of our SARA
inferred reward, the learned Reacher policy takes the most efficient path clockwise to the hard target
(Figure[d). With our preference inferred reward, the policy takes the desired counterclockwise path
even though it results in a lower task driven reward. The SARA framework achieves this even though
the preferred set only includes the easy large target task.

This toy experiment illustrates our model’s potential for the realistic preference driven goal of shaping
an RL policy to conform with human desires. Such stylistic rewards may be both application specific
and difficult to engineer, so inferring from preference data is a promising path forward.

D DATA SCALING EXPERIMENTS

Here we investigate whether SARA requires more data than BT based preference modeling to achieve
its robustness advantage. We ran SARA and the Bradley-Terry based Preference Transformer (PT)
using only Aalf the originally given preference data. For these reduced preference datasets, we ran
both 0% error rate and 20% error rate. At 0% error rate, we note SARA is less performant compared
to PT on multiple datasets. However, at 20% error rate, SARA substantially outperforms PT on
multiple datasets. Therefore, SARA still offers a robustness advantage over the Bradley-Terry based
PT model in the low data regime.

Table 14: Average normalized policy evaluation rewards (8 seeds) using 50% of preference datasets
(0% error rate). Values in bold are the highest per row. The 4 denotes standard deviation.

Task PT SARA

hop-medium-replay ~ 83.59 +143  85.00 +2.6
hop-medium-expert ~ 82.20 +338  53.90 +4938
walk-medium-replay ~ 75.33 40  76.98 +6.9
walk-medium-expert  109.59 +1.3  107.68 +7.0
kitchen-partial 59.96 +144  56.13 +220
kitchen-mixed 54.38 100  51.29 +108

E DATASET DETAILS

Here we describe the details of the preference datasets and the full offline datasets used for our offline
RL experiments (Section 4]

E.1 PREFERENCE DATASETS

For Mujoco locomotion and Adroit pen tasks, we use the preference datasets provided by [Kim et al.
(2023) from the PT human label| repository. For the Franka Kitchen tasks, we use the preference
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Table 15: Average normalized policy evaluation rewards (8 seeds) using 50% of preference datasets
(20% error rate). Values in bold are the highest per row. The + denotes standard deviation.

Task PT SARA

hop-medium-replay ~ 54.99 +282  84.47 +31
hop-medium-expert ~ 63.00 +402  63.48 +43.1
walk-medium-replay ~ 71.55 +10.1  74.28 +1038
walk-medium-expert 108.56 +48 108.39 +4.7
kitchen-partial 39.26 +26.6  41.95 +2538
kitchen-mixed 41.99 +163  48.16 +153

datasets from|An et al.[|(2023) from the DPPO human label repository. Both repositories are MIT
licensed.

Kim et al.|(2023) and |An et al.|(2023)) created the preference datasets by sampling pairs of trajectories
from the full offline datasets [Fu et al.[|(2021). They named the preference datasets by the same
name as the full offline datasets (e.g. hopper-medium-replay-v2 and so on). All trajectories are 100
timesteps in length. The replay datasets for hopper and walker have 500 trajectory pairs and all
others have 100 pairs. The labelers are domain experts who are given specific criteria upon which to
evaluate their preference for the trajectories. We refer the reader to the original works which state
their preference criteria. Excluding pairs with equally preferred trajectories is one of our dataset
variants, so here we provide the number of such queries in each dataset (Table

Table 16: Percentage of neutral queries by preference set.

Preference Set Total Pairs Neutral (%)
hopper-medium-replay-v2 500 38%
hopper-medium-expert-v2 100 28%
walker2d-medium-replay-v2 500 23%
walker2d-medium-expert-v2 100 24%
kitchen-partial-v0 100 22%
kitchen-mixed-v0 100 24%
pen-human-v1 100 35%
pen-cloned-v1 100 40%

E.2 FULL OFFLINE DATASETS

In our offline RL experiments, the policies for the SARA framework, all baselines, and the oracle are
trained using the full offline DARL datasets. The oracle uses the true environmental rewards provided
in the datasets. In the case of the SARA framework and baseline models, each transition reward is
computed using the respective models. Note all these models are non-Markovian, so each transition
reward at time ¢ is computed by feeding the trajectory up to and including time ¢ into the models. For
each model, we replace the dataset provided rewards with the computed transition rewards.

We refer to the work by [Fu et al.| (2021)) for a thorough description of the full offline datasets. Here
we summarize some key points as they relate to our work. Our experiments include hopper and
walker2d locomotion tasks from Gym-Mujoco. The hopper has a 3 dimensional action space and 11
dimensional state space. The walker2d has a 6 dimensional action space and 17 dimensional state
space. Franka Kitchen tasks are multi-task and high dimensional, requiring algorithms to ’stitch”
trajectories. The action space is 9 dimensional and the state space is 60 dimensional. The Adroit pen
tasks are also high dimensional and contain a narrow distribution of expert or cloned expert data. The
action space is 24-dimensional and the state space is 55-dimensional. By testing the methods on the
8 datasets from these three environments, we experiment on a range of task dimensionalities and
difficulties.
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F SARA FRAMEWORK ARCHITECTURE AND HYPERPARAMETERS

First we provide the architecture of our contrastive encoder. Then we provide the hyperparameters
used for acquiring the results in our main paper.

F.1 TRANSFORMER ARCHITECTURE

Here we briefly summarize architecture and hyperparameters for our contrastive encoder. Both
Transformer Encoders use the standard Pytorch implementation pyt, which is based upon the originally
proposed Transformer architecture by Vaswani et al.|(2017). The Transformer Encoder 1 encodes
each trajectory (state and action sequences), but it does not enable attention between trajectories.
Information at different timesteps within each trajectory can attend to one another. We inject temporal
information via positional encoding [Vaswani et al.|(2017). We experimented with causal masking
in the encoder training, where state-actions can only attend to previous state-actions but not future.
However, we found that this masking made either no difference or slightly degraded performance in
downstream IQL learning.

We conduct average pooling over timesteps for each trajectory, resulting in one latent per trajectory:
u, /i Where p or n indicates preferred or non-preferred and ¢ indexes trajectory. Next we form k&
subsets within each category, i.e. k subsets within the set of {u,, ;} and k subsets within the set of
{u,,;}. Each subset is comprised solely of trajectories for either preferred or non-preferred. Then we
pass each subset {uy, };, and {u,, }, through Transformer Encoder 2, enabling encodings in the same
subset to attend to each other. Note the time dimension was already removed prior to this encoder, so
we do not have any positional encoding here. We then have single encoding z,,/,, ;, for each subset.
This is trained with the SIMCLR loss with a temperature hyperparameter (Chen et al.| (2020). The
SimCLR loss does the following: pulls together latents within the same type (p or n) and repels each
of the {2, } from each of the {2, }. As noted in Section[3} we shuffle the composition of latents in
each subset {u, }+, and {u,, }; to ensure robustness to mislabeling or existence of similar trajectories
in the two sets.

As noted in the main paper, we conduct each experiments over 8 seeds. The seeding not only applies
to the downstream IQL training but also the encoder training. We do this to align with our baseline
models [Kim et al.| (2023); |An et al.| (2023)), which also seed their Preference Transformer and DPPO
Probability Predictor, respectively, with the same seed as their downstream policy training.

F.2 SARA ENCODER HYPERPARAMETERS

Unless otherwise noted, all hyperparameters were kept the same for all preference datasets, even
though the Kitchen and Adroit environments have higher dimensional action/state spaces than the
locomotion tasks.

Here we provide hyperparameters for both Transformer Encoder 1 and Transformer Encoder 2

Table 17: Transformer Encoder 1 and 2 Hyperparameters

Hyperparameter Value
Causal pooling No
Model dimension (dmoder) 256
Feedforward network dimension 256
Embedding dimension (z,,/,, dim) 16
Encoder dropout rate 0.0
Positional encoding dropout rate 0.0
Number of encoder layers 1
Number of attention heads 4
Avg pooling (after 1st encoder) Yes

Here we provide additional training hyperparameters:
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Table 18: Training Hyperparameters

Hyperparameter Value

Batch size 256

Use cosine learning-rate schedule Yes

Initial learning rate 1x107°

Min learning rate 1x 1076

Optimizer Adam

Number of epochs 2000 (hopper expert), 10* (walker replay), 4000 (all others)
Sets per category (k) 2

Temperature (SimCLR loss) 0.1

The sequence lengths in the preference sets are all 100. As done by the DDPO baseline |An et al.
(2023)), we experimented with using subsequences of varying lengths in training. We passed in
subsequence lengths of [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and we used random start points in
the sequences. We found that using random subsequences to train the encoder resulted in slightly
reduced variance in the downstream IQL training on the hopper replay dataset. However, in general
the asymptotic performance in IQL training was not sensitive to whether or not we used random
subsequences of varying length.

G POLICY TRAINING AND EVALUATION
We first provide details regarding policy training. We then detail the evaluation method.

G.1 POLICY TRAINING HYPERPARAMETERS

We train policies for oracle, SARA, PT, and PT+ADT using the IQL implementation in the publicly
available OfflineRL-kit Sun|(2023). We carefully match hyperparameters to those suggested by [Kim
et al.|(2023), which also match the hyperparameters suggested for the offline datasets in [Kostrikov
et al.| (2022). In these works, the Gym-Mujoco environments have different IQL hyperparameters,
namely for dropout and temperature, than the ones used for the Franka Kitchen and Adroit envi-
ronments. We also use the same reward normalization functions provided byKim et al.|(2023)). We
also carefully match hyperparameters for DPPO policy training to the ones provided by |An et al.
(2023)) in their appendices and code repository. We defer to |Kim et al.|(2023)) and |An et al.| (2023)
for exact hyperparameters. Upon acceptance, we will release our IQL training pipeline with the
hyperparameters used for each offline dataset.

G.2 POLICY EVALUATION METHOD

To compare methods, we roll out multiple evaluation episodes for the method’s learned policy and
get the normalized trajectory reward provided by the environment, as done in prior PbRL works. We
use the get_normalized_score functions provided by each environment, which uses scaling factors
unique to that environment. We scale the episode returns by 100 as done in prior works.

To avoid reporting overly optimistic values, we follow the method proposed by |Hejna et al.| (2024)).
We roll out 10 evaluation episodes every 5 epochs of training. We compute the average and the
standard deviation of the true normalized episode rewards over the last 8 evaluations. Thus 80 total
evaluation episode rewards are averaged at each epoch. This running mean is averaged over the
8 seeds. We report the maximum value achieved after averaging the running mean over the seeds.
As noted in |Hejna et al.| (2024), this maximum of seed-averaged running mean mitigates effects
of stochasticity. Past works either do not provide details on the metric computation or report the
seed-averaged maximum, which can inflate performance. To report standard deviations that capture
both within-seed and across-seed variability, we compute the total standard deviation as follows.

At each epoch of training a particular seed s € {1,...,S}, we have a set of n = 80 evaluation
episodes. For each seed, we compute the standard deviation over episodes and apply Bessel’s
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correction:
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The total standard deviation used for error bars is then given by:
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We use the same seeds and reporting methods for all reported values, including for SARA, baselines,
and the oracle.

H CROSS-TASK TRANSFER OF PREFERENCES

Table 19: Hopper to walker2d action and observation dim mapping

Action Mapping
hopper dims walker2d dims actions in walker2d
0-2 0-2 torques on thigh, leg, foot joints (right)
0-2 3-5 torques on thigh, leg, foot joints (left)
Observations Mapping
hopper dims walker2d dims observations in walker2d
0-1 0-1 height and angle of top of torso
2-4 2-4 angle of thigh, leg, foot joints (right)
2-4 5-7 angle of thigh, leg, foot joints (left)
5-7 8-10 velocity of x coordinate, height coordinate, and angular velocity of top
8-10 11-13 angular velocities of thigh, leg, foot hinges (right)
8-10 14-16 angular velocities of thigh, leg, foot hinges (left)

As discussed in Section [C|we train on the hopper-medium-replay-v2 preference set, and we use the
learned preferred latent to compute rewards for the full offline walker2d-medium-replay-v2 dataset.
We then conduct IQL training on this walker2d dataset. In order to accomplish the SARA reward
computation we must build an encoder based on the hopper data that can accept walker state-action
space dimensions. The online Gym documentation provides a detailed description of the hopper and
walker2d state and action spaces |hop| (a); wal, We need to map the 3-dimensional hopper action space
to the 6-dimensional walker2d action space. We also need to map the 11-dimensional hopper state
space to the 17-dimensional walker2d state space. To do so we exploit the symmetries in the walker
joints as shown in Table[I9]

Of course this is not a physically realistic way to map the dimensions. In a well trained walker2d
policy, the two legs are not moving symmetrically. Nonetheless, we train an encoder on the hopper
replay data with dimensions mapped in this way, and subsequently we infer a preferred latent with
this modified hopper replay data. Next, we take the full offline D4RL walker2d replay dataset, and
we pass each trajectory through the encoder to get latents for each timestep in each trajectory. Next
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we compute rewards for each timestep in each trajectory in the walker2d replay dataset by computing
cosine similarity with the preferred latent. Lastly we conduct IQL training and evaluate as we did with
all other datasets. Though we based this method on physically unrealistic assumptions, we acquire
normalized policy rewards that are only few points worse than the reward values attained using
the walker2d replay preference set (Figure[3). We also result in lower evaluation reward variance
compared to the oracle.

I ANTMAZE BUG

In their DPPO paper, An et al.,| (2023) found a critical bug in the Antmaze environment’s goal
randomization (Appendix F of original paper). After fixing the bug, the authors showed that state-of-
the-art offline RL algorithms acquire trivially low policy returns (;12) even with the true environmental
rewards. Therefore, we align with |An et al.|(2023)) by deferring experiments on Antmaze until the
offline-RL community can investigate further.

J COMPUTE RESOURCES

Our experiments involved training the following individual models on multiple seeds and datasets:
SARA contrastive encoder, PT, PT+ADT, IQL policy training, DPPO preference predictor, and DPPO
policy. Each individual model was trained on a single NVIDIA A100-SXM4-80GB GPU and 16
CPU cores. Compute resources needed were less than 20GB GPU per model. Training time for the
SARA encoder, PT, PT+ADT, and DPPO preference predictor varies depending on size of dataset and
number of epochs, but it was typically under 30 minutes per model. The walker2d-medium-replay-v2
dataset took up to 2 hours to train a SARA encoder for 10000 epochs when using additional random
slices of trajectories. The DPPO policy training took approximately 2 hours to train on one model on
the single GPU. The IQL policy training, using the open source OfflineRL-kit|Sun|(2023)), took about
3.5 hours to train one model. These computing resources were used for 8 datasets, each model, and 8
seeds per model+dataset. We used our university’s computing cluster with access to multiple GPUs,
but the models could also be trained on a single standalone GPU or with increased training time, on
CPUs alone.

K LLM USAGE

LLM tools were used in this research and paper in the following manner. The authors used code
snippets to generate plots and making LaTex tables. LLMs were also used in refining small portions
of text in paper writing. In response to specific prompts, LLMs were used for generating helper
functions in pipeline code. LLMs were NOT used for writing large portions of the paper or generating
original ideas Therefore, an LLM is not a significant contributer or author of this work.
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