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Abstract

Speculative decoding (SD) accelerates the de-001
coding stage by speculating multiple next to-002
kens with a small draft model, which is, in turn,003
verified by the target model in parallel. Despite004
its success in LLM inference acceleration, SD005
largely remains unexplored for Large Vision006
Language Models (LVLMs), an advanced class007
of LLMs that can handle multimodal prompts008
consisting of text and image tokens. To bridge009
this gap, we first evaluate a comprehensive010
scenario based on real-world deployments of011
LVLM SD. We observe that drafting with and012
without image tokens using a small draft model013
exhibits scenario-specific performance fluctu-014
ations. Motivated by this, we propose Test-015
time Adaptive Batched Ensemble Drafting, a016
fully training-free yet effective SD method for017
LVLMs. Our method leverages multiple draft-018
ing methods via batch inference. It dynamically019
weights these drafts based on their deviation020
from the target model’s previous outputs. To021
further enhance its extensibility at negligible022
cost, we incorporate alternative drafting strate-023
gies, such as image captioning and pooling.024
Our method achieves an average speedup of025
1.8x while maintaining robustness across di-026
verse input scenarios. Since our method relies027
solely on the draft model without incurring ad-028
ditional costs, it is fully compatible with ex-029
isting LVLM acceleration techniques and can030
be seamlessly integrated into them. To ensure031
reproducibility, we open-source our code and032
custom-trained draft LVLMs.033

1 Introduction034

Multimodal Large Language Models (MLLMs)035

(Yin et al., 2024; Wu et al., 2023; Zhang et al.,036

2024a) are an advanced class of LLMs (Brown037

et al., 2020; Ouyang et al., 2022; Touvron et al.,038

2023) designed to process multiple modalities,039

such as images, audio, and video, alongside040

text. In particular, Large Vision Language Mod-041

els (LVLMs) (Chen et al., 2024c), which can han-042

dle prompts comprised of text and images—also 043

known as Large Multimodal Models (Li et al., 044

2024b; Jin et al., 2024; Song et al., 2023)—have 045

attracted significant attention due to their unique 046

applications, including multimodal chatbots, visual 047

data analysis, and augmented reality (AR) appli- 048

cations, among others (OpenAI, 2023; Anthropic, 049

2024; Gemini Team Google: Anil et al., 2023). 050

As LVLMs are increasingly deployed, reduc- 051

ing their inference time has become a critical is- 052

sue. In addition to the standard LLM inference 053

steps, LVLMs must (1) preprocess images in the 054

input prompt to obtain image tokens (typically sev- 055

eral hundred tokens per image) (Radford et al., 056

2021; Liu et al., 2023, 2024a) and (2) process both 057

text and image prompts, resulting in considerably 058

higher inference latency. Therefore, accelerating 059

LVLM inference is of substantial practical impor- 060

tance. 061

Recently, methods like token pruning, layer skip- 062

ping, and key-value cache compression have been 063

proposed to accelerate LVLM inference (Shang 064

et al., 2024; Chen et al., 2024b; Lin et al., 2024; 065

Liu et al., 2024d; Wan et al., 2024; McKinzie et al., 066

2024). While effective, these approximation tech- 067

niques cannot fully preserve the original LVLM’s 068

output distribution. Moreover, they primarily re- 069

duce prompt processing time (prefilling stage) but 070

have limited impact on response generation time 071

(decoding stage), making them less effective for 072

long outputs. 073

Speculative Decoding (SD) (Leviathan et al., 074

2023; Chen et al., 2023) is a large language model 075

(LLM) inference acceleration technique that fully 076

preserves the output distribution. SD first swiftly 077

speculates a specified number of draft tokens and 078

then uses the original target model to verify these 079

tokens simultaneously. For LLM inference, SD has 080

proven highly effective by further developing both 081

the drafting and verification stages (Miao et al., 082

2023; Li et al., 2024c; Cai et al., 2024). These 083
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methods often leverage additional training, either084

for a separate lightweight draft model or an added085

component within the target model, to align with086

their specific approach (Xia et al., 2024; Zhou et al.,087

2024). In this context, compatibly combining SD088

methods for each component has become increas-089

ingly important for maximizing overall speedup.090

Unlike LLM inference, SD for LVLMs has been091

far less explored, with the only notable exception092

by Gagrani et al. (2024). They successfully accel-093

erated LVLM inference via SD for the first time094

using text-only drafts (i.e., the draft model relied095

solely on the text tokens and ignored the image096

tokens)—an observation that might seem both in-097

triguing and counterintuitive. Unfortunately, the098

authors did not provide a detailed analysis of this099

finding, underscoring the need for a more in-depth100

study of SD for LVLMs.101

Motivated by this, we first aim to analyze SD102

by reproducing Gagrani et al. (2024) on a larger103

scale. To account for real-world deployments,104

we evaluate diverse scenarios, including bench-105

mark and out-of-distribution (OOD) multimodal106

datasets, and further experiment with multi-turn107

interactions, exploring various types of subsequent108

requests—those with or without images, and those109

either dependent on or independent of prior re-110

sponses. Our results show that, with a sufficiently111

small draft model capable of accelerating LVLM112

inference through SD, multimodal and text-only113

drafting approaches each have their own strengths114

and weaknesses, depending on the input scenario115

and target response type. Thus, selecting between116

multimodal and text-only drafting is a nontrivial117

challenge. This raises the question: can we design118

a drafting approach that combines the strengths of119

both methods to achieve robust performance across120

all input scenarios?121

Motivated by these observations, we present122

TABED, which leverages (1) multiple drafts simul-123

taneously through batch inference and (2) dynam-124

ically weights them according to how much each125

differs from the ground truth labels of the target126

model after verification. This takes advantage of127

the fact that batch inference with small models can128

be scaled without incurring additional costs. The129

test-time adaptation process, based on inference130

outputs during SD, is a fully training-free approach131

and does not require any additional parameters.132

By doing so, TABED achieves an average133

speedup of 1.8x and also robust across diverse input134

scenarios, unlike single-drafting methods, which135

often exhibit scenario-specific performance fluc- 136

tuations. More specifically, compared to single 137

drafting methods such as multimodal drafting and 138

text-only drafting, our approach achieves an aver- 139

age performance improvement of over 5%. This is 140

particularly significant because the gain is achieved 141

solely through through batch inference and test- 142

time ensemble learning of distributional outputs 143

from single drafting methods, without any addi- 144

tional training. 145

In addition, as our approach generalizes to more 146

than three draft methods, we explore unexplored 147

drafting methods, such as image captioning and 148

pooling. We find that these methods also offer 149

complementary advantages, further enhancing the 150

robustness of our framework when integrated. 151

As the enhanced speed and robustness are 152

achieved using only the draft model itself with- 153

out incurring additional costs, our approach is fully 154

compatible with and can be seamlessly integrated 155

into existing LVLM acceleration techniques, in- 156

cluding those targeting the Prefilling Stage or other 157

types of SD. To establish a solid foundation in the 158

emerging field of LVLM SD and ensure full repro- 159

ducibility of our work, we open-source our code 160

and the custom-trained draft LVLMs at (See Ap- 161

pendix E for more details). 162

2 Related Work 163

2.1 Large Vision Language Models 164

LVLMs Frontier proprietary LVLMs (OpenAI, 165

2023; Anthropic, 2024; Gemini Team Google: Anil 166

et al., 2023) demonstrate state-of-the-art perfor- 167

mance across multimodalities beyond just text. 168

Meanwhile, open-source models like the LLaVA se- 169

ries (Liu et al., 2023, 2024a; Li et al., 2024b,a) and 170

LLaMA 3.2 (Dubey et al., 2024) are also rapidly 171

advancing. While various methods exist for embed- 172

ding image inputs (Yin et al., 2024; Jin et al., 2024), 173

one of the most prominent approaches, LLaVA, 174

employs an off-the-shelf vision encoder (Radford 175

et al., 2021; Zhai et al., 2023) and a trainable pro- 176

jector to convert each image into several hundred 177

visual context tokens of an LLM. 178

Approximate Inference To address the ineffi- 179

ciency of handling visual tokens from images, sev- 180

eral approaches have been proposed based on a 181

common finding: only a sparse subset of the hun- 182

dreds of visual tokens is important, allowing for 183

reduced computational cost with minimal informa- 184

tion loss. Shang et al. (2024); Chen et al. (2024b); 185
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Figure 1: Overview of TABED Considering scenarios
for real-world SD deployments, existing single drafting
methods (M, T) with small draft models exhibit perfor-
mance fluctuations, as target model responses require
different drafting types in both intra-response ( 1⃝ to 2⃝)
and inter-response ( 3⃝) cases. In a fully training-free
manner, TABED addresses this by tracking changes
through deviations from the target model’s previous out-
puts, using multiple drafts obtained via batch inference.
By doing so, we achieves both improved speed and ro-
bustness across diverse input scenarios. See Fig. 2 for
method details.

Lin et al. (2024) dynamically prune significant vi-186

sual tokens based on attention sparsity. Further187

focusing on reducing redundant key-value caches,188

Liu et al. (2024d); Wan et al. (2024) retain key-189

value vectors by merging or discarding less critical190

caches during inference. However, from a latency191

perspective, these approaches primarily benefit the192

prefilling stage while providing limited advantages193

for the decoding stage.194

2.2 Speculative Decoding195

SD for LLMs SD accelerates LLM inference196

using a small draft model while preserving the tar-197

get model’s output distribution (Leviathan et al.,198

2023; Chen et al., 2023). To improve the drafting199

phase, various efforts have been made, including200

generating multiple draft candidates (Miao et al.,201

2023; Sun et al., 2024b; Yang et al., 2024), and202

fine-tuning the draft model with knowledge distilla-203

tion (Zhou et al., 2024). Some studies address cases204

with exceptionally long prefill lengths (e.g., 100k), 205

which significantly affect decoding efficiency (Sun 206

et al., 2024a; Chen et al., 2024a). 207

SD for LVLMs Gagrani et al. (2024) is the only 208

prior work that studied SD for LVLMs.1 They in- 209

troduced text-only drafting and claiming its perfor- 210

mance is comparable to multimodal drafting. How- 211

ever, their benchmark results and detailed analysis 212

of each drafting were limited, and they did not ad- 213

dress how to best use multimodal information for 214

improved drafting. Furthermore, whether or not 215

one can effectively use multiple drafting methods 216

remains unclear. 217

2.3 Test-time Adaptation 218

Test-time adaptation (Liang et al., 2025) aims to en- 219

hance model robustness by adapting to distribution 220

shifts that occur during inference. Since test-time 221

adaptation methods are designed for real-world test- 222

ing scenarios, they assume that only input data can 223

be utilized without access to the corresponding 224

ground truth labels (Wang et al., 2021, 2022). 225

3 Preliminaries 226

3.1 Theoretical Latency of Transformers 227

Following (Chen et al., 2024a), for a given batch 228

size B and a sequence length S, let T (B,S, 1) 229

denote the time to decode a single token and 230

T (B,S, γ) the time to verify γ tokens in paral- 231

lel. Under moderate S (e.g., S ≤ 3k) and suffi- 232

ciently small B (e.g., B ≤ 4) and γ (e.g., γ ≤ 10), 233

the decoding phase displays the following obser- 234

vations (Chen et al., 2024a; Fu, 2024), where 235

∆T = Tmax − Tmin denotes the maximum time 236

difference across the varying parameter in each 237

remark: 238

Remark 1. For given B and S, regardless of γ, 239

T (B,S, γ) remains approximately constant (e.g., 240

|∆T/T | < 0.05). 241

Remark 2. For a given B, regardless of S, 242

T (B,S, 1) remains approximately constant (e.g., 243

|∆T/T | < 0.05). 244

Remark 3. For a given S, regardless of B, 245

T (B,S, 1) remains approximately constant (e.g., 246

|∆T/T | < 0.05). 247

Note that the magnitude of the relative difference 248

|∆T/T | depends on various factors, such as model 249

1Jang et al. (2024) and Teng et al. (2024) propose using
SD for accelerating text-to-image generative models, which
are different from LVLMs.
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architecture, model size, and hardware specifica-250

tions. We empirically demonstrate Remarks 1 to 3251

in Appendix D.252

3.2 Speculative Decoding253

Algorithm Following (Leviathan et al., 2023;254

Zhou et al., 2024), let Mp be the target model255

whose inference we aim to accelerate, and let Mq256

be the draft model for the same task. For a given257

prefix x, generated sequence y<t, chunk length γ,258

and n = 0, . . . , γ − 1, the following steps are re-259

peated until either an <EOS> token is accepted or260

the maximum sequence length is reached:261

1. The Drafting Phase, where Mq sequentially gen-262

erates γ draft tokens from q(yt+n|x, y<t+n).263

2. The Verification Phase, where Mp reviews these264

draft tokens in parallel, comparing them to265

p(yt+n|x, y<t+n).266

3. For sampling, each token yt+n is se-267

quentially accepted with probability268

min
(
1, p(yt+n|x,y<t+n)

q(yt+n|x,y<t+n)

)
. If any token is269

rejected before the end of the block, subsequent270

tokens are discarded, and the rejected token271

is resampled from the adjusted distribution272

norm(max(0, p(y)− q(y))).2273

Block Efficiency and Wall-clock Time Improve-274

ment Given input, the block efficiency τp,q(γ) is275

defined as the expected number of accepted tokens276

per block. Let Tp(B,S, 1) and Tq(B,S, 1) denote277

the time required for Mp and Mq, to decode a sin-278

gle token, and Tp(B,S, γ) denote the time required279

for Mp to verify γ tokens in parallel. For brevity,280

we use the simplified notations Tp, Tq, and Tp(γ),281

omitting B and S. The required time per block282

in SD, denoted as TSD, can be approximated as283

TSD = γ · Tq + Tp(γ) ≈ γ · Tq + Tp by Remark 1.284

The token rate is defined as the number of tokens285

generated per unit time. SD’s wall-clock time im-286

provement can be expressed as the token rate ratio:287

Token rate (SD)
Token rate (target)

=
τp,q(γ)/TSD

1/Tp
≈ τp,q(γ)

γ · Tq

Tp
+ 1

(1)288

Both the block efficiency τp,q(γ) and the draft-to-289

target latency ratio Tq

Tp
are determined by the choice290

of Mq, assuming Mp is fixed. Remarks 2 and 3291

imply the following:292

2Whenever the prefix (x, y<t) is clear from the con-
text, we’ll use p(y) and q(y) to denote p(yt|x, y<t) and
q(yt|x, y<t), respectively.

Remark 4. For a given γ, regardless of B and 293

S, TSD/Tp = γ · Tq

Tp
+ 1 remains nearly identi- 294

cal. (e.g.if we assume Tq/Tp = 0.05 and γ = 5, 295

|∆TSD/TSD| < 0.01). 296

Remark 4 shows that the wall-clock time im- 297

provement in Eq. (1) becomes proportional solely 298

to the value of τp,q(γ), since its denominator 299

γ · Tq

Tp
+ 1 is constant. Moreover, when measur- 300

ing the actual wall-clock time, precise performance 301

comparison becomes challenging due to potential 302

noise from various factors such as hardware varia- 303

tions. Therefore, we utilize block efficiency τp,q(γ) 304

to accurately evaluate the performance of specula- 305

tive decoding. 306

4 Benchmarking SD for LVLMs 307

In this section, we systematically study speculative 308

decoding for LVLMs, evaluating the performance 309

of multimodal and text-only drafting across various 310

benchmark datasets. 311

4.1 Experiment Settings 312

Target and Draft Models We employ LLaVA- 313

1.5 7B (Liu et al., 2024a), one of the most widely 314

adopted public LVLMs, as our target model. To ef- 315

fectively accelerate the target model using SD, the 316

draft-to-target latency ratio—represented by Tq

Tp
317

in Eq. (1)—is crucial. Since no sufficiently small 318

LLaVA models are publicly available, we train our 319

draft model using small public LLaMA variants, 320

with 68M (Miao et al., 2023) as our primary model 321

size, along with 160M (Miao et al., 2023).3 322

For comprehensive benchmarking, we devel- 323

oped three distinct variants of the draft model us- 324

ing different training strategies. First, we trained 325

a draft model following the LLaVA-1.5 training 326

recipe to align with the target model. Second, we 327

trained another draft model using the LLaVA-OV 328

(Li et al., 2024a) training recipe, which specializes 329

in multi-image processing. Finally, we used the 330

base LLaMA model without any LVLM training as 331

the third draft model variant. See Appendix E.1 for 332

more details about draft model training. 333

To summarize, we conducted benchmarks on 334

draft models across i) model sizes: 68M, 160M, 335

and ii) model types: LLaVA-1.5, LLaVA-OV. We 336

particularly focused on the results of LLaVA-1.5 337

3LLaVA-OneVision 0.5B (Li et al., 2024a) is not suitable
as a draft model since its latency ratio Tq/Tp to the 7B model
of the same series exceed 0.5 (QwenTeam).
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Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 68M

M 2.28 2.15 2.56 2.21 2.19 1.96 2.34 2.24 1.19 1.16
T 2.19 2.08 2.31 2.16 2.23 2.34 2.27 2.23 2.05 2.05
MT 2.25 2.15 2.47 2.21 2.31 2.37 2.4 2.31 1.94 1.91
MT* 2.26 2.16 2.52 2.21 2.29 2.39 2.36 2.31 2.02 2.04

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 68M

M 2.1 1.96 2.78 2.18 1.61 1.53 1.83 2.00 1.98 2.25
T 2.32 2.23 2.91 2.56 1.87 2.01 2.08 2.28 2.03 2.30
MT 2.29 2.24 2.93 2.54 1.81 1.91 2.02 2.25 2.02 2.28
MT* 2.29 2.23 2.93 2.56 1.85 1.99 2.05 2.27 2.03 2.29

Table 1: Block efficiency results for multimodal drafting (M) and text-only drafting (T) are presented. MT
uses training-free ensemble learning via batched inference, while MT* dynamically weights these using test-time
adaptation. Across all combinations of turn-taking, image inclusion, contextual relatedness, and datasets (benchmark
and OOD), MT* consistently matches or outperforms the best single draftings, while M and T vary by scenario.
These results are achieved using draft models only, with no additional costs during training or inference. See
Appendix A for details on various model sizes and types.

68M, which has the smallest model size and a train-338

ing distribution well-aligned with the target model.339

We separately evaluated the model on multimodal340

tasks and observed that the trained model can per-341

ceive multimodality (see Appendix E.2).342

Input Scenarios Given their use in real-world343

deployments, SD systems must perform reliably344

across diverse input scenarios, ensuring both con-345

sistent speedup and stability. To evaluate this, we346

curated seven benchmark datasets to address the347

lack of established benchmarks for LVLM SD sys-348

tems. These datasets cover both single-image tasks349

(Liu et al., 2023; Mathew et al., 2021; Li et al.,350

2023b; Yu et al., 2023) and multi-image scenarios351

(Tan et al., 2019; Zhang et al., 2024b; Jhamtani352

and Berg-Kirkpatrick, 2018). We also included353

two datasets with multi-image (n = 5) inputs (Li354

et al., 2019; Huang et al., 2016) as notable Out-of-355

Distribution (OOD) cases, where the system must356

handle unexpected, significantly different queries357

while maintaining consistent speedup.358

We further evaluated multi-turn scenarios us-359

ing benchmark datasets that incorporate various360

types of follow-up queries, including those depen-361

dent on prior responses (e.g., follow-up requests362

with images from the same dataset or text-only363

tasks from multi-turn benchmarks for LVLMs (Liu364

et al., 2024b)) and distinct text-only reasoning365

tasks (Kwiatkowski et al., 2019; Cobbe et al.,366

2021). For all scenarios, the reliability of the tar-367

get model’s responses was evaluated (see Appen-368

dices C and G for details and qualitative examples).369

Drafting Methods: Multimodal and Text-only 370

The multimodal drafting follows the standard 371

LVLM process and accepts both images and text. 372

In contrast, text-only drafting, which was first ex- 373

plored in (Gagrani et al., 2024), uses only textual 374

data as input for the draft model and follows the 375

standard LLM process. We set γ = 5 and perform 376

greedy decoding with a maximum of 128 new to- 377

kens for all experiments in the paper, including this 378

section. 379

4.2 Experimental Results 380

Table 1 presents the block efficiency results for 381

multimodal (M) and text-only (T) drafting. Re- 382

gardless of model size or multi-image awareness 383

capabilities, multimodal drafting achieves higher 384

block efficiency than text-only drafting in single- 385

turn cases across most benchmark datasets. How- 386

ever, text-only drafting shows comparable over- 387

all performance and even outperforms multimodal 388

drafting in subsequent turns and OOD cases. 389

Summary: No One-Size-Fits-All Drafting 390

Both text-only and multimodal drafting exhibit 391

scenario-specific performance fluctuations when 392

using draft models small enough for SD in LVLM 393

inference, with neither method consistently outper- 394

forming the other across various input scenarios. 395

It’s hard to know in advance which one is better 396

before execution, and even if known, addressing 397

inconsistency with a single drafting method is diffi- 398

cult. 399

5



w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

Target Model
Distribution
(Verification)

Draft Model (M)
Distribution

Draft Model (T)
Distribution

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

…

…

…

History

1 t-1

Batch 
Inference

a ×

+

b ×

a ×

≈ ≈

Choose the optimal  
ensemble weights 
based on history 

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

t

a ×

b ×

+

b ×

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

𝑤𝑴  ×
‘a’ ‘b’ ‘c’ ‘d’ ‘e’

𝑤𝑻  ×+ ≈
‘a’ ‘b’ ‘c’ ‘d’ ‘e’

Choose the optimal  
ensemble weights 
based on history 

𝑤𝑴  ×

𝑤𝑴  ×

Target Model
Distribution
(Verification)

Drafting by
Batch

Inference

Target
Verification

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘a’ ‘b’ ‘c’ ‘d’ ‘e’
, ॱॱॱ  ,

Distributions of
Past Drafting Blocks

Ensemble Drafting
for the Current Block

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘a’ ‘b’ ‘c’ ‘d’ ‘e’

𝑤𝑻  ×

+ +

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘a’ ‘b’ ‘c’ ‘d’ ‘e’

The jersey design … three different styles of 
Target

Response

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

𝑤𝑴  ×

𝑤𝑻  ×

+

↕ ↕Distance (Target, Draft; 𝑤𝑴, 𝑤𝑻)

…
, ॱॱॱ  ,

, ॱॱॱ  ,

*

*

 Use the optimal 
 ensemble weights 
𝑤𝑴  and  𝑤𝑻

 that minimize 
Distance ( T , D ; 𝑤𝑴, 𝑤𝑻)

 of past timesteps 

* *

Timestep

Figure 2: TABED first employs multiple drafting meth-
ods via batch inference. It then predicts the optimal
weight, w∗, to dynamically adjust the weights of these
drafts based on the deviation of previous drafting blocks
from the target model’s prior outputs. This approach
is fully training-free and easily extendable to support
additional drafting strategies (Section 6) with negligible
cost. See Algorithm 1 for further details.

5 Test-time Adaptive Batched Ensemble400

Drafting401

In this section, we propose Test-time Adaptive402

Batched Ensemble Drafting (TABED), a training-403

free drafting method designed to handle diverse404

input scenarios for LVLMs which leverages (1)405

multiple draftings simultaneously through batch406

inference and (2) the dynamic combination of mul-407

tiple drafting inferences by adapting the weight for408

each. This process can be seamlessly integrated409

with existing LVLM acceleration techniques and410

other forms of SD. Fig. 2 illustrates the TABED411

framework.412

5.1 Proposed Method413

Ensemble learning via Batched Inference En-414

semble learning (Dietterich, 2000; Ganaie et al.,415

2022) is a powerful technique that combines mul-416

tiple predictions to improve performance. This is417

particularly beneficial for small models with lim-418

ited capacity and high bias, as ensembling helps419

reduce both bias and variance in predictions (Zhou,420

2012). However, it often requires additional param-421

eters or models to generate multiple predictions.422

For a training-free and robust drafting method,423

we use ensembling based on multiple predictions424

generated through batched inference tailored for425

LVLMs. At each decoding timestep, all m draft-426

ings share the parameters of the draft model Mq,427

and their distributions are ensembled to sample the428

Algorithm 1 TABED

Parameter: Mq, Prefix X = [x(1), ..., x(m)], W =
weight list of Wj(= [w(1),j , ..., w(m),j ])
▷ W-AVG stands for Weighted Average
▷ D stands for Distance
Input: Batch b<t := [(x(1), y<t), ..., (x

(m), y<t)]
Output: γ draft tokens yt, ..., yt+γ−1 and ensem-
bled probabilities qt, ..., qt+γ−1

1: procedure TABED(b<t; γ, W )
2: qj = [q(·|x, y<1;W

j), ..., q(·|x, y<t;W
j)]

3: pt′ = [p(y<1), ..., p(y<t)])
4: W ∗

t ← argminj D(pt′ , q
j ;W j)

5: for i← 0 to γ − 1 do
6: [q

(1)
t+i, ..., q

(m)
t+i ]←Mq(b<t+i)

7: qt+i ← W-AVG([q
(1)
t+i, ..., q

(m)
t+i ];W

∗
t )

8: yt+i ← SAMPLE(qt+i)
9: end for

10: return [yt, ..., yt+γ−1], [qt, ..., qt+γ−1]
11: end procedure

next token in the draft candidate (see Algorithm 1 429

for details). We use a weighted averaging ensem- 430

ble method, sampling a token from the ensembled 431

distribution to continue drafting. This approach is 432

extensible, as it incurs no additional costs during ei- 433

ther the training or inference stages—requiring no 434

further training and causing no inference slowdown 435

(Eq. equation 1, Remarks 3 and 4). 436

Test-time Adaptive Ensemble Weights While 437

using fixed equal weights in ensemble learning can 438

be effective, performance can be further improved 439

by dynamically adjusting these weights W . This 440

allows for a more effective combination of proba- 441

bilities [q(1)t , . . . , q
(m)
t ], making the ensembled dis- 442

tribution q(·|x, y<t;W ) more closely align with 443

the target distribution p(·|x, y<t). For instance, the 444

weight assigned in multimodal drafting may vary 445

based on the importance of visual context for a spe- 446

cific sample x and timestep t. To achieve this, we 447

explore test-time adaptation for dynamic weights. 448

Unlike previous works on test-time adapta- 449

tion (Wang et al., 2021, 2022), in the case of SD, 450

after completing the verification of all steps prior 451

to t, we gain access to both hard labels (i.e., y<t) 452

and soft labels (i.e., p(yt′) for t′ < t) for these 453

earlier steps. This information can be leveraged 454

when drafting restarts from step t, allowing for 455

the dynamic adjustment of each drafting method’s 456

influence based on its performance. 457
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To achieve this, we explore dynamic weighting458

rules that leverage both types of labels. Specifically,459

at the beginning of a new drafting block, we first460

sample n weight lists W j = [w(1),j , . . . , w(m),j ]461

where j = 1, . . . , n (Algorithm 1). Using each462

W j , we can generate n trajectories of length t− 1,463

where each trajectory consists of ensembled draft464

probabilities qjt′ = q(·|x, y<t′ ;W
j). From these465

trajectories, we sample token trajectories and select466

the best W j that maximizes the number of matches467

with the hard labels y<t. We can further use soft468

labels p(yt′) in a complementary manner to select469

the best W j that minimizes the accumulated error470

ejt over the previous steps t′.471

ejt =
∑
t′<t

DKL
(
p(· | x, y<t′) ∥ qjt′(· | x, y<t′)

)
(2)472

where DKL is the KL divergence between p and473

qjt′ at each of the previous steps t′. This weight list474

W ∗
t is used throughout the current drafting block of475

γ tokens (i.e., from timestep t to t+ γ − 1). Draft-476

ing methods with higher weights indicate closer477

alignment to the target model. This approach dy-478

namically adjusts their influence during the drafting479

process.480

5.2 Experimental Results481

Table 1 presents the block efficiency results of482

TABED across various input scenarios. MT*,483

which utilizes two existing single draftings (M and484

T), demonstrates comparable or superior perfor-485

mance to the best single draftings (M or T) across486

all combinations of turn-taking, image inclusion, re-487

latedness to prior context, and datasets (both bench-488

mark and OOD). Even when MT* achieves the489

second-best results, its performance remains very490

close to the best, unlike the wider performance gap491

observed with other methods. These consistent av-492

erage performance improvements underscore its493

ability to effectively distinguish between strong494

and weak drafting methods during test time and495

assign optimal weights by dynamically adapting as496

more history accumulates. This is further validated497

through variable control in the comparison between498

MT* and MT, a simpler ensemble drafting method499

with a fixed 1:1 weight ratio.500

Draft Model Benchmark OOD

Type Size Method First Second Avg.

LLaVA-1.5 68M

M 2.24 2.00 1.18
T 2.23 2.28 2.05
C 2.29 2.30 2.09
P 2.23 2.25 2.08
MTCP 2.32 2.31 2.12

Table 2: Block efficiency results for single draftings
(multimodal (M), text-only (T), caption (C), and pooled-
multimodal (P)) are presented. Notably, MTCP applies
batched inference to draftings without adding training or
inference costs. Using only batched inference, MTCP
consistently achieves the highest block efficiency across
both the first and second turns in all benchmark and
OOD datasets compared to all single draftings. Block
efficiency is averaged across datasets in each category.

6 Extensible Framework: Exploring 501

Drafting Candidates for LVLMs 502

In LVLM SD setting: (1) image tokens have rel- 503

atively sparse importance and receive meaningful 504

attention only in certain layers compared to text 505

tokens (Shang et al., 2024; Chen et al., 2024b) and 506

(2) the image in the input can be manipulated in 507

various ways and appended to the text, unlike in the 508

LLM SD setting. Building on these observations, 509

we explore and benchmark two alternative drafting 510

schemes: pooled multimodal drafting and caption 511

drafting, which provide visual information to the 512

draft model through different mechanisms. These 513

drafting schemes can be seamlessly integrated into 514

our proposed method without incurring additional 515

costs during training or inference. 516

6.1 Pooled Multimodal Drafting 517

We apply average pooling during inference to com- 518

press image information while preserving the 2D 519

spatial structure just before the projector transforms 520

it into the text embedding space. Specifically, we 521

use a 2 × 2 pooling kernel, reducing the number 522

of visual tokens from 576 to 144 as our default 523

configuration. 524

6.2 Caption Drafting 525

To condense sparsely important image tokens into 526

textual descriptions, we employ a lightweight im- 527

age captioning model (Li et al., 2022, 2023a; Xiao 528

et al., 2024). The captioning model runs only once, 529

in parallel with the target model’s prefilling stage, 530

so it is effectively hidden within the prefill phase 531

of the target model. Any minor delays, such as 532
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those caused by hardware variations, are amortized533

across the entire decoding process (Fig. 7). We534

use Florence as the default captioning model (see535

Appendix B for further details).536

6.3 Experimental Results537

Leveraging the extensibility of our approach, we538

incorporate the alternative drafting candidates539

pooled-multimodal drafting (P) and caption draft-540

ing (C) into the framework into M and T, and eval-541

uating their performance on the same scenarios.542

MTCP further achieves significant performance543

gains in most scenarios, due to the differently aug-544

mented visual information introduced by P and C.545

As shown in Table 2, P and C retain the strong546

robustness of text-only drafting while achieving547

better overall performance on both benchmark and548

OOD datasets. This indicates that the condensed vi-549

sual context produced by P and C exhibits a certain550

degree of image awareness. Notably, with more551

drafting candidates, MTCP using only batched in-552

ference consistently achieves the highest block ef-553

ficiency compared to M, T, C, and P across both554

the first and second turns in all benchmark and555

OOD datasets. Block efficiency is averaged across556

datasets in each category.557

7 Conclusion558

In this work, we analyze existing drafting meth-559

ods for LVLM SD exhibit scenario-specific perfor-560

mance fluctuations across diverse scenarios rele-561

vant to real-world deployments. To address this,562

we propose TABED, a training-free framework that563

combines multiple drafting methods via batch in-564

ference and dynamically adapts their contributions565

at test time to leverage small draft models in SD566

settings. Our approach achieves a 1.8x speedup567

and over 5% performance improvement compared568

to single drafting methods, with no additional train-569

ing or parameters. We further enhance TABED570

by integrating unexplored methods, improving its571

robustness and versatility across diverse scenarios.572

8 Limitations and Future Works573

While we focused on a single draft candidate and574

single verification scheme to understand the funda-575

mentals of LVLM SD, one may use multiple draft576

candidates (Miao et al., 2023; Yang et al., 2024; Cai577

et al., 2024). Being orthogonal to these approaches,578

our method is easily compatible with them and579

could benefit from such integrations. We believe580

that our approach is applicable to other MLLMs 581

such as those for audio and text tokens (Fu et al., 582

2024). 583
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A TABED with Different Draft Models 910

In this section, we evaluate the performance of our 911

TABED for two different choices of the draft model: 912

LLaVA-1.5 160M (fine-tuned with the same recipe 913

as LLaVA-1.5 68M), and LLaVA-OV (the same 914

architecture as LLaVA-1.5 68M but fine-tuned with 915

the multi-image-aware OneVision recipe). The full 916

results are presented in Table 3. 917

B Details for Caption Drafting 918

In this section, we describe various types of 919

lightweight image captioning models that can be 920

used for caption drafting (Appendix B.1). We 921

then demonstrate that captioning model inference 922

completes earlier than the target model’s prefill- 923

ing by analyzing the captioning model’s latency 924

(Appendix B.2). 925

B.1 Captioning Models 926

BLIP (Li et al., 2022) A vision-language model 927

trained on bootstrapped synthetic captions. It uses 928

a visual transformer and the text encoder of BERT 929

(Devlin et al., 2019) to separately encode image 930

and text. 931

https://huggingface.co/Salesforce/ 932

blip-image-captioning-base 933

BLIP-2 (Li et al., 2023a) A vision-language 934

model using a frozen off-the-shelf image encoder 935

and LLM. A querying transformer trained using 936

boostrapped data is included for cross-modal align- 937

ment. 938

https://huggingface.co/Salesforce/ 939

blip2-opt-2.7b 940

Florence-2 (Xiao et al., 2024) A vision-language 941

model that is instruction-trained for a variety of 942

tasks. Its architecture consists of a single sequence- 943

to-sequence transformer and a vision encoder. 944

https://huggingface.co/microsoft/ 945

Florence-2-large-ft 946

B.2 Latency Analysis 947

It is important to ensure that the captioning model 948

runs fast enough so that it does not delay drafting. 949

In this line, we measure in Table 4 the time taken 950

by the two captioning models, BLIP and Florence- 951

2, to generate captions. The results demonstrate 952

captioning completes earlier than target model’s 953

prefilling. 954
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Draft Model Benchmark Datasets OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot PSV VIST

LLaVA-OV 68M
M 1.97 2.02 2.20 2.05 2.07 2.15 2.12 1.77 1.74
T 2.00 2.04 2.07 2.05 2.19 2.25 2.11 1.90 1.83
MT 2.02 2.08 2.26 2.08 2.24 2.32 2.22 1.96 1.91

LLaVA-1.5 160M
M 2.61 2.47 2.89 2.52 2.43 2.23 2.66 1.29 1.27
T 2.47 2.31 2.50 2.42 2.56 2.73 2.63 2.28 2.31
MT 2.60 2.49 2.80 2.54 2.65 2.74 2.78 2.18 2.15

Table 3: Evaluation of a larger LLaVA-1.5 draft model (160M), obtained through standard visual instruction tuning,
and a same-sized LLaVA-OV draft model (68M), obtained through multi-image-aware fine-tuning.

Latency (s)

Model Type n = 1 n = 2 n = 5

Target LVLM (prefilling) LLaVA-1.5 7B 0.112 0.207 0.540

Image Captioning
BLIP 0.054 0.055 0.074

Florence-2 0.105 0.149 0.292

Table 4: Latency analysis of image captioning models.
BLIP and Florence-2 captioning latencies are lower than
the target LVLM’s prefilling latency. Parallel processing
can therefore hide captioning latency without affecting
time to first token.

Datasets

Model Spot-the-Diff MagicBrush

GPT-4o 19.1 10.5
GPT-4o-mini 12.0 9.1
LLaVA-1.5 7B 13.9 9.6
LLaVA-1.5 7B (text-only) 11.1 8.4

Table 5: Evaluation results for the target model on
benchmark datasets. Our target model, LLaVA-1.5
7B, demonstrates performance comparable to GPT-4o-
mini.The injection of multimodal information in the
input scenarios of the benchmark datasets benefits the
target model, LLaVA-1.5 7B.

C Evaluation of Target Model955

In this section, we present both quantitative re-956

sults (Appendix C.1) and qualitative samples (Ap-957

pendix C.2) produced by LLaVA-1.5 7B, which958

serves as the target model in our experimental set-959

ting.960

C.1 Quantitaive Evaluation961

We assess the output quality of LLaVA-1.5 7B us-962

ing benchmark datasets, as shown in Table 5. The963

results demonstrate that the quality of LLaVA-1.5964

7B is comparable to GPT-4o-mini.The injection of965

multimodal information benefits the target model,966

LLaVA-1.5 7B, from the perspective of output qual-967

ity.968

C.2 Generated Samples 969

Spot The Difference [Fig. 6e] 970

Q: What has changed from the first image to the 971

second? 972

A: The image shows a city street with a grassy 973

area in the middle of the road. In the first image, 974

there are several cars parked along the street, and a 975

few people are walking around. The street appears 976

to be relatively empty, with no traffic or significant 977

activity. In the second image, the street is bustling 978

with activity. There are numerous cars parked along 979

the street, and several people are walking around. 980

The scene is more lively and dynamic, with a higher 981

level of activity compared to the first image. 982

MagicBrush [Fig. 6f] 983

Q: Please provide the image edit instruction that 984

can transfrom the source image to the target image. 985

A: To transform the source image into the target 986

image, follow these steps: 1. Remove the red- 987

haired girl from the scene, as she is not part of the 988

target image. 2. Replace the girl with a back pack, 989

which should be placed on the stairs. 3. Add a bus 990

in the background, making sure it is yellow and 991

occupies the entire width of the image. 4. Place 992

a person in the background, standing near the bus, 993

to give a sense of scale and context. 5. Adjust 994

the lighting and shadows to create a more realistic 995

scene. 996

PororoSV [Fig. 6g] 997

Q: Taking the stories from the initial images 998

into account, can you conclude the story using the 999

elements of the final image? 1000

A: The image features a group of cartoon charac- 1001

ters, including a penguin, a fox, and a pink charac- 1002

ter, standing in a snowy environment. The charac- 1003

ters are positioned in various locations, with some 1004

standing closer to the foreground and others further 1005

back. The scene appears to be a part of a video 1006
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game or animated series, as the characters are in-1007

teracting with each other and their surroundings.1008

VIST [Fig. 6h]1009

Q: With the narratives paired with the initial1010

images, how would you conclude the story using1011

the last picture?1012

A: The image captures a thrilling moment during1013

a volley ball game, with a woman leaping into the1014

air to hit the ball. She is wearing a purple shirt1015

and is in the process of jumping to make contact1016

with the sports ball. The scene is filled with excite-1017

ment and anticipation as the players on the court1018

watch her performance. The volley ball game is1019

taking place on a court, and the players are actively1020

engaged in the match.1021

D Empirical Validation of Remarks 1-31022
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Figure 4: Empirical demonstration of Remark 1.

In this section, we validate the Remarks from1023

Sec. 3.1 with empirical timing measurements. Fo-1024

cusing on the case where the remarks apply to spec-1025

ulative decoding settings, we use LLaVA-1.5 7B1026

and LLaVA-1.5 68M to measure Tp(B,S, γ) for 1027

Remark 1 and Tq(B,S, 1) for Remarks 2 and 3, 1028

respectively. All experiments are conducted on an 1029

A100 80GB GPU using the fp16 data type for the 1030

models. Under moderate S (e.g., S ≤ 3k) and suffi- 1031

ciently small B (e.g., B ≤ 4) and γ (e.g., γ ≤ 10), 1032

the decoding phase displays the following observa- 1033

tions: 1034

Remark 1. For given B and S, regardless of γ, 1035

T (B,S, γ) remains approximately constant (e.g., 1036

|∆T/T | < 0.05). 1037

Remark 2. For a given B, regardless of S, 1038

T (B,S, 1) remains approximately constant (e.g., 1039

|∆T/T | < 0.05). 1040

Remark 3. For a given S, regardless of B, 1041

T (B,S, 1) remains approximately constant (e.g., 1042

|∆T/T | < 0.05). 1043

Fig. 3 shows Tq(B,S, 1) in milliseconds for 1044

sequence lengths up to 3k for each batch size 1045

B ∈ {1, 2, 3, 4}. For moderate sequence lengths 1046

S ≤ 3k, Tq varies by no more than 5% for each B, 1047

which supports Remark 2. Similarly, when com- 1048

paring different Bs with a fixed S, Tq varies by no 1049

more than 5%, which supports Remark 3. 1050

Fig. 4 shows Tp(B,S, γ) in milliseconds for 1051

each γ ∈ {1, 3, 5, 7}. We test the case of B=1, 1052

which aligns with our experimental settings where 1053

the target model always performs inference on a 1054

single batch. Over the values of γ considered, Tp 1055

varies by no more than 5%. 1056

E Training and Evaluation of Draft 1057

Models 1058

In this section, we present a more detailed overview 1059

of our custom training procedure for the draft mod- 1060

els (Appendix E.1). We then evaluate our primary 1061

draft model, LLaVA-1.5 68M, on multimodal tasks 1062

to ensure it has the capability to properly perceive 1063

multimodality, and we provide some qualitative 1064

samples from the draft model (Appendix E.2). 1065

E.1 Details of Training 1066

LLaVA-1.5 (Liu et al., 2024a) The process for 1067

developing draft models with LLaVA-1.5 (68M, 1068

160M) training recipe was divided into two stages: 1069

pre-training and instruction fine-tuning (IFT). Pre- 1070

training focuses on training the projector while 1071

the parameters of the LLM and vision encoder are 1072

frozen. During the IFT stage, visual instruction 1073

tuning is used to teach the LLM to follow multi- 1074

modal instructions. The vision encoder remains 1075
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frozen throughout both stages. The hyperparame-1076

ters used for each stage are described in Table 6.1077

We trained the draft model using datasets curated1078

by the original author of LLaVA-1.5. For more1079

training details, see https://github.com/haotian-1080

liu/LLaVA/tree/main.

Hyperparameter Value

Training Epochs 1
Batch Size 256

Learning Rate (LR) 1e-3
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(a) Pretraining stage

Hyperparameter Value

Training Epochs 1
Batch Size 128

Learning Rate (LR) 2e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(b) Instruction fine-tuning
stage

Table 6: Details of hyperparameters used in LLaVA-1.5
training

1081

LLaVA-OneVision (Li et al., 2024a) The de-1082

velopment of draft models using the LLaVA-1083

OneVision (LLaVA-OV) training recipe was di-1084

vided into three stages: language-image alignment,1085

high-quality knowledge learning, and visual in-1086

struction tuning. In the language-image alignment1087

stage, visual features are aligned with the word em-1088

bedding space of LLMs. High-quality knowledge1089

learning balances computational efficiency with1090

the integration of new knowledge into LVLMs. Vi-1091

sual instruction tuning consists of two phases: (i)1092

Single-Image Training, where the model learns to1093

perform visual tasks using instructions from sin-1094

gle images, and (ii) OneVision Training, where the1095

model learns to execute multi-image visual tasks us-1096

ing a blend of video, single-image, and multi-image1097

data. During the language-image alignment stage,1098

only the projector for aligning visual features is up-1099

dated, whereas all components including LLM are1100

updated in the following three stages. We trained1101

the draft model using datasets curated by the origi-1102

nal author of LLaVA-OV (Li et al., 2024a). The hy-1103

perparameters used for each stage are described in1104

Table 7, and the learning rate for the vision encoder1105

is one-fifth of that for the LLM across all stages.1106

For more details, visit https://github.com/LLaVA-1107

VL/LLaVA-NeXT.1108

E.2 Evaluation Results1109

Table 8 presents the evaluation results of our pri-1110

mary draft model, LLaVA-1.5 68M, on OCR-1111

Bench (Liu et al., 2024c) and TextCaps (Sidorov1112

et al., 2020) datasets. We assess the output quality1113

of the draft model with and without image inputs1114

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-3
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(a) Image alignment stage

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(b) High-quality knowledge
learning stage

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(c) Visual instruction tuning
stage: Single-image training

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(d) Visual instruction tuning
stage: OneVision training

Table 7: Details of hyperparameters used in LLaVA-OV
training

and compare the results with those of the target 1115

model, LLaVA-1.5 7B. In terms of output qual- 1116

ity, the draft model with image inputs consistently 1117

outperforms the one without, illustrating that the 1118

injection of multimodal information benefits the 1119

custom-trained draft model. 1120

Fig. 5 presents qualitative samples from the 1121

OCRBench dataset. Both LLaVA-1.5 7B and 68M 1122

models provided accurate responses, whereas the 1123

text-only LLaVA-1.5 68M model failed to answer 1124

correctly due to its lack of image-processing capa- 1125

bilities. 1126

OCRBench TextCaps

Model Accuracy METEOR ROUGE

LLaVA-1.5 7B 0.207 0.249 0.480
LLaVA-1.5 68M 0.048 0.133 0.254
LLaVA-1.5 68M (text-only) 0.014 0.064 0.132

Table 8: Evaluation results for the off-the-shelf target
model and the custom-trained draft model on MLLM
tasks. Since the draft model is trained to perceive multi-
modality, the injection of multimodal information bene-
fits the custom-trained draft model.

F Prompts for Each Dataset and Drafting 1127

In this section, we describe the formats of prompts 1128

used for inference on each dataset, including sys- 1129

tem prompts and how to organize prompts with text 1130

and image inputs (Appendix F.1). We then provide 1131

details on replacing image tokens in text-only and 1132

caption drafting (Appendix F.2). 1133
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What is written in the image?

(a) Instruction

The image has the word “friend”
written on it.

(b) LLaVA-1.5 7B

The word “friend” is written in
the image.

(c) LLaVA-1.5 68M

The image is a type of text that is
written in the image.

(d) LLaVA-1.5 68M (text-
only)

Figure 5: Qualitative evaluation samples from the OCRBench dataset by LLaVA-1.5 7B and 68M. Both the target
(b) and the draft (c) models recognize the text “friend” written on the image by multimodal reasoning whereas the
text-only model (d) fails, as expected.

F.1 Prompt Formats for Each Dataset1134

We use the following prompt formats for respective1135

tasks. Based on the template for chat (USER: and1136

ASSISTANT:), each system prompt is prepended1137

with the start token <s>. The <image> token1138

is used to represent image data within a prompt.1139

[QUESTION] and [CAPTION] are placeholders1140

denoting information unique to each sample of a1141

dataset.1142

LLaVA-Bench (In-the-Wild) <s> USER:1143

<image> For the following question, provide a1144

detailed explanation of your reasoning leading to1145

the answer. [QUESTION] ASSISTANT:1146

DocVQA <s> USER: <image> For the follow-1147

ing question, provide a detailed explanation of your1148

reasoning leading to the answer. [QUESTION] AS-1149

SISTANT:1150

POPE <s> USER: <image> For the following1151

question, provide a detailed explanation of your1152

reasoning leading to the answer. [QUESTION]1153

ASSISTANT:1154

MMVet <s> USER: <image> For the follow-1155

ing question, provide a detailed explanation of your1156

reasoning leading to the answer. [QUESTION] AS-1157

SISTANT:1158

IEdit <s> USER: Please provide instructions1159

for editing the source image to match the target1160

image. Source Image: <image> Target Image:1161

<image> Instruction: ASSISTANT:1162

MagicBrush <s> USER: Please provide in-1163

structions for editing the source image to match1164

the target image. Source Image: <image> Target1165

Image: <image> Instruction: ASSISTANT:1166

Spot The Difference <s> USER: Explain the1167

disparities between the first and second image.1168

<image> <image> Difference: ASSISTANT:1169

PororoSV <s> USER: Given the progression of 1170

the story with the first few images, can you write a 1171

fitting end considering the last image? <image> 1172

Caption #1: [CAPTION] <image> Caption #2: 1173

[CAPTION]. <image> Caption #3: [CAPTION] 1174

<image> Caption #4: [CAPTION] <image> Cap- 1175

tion #5: ASSISTANT: 1176

VIST <s> USER: With the narratives paired 1177

with the initial images, how would you conclude the 1178

story using the last picture? <image> Caption #1: 1179

[CAPTION] <image> Caption #2: [CAPTION]. 1180

<image> Caption #3: [CAPTION] <image> Cap- 1181

tion #4: [CAPTION] <image> Caption #5: AS- 1182

SISTANT: 1183

F.2 Replacing Image tokens in Draftings 1184

For text-only drafting, the <image> token is re- 1185

placed by the escape character “\n”. We exper- 1186

imented with several replacement methods: (1) 1187

tokenizing the string “<image>” into three to- 1188

kens, and (2) retaining the special token <image> 1189

without replacing it with an image embedding. 1190

Method (2) resulted in very poor block efficiency, 1191

but method (1) showed comparable block efficiency. 1192

Our replacement approach is simple because it en- 1193

sures that the prompt length remains consistent 1194

before and after replacement. 1195

For caption drafting, the <image> token is re- 1196

placed by a generated caption with a prefix. Specif- 1197

ically, after the lightweight captioning model gen- 1198

erates a caption based on the image inputs in the 1199

sample, we prepend the string “image: ” to the 1200

caption and replace the <image> token. 1201

G Details of Each Dataset 1202

In this section, we describe each of the curated 1203

datasets in benchmark (Appendix G.1) and OOD 1204

(Appendix G.2) datasets and provide links to them 1205

for convenience and reproducibility. 1206
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(a) LLaVA-Bench (In-the-
Wild) (b) DocVQA (c) POPE (d) MMVET

(e) Spot the Difference (f) MagicBrush

(g) PororoSV

(h) VIST

Figure 6: Qualitative image samples of benchmark and OOD datasets. The corresponding questions and answers
are presented in Appendix C.

G.1 Benchmark Datasets1207

LLaVA-Bench (In-the-Wild) (Liu et al., 2023)1208

A dataset for comparing the performance of vision-1209

language models against state-of-the-art propri-1210

etary models. Each prompt is provided with an1211

image, a caption, and a reference answer from text-1212

only GPT-4. Prompt styles include question an-1213

swering, image description, and complex reasoning.1214

In total, the dataset contains 60 unique prompts and1215

24 unique images.1216

https://huggingface.co/datasets/1217

lmms-lab/llava-bench-in-the-wild1218

DocVQA (Mathew et al., 2021) DocVQA is a1219

dataset designed for visual question answering on1220

document images, comprising 50,000 questions 1221

over 12,000+ diverse document images. 1222

https://huggingface.co/datasets/ 1223

lmms-lab/LMMs-Eval-Lite 1224

POPE (Li et al., 2023b) A multimodal question 1225

answering dataset that asks binary (yes or no) ques- 1226

tions about whether certain objects are present in 1227

an image. The subset used for evaluation in our 1228

work contains 100 pairs of images and questions. 1229

https://huggingface.co/datasets/ 1230

lmms-lab/LMMs-Eval-Lite 1231

MMVet (Yu et al., 2023) MM-Vet is a bench- 1232

mark designed to evaluate large multimodal mod- 1233

els on complex tasks, focusing on the integration 1234
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of six core vision-language capabilities: recogni-1235

tion, OCR, knowledge, language generation, spa-1236

tial awareness, and math.1237

https://huggingface.co/datasets/1238

lmms-lab/MMVet1239

Spot the Difference (Jhamtani and Berg-1240

Kirkpatrick, 2018) A dataset of crowd-sourced1241

descriptions of differences between a pair of im-1242

ages. The subset used for evaluation in our work1243

contains 100 annotated image pairs collected using1244

individual frames of security-footage data.1245

https://huggingface.co/datasets/1246

lmms-lab/LLaVA-NeXT-Interleave-Bench1247

IEdit (Tan et al., 2019) A dataset to train mod-1248

els to describe the relationship between images via1249

editing instructions. The subset used for evaluation1250

in our work contains 100 image pairs of a source1251

image and a target image, accompanied by instruc-1252

tions on how to transform the source image into the1253

target.1254

https://huggingface.co/datasets/1255

lmms-lab/LLaVA-NeXT-Interleave-Bench1256

MagicBrush (Zhang et al., 2024b) A dataset1257

for text-guided image editing containing manually1258

annotated editing instructions to transform one real1259

image into another. The subset used for evaluation1260

in our work contains 100 triplets of a source image,1261

a target image, and editing instructions.1262

https://huggingface.co/datasets/1263

lmms-lab/LLaVA-NeXT-Interleave-Bench1264

G.2 OOD Datasets1265

Pororo-SV (Li et al., 2019) A dataset of stories1266

each created by pairing 5 consecutive frames from1267

the animated series Pororo with a text description.1268

The subset used for evaluation in our work contains1269

100 stories.1270

https://huggingface.co/datasets/1271

lmms-lab/LLaVA-NeXT-Interleave-Bench1272

VIST (Huang et al., 2016) A dataset of sequen-1273

tial images paired with three types of descriptions1274

ranging from isolated factual descriptions to causal,1275

narrative interpretations. The subset used for eval-1276

uation in our work contains 100 sequences of 31277

images.1278

https://huggingface.co/datasets/1279

lmms-lab/LLaVA-NeXT-Interleave-Bench1280
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Figure 7: Inference time analysis for the LLaVA-1.5 7B
model. Although the time for vision encoder and prefill-
ing increases with the number of images, the decoding
stage still dominates.

G.3 Time Analysis of LVLM Inference Stages 1281

To analyze how the number of input images af- 1282

fect the LVLM inference time, we select ChartQA 1283

(Masry et al., 2022), Spot the Difference (Jham- 1284

tani and Berg-Kirkpatrick, 2018), and PororoSV 1285

(Li et al., 2019) datasets representing 1, 2, and 5 1286

images with corresponding visual context lengths 1287

of 0.6k, 1.2k, and 3k, respectively. We visualize 1288

the generation time by component in Fig. 7 with 1289

100 generated tokens for analysis, with actual av- 1290

erage decoding lengths of 92, 117, and 88, respec- 1291

tively. The execution time of the vision encoder 1292

and prefilling stages increases in proportion with 1293

the number of input images, as each image is con- 1294

verted into several hundred context tokens. In con- 1295

trast, the decoding stage shows little difference in 1296

execution time across varying numbers of input 1297

images, while dominating the total generation time. 1298

Hence, although reducing the number of visual to- 1299

kens (Shang et al., 2024; Chen et al., 2024b; Lin 1300

et al., 2024) would significantly improve the effi- 1301

ciency of vision encoder and prefilling stages, it 1302

would have only marginal impact on the dominant 1303

decoding stage. 1304

17

https://huggingface.co/datasets/lmms-lab/MMVet
https://huggingface.co/datasets/lmms-lab/MMVet
https://huggingface.co/datasets/lmms-lab/MMVet
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench
https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench

	Introduction
	Related Work
	Large Vision Language Models
	Speculative Decoding
	Test-time Adaptation

	Preliminaries
	Theoretical Latency of Transformers
	Speculative Decoding

	Benchmarking SD for LVLMs
	Experiment Settings
	Experimental Results

	Test-time Adaptive Batched Ensemble Drafting
	Proposed Method
	Experimental Results

	Extensible Framework: Exploring Drafting Candidates for LVLMs
	Pooled Multimodal Drafting
	Caption Drafting
	Experimental Results

	Conclusion
	Limitations and Future Works
	TABED with Different Draft Models
	Details for Caption Drafting
	Captioning Models
	Latency Analysis

	Evaluation of Target Model
	Quantitaive Evaluation
	Generated Samples

	Empirical Validation of Remarks 1-3
	Training and Evaluation of Draft Models
	Details of Training
	Evaluation Results

	Prompts for Each Dataset and Drafting
	Prompt Formats for Each Dataset
	Replacing Image tokens in Draftings

	Details of Each Dataset
	Benchmark Datasets
	OOD Datasets
	Time Analysis of LVLM Inference Stages


