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Abstract

Multi-modal learning by means of leveraging both 2D graph and 3D point cloud1

information has become a prevalent method to improve model performance in2

molecular property prediction. However, many recent techniques focus on specific3

pre-training tasks such as contrastive learning, feature blending, and atom/subgraph4

masking in order to learn multi-modality even though design of model architecture5

is also impactful for both pre-training and downstream task performance. Rely-6

ing on pre-training tasks to align 2D and 3D modalities lacks direct interaction7

which may be more effective in multimodal learning. In this work, we propose8

MOLINTERACT, which takes a simple yet effective architecture-focused approach9

to multimodal molecule learning which addresses these challenges. MOLINTER-10

ACT leverages an interaction layer for fusing 2D and 3D information and fostering11

cross-modal alignment, showing strong results using even the simplest pre-training12

methods such as predicting features of the 3D point cloud and 2D graph. MOLIN-13

TERACT exceeds several current state-of-the-art multimodal pre-training techniques14

and architectures on various downstream 2D and 3D molecule property prediction15

benchmark tasks.16

1 Introduction17

AI-assisted drug discovery has driven recent research interest in utilizing neural networks for molecule18

learning. The machine learning community has become especially interested in developing high-19

quality representations for molecules, which are crucial for predicting molecular properties for a20

variety of downstream cheminformatic tasks. Self-supervised learning (SSL) on molecular data21

has emerged as a prevalent research direction to achieve this, leveraging the 2D graph structures22

of molecules [22, 56, 66]. In parallel, many SSL strategies for 3D point cloud representations of23

molecules have also been developed [36, 15]. More recent works demonstrate the effectiveness of mul-24

timodal SSL techniques which combine 2D and 3D modalities to create better unified representations25

[54, 34, 36, 77, 60].26

Many of these recent and successful multimodal SSL methods make use of SSL techniques from27

other fields of machine learning. For example, many works leverage attribute and atom/subgraph28

masking & prediction [22, 66, 75, 24, 34, 35] similar to how masked language-modeling is used to29

pre-train large transformer-based networks such as BERT [8]. Other works [34, 54, 62] prefer to30

leverage contrastive learning [5] in order to align the 2D and 3D views of molecules in a unified31

embedding space similar to how CLIP [45] aligns caption and image embeddings and SimCLR [3]32

aligns views of images.33

These recent approaches typically consider improving molecular SSL via specific pre-training34

strategies and tasks, but not the underlying architecture. For instance, a common approach [34, 35, 54]35

is to take two separate models for encoding 3D and 2D structures and then design a pre-training36
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task to align their output embeddings. Alternatively, other works take a single, modality-agnostic37

model, usually a transformer [58], and task it with predicting multimodal properties such as bond38

angles [60, 77] or shortest-path distances [73]. Both of these approaches rely on a chosen pre-training39

task to align 2D and 3D views of molecules.40

However, it is not clear to what extent such approaches are able to fully learn cross-modal interactions.41

For example, contrastive approaches using separate encoders seek to maximize the mutual information42

between coarse-grained molecule embeddings, and so they may fail to capture key fine-grained43

relationships. On the other hand, predictive approaches using a single backbone typically accept44

only atom identities as input, leaving the pre-training task as the only source of multi-modality,45

potentially missing features which can be extracted by modality-specific encoders. An additional46

issue is that many pre-training tasks are complex and may require extensive tuning. For example,47

GraphMVP [34] and MoleculeSDE [35] use a variational autoencoder [27] and diffusion model [19],48

respectively, to reconstruct the original 2D and 3D structures, which risk mode collapse and are49

sensitive to hyperparameters such as noise schedules. Other techniques like MoleBlend [73] require50

both coordinate denoising [15] and prediction of blended multimodal features, where the ratio of51

noised nodes and 2D & 3D features needs to be tuned.52

In order to achieve fine-grained multi-modal information with simpler pre-training tasks, we turn our53

focus to the role of architectural design for more effective SSL. This work introduces MOLINTERACT,54

a deep learning architecture designed to fuse 2D and 3D modalities of molecules to better foster55

multimodal performance. MOLINTERACT uses a series of interaction layers to learn how to combine56

2D and 3D embeddings. Specifically, MOLINTERACT consists of two message-passing entrypoints for57

2D and 3D data to produce corresponding 2D and 3D embeddings which are then fused and split apart58

repeatedly in order to exchange unimodal information during pre-training. We pair MOLINTERACT59

with a set of simple pre-training tasks from the existing literature, such as bond and dihedral angle60

prediction, which are both sensible in a molecular context and require virtually no tuning. We61

show that, even with such straightforward pre-training tasks and architecture, MOLINTERACT is62

able to yield strong multimodal performance, emphasizing the impact of directly fusing 2D and 3D63

atom embeddings in a model-based approach to improving SSL. We conduct various experiments to64

demonstrate state-of-the-art performance across various downstream 2D and 3D benchmark tasks.65

2 Background and Related Work66

SSL for molecules. Self-supervised learning (SSL) [30, 37] has been adopted in a wide range of67

domains to obtain high quality representations for downstream tasks. A slew of recent works have68

emerged attempting to apply the same pre-train-then-finetune paradigm to molecule learning. In69

particular, research has been aimed at molecular SSL with the primary downstream task of molecule70

property prediction [4, 75] in mind due to the potential of saving tremendous amounts of time71

screening new drugs and compounds. However, the success of molecule property prediction requires72

a comprehensive extraction of molecular features from various modalities, which becomes especially73

important when only one modality is available for a given real-world molecule. For example, in74

certain cases, only a compound’s 2D structure may be known, but there may be little to no data on its75

equilibrium conformers. In light of this, it has become important to solve the challenge of learning76

informative molecular representations using all kinds of modalities, particularly 2D graphs and 3D77

point clouds.78

Existing work on multimodal SSL. In order to fuse multimodal representations, works such as79

GraphMVP [37] and 3DInfomax [54] aim to maximize the mutual information between the 2D and80

3D views of molecules, treating 2D graphs with their corresponding 3D conformations as positive81

samples and all other pairs as negative samples. Alternatively, another line of work proposes to82

incorporate both modalities via prediction of the original data. MoleculeSDE [35] generates 3D83

SE(3)-equivariant conformations from the 2D graph, and vice versa, and Zhu et al. [78] use a single84

model to reconstruct the input 2D graph from the 3D point cloud and vice versa. Similarly, many85

works [34, 35] task unimodal models with predicting masked sets of 2D and 3D atoms. Other works86

such as ChemRL-GEM [10] and 3D-PGT [61] propose to predict internal coordinates such as bond87

length, bond angle, and dihedral angles in order to distill 2D and 3D information. In contrast to these88

methods, MOLINTERACT seeks to supplement a set of predictive pre-training tasks by leveraging a89

fusion layer to force interactions between 2D and 3D embeddings to facilitate multimodal learning.90

2



Interactor

Initial 3D Atom Embeddings

Initial 2D Atom Embeddings Fused 2D Atom Embeddings

Fused 3D Atom Embeddings

3D
Prediction

Tasks

2D Message
Passing

3D Message
Passing

2D
Prediction

Tasks

Figure 1: The proposed method’s pre-training pipeline. From left-to-right, the input molecule’s
2D and 3D graphs are used to derive initial 2D and 3D atom embeddings via message-passing
layers. These embeddings are then mixed by an interaction layer before being fed back into the
unimodal message-passing branches of the architecture. This process of message-passing followed
by interaction repeats L times before the final embeddings from each tower are used for pre-training
tasks of the opposite modality, e.g. predicting 3D quantities using the 2D encoder embeddings. Not
shown are residual connections between each interaction block to preserve lower-order information.

Modality interaction. In order to fully leverage the synergy between different modalities, recent91

works from other fields propose to learn more fine-grained modality alignment through deep inter-92

active architectures. GreaseLM [74] and Dragon [71] propose to align language models and graph93

neural networks on knowledge graphs through an interaction token, aiming to integrate text and graph94

modalities to better identify relevant relations and entities in a given passage. Other works [6, 31] de-95

sign similar deep interaction layers in various domains such as social networks and recommendation.96

MOLINTERACT takes inspiration from these methods, proposing to interact 2D and 3D modalities on97

a fine-grained level in order to better facilitate pre-training and create high-performing multimodal98

representations.99

3 Method - Deep Interactions100

3.1 Notation and Preliminaries101

We consider molecules in terms of their 2D graph and 3D point cloud modalities. For simplicity, we102

will use the term “graph” to refer to both the typical 2D node-edge formalism as well as a molecule’s103

3D point cloud. We denote the 2D graph of a molecule with n atoms by G2D = (V,E,X,B)104

where V is a set of its atoms (nodes), E is a set of its bonds (edges), X ∈ Rn×dV is a 2D feature105

matrix corresponding to the atoms of the molecule with features specific to the 2D graph, such106

as membership in a ring [21], and B ∈ R|E|×dE is an edge feature matrix corresponding to edge107

information such as bond type. For simplicity, we let d = dV = dE . We also define the 3D graph of108

a molecule by G3D = (R,X) where R ∈ Rn×3 is the molecule’s position matrix where rows are109

(x, y, z) coordinates in 3D space. Unless otherwise specified, we use z(ℓ,i)2D and z(ℓ,i)3D to refer to the110

ith 2D and 3D atom embedding resulting from the ℓth layer of a neural network. For simplicity, we111

assume that all embeddings are of dimension d, and we use W(·) to refer to a linear layer with the112

bias omitted. All classification-based loss functions use CE to stand for Cross-Entropy.113

MOLINTERACT is comprised of two central components: (1) an architecture which fosters deep114

multimodal interactions, and (2) a pre-training scheme which leverages this architecture to enforce115

multimodal understanding similar to previous works. We introduce each component one-by-one in116

the following sections.117

3.2 Model Architecture118

During pre-training and multi-modal fine-tuning, MOLINTERACT receives a molecule’s 2D and 3D119

views G2D and G3D. These views are then passed through a two-tower architecture which alternates120
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between phases of message-passing and interaction. Each tower is a 2D and 3D modality-specific121

stack of encoders periodically conjoined by interactor layers as visualized in Figure 1.122

2D and 3D atom encoders. In order to compute 2D atom embeddings, we follow previous work123

on multimodal pre-training [34, 54, 36, 77, 60] and use message-passing graph neural network [13]124

(MPNN) layers as 2D encoders. Given a molecular graph G2D and one of its nodes i, its 2D node125

embedding hi at the (ℓ+ 1)th layer of an MPNN is given by126

h
(ℓ+1)
i = Update

(
h
(ℓ)
i , Agg

j∈N (i)

ψ
(
h
(ℓ)
i , h

(ℓ)
j , eij

))
(1)

where Update is a function which updates the node embedding, Agg is a permutation-invariant127

function on the neighbors of i, and ψ is a function which computes “messages”, or interactions,128

between the node i and its neighbor j with the edge between them as context. In our case, we use129

layers from the GINE [22] architecture, which is a variant of GIN [68] that incorporates edge features130

during message-passing. We choose GINE due to its simplicity and 1-WL-expressivity [64], although131

we note that MOLINTERACT places no restrictions on its 2D backbone, and one can easily replace the132

MPNN with a more powerful 2D model such as a graph transformer [9, 48, 40] as other multimodal133

works [60, 73] do to improve performance.134

To compute 3D atom embeddings, we opt to use the continuous convolutional layers from SchNet [52].135

These layers conduct message-passing according to relative distances between atoms, incorporating136

both geometric and atom information into the resulting embeddings. Similar to the 2D encoder,137

MOLINTERACT is agnostic to the choice of 3D encoder, and so one may choose to opt for more138

expressive 3D backbones [12, 28, 38, 59, 53]. Despite the limited expressivity of SchNet and GIN,139

we find that MOLINTERACT is able to outperform several state-of-the-art methods, which we show in140

Section 4.141

3.3 Multimodal Interaction Layer142

At the ℓth layer of unimodal message-passing, we take the 2D and 3D atom embeddings z(ℓ,i)2D and143

z
(ℓ,i)
3D and pass them to an interaction layer ϕ(ℓ). Then, the updated atom embeddings z(ℓ+1,i)

2D and144

z
(ℓ+1,i)
3D are decoded from the output of ϕ(ℓ) and fed back into their respective unimodal message-145

passing towers. There are a variety of options for choosing ϕ(ℓ), such as an attention-based aggregation146

between the embeddings, or the aggregation of representative nodes [74], such as a virtual node for147

the 2D graph [13, 44, 25] or a center-of-mass node for the 3D graph. However, for simplicity, we148

use a 2-layer MLP of dimension 2d with Swish activation [18] for ϕ(ℓ), and feed it the concatenated149

unimodal embeddings. We run ablations testing different functions for each ϕ(ℓ) in Table 2. For150

decoding, we simply split the output of the MLP in half along the channel dimension to retrieve the151

updated 2D and 3D embeddings. With this, we do not risk information loss via pooling or choosing152

a representative token for the whole molecule, attaining more granular, node-level interactions.153

Formally, the multimodal embeddings at layer ℓ+ 1 are given by154

w(ℓ+1,i) = ϕ(ℓ)(z
(ℓ,i)
2D , z

(ℓ,i)
3D ) = MLP(ℓ)

(
z
(ℓ,i)
2D

∣∣∣∣∣∣z(ℓ,i)3D

)
(2)

where || denotes concatenation in column-major order. Then, our updated atom embeddings can be155

written in the following implementation-friendly way:156

z
(ℓ+1,i)
2D , z

(ℓ+1,i)
3D = w

(ℓ+1,i)
:,:d , w

(ℓ+1,i)
:,d: (3)

where the subscripts of w(ℓ+1,i) denote Python-like indices. this way, the 2D embeddings are a157

fusion of both 2D and 3D features, and similarly for the 3D embeddings with each subsequent158

iteration of message-passing and interaction, encoding higher-order multimodal features. Unlike159

molecule-level approaches like 3D Infomax [54], GraphMVP [34], and MoleculeSDE [35], and160

unlike modality-agnostic backbone-based methods like MoleBlend [73], MOLINTERACT benefits161

from both fine-grained, atom-level interactions as well as modality-specific encoders to create more162

powerful multimodal representations. See Appendix F to see a UMAP visualization of the molecule163

embeddings from MOLINTERACT compared with MoleculeSDE.164

4



The pre-training tasks for MOLINTERACT are designed to be heterogeneous, meaning 3D quantities165

are predicted using z(ℓ,i)2D , and 2D quantities are predicted using z(ℓ,i)3D . By using embeddings of one166

modality to predict features of the opposite modality, we maximize a lower bound of the mutual167

information between the modalities. As Liu et al. [34] note, if X3D, X2D denote random variables168

from 2D and 3D spaces, then their mutual information (MI) I(X3D, X2D) is bounded below by169

− 1
2 (H(X3D|X2D) +H(X2D|X3D)) where H denotes entropy. Visibly, this bound is maximized170

when p(x3D|x2D) and p(x2D|x3D) are also maximized. This motivates the pre-training pipeline in171

this work where predicting 2D quantities from 3D embeddings and 3D quantities from 2D embeddings172

maximizes the MI between 2D and 3D information in MOLINTERACT.173

Intuitively, during pre-training, the interaction layer ϕ serves as a exchange pathway between the174

unimodal towers. As the only point of contact between the 2D and 3D message-passing layers, ϕ175

must effectively route the most important cross-modal information relevant to the pre-training task.176

During fine-tuning, each ϕ serves as an aggregator of multimodal features, learning to fuse 2D and177

3D information effectively for the given downstream task.178

3.4 Pre-training Tasks179

MOLINTERACT’s architecture is complemented by a set of simple pre-training tasks in order to180

facilitate multimodal learning using its fused atom embeddings. Specifically, for our 3D tasks, we181

choose to predict interatomic distances, bond angles, and dihedral angles. We then predict edge type,182

shortest-path distance, and centrality ranking as our 2D tasks. We choose these specific pre-training183

tasks due to (1) their hierarchical relationships with each other in their respective modalities and184

(2) their ease of computation. The intuition behind (1) is that, in order to learn a comprehensive185

multimodal representation, both lower-order and higher-order geometric/topological features must186

be learned and infused in the post-interaction atom embeddings. We value (2) for efficiency’s sake,187

noting that computing these quantities is fairly straightforward and require little to no tuning to be188

effective. Such prediction tasks are among the simplest in the molecular SSL literature compared189

to diffusion models and substructure masking, which highlights the effectiveness of the interaction190

layers during pre-training.191

3D Tasks. For our 3D tasks, similar to [60] and [10], we choose to predict interatomic distances,192

bond angles, and dihedral angles: three of the some of the basic internal coordinates in 3D molecular193

graphs. Not only are such 3D graphs uniquely identified by these primitives [38, 59], but they are also194

crucially linked to energy-based properties of molecules, making them important geometric priors to195

encode in 2D embeddings. Furthermore, these angles are prime examples of hierarchical quantities196

since interatomic distances can be used to compute bond angles, and bond angles can be used to197

compute dihedral angles, ascending from 2-tuple atom information to 4-tuple atom information.198

Given an L-layer instance of MOLINTERACT, We introduce our interatomic distance loss and bond199

angle losses as follows:200

LInter =
1

|I|
∑

(i,j)∈I

(
WInter

(
z
(L,i)
2D + z

(L,j)
2D

)
− αij

)2
(4)

where I is a set of sampled atom index pairs, and αij is the ground-truth interatomic distance between201

atoms i and j. Note that we add the 2D embeddings in this loss formulation due to the requirement202

that distances between atoms are symmetric (αij = αji), and therefore their encodings should be203

permutation-invariant. Our loss function for predicting bond angles is similarly defined:204

LB =
1

|B|
∑

(i,j,k)∈B

(
WB

(
z
(L,i)
2D ||z(L,j)

2D ||z(L,k)
2D

)
− βijk

)2
(5)

whereB is a set of computed bond angles of adjacent atoms, and i, j, k denote indices of the respective205

anchor, source, and destination atoms. Note that we concatenate the indexed atom embeddings rather206

than sum them since bond angles differ depending on which atoms are chosen as anchors.207

Finally, while our dihedral angle prediction loss could be analogously defined, we found that our208

model had difficulty predicting dihedral angles directly, with MSE barely reducing from 0.475 in209

the first epoch to 0.45 in the 50th when pre-training on PCQM4Mv2, indicating that no useful angle210

information was being learned. To improve learning, we replace the angle regression task with an211
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angle classification task, where the task becomes to categorize quadruplets of atom embeddings212

according to what bin the corresponding dihedral angle belongs to. This is a relatively easier task213

than direct prediction, and we subsequently saw an increase in performance. Formally, our loss is the214

cross-entropy term215

LD = − 1

|D|
∑

(i,j,k,l)∈D

CE
(
Db,WD

(
z
(L,∗)
2D

))
(6)

where D is a set of dihedral angles, z(L,∗)
2D is short for z(L,i)

2D ||z(L,j)
2D ||z(L,k)

2D ||z(L,ℓ)
2D where i, j, k, l are216

indices of the atoms which form a dihedral angle from D, and each Db indexes the bin to which each217

angle belongs. In our case, we use |D| = 20. We note that Guha et al. [17] take a similar approach to218

turning a regression problem into a classification problem, although they do this to aid in conformer219

prediction rather than angle prediction.220

2D Tasks. The ways in which 2D topological quantities are relevant for molecular property pre-221

diction are more subtle than in the 3D case. Given that G3D is missing key information regarding222

atom-atom relationships such as bond types, we first task MOLINTERACT with classifying edges223

ƒrom G2D according to the cross-entropy loss term224

LEdge = − 1

|E|
∑

(i,j)∈E

CE
(
Bij ,WEdge

(
z
(L,i)
3D + z

(L,j)
3D

))
(7)

where Bij indexes the label of the corresponding edge (i, j). With this loss, we aim to instill225

precise atom relational information in the 3D embeddings. Next, a logically higher-order task is226

to determine the shortest-path distances (SPDs) between atoms, similar to Transformer-M [40] and227

MOLEBLEND [73], which encodes a global characterization of the molecule’s topology. Further,228

bond type information may serve as a useful preliminary task given that edge classification implicitly229

informs the modeling of existing edges, meaning that SPD prediction becomes a task of counting230

which of the said edges are incident. Formally, our SPD loss is formulated as231

LSPD = − 1

|C|
∑

(i,j)∈C

CE
(
Dij ,WSPD

(
z
(L,i)
3D + z

(L,j)
3D

))
(8)

where C ⊆ V × V is a set of sampled node pairs, and Dij corresponds to the SPD between atoms i232

and j.233

Our final 2D pre-training task is centrality ranking, which aims to use SPD information from the234

preceding pre-training task to capture global structure. Centrality [1, 2] is a concept from network235

science which quantifies node importance. In the molecular case, centrality might be used as an236

indicator of structural importance such as acting as a bridge between a ring or functional group [43].237

Furthermore, centrality may act as a proxy for structure/subgraph membership since atoms which238

participate in chemically relevant substructures are likely to have similar centrality measures. This239

may serve as informative signal for the 3D tower of MOLINTERACT which is ignorant of the 2D240

graph topology. In this way, learning to rank nodes by centrality may be thought of as a proxy task to241

more complex structural pre-training tasks such as subgraph masking, replacing subgraph sampling242

steps with the simple cross-entropy loss term243

LCent = − 1

|C|
∑

(i,j)∈C

CE
(
Ci,jWCent

(
z
(L,i)
3D + z

(L,j)
3D

))
(9)

where Ci,j = 1 if node i has a higher centrality than node j and 0 otherwise. Among the various244

definitions of centrality, we experiment with betweenness centrality and eigenvector centrality [63, 11].245

Betweenness centrality of a node v is defined as
∑

s,t∈V
σ(s,t|v)
σ(s,t) , where σ(s, t|v) stands for the246

number of shortest paths between s and t which pass through v, which would appear to reuse247

information from LSPD. However, in practice, we observe superior performance using the eigenvector248

centrality of each node u, defined as the uth entry of the eigenvector corresponding to the largest249

eigenvalue of the 2D graph’s adjacency matrix. Intuitively, information learned during SPD prediction250

may still be used since a node’s eigenvector centrality is proportional to the number of infinite random251

walks passing through that node. We provide some visualizations of betweenness and eigenvector252

centrality on molecular graphs in Appendix B.253
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Method α ∆E EHOMO ELUMO µ Cv G H R2 U U0 ZPVE

Stock SchNet (Schütt et al. [52]), 8 layers 0.076 51.28 33.17 26.53 0.032 0.031 17.86 15.77 0.146 17.88 18.24 1.605

Distance Prediction (Liu et al. [36]) 0.065 45.87 27.61 23.34 0.031 0.033 14.83 15.81 0.248 15.07 15.01 1.837
3D InfoGraph (Liu et al. [36]) 0.062 45.96 29.29 24.60 0.028 0.030 13.93 13.97 0.133 13.55 13.47 1.644
3D InfoMax (Stärk et al. [54]) 0.057 42.09 25.90 21.60 0.028 0.030 13.73 13.62 0.141 13.81 13.30 1.670
GraphMVP (Liu et al. [34]) 0.056 41.99 25.75 21.58 0.027 0.029 13.43 13.31 0.136 13.03 13.07 1.609
MoleculeSDE (Liu et al. [35]) 0.054 41.77 25.74 21.41 0.026 0.028 13.07 12.05 0.151 12.54 12.04 1.587
MOLEBLEND (Yu et al. [73]) 0.060 34.75 21.47 19.23 0.037 0.031 12.44 11.97 0.417 12.02 11.82 1.580

MOLINTERACT (no pre-training) 0.048 37.66 21.87 19.45 0.022 0.026 9.54 8.84 0.119 8.77 8.421 1.396
MOLINTERACT (LSimple) 0.047 35.92 21.54 18.34 0.021 0.025 9.13 8.26 0.097 8.16 8.17 1.365
MOLINTERACT (LAll) 0.047 35.58 20.60 17.88 0.021 0.025 8.56 8.24 0.136 7.92 7.72 1.327

Table 1: Performance on QM9 measured in MAE. Lower is better.

Pre-training method α ∆E EHOMO ELUMO µ Cv G H R2 U U0 ZPVE

Only 3D tasks 0.048 36.58 21.12 18.54 0.024 0.026 9.45 8.80 0.152 8.62 8.70 1.448
Betweenness 0.050 37.78 22.18 18.90 0.025 0.027 10.08 10.30 0.171 9.71 10.50 1.508
Mean Interactor 0.061 46.82 30.89 24.18 0.035 0.030 11.93 12.06 0.126 11.67 11.99 1.543
Self-Attention Interactor 0.074 52.73 32.27 27.74 0.042 0.034 14.80 14.09 0.116 14.41 13.98 1.749
LSimple, 3D structures only 0.057 42.00 24.78 20.77 0.022 0.028 13.47 12.87 0.163 12.75 12.36 1.480

Table 2: Ablations of MOLINTERACT on QM9.

Finally, the total loss formulation during pre-training is LAll = LInter+LB+LD+LEdge+LSPD+LCent.254

In practice, we see that each loss term exhibits varying influence since terms like Ledge are naturally255

easier to minimize than more complex terms like LD. Therefore, in our experiments, we compare256

both MOLINTERACT using LAll and LSimple = LInter + LSPD, and find comparable performance. We257

find that LInter and LSPD work best together, achieving the best overall performance among all the258

tasks considered. Intuitively, interatomic distances with shortest-path distances give the minimum259

description of the topology of the 3D and 2D graphs. For a more detailed analysis of the behavior of260

these losses, see Appendix E. In summary, each of these 3D and 2D pre-training tasks play a role261

in forming a unified molecular representation in terms of geometric and topological quantities in262

increasing levels of complexity.263

4 Experiments264

4.1 Datasets and Experimental Setup265

We pre-train an 8-layer version of MOLINTERACT with 9M parameters for 50 epochs on266

PCQM4Mv2 [21], which contains over 3.3M molecules with their DFT-computed 3D structures267

from the PubChemQC [42] project. For evaluation, we evaluate MOLINTERACTon 12 tasks from268

QM9 [46] and 8 datasets from MoleculeNet [65] in order to compare our method with works in the269

multimodal molecular SSL literature. We compare MOLINTERACT on QM9 and MoleculeNet with270

the same baselines as reported by the comprehensive study by Yu et al. [73]. All best metrics are271

bolded, and second-best metrics are underlined. Results for QM9 are measured in mean absolute272

error (MAE), and results for MoleculeNet are measured in ROC AUC. All metrics reported are from273

each dataset’s test split using the weights which perform best on a validation set. We also include274

results on QM8 [47, 51] in Appendix D due to space limitations.275

In datasets where both 2D and 3D information are available such as QM9 and QM8, we provide both276

2D and 3D structures to MOLINTERACT, aggregate the resulting embeddings with mean pooling,277

and then input their concatenation to a 2-layer MLP head. Otherwise, when only one modality is278

available, as in MoleculeNet, only the corresponding unimodal branch of our method is activated279

while the frozen atom embeddings of the other modality are used as input to the interaction layers in280

place of the embeddings produced by the disabled complementary branch.281
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Method BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average

AttrMask (Hu et al. [22]) 65.0±2.3 74.8±0.2 62.9±0.1 61.2±0.1 87.7±1.1 73.4±2.0 76.8±0.5 79.7±0.3 72.68

ContextPred (Hu et al. [22]) 65.7±0.6 74.2±0.0 62.5±0.3 62.2±0.5 77.2±0.8 75.3±1.5 77.1±0.8 76.0±2.0 71.28

GraphCL (You et al. [72]) 69.7±0.6 73.9±0.6 62.4±0.5 60.5±0.8 76.0±2.6 69.8±2.6 78.5±1.2 75.4±1.4 70.78

InfoGraph (Sun et al. [56]) 67.5±0.1 73.2±0.4 63.7±0.5 59.9±0.3 76.5±1.0 74.1±0.7 75.1±0.9 77.8±0.8 70.98

GROVER (Rong et al. [50]) 70.0±0.10 74.3±0.1 65.4±0.4 64.8±0.6 81.2±3.0 67.3±1.8 62.5±0.9 82.6±0.7 71.01

MolCLR (Wang et al. [62]) 66.6±1.8 73.0±0.1 62.9±0.3 57.5±1.7 86.1±0.9 72.5±2.3 76.2±1.5 71.5±3.1 70.79

GraphLoG (Xu et al. [69]) 72.5±0.8 75.7±0.5 63.5±0.7 61.2±1.1 76.7±3.3 76.0±1.1 77.8±0.8 83.5±1.2 73.40

MGSSL (Zhang et al. [75]) 69.7±0.9 76.5±0.3 64.1±0.7 61.8±0.8 80.7±2.1 78.7±1.5 78.8±1.2 79.1±0.9 73.70

GraphMAE (Hou et al. [20]) 72.0±0.6 75.5±0.6 64.1±0.3 60.3±1.1 82.3±1.2 76.3±2.4 77.2±1.0 83.1±0.9 73.85

Mole-BERT (Xia et al. [66]) 71.9±1.6 76.8±0.5 64.3±0.2 62.8±1.1 78.9±3.0 78.6±1.8 78.2±0.8 80.8±1.4 74.04

3D InfoMax (Stärk et al. [54]) 69.1±1.0 74.5±0.7 64.4±0.8 60.6±0.7 79.9±3.4 74.4±2.4 76.1±1.3 79.7±1.5 72.34

GraphMVP (Liu et al. [34]) 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.69

MoleculeSDE (Liu et al. [35]) 71.8±0.7 76.8±0.3 65.0±0.2 60.8±0.3 87.0±0.5 80.9±0.3 78.8±0.9 79.5±2.1 75.07

MOLEBLEND (Yu et al. [73]) 73.0±0.8 77.8±0.8 66.1±0.0 64.9±0.3 87.6±0.7 77.2±2.3 79.0±0.8 83.7±1.4 76.16

MOLINTERACT (LSimple) 67.2±3.9 76.4±0.2 64.5±0.2 62.5±0.4 86.1±0.4 78.6±0.4 78.6±0.8 82.4±1.7 74.52

MOLINTERACT (LAll) 68.5±1.3 77.3±0.5 65.4±0.2 62.9±0.4 88.4±1.0 77.1±3.1 79.5±0.4 79.1±0.03 74.77

Table 3: Performance on MoleculeNet measured in ROC AUC. Higher is better.

4.2 3D Datasets - QM9282

In QM9, we follow Thölke and Fabritiis [57] and finetune on 110K random molecules and use the283

remaining 10K and 10.8K molecules as validation and test sets, respectively. QM9 is a dataset of284

small molecules designed to test models’ abilities to predicting various quantum and thermodynamic285

properties, which crucially depend on 3D information. Performance is measured in terms of MAE286

in order to determine how closely models can match DFT-level approximations of various quantum287

properties of small molecules. Per Table 1, both versions of MOLINTERACT exhibit a substantial288

lead in performance compared to baseline 3D pre-training methods, even without pre-training,289

demonstrating the effectiveness of the deep multimodal interaction layers. Including the 3D and 2D290

pre-training tasks, we see that MOLINTERACT’s performance improves across the board, exceeding291

the most recent state-of-the-art by as much as 34% (U ), further validating the use of deep interactions292

for improving the quality of learned features even with simple predictive SSL tasks.293

4.3 2D Datasets - MoleculeNet294

MoleculeNet is a set of 2D-only datasets with property prediction tasks ranging from toxicity295

prediction to drug reactivity. ROC-AUC is used in order to evaluate each model’s ability to correctly296

determine these properties. Following [73], we report the mean and standard deviation across three297

random seeds and use the Bemis-Murcko scaffolds recommended in DeepChem [49]. Per Table 3,298

MOLINTERACT’s performance on MoleculeNet is competitive with its multimodal and unimodal299

GNN-based peers, among which it ranks only behind MoleculeSDE [35] in average ROC AUC and300

even exceeds MoleculeSDE in 5/8 datasets. A possible explanation is that MoleculeSDE is tasked301

directly with reconstructing the original equilibrium state 3D conformer during pre-training, granting302

it highly detailed 3D knowledge which is especially useful in determining properties which may303

benefit from a precise understanding of the 3D geometry of a molecule like blood-brain barrier304

permeability [55]. It is also possible that the kind of 3D information learned by MOLINTERACT305

is not immediately useful for MoleculeNet tasks unlike quantum metrics, as shown in Table 4.306

Regarding other baselines, MOLINTERACT primarily falls behind non-GNN-based methods like307

GROVER [50] and MOLEBLEND [73] which use more powerful transformer backbones. We also see308

that MOLINTERACT with LSimple performs worse than with LAll, which is expected given its smaller309

ensemble of loss functions.310

4.4 Ablation Studies311

3D Transfer Performance in QM9. Table 4 shows performance on QM9 where only 2D graphs are312

provided to MOLINTERACT in order to test the degree of information transfer. Such an application313

may be valuable in cases where 3D structures are not consistently available, such as high-throughput314
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Method α ∆E EHOMO ELUMO µ Cv R2 ZPVE

PNA Corso et al. [7] 0.3972 123.08 82.10 85.72 0.4133 0.1670 22.14 15.08

GraphCL (You et al. [72]) 0.3295 120.08 79.57 80.81 0.3937 0.1422 21.84 12.39

AttrMask (You et al. [72]) 0.3570 116.21 80.58 84.93 0.4626 0.1587 29.23 25.91

GPT-GNN (Hu et al. [23]) 0.3732 131.99 93.11 99.84 0.3975 0.1795 29.21 11.17

GraphMVP (Liu et al. [34]) 0.3227 101.84 68.62 70.23 0.3489 0.1287 17.03 7.96

3D InfoMax (Stärk et al. [54]) 0.3268 101.71 68.96 69.51 0.3507 0.1306 17.39 7.96

3D-PGT (Wang et al. [60]) 0.3121 101.53 68.24 69.73 0.3409 0.1217 16.89 7.92

MOLINTERACT (2D) 0.2145 86.49 59.77 57.55 0.3055 0.0830 12.03 5.11

Table 4: Performance on QM9 using 2D-only models to study the degree of 3D information transfer.

preliminary drug screening [54, 16]. Under this restriction, MOLINTERACT outperforms several 2D315

baselines benchmarked by [54], demonstrating substantially stronger 3D performance given only 2D316

graphs, suggesting a high degree of 3D-to-2D information transfer despite such a simple suite of317

pre-training tasks. This emphasizes the importance of the architecture of MOLINTERACT, showing318

the strength of the interaction layers even when one modality is missing.319

Impact of Pre-training Tasks and Interactor Types. In Table 2, we investigate the impact of320

the pre-training tasks in the architecture of MOLINTERACT on performance in the QM9 dataset.321

“Only 3D tasks” refers to the method pre-trained only on interatomic distance, bond angle, and322

dihedral angle prediction. “Betweenness” refers to the LAll setting swapping centrality ranking loss323

with betweenness ranking loss. “Mean” and “Self-Attention Interactor” refer to the LSimple setting324

except with the averaging operation and a separate single-head self-attention modules for ϕ layer,325

respectively. Finally, “3D structures only” refers to the setting where only 3D graphs are supplied to326

MOLINTERACT.327

In these ablations, we observe a noticeable decline in performance across the board compared to the328

final version of MOLINTERACT. First, the “Only 3D tasks” ablation confirms that the 2D pre-training329

tasks indeed play a role in enhancing multimodal performance on downstream tasks even when they330

are not as directly related to properties such as ∆E , which are primarily reliant on 3D features. Next,331

the worse performance of betweenness centrality compared to eigenvector centrality suggests that332

the latter is more chemically meaningful. This is expected since eigenvector centrality is directly333

related to Laplacian eigenvector positional encodings [9, 29], which have been shown to enhance334

performance on molecular graphs by breaking the symmetries of WL-indistinguishable nodes [29].335

The “Mean” and “Self-Attention” ablations show the superiority of a simple MLP-based interactor as336

a balance between a parameter-free and complex interactor. In our training runs, the self-attention-337

based interactor exhibited extensive over-fitting. Finally, given only 3D structures, we see that338

MOLINTERACT is competitive with contemporary methods, exceeds the current state-of-the-art in339

µ,Cv, and ZPVE, and vastly outperforms a stock SchNet on all metrics by as much as 18% (∆E),340

suggesting that multimodal information is successfully utilized during interaction.341

5 Conclusion342

In this work, we introduce MOLINTERACT an architectural approach to improving multimodal343

self-supervised learning that leverages deep interactions to fuse 2D and 3D representations of344

molecules. With this deep interaction mechanism, our method is able to access fine-grained cross-345

modal information without sacrificing rich embeddings from modality-specific backbones, allowing346

for more effective interplay between 2D and 3D information when paired with even a simple set of347

predictive pre-training tasks, achieving new state-of-the-art performance on benchmark datasets as a348

result and contributing to the growing field of multimodal property prediction for small molecules.349
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A Broader Impact601

This work proposes a more effective method for developing multimodal representations of molecules602

for molecular property prediction. As such, it follows a line of work that has the potential to accelerate603

the drug and compound discovery process, making the development of new therapeutics easier and604

more cost-efficient. At the same time, there is potential for this work to be misused in order to aid in605

the development of compounds which negatively impact humanity in the form of harmful drugs, for606

example. We support the extensive usage of expert-guided control and regulation in order to steer the607

use of this technology and similar AI-assisted drug discovery techniques for social good.608

B Limitations609

There are generally two major limitations of MOLINTERACT. First, like other multimodal approaches610

like MOLEBLEND [73], MOLINTERACT only takes into account the geometry of single 3D molecular611

conformations, such as those in QM9 [46] and QM8 [51] which are in equilibrium state. In this way,612

our method may not learn a comprehensive 3D representation of molecules and the wide spectrum613

of possible conformers which make up a valid 3D geometry for a given compound. However,614

other works [34, 35] tackle this problem by also tasking their architecture with generating 3D615

conformations directly, which is an SSL task which may be adopted for our architecture as well.616

Second, MOLINTERACT is limited in that even though the multimodal representations it learns are617

effective, it still finds optimal performance when both modalities are available to the model, suggesting618

a slight dependence on both modalities being provided to its interaction layers for downstream task619

performance. However, this may be remedied by experimenting with tasking the architecture with620

reproducing 2D/3D topology/geometry similar to MoleculeSDE [35] in order to make use of the621

deactivated unimodal branch during finetuning. Further, in the 2D-only case, MOLINTERACT already622

demonstrates an advance in the state-of-the-art when only 2D information is provide, and when 3D623

structures are involved, 2D structure is generally easily recoverable.624

Figure 2 plots eigenvector centrality versus betweenness centrality on two different molecules from625

PCQM4Mv2. While the two centrality measures are similar, eigenvector centrality is able to highlight626

nodes which are not only towards the middle of the molecule but also parts of certain substructures,627

such as the central ring in the top molecule or the top ring in the bottom molecule. In other words, it628

appears eigenvector centrality is a better measure of “communities” in the molecular graph, assigning629

nodes in substructures more similar centralities. Being able to discern which atoms have higher630

centrality may be a useful proxy for learning higher-order structure in molecular graphs.631

C Hyperparameters and implementation details632

Hyperparameters for pre-training on PCQM4Mv2 and finetuning on QM9, QM8, and MoleculeNet633

are in Table 5.634

D Pre-training computational cost635

Table 6 shows wall times to pre-train various baseline pre-training methods as included in the appendix636

of MoleculeSDE [35]. Unfortunately, MOLEBLEND [73] does not yet have code available, and so637

we could not include it in this benchmark. The wall-times for all methods besides MOLINTERACT638

are reported from a machine using a single Nvidia V100 GPU. Due to access issues, we could639

not attain a V100 GPU, and so our reported time is from a SLURM cluster node equipped with640

an Nvidia A100 SXM4 80GB GPU. We recognize the generational gap in hardware, and so we641

hypothesize that MOLINTERACT will almost certainly train slower on a V100. Reducing the number642

of pre-training tasks will likely reduce pre-training wall time. Regrading memory requirements,643

pre-training MOLINTERACT under our settings required at least 30GB VRAM.644

E Performance on QM8645

We also evaluate MOLINTERACT on 12 tasks from QM8 [47, 51]. QM8 is a smaller dataset than QM9646

(20K vs 134K) with the task of predicting the electronic spectra of small organic molecules. Both 2D647
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Figure 2: Comparing eigenvector and betweenness centrality on a molecule from PCQM4Mv2.

16



Hyperparameter PCQM4Mv2 QM9 QM8 MoleculeNet

Optimizer Adam [26] Adam [26] Adam [26] Adam [26]
Initialization Glorot uniform [14] - - -
Learning rate scheduler Cosine annealing [39] Cosine annealing [39] Cosine annealing [39] Cosine annealing [39]
Adam betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 1024 128 128 {32, 64, 128, 256}
Max learning rate 1e-4 1e-4 1e-4 {1e-3, 3e-4, 5e-4, 1e-5}
Min learning rate 0 0 0 0
Epochs 50 1000 40 {40, 60, 80, 100}
Weight decay 0.0 0.0 0.0 0.0
All embedding dimensions 300 300 300 300
Number of layers 8 8 8 8
Interactor activation Swish Swish Swish Swish
Interactor Batch norm None None None None
Interactor Layer norm None None None None
Number of SchNet filters 128 128 128 128
Number of SchNet Gaussians 51 51 51 51
GIN learnable ϵ True True True True
GIN Jumping knowledge Last Last Last {Last, Mean, Sum}
Dropout 0.0 0.0 0.0 {0.0, 0.1, 0.15}

Table 5: Hyperparameters for pre-training (PCQM4Mv2) and finetuning (QM9, QM8, MoleculeNet)

Pre-training algorithm Min/epoch GPU

AttrMask 5.5 Nvidia V100 32GB

ContextPred 14 Nvidia V100 32GB

InfoGraph 6 Nvidia V100 32GB

MolCLR 10 Nvidia V100 32GB

Distance Prediction 6.7 Nvidia V100 32GB

3D InfoGraph 7.5 Nvidia V100 32GB

3D InfoMax 8.6 Nvidia V100 32GB

GraphMVP 11 Nvidia V100 32GB

MoleculeSDE 30 Nvidia V100 32GB

MOLINTERACT (LAll) 17.8 Nvidia A100 80GB

Table 6: Wall time to pre-train MOLINTERACT compared to other pre-training algorithms.

Pre-training method α ∆E EHOMO ELUMO µ Cv G H R2 U U0 ZPVE

LB + LCent 0.048 36.98 21.59 18.97 0.022 0.026 9.16 8.31 0.109 8.58 8.31 1.399
LD + LCent 0.046 36.54 20.85 18.33 0.023 0.026 9.42 8.64 0.160 8.35 8.59 1.400
LInter + LCent 0.048 36.36 21.50 18.52 0.022 0.026 9.40 8.79 0.130 8.41 8.19 1.418
LB + LEdge 0.047 36.34 21.28 18.52 0.023 0.027 9.55 8.87 0.134 9.15 8.81 1.441
LD + LEdge 0.048 36.65 21.02 18.16 0.024 0.026 9.75 9.16 0.166 8.64 8.70 1.414
LInter + LEdge 0.048 36.96 21.48 18.50 0.022 0.026 9.26 8.72 0.102 8.46 8.33 1.401
LB + LSPD 0.047 36.32 21.40 17.96 0.021 0.025 9.13 8.37 0.111 8.36 8.12 1.387
LD + LSPD 0.047 36.48 20.83 18.00 0.022 0.025 9.00 8.55 0.161 8.54 8.44 1.307
LInter + LSPD (LSimple) 0.047 35.92 21.54 18.34 0.021 0.025 9.13 8.26 0.097 8.16 8.17 1.365

Table 7: Ablations of MOLINTERACT on QM9 with different combinations of 2D and 3D loss terms.
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Method Average MAE

D-MPNN (Yang et al. [70]) 0.0190 ± 0.0001

Attentive FP (Xiong et al. [67]) 0.0179 ± 0.001

N-GramRF (Liu et al. [33]) 0.0236±0.0006

N-GramXGB (Liu et al. [33]) 0.0215±0.0005

Pretrained GNN (Hu et al. [22]) 0.0200±0.0001

GROVERbase (Rong et al. [50]) 0.0218±0.0004

GROVERlarge (Rong et al. [50]) 0.0224±0.0003

MolCLR (Wang et al. [62]) 0.0178±0.0003

ChemRL-GEM (Fang et al. [10]) 0.0171±0.0001

UniMol (Zhou et al. [76]) 0.0156±0.0001

MOLINTERACT (base) 0.0161 ± 0.0005

MOLINTERACT (LSimple) 0.0158±0.0002

MOLINTERACT (LAll) 0.0157±0.0002

Table 8: Multi-task performance on QM8 measured in average MAE across 12 tasks. Lower is better.

and 3D structures are provided. Following Zhou et al. [76], we use an 80%/10%/10% scaffold split,648

and train for only 40 epochs. We compare with baselines reported by Zhou et al. [76] and report the649

average MAE of 12 tasks in a multi-task setting across three random seeds. Table 8 demonstrates the650

effectiveness of MOLINTERACT, which not only outperforms pre-trained methods that leverage angle651

information such as Fang et al. [10], but also competes with Uni-Mol, a large 3D model pre-trained652

on over 200M molecular conformations, a dataset which is around 60 times larger and more diverse653

than PCQM4Mv2. This shows that MOLINTERACT is able to use significantly less pre-training data,654

which may be attributable to its utilization of both 2D and 3D information from modality-specific655

encoders. Even when only using LSimple, MOLINTERACT achieves comparable results.656

F Pre-training loss function behavior657

In this section, we show loss curves for each loss function term in LAll during pre-training on658

PCQM4Mv2 for MOLINTERACT. In Figures 3a, 5a, and 5b, we see that lower-order quantities such659

as interatomic distances and edge types, low loss and high accuracy are easily achieved by epoch660

10 and begin to plateau thereafter. More complex quantities, such as bond angles and SPDs, exhibit661

similar elbow-shaped curves but saturate more slowly as shown in Figures 3b, 6a, and 6b. Finally,662

dihedral angle and eigenvector centrality classification are the hardest quantities to predict during663

pre-training, with both losses and accuracies improving much more slowly per Figures 4a, 4b, 7a,664

and 7b. This is expected given that the dihedral angle distribution in each molecule are complex665

in comparison [32], and learning to rank nodes by eigenvector centrality distills global structural666

patterns.667

We also show comprehensive ablations for each combination of individual 2D and 3D pre-training668

tasks in Table 7. We see that LSimple performs the best overall out of each combination of tasks, with669

LD + LSPD following closely. Notably, the highest metrics usually occur for losses which include670

LSPD, lending to the idea that shortest-path distances may contain the most useful 2D graph feature671

information. This is somewhat surprising since SPDs do not include edge types, missing important672

features such as whether an edge is a single or double bond, for example. A plausible explanation is673

that edge information is already incorporated into the node embeddings during 2D message-passing674

due to GINE’s edge feature-aware convolution. Meanwhile, interatomic distance and dihedral angle675

prediction take turns as the most effective 3D tasks with bond angle regression lagging behind. While676

all three quantities are related to the overall equilibrium state of a molecule, a possible explanation677

for their performance difference is that interatomic distances give a more complete description of the678

overall 3D structure of a molecule, and dihedral angles may offer more fine-grained information than679

bond angles with more complex distributions.680
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(a) Interatomic distance regression loss. (b) Bond angle regression loss.

Figure 3: Interatomic distance and bond angle regression loss.

(a) Classification loss. (b) Classification accuracy.

Figure 4: Dihedral angle classification loss and accuracy.

(a) Classification loss. (b) Classification accuracy.

Figure 5: Edge type classification loss and accuracy.

(a) Classification loss. (b) Classification accuracy.

Figure 6: SPD classification loss and accuracy.
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(a) Classification loss. (b) Classification accuracy.

Figure 7: Centrality ranking loss and accuracy.
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(a) Embeddings from MOLINTERACT.
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(b) Embeddings from MoleculeSDE [35].

Figure 8: UMAP projection of QM9 molecule embeddings.

G UMAP visualization681

In Figure 8a and Figure 8b, we select 3 random test molecules from QM9 and plot them on their682

respective UMAP [41] projections. We see that MOLINTERACT exhibits more faithful multimodal683

molecule representations with 2D and 3D embeddings being more closely co-located than in the684

embedding space for MoleculeSDE. The 2D and 3D latent spaces of MOLINTERACT are therefore685

more well-aligned, contributing to its effectiveness in downstream tasks.686
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NeurIPS Paper Checklist687

1. Claims688

Question: Do the main claims made in the abstract and introduction accurately reflect the689

paper’s contributions and scope?690

Answer: [Yes]691

Justification: Our work is focused on providing a new approach to multimodal molecular692

self-supervised learning, which is reflected in the main content of the paper.693

Guidelines:694

• The answer NA means that the abstract and introduction do not include the claims695

made in the paper.696

• The abstract and/or introduction should clearly state the claims made, including the697

contributions made in the paper and important assumptions and limitations. A No or698

NA answer to this question will not be perceived well by the reviewers.699

• The claims made should match theoretical and experimental results, and reflect how700

much the results can be expected to generalize to other settings.701

• It is fine to include aspirational goals as motivation as long as it is clear that these goals702

are not attained by the paper.703

2. Limitations704

Question: Does the paper discuss the limitations of the work performed by the authors?705

Answer: [Yes]706

Justification: Please see Appendix B for a discussion of limitations of our method.707

Guidelines:708

• The answer NA means that the paper has no limitation while the answer No means that709

the paper has limitations, but those are not discussed in the paper.710

• The authors are encouraged to create a separate "Limitations" section in their paper.711

• The paper should point out any strong assumptions and how robust the results are to712

violations of these assumptions (e.g., independence assumptions, noiseless settings,713

model well-specification, asymptotic approximations only holding locally). The authors714

should reflect on how these assumptions might be violated in practice and what the715

implications would be.716

• The authors should reflect on the scope of the claims made, e.g., if the approach was717

only tested on a few datasets or with a few runs. In general, empirical results often718

depend on implicit assumptions, which should be articulated.719

• The authors should reflect on the factors that influence the performance of the approach.720

For example, a facial recognition algorithm may perform poorly when image resolution721

is low or images are taken in low lighting. Or a speech-to-text system might not be722

used reliably to provide closed captions for online lectures because it fails to handle723

technical jargon.724

• The authors should discuss the computational efficiency of the proposed algorithms725

and how they scale with dataset size.726

• If applicable, the authors should discuss possible limitations of their approach to727

address problems of privacy and fairness.728

• While the authors might fear that complete honesty about limitations might be used by729

reviewers as grounds for rejection, a worse outcome might be that reviewers discover730

limitations that aren’t acknowledged in the paper. The authors should use their best731

judgment and recognize that individual actions in favor of transparency play an impor-732

tant role in developing norms that preserve the integrity of the community. Reviewers733

will be specifically instructed to not penalize honesty concerning limitations.734

3. Theory Assumptions and Proofs735

Question: For each theoretical result, does the paper provide the full set of assumptions and736

a complete (and correct) proof?737

Answer: [NA]738
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Justification: This work does not include theoretical results.739

Guidelines:740

• The answer NA means that the paper does not include theoretical results.741

• All the theorems, formulas, and proofs in the paper should be numbered and cross-742

referenced.743

• All assumptions should be clearly stated or referenced in the statement of any theorems.744

• The proofs can either appear in the main paper or the supplemental material, but if745

they appear in the supplemental material, the authors are encouraged to provide a short746

proof sketch to provide intuition.747

• Inversely, any informal proof provided in the core of the paper should be complemented748

by formal proofs provided in appendix or supplemental material.749

• Theorems and Lemmas that the proof relies upon should be properly referenced.750

4. Experimental Result Reproducibility751

Question: Does the paper fully disclose all the information needed to reproduce the main ex-752

perimental results of the paper to the extent that it affects the main claims and/or conclusions753

of the paper (regardless of whether the code and data are provided or not)?754

Answer: [Yes]755

Justification: We report all the necessary experimental details of our method in Section 3.4756

and Appendix C.757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• If the paper includes experiments, a No answer to this question will not be perceived760

well by the reviewers: Making the paper reproducible is important, regardless of761

whether the code and data are provided or not.762

• If the contribution is a dataset and/or model, the authors should describe the steps taken763

to make their results reproducible or verifiable.764

• Depending on the contribution, reproducibility can be accomplished in various ways.765

For example, if the contribution is a novel architecture, describing the architecture fully766

might suffice, or if the contribution is a specific model and empirical evaluation, it may767

be necessary to either make it possible for others to replicate the model with the same768

dataset, or provide access to the model. In general. releasing code and data is often769

one good way to accomplish this, but reproducibility can also be provided via detailed770

instructions for how to replicate the results, access to a hosted model (e.g., in the case771

of a large language model), releasing of a model checkpoint, or other means that are772

appropriate to the research performed.773

• While NeurIPS does not require releasing code, the conference does require all submis-774

sions to provide some reasonable avenue for reproducibility, which may depend on the775

nature of the contribution. For example776

(a) If the contribution is primarily a new algorithm, the paper should make it clear how777

to reproduce that algorithm.778

(b) If the contribution is primarily a new model architecture, the paper should describe779

the architecture clearly and fully.780

(c) If the contribution is a new model (e.g., a large language model), then there should781

either be a way to access this model for reproducing the results or a way to reproduce782

the model (e.g., with an open-source dataset or instructions for how to construct783

the dataset).784

(d) We recognize that reproducibility may be tricky in some cases, in which case785

authors are welcome to describe the particular way they provide for reproducibility.786

In the case of closed-source models, it may be that access to the model is limited in787

some way (e.g., to registered users), but it should be possible for other researchers788

to have some path to reproducing or verifying the results.789

5. Open access to data and code790

Question: Does the paper provide open access to the data and code, with sufficient instruc-791

tions to faithfully reproduce the main experimental results, as described in supplemental792

material?793
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Answer: [Yes]794

Justification: We include all code and data and instructions to reproduce our results in our795

supplementary material as a zipped archive.796

Guidelines:797

• The answer NA means that paper does not include experiments requiring code.798

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/799

public/guides/CodeSubmissionPolicy) for more details.800

• While we encourage the release of code and data, we understand that this might not be801

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not802

including code, unless this is central to the contribution (e.g., for a new open-source803

benchmark).804

• The instructions should contain the exact command and environment needed to run to805

reproduce the results. See the NeurIPS code and data submission guidelines (https:806

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.807

• The authors should provide instructions on data access and preparation, including how808

to access the raw data, preprocessed data, intermediate data, and generated data, etc.809

• The authors should provide scripts to reproduce all experimental results for the new810

proposed method and baselines. If only a subset of experiments are reproducible, they811

should state which ones are omitted from the script and why.812

• At submission time, to preserve anonymity, the authors should release anonymized813

versions (if applicable).814

• Providing as much information as possible in supplemental material (appended to the815

paper) is recommended, but including URLs to data and code is permitted.816

6. Experimental Setting/Details817

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-818

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the819

results?820

Answer: [Yes]821

Justification: We lit all training and test details needed to understand the results in Section822

3.4 and Appendix C.823

Guidelines:824

• The answer NA means that the paper does not include experiments.825

• The experimental setting should be presented in the core of the paper to a level of detail826

that is necessary to appreciate the results and make sense of them.827

• The full details can be provided either with the code, in appendix, or as supplemental828

material.829

7. Experiment Statistical Significance830

Question: Does the paper report error bars suitably and correctly defined or other appropriate831

information about the statistical significance of the experiments?832

Answer: [Yes]833

Justification: We follow the existing literature on multimodal molecular SSL and report834

the mean and standard deviation for ROC AUC and MAE performance on MoleculeNet835

and QM8 from three random seeds. For QM9, we also follow the codebases from existing836

literature and report MAE from a single random seed (42).837

Guidelines:838

• The answer NA means that the paper does not include experiments.839

• The authors should answer "Yes" if the results are accompanied by error bars, confi-840

dence intervals, or statistical significance tests, at least for the experiments that support841

the main claims of the paper.842
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