Deep Interactions for Multimodal Molecular Property Prediction

Anonymous Author(s) Affiliation Address email

Abstract

Multi-modal learning by means of leveraging both 2D graph and 3D point cloud 1 information has become a prevalent method to improve model performance in 2 molecular property prediction. However, many recent techniques focus on specific 3 pre-training tasks such as contrastive learning, feature blending, and atom/subgraph 4 masking in order to learn multi-modality even though design of model architecture 5 is also impactful for both pre-training and downstream task performance. Rely-6 ing on pre-training tasks to align 2D and 3D modalities lacks direct interaction 7 which may be more effective in multimodal learning. In this work, we propose 8 MOLINTERACT, which takes a simple yet effective architecture-focused approach 9 to multimodal molecule learning which addresses these challenges. MOLINTER-10 ACT leverages an interaction layer for fusing 2D and 3D information and fostering 11 cross-modal alignment, showing strong results using even the simplest pre-training 12 methods such as predicting features of the 3D point cloud and 2D graph. MOLIN-13 TERACT exceeds several current state-of-the-art multimodal pre-training techniques 14 and architectures on various downstream 2D and 3D molecule property prediction 15 benchmark tasks. 16

17 **1 Introduction**

AI-assisted drug discovery has driven recent research interest in utilizing neural networks for molecule 18 learning. The machine learning community has become especially interested in developing high-19 quality representations for molecules, which are crucial for predicting molecular properties for a 20 variety of downstream cheminformatic tasks. Self-supervised learning (SSL) on molecular data 21 22 has emerged as a prevalent research direction to achieve this, leveraging the 2D graph structures of molecules [22, 56, 66]. In parallel, many SSL strategies for 3D point cloud representations of 23 molecules have also been developed [36, 15]. More recent works demonstrate the effectiveness of mul-24 timodal SSL techniques which combine 2D and 3D modalities to create better unified representations 25 [54, 34, 36, 77, 60]. 26

Many of these recent and successful multimodal SSL methods make use of SSL techniques from other fields of machine learning. For example, many works leverage attribute and atom/subgraph masking & prediction [22, 66, 75, 24, 34, 35] similar to how masked language-modeling is used to pre-train large transformer-based networks such as BERT [8]. Other works [34, 54, 62] prefer to leverage contrastive learning [5] in order to align the 2D and 3D views of molecules in a unified embedding space similar to how CLIP [45] aligns caption and image embeddings and SimCLR [3] aligns views of images.

These recent approaches typically consider improving molecular SSL via specific pre-training strategies and tasks, but not the underlying architecture. For instance, a common approach [34, 35, 54] is to take two separate models for encoding 3D and 2D structures and then design a pre-training

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

task to align their output embeddings. Alternatively, other works take a single, modality-agnostic
model, usually a transformer [58], and task it with predicting multimodal properties such as bond
angles [60, 77] or shortest-path distances [73]. Both of these approaches rely on a chosen pre-training

40 task to align 2D and 3D views of molecules.

However, it is not clear to what extent such approaches are able to fully learn cross-modal interactions. 41 For example, contrastive approaches using separate encoders seek to maximize the mutual information 42 between coarse-grained molecule embeddings, and so they may fail to capture key fine-grained 43 relationships. On the other hand, predictive approaches using a single backbone typically accept 44 only atom identities as input, leaving the pre-training task as the only source of multi-modality, 45 potentially missing features which can be extracted by modality-specific encoders. An additional 46 issue is that many pre-training tasks are complex and may require extensive tuning. For example, 47 GraphMVP [34] and MoleculeSDE [35] use a variational autoencoder [27] and diffusion model [19], 48 respectively, to reconstruct the original 2D and 3D structures, which risk mode collapse and are 49 sensitive to hyperparameters such as noise schedules. Other techniques like MoleBlend [73] require 50 both coordinate denoising [15] and prediction of blended multimodal features, where the ratio of 51 noised nodes and 2D & 3D features needs to be tuned. 52

In order to achieve fine-grained multi-modal information with simpler pre-training tasks, we turn our 53 focus to the role of architectural design for more effective SSL. This work introduces MOLINTERACT, 54 a deep learning architecture designed to fuse 2D and 3D modalities of molecules to better foster 55 multimodal performance. MOLINTERACT uses a series of interaction layers to learn how to combine 56 2D and 3D embeddings. Specifically, MOLINTERACT consists of two message-passing entrypoints for 57 2D and 3D data to produce corresponding 2D and 3D embeddings which are then fused and split apart 58 repeatedly in order to exchange unimodal information during pre-training. We pair MOLINTERACT 59 with a set of simple pre-training tasks from the existing literature, such as bond and dihedral angle 60 prediction, which are both sensible in a molecular context and require virtually no tuning. We 61 show that, even with such straightforward pre-training tasks and architecture, MOLINTERACT is 62 able to yield strong multimodal performance, emphasizing the impact of directly fusing 2D and 3D 63 atom embeddings in a model-based approach to improving SSL. We conduct various experiments to 64 demonstrate state-of-the-art performance across various downstream 2D and 3D benchmark tasks. 65

66 2 Background and Related Work

SSL for molecules. Self-supervised learning (SSL) [30, 37] has been adopted in a wide range of 67 domains to obtain high quality representations for downstream tasks. A slew of recent works have 68 69 emerged attempting to apply the same pre-train-then-finetune paradigm to molecule learning. In particular, research has been aimed at molecular SSL with the primary downstream task of molecule 70 property prediction [4, 75] in mind due to the potential of saving tremendous amounts of time 71 screening new drugs and compounds. However, the success of molecule property prediction requires 72 a comprehensive extraction of molecular features from various modalities, which becomes especially 73 important when only one modality is available for a given real-world molecule. For example, in 74 certain cases, only a compound's 2D structure may be known, but there may be little to no data on its 75 equilibrium conformers. In light of this, it has become important to solve the challenge of learning 76 77 informative molecular representations using all kinds of modalities, particularly 2D graphs and 3D point clouds. 78

Existing work on multimodal SSL. In order to fuse multimodal representations, works such as 79 GraphMVP [37] and 3DInfomax [54] aim to maximize the mutual information between the 2D and 80 3D views of molecules, treating 2D graphs with their corresponding 3D conformations as positive 81 samples and all other pairs as negative samples. Alternatively, another line of work proposes to 82 incorporate both modalities via prediction of the original data. MoleculeSDE [35] generates 3D 83 SE(3)-equivariant conformations from the 2D graph, and vice versa, and Zhu et al. [78] use a single 84 model to reconstruct the input 2D graph from the 3D point cloud and vice versa. Similarly, many 85 works [34, 35] task unimodal models with predicting masked sets of 2D and 3D atoms. Other works 86 such as ChemRL-GEM [10] and 3D-PGT [61] propose to predict internal coordinates such as bond 87 length, bond angle, and dihedral angles in order to distill 2D and 3D information. In contrast to these 88 methods, MOLINTERACT seeks to supplement a set of predictive pre-training tasks by leveraging a 89 fusion layer to force interactions between 2D and 3D embeddings to facilitate multimodal learning. 90

Figure 1: The proposed method's pre-training pipeline. From left-to-right, the input molecule's 2D and 3D graphs are used to derive initial 2D and 3D atom embeddings via message-passing layers. These embeddings are then mixed by an interaction layer before being fed back into the unimodal message-passing branches of the architecture. This process of message-passing followed by interaction repeats L times before the final embeddings from each tower are used for pre-training tasks of the opposite modality, e.g. predicting 3D quantities using the 2D encoder embeddings. Not shown are residual connections between each interaction block to preserve lower-order information.

Modality interaction. In order to fully leverage the synergy between different modalities, recent 91 works from other fields propose to learn more fine-grained modality alignment through deep inter-92 active architectures. GreaseLM [74] and Dragon [71] propose to align language models and graph 93 neural networks on knowledge graphs through an interaction token, aiming to integrate text and graph 94 modalities to better identify relevant relations and entities in a given passage. Other works [6, 31] de-95 96 sign similar deep interaction layers in various domains such as social networks and recommendation. MOLINTERACT takes inspiration from these methods, proposing to interact 2D and 3D modalities on 97 a fine-grained level in order to better facilitate pre-training and create high-performing multimodal 98 representations. 99

100 3 Method - Deep Interactions

101 3.1 Notation and Preliminaries

We consider molecules in terms of their 2D graph and 3D point cloud modalities. For simplicity, we 102 will use the term "graph" to refer to both the typical 2D node-edge formalism as well as a molecule's 103 3D point cloud. We denote the 2D graph of a molecule with n atoms by $G_{2D} = (V, E, X, B)$ 104 where V is a set of its atoms (nodes), E is a set of its bonds (edges), $X \in \mathbb{R}^{n \times d_V}$ is a 2D feature 105 matrix corresponding to the atoms of the molecule with features specific to the 2D graph, such 106 as membership in a ring [21], and $B \in \mathbb{R}^{|E| \times d_E}$ is an edge feature matrix corresponding to edge 107 information such as bond type. For simplicity, we let $d = d_V = d_E$. We also define the 3D graph of a molecule by $G_{3D} = (\mathbf{R}, \mathbf{X})$ where $\mathbf{R} \in \mathbb{R}^{n \times 3}$ is the molecule's position matrix where rows are 108 109 (x, y, z) coordinates in 3D space. Unless otherwise specified, we use $z_{2D}^{(\ell,i)}$ and $z_{3D}^{(\ell,i)}$ to refer to the *i*th 2D and 3D atom embedding resulting from the ℓ th layer of a neural network. For simplicity, we 110 111 assume that all embeddings are of dimension d, and we use $W_{(.)}$ to refer to a linear layer with the 112 bias omitted. All classification-based loss functions use CE to stand for Cross-Entropy. 113

MOLINTERACT is comprised of two central components: (1) an architecture which fosters deep
 multimodal interactions, and (2) a pre-training scheme which leverages this architecture to enforce
 multimodal understanding similar to previous works. We introduce each component one-by-one in
 the following sections.

118 **3.2 Model Architecture**

¹¹⁹ During pre-training and multi-modal fine-tuning, MOLINTERACT receives a molecule's 2D and 3D ¹²⁰ views G_{2D} and G_{3D} . These views are then passed through a two-tower architecture which alternates between phases of message-passing and interaction. Each tower is a 2D and 3D modality-specific stack of encoders periodically conjoined by interactor layers as visualized in Figure 1.

2D and 3D atom encoders. In order to compute 2D atom embeddings, we follow previous work on multimodal pre-training [34, 54, 36, 77, 60] and use message-passing graph neural network [13] (MPNN) layers as 2D encoders. Given a molecular graph G_{2D} and one of its nodes *i*, its 2D node embedding h_i at the $(\ell + 1)$ th layer of an MPNN is given by

$$h_i^{(\ell+1)} = \text{Update}\left(h_i^{(\ell)}, \underset{j \in \mathcal{N}(i)}{\text{Agg}}\psi\left(h_i^{(\ell)}, h_j^{(\ell)}, e_{ij}\right)\right)$$
(1)

where Update is a function which updates the node embedding, Agg is a permutation-invariant 127 function on the neighbors of i, and ψ is a function which computes "messages", or interactions, 128 between the node i and its neighbor j with the edge between them as context. In our case, we use 129 layers from the GINE [22] architecture, which is a variant of GIN [68] that incorporates edge features 130 during message-passing. We choose GINE due to its simplicity and 1-WL-expressivity [64], although 131 we note that MOLINTERACT places no restrictions on its 2D backbone, and one can easily replace the 132 MPNN with a more powerful 2D model such as a graph transformer [9, 48, 40] as other multimodal 133 works [60, 73] do to improve performance. 134

To compute 3D atom embeddings, we opt to use the continuous convolutional layers from SchNet [52]. These layers conduct message-passing according to relative distances between atoms, incorporating both geometric and atom information into the resulting embeddings. Similar to the 2D encoder, MOLINTERACT is agnostic to the choice of 3D encoder, and so one may choose to opt for more expressive 3D backbones [12, 28, 38, 59, 53]. Despite the limited expressivity of SchNet and GIN, we find that MOLINTERACT is able to outperform several state-of-the-art methods, which we show in Section 4.

142 3.3 Multimodal Interaction Layer

At the ℓ th layer of unimodal message-passing, we take the 2D and 3D atom embeddings $z_{2D}^{(\ell,i)}$ and $z_{3D}^{(\ell,i)}$ and pass them to an interaction layer $\phi^{(\ell)}$. Then, the updated atom embeddings $z_{2D}^{(\ell+1,i)}$ and $z_{3D}^{(\ell+1,i)}$ are decoded from the output of $\phi^{(\ell)}$ and fed back into their respective unimodal message-143 144 145 passing towers. There are a variety of options for choosing $\phi^{(\ell)}$, such as an attention-based aggregation 146 between the embeddings, or the aggregation of representative nodes [74], such as a virtual node for 147 the 2D graph [13, 44, 25] or a center-of-mass node for the 3D graph. However, for simplicity, we 148 use a 2-layer MLP of dimension 2d with Swish activation [18] for $\phi^{(\ell)}$, and feed it the concatenated 149 unimodal embeddings. We run ablations testing different functions for each $\phi^{(\ell)}$ in Table 2. For 150 decoding, we simply split the output of the MLP in half along the channel dimension to retrieve the 151 updated 2D and 3D embeddings. With this, we do not risk information loss via pooling or choosing 152 a representative token for the whole molecule, attaining more granular, node-level interactions. 153 Formally, the multimodal embeddings at layer $\ell + 1$ are given by 154

$$w^{(\ell+1,i)} = \phi^{(\ell)}(z_{2D}^{(\ell,i)}, z_{3D}^{(\ell,i)}) = MLP^{(\ell)}\left(z_{2D}^{(\ell,i)} \middle\| z_{3D}^{(\ell,i)}\right)$$
(2)

where || denotes concatenation in column-major order. Then, our updated atom embeddings can be
 written in the following implementation-friendly way:

$$z_{2D}^{(\ell+1,i)}, z_{3D}^{(\ell+1,i)} = w_{:,:d}^{(\ell+1,i)}, w_{:,d:}^{(\ell+1,i)}$$
(3)

where the subscripts of $w^{(\ell+1,i)}$ denote Python-like indices. this way, the 2D embeddings are a 157 fusion of both 2D and 3D features, and similarly for the 3D embeddings with each subsequent 158 iteration of message-passing and interaction, encoding higher-order multimodal features. Unlike 159 molecule-level approaches like 3D Infomax [54], GraphMVP [34], and MoleculeSDE [35], and 160 unlike modality-agnostic backbone-based methods like MoleBlend [73], MOLINTERACT benefits 161 from both fine-grained, atom-level interactions as well as modality-specific encoders to create more 162 powerful multimodal representations. See Appendix F to see a UMAP visualization of the molecule 163 embeddings from MOLINTERACT compared with MoleculeSDE. 164

The pre-training tasks for MOLINTERACT are designed to be heterogeneous, meaning 3D quantities 165 are predicted using $z_{2D}^{(\ell,i)}$, and 2D quantities are predicted using $z_{3D}^{(\ell,i)}$. By using embeddings of one modality to predict features of the opposite modality, we maximize a lower bound of the mutual 166 167 information between the modalities. As Liu et al. [34] note, if X_{3D} , X_{2D} denote random variables 168 from 2D and 3D spaces, then their mutual information (MI) $I(X_{3D}, X_{2D})$ is bounded below by 169 $-\frac{1}{2}(H(X_{3D}|X_{2D}) + H(X_{2D}|X_{3D}))$ where H denotes entropy. Visibly, this bound is maximized 170 when $p(x_{3D}|x_{2D})$ and $p(x_{2D}|x_{3D})$ are also maximized. This motivates the pre-training pipeline in 171 this work where predicting 2D quantities from 3D embeddings and 3D quantities from 2D embeddings 172 maximizes the MI between 2D and 3D information in MOLINTERACT. 173

Intuitively, during pre-training, the interaction layer ϕ serves as a exchange pathway between the unimodal towers. As the only point of contact between the 2D and 3D message-passing layers, ϕ must effectively route the most important cross-modal information relevant to the pre-training task. During fine-tuning, each ϕ serves as an aggregator of multimodal features, learning to fuse 2D and 3D information effectively for the given downstream task.

179 3.4 Pre-training Tasks

MOLINTERACT's architecture is complemented by a set of simple pre-training tasks in order to 180 facilitate multimodal learning using its fused atom embeddings. Specifically, for our 3D tasks, we 181 choose to predict interatomic distances, bond angles, and dihedral angles. We then predict edge type, 182 shortest-path distance, and centrality ranking as our 2D tasks. We choose these specific pre-training 183 tasks due to (1) their hierarchical relationships with each other in their respective modalities and 184 (2) their ease of computation. The intuition behind (1) is that, in order to learn a comprehensive 185 multimodal representation, both lower-order and higher-order geometric/topological features must 186 be learned and infused in the post-interaction atom embeddings. We value (2) for efficiency's sake, 187 noting that computing these quantities is fairly straightforward and require little to no tuning to be 188 effective. Such prediction tasks are among the simplest in the molecular SSL literature compared 189 to diffusion models and substructure masking, which highlights the effectiveness of the interaction 190 layers during pre-training. 191

3D Tasks. For our 3D tasks, similar to [60] and [10], we choose to predict interatomic distances, bond angles, and dihedral angles: three of the some of the basic internal coordinates in 3D molecular graphs. Not only are such 3D graphs uniquely identified by these primitives [38, 59], but they are also crucially linked to energy-based properties of molecules, making them important geometric priors to encode in 2D embeddings. Furthermore, these angles are prime examples of hierarchical quantities since interatomic distances can be used to compute bond angles, and bond angles can be used to compute dihedral angles, ascending from 2-tuple atom information to 4-tuple atom information.

Given an *L*-layer instance of MOLINTERACT, We introduce our interatomic distance loss and bond angle losses as follows:

$$\mathcal{L}_{\text{Inter}} = \frac{1}{|I|} \sum_{(i,j)\in I} \left(W_{\text{Inter}} \left(z_{2\text{D}}^{(L,i)} + z_{2\text{D}}^{(L,j)} \right) - \alpha_{ij} \right)^2 \tag{4}$$

where *I* is a set of sampled atom index pairs, and α_{ij} is the ground-truth interatomic distance between atoms *i* and *j*. Note that we add the 2D embeddings in this loss formulation due to the requirement that distances between atoms are symmetric ($\alpha_{ij} = \alpha_{ji}$), and therefore their encodings should be permutation-invariant. Our loss function for predicting bond angles is similarly defined:

$$\mathcal{L}_{\rm B} = \frac{1}{|B|} \sum_{(i,j,k)\in B} \left(\mathbf{W}_{\rm B} \left(z_{\rm 2D}^{(L,i)} || z_{\rm 2D}^{(L,j)} || z_{\rm 2D}^{(L,k)} \right) - \beta_{ijk} \right)^2$$
(5)

where B is a set of computed bond angles of adjacent atoms, and i, j, k denote indices of the respective

anchor, source, and destination atoms. Note that we concatenate the indexed atom embeddings rather than sum them since bond angles differ depending on which atoms are chosen as anchors.

Finally, while our dihedral angle prediction loss could be analogously defined, we found that our model had difficulty predicting dihedral angles directly, with MSE barely reducing from 0.475 in the first epoch to 0.45 in the 50th when pre-training on PCQM4Mv2, indicating that no useful angle information was being learned. To improve learning, we replace the angle regression task with an angle classification task, where the task becomes to categorize quadruplets of atom embeddings according to what bin the corresponding dihedral angle belongs to. This is a relatively easier task than direct prediction, and we subsequently saw an increase in performance. Formally, our loss is the cross-entropy term

$$\mathcal{L}_{\mathrm{D}} = -\frac{1}{|D|} \sum_{(i,j,k,l) \in D} \operatorname{CE}\left(\mathcal{D}_{b}, \boldsymbol{W}_{\mathrm{D}}\left(\boldsymbol{z}_{2D}^{(L,*)}\right)\right)$$
(6)

where *D* is a set of dihedral angles, $z_{2D}^{(L,*)}$ is short for $z_{2D}^{(L,i)}||z_{2D}^{(L,j)}||z_{2D}^{(L,k)}||z_{2D}^{(L,\ell)}||z_{2D}^$

221 **2D Tasks.** The ways in which 2D topological quantities are relevant for molecular property pre-222 diction are more subtle than in the 3D case. Given that G_{3D} is missing key information regarding 223 atom-atom relationships such as bond types, we first task MOLINTERACT with classifying edges 224 from G_{2D} according to the cross-entropy loss term

$$\mathcal{L}_{\text{Edge}} = -\frac{1}{|E|} \sum_{(i,j)\in E} \text{CE}\left(\mathbf{B}_{ij}, \boldsymbol{W}_{\text{Edge}}\left(\boldsymbol{z}_{3\text{D}}^{(L,i)} + \boldsymbol{z}_{3\text{D}}^{(L,j)}\right)\right)$$
(7)

where B_{ij} indexes the label of the corresponding edge (i, j). With this loss, we aim to instill precise atom relational information in the 3D embeddings. Next, a logically higher-order task is to determine the shortest-path distances (SPDs) between atoms, similar to Transformer-M [40] and MOLEBLEND [73], which encodes a global characterization of the molecule's topology. Further, bond type information may serve as a useful preliminary task given that edge classification implicitly informs the modeling of existing edges, meaning that SPD prediction becomes a task of counting which of the said edges are incident. Formally, our SPD loss is formulated as

$$\mathcal{L}_{\text{SPD}} = -\frac{1}{|C|} \sum_{(i,j)\in C} \text{CE}\left(\boldsymbol{D}_{ij}, \boldsymbol{W}_{\text{SPD}}\left(\boldsymbol{z}_{3\text{D}}^{(L,i)} + \boldsymbol{z}_{3\text{D}}^{(L,j)}\right)\right)$$
(8)

where $C \subseteq V \times V$ is a set of sampled node pairs, and D_{ij} corresponds to the SPD between atoms *i* and *j*.

Our final 2D pre-training task is centrality ranking, which aims to use SPD information from the 234 preceding pre-training task to capture global structure. Centrality [1, 2] is a concept from network 235 science which quantifies node importance. In the molecular case, centrality might be used as an 236 indicator of structural importance such as acting as a bridge between a ring or functional group [43]. 237 Furthermore, centrality may act as a proxy for structure/subgraph membership since atoms which 238 participate in chemically relevant substructures are likely to have similar centrality measures. This 239 may serve as informative signal for the 3D tower of MOLINTERACT which is ignorant of the 2D 240 graph topology. In this way, learning to rank nodes by centrality may be thought of as a proxy task to 241 more complex structural pre-training tasks such as subgraph masking, replacing subgraph sampling 242 steps with the simple cross-entropy loss term 243

$$\mathcal{L}_{\text{Cent}} = -\frac{1}{|C|} \sum_{(i,j)\in C} \text{CE}\left(\mathcal{C}_{i,j} \boldsymbol{W}_{\text{Cent}}\left(\boldsymbol{z}_{3\text{D}}^{(L,i)} + \boldsymbol{z}_{3\text{D}}^{(L,j)}\right)\right)$$
(9)

where $C_{i,j} = 1$ if node i has a higher centrality than node j and 0 otherwise. Among the various 244 definitions of centrality, we experiment with betweenness centrality and eigenvector centrality [63, 11]. Betweenness centrality of a node v is defined as $\sum_{s,t\in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$, where $\sigma(s,t|v)$ stands for the 245 246 number of shortest paths between s and t which pass through v, which would appear to reuse 247 information from \mathcal{L}_{SPD} . However, in practice, we observe superior performance using the eigenvector 248 centrality of each node u, defined as the uth entry of the eigenvector corresponding to the largest 249 eigenvalue of the 2D graph's adjacency matrix. Intuitively, information learned during SPD prediction 250 may still be used since a node's eigenvector centrality is proportional to the number of infinite random 251 walks passing through that node. We provide some visualizations of betweenness and eigenvector 252 centrality on molecular graphs in Appendix B. 253

Method	α	$\Delta \mathcal{E}$	$\mathcal{E}_{\mathrm{HOMO}}$	$\mathcal{E}_{\text{LUMO}}$	μ	C_v	G	H	\mathbb{R}^2	U	U_0	ZPVE
Stock SchNet (Schütt et al. [52]), 8 layers	0.076	51.28	33.17	26.53	0.032	0.031	17.86	15.77	0.146	17.88	18.24	1.605
Distance Prediction (Liu et al. [36])	0.065	45.87	27.61	23.34	0.031	0.033	14.83	15.81	0.248	15.07	15.01	1.837
3D InfoGraph (Liu et al. [36])	0.062	45.96	29.29	24.60	0.028	0.030	13.93	13.97	0.133	13.55	13.47	1.644
3D InfoMax (Stärk et al. [54])	0.057	42.09	25.90	21.60	0.028	0.030	13.73	13.62	0.141	13.81	13.30	1.670
GraphMVP (Liu et al. [34])	0.056	41.99	25.75	21.58	0.027	0.029	13.43	13.31	0.136	13.03	13.07	1.609
MoleculeSDE (Liu et al. [35])	0.054	41.77	25.74	21.41	0.026	0.028	13.07	12.05	0.151	12.54	12.04	1.587
MOLEBLEND (Yu et al. [73])	0.060	34.75	<u>21.47</u>	<u>19.23</u>	0.037	0.031	12.44	11.97	0.417	12.02	11.82	1.580
MOLINTERACT (no pre-training)	<u>0.048</u>	37.66	21.87	19.45	0.022	<u>0.026</u>	9.54	8.84	<u>0.119</u>	8.77	8.421	1.396
MOLINTERACT (\mathcal{L}_{Simple})	0.047	35.92	21.54	18.34	0.021	0.025	<u>9.13</u>	8.26	0.097	8.16	8.17	1.365
MOLINTERACT (\mathcal{L}_{All})	0.047	<u>35.58</u>	20.60	17.88	0.021	0.025	8.56	8.24	0.136	7.92	7.72	1.327

Table 1: Performance on QM9 measured in MAE. Lower is better.

Pre-training method	α	$\Delta \mathcal{E}$	$\mathcal{E}_{\mathrm{HOMO}}$	$\mathcal{E}_{\text{LUMO}}$	μ	C_v	G	H	R^2	U	U_0	ZPVE
Only 3D tasks	0.048	36.58	21.12	18.54	0.024	0.026	9.45	8.80	0.152	8.62	8.70	1.448
Betweenness	0.050	37.78	22.18	18.90	0.025	0.027	10.08	10.30	0.171	9.71	10.50	1.508
Mean Interactor	0.061	46.82	30.89	24.18	0.035	0.030	11.93	12.06	0.126	11.67	11.99	1.543
Self-Attention Interactor	0.074	52.73	32.27	27.74	0.042	0.034	14.80	14.09	0.116	14.41	13.98	1.749
\mathcal{L}_{Simple} , 3D structures only	0.057	42.00	24.78	20.77	0.022	0.028	13.47	12.87	0.163	12.75	12.36	1.480

Table 2: Ablations of MOLINTERACT on QM9.

 $\label{eq:Finally} Finally, the total loss formulation during pre-training is \mathcal{L}_{All} = \mathcal{L}_{Inter} + \mathcal{L}_{B} + \mathcal{L}_{D} + \mathcal{L}_{Edge} + \mathcal{L}_{SPD} + \mathcal{L}_{Cent}.$ 254 In practice, we see that each loss term exhibits varying influence since terms like \mathcal{L}_{edge} are naturally 255 easier to minimize than more complex terms like \mathcal{L}_{D} . Therefore, in our experiments, we compare 256 both MOLINTERACT using \mathcal{L}_{All} and $\mathcal{L}_{Simple} = \mathcal{L}_{Inter} + \mathcal{L}_{SPD}$, and find comparable performance. We 257 find that \mathcal{L}_{Inter} and \mathcal{L}_{SPD} work best together, achieving the best overall performance among all the 258 tasks considered. Intuitively, interatomic distances with shortest-path distances give the minimum 259 description of the topology of the 3D and 2D graphs. For a more detailed analysis of the behavior of 260 these losses, see Appendix E. In summary, each of these 3D and 2D pre-training tasks play a role 261 in forming a unified molecular representation in terms of geometric and topological quantities in 262 increasing levels of complexity. 263

264 4 Experiments

265 4.1 Datasets and Experimental Setup

We pre-train an 8-layer version of MOLINTERACT with 9M parameters for 50 epochs on 266 PCQM4Mv2 [21], which contains over 3.3M molecules with their DFT-computed 3D structures 267 from the PubChemQC [42] project. For evaluation, we evaluate MOLINTERACTON 12 tasks from 268 QM9 [46] and 8 datasets from MoleculeNet [65] in order to compare our method with works in the 269 multimodal molecular SSL literature. We compare MOLINTERACT on OM9 and MoleculeNet with 270 the same baselines as reported by the comprehensive study by Yu et al. [73]. All best metrics are 271 bolded, and second-best metrics are underlined. Results for QM9 are measured in mean absolute 272 error (MAE), and results for MoleculeNet are measured in ROC AUC. All metrics reported are from 273 each dataset's test split using the weights which perform best on a validation set. We also include 274 results on QM8 [47, 51] in Appendix D due to space limitations. 275

In datasets where both 2D and 3D information are available such as QM9 and QM8, we provide both 2D and 3D structures to MOLINTERACT, aggregate the resulting embeddings with mean pooling, and then input their concatenation to a 2-layer MLP head. Otherwise, when only one modality is available, as in MoleculeNet, only the corresponding unimodal branch of our method is activated while the frozen atom embeddings of the other modality are used as input to the interaction layers in place of the embeddings produced by the disabled complementary branch.

Method	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Average
AttrMask (Hu et al. [22])	65.0±2.3	74.8±0.2	62.9±0.1	61.2±0.1	87.7±1.1	73.4±2.0	76.8±0.5	79.7±0.3	72.68
ContextPred (Hu et al. [22])	$65.7{\pm}0.6$	$74.2{\pm}0.0$	$62.5{\pm}0.3$	$62.2{\pm}0.5$	$77.2{\pm}0.8$	$75.3{\pm}1.5$	$77.1{\pm}0.8$	$76.0{\pm}2.0$	71.28
GraphCL (You et al. [72])	$69.7 {\pm} 0.6$	$73.9{\pm}0.6$	$62.4{\pm}0.5$	$60.5{\pm}0.8$	$76.0{\pm}2.6$	$69.8{\pm}2.6$	$78.5{\pm}1.2$	75.4±1.4	70.78
InfoGraph (Sun et al. [56])	$67.5 {\pm} 0.1$	$73.2{\pm}0.4$	$63.7{\pm}0.5$	$59.9{\pm}0.3$	$76.5{\pm}1.0$	74.1±0.7	75.1±0.9	$77.8{\pm}0.8$	70.98
GROVER (Rong et al. [50])	70.0 ± 0.10	$74.3{\pm}0.1$	$65.4{\pm}0.4$	$\underline{64.8 \pm 0.6}$	$81.2{\pm}3.0$	$67.3 {\pm} 1.8$	$62.5{\pm}0.9$	$82.6{\pm}0.7$	71.01
MolCLR (Wang et al. [62])	$66.6 {\pm} 1.8$	$73.0{\pm}0.1$	$62.9{\pm}0.3$	$57.5 {\pm} 1.7$	86.1±0.9	$72.5{\pm}2.3$	$76.2{\pm}1.5$	71.5 ± 3.1	70.79
GraphLoG (Xu et al. [69])	$72.5{\pm}0.8$	$75.7{\pm}0.5$	$63.5{\pm}0.7$	$61.2{\pm}1.1$	$76.7{\pm}3.3$	$76.0{\pm}1.1$	$77.8{\pm}0.8$	83.5 ± 1.2	73.40
MGSSL (Zhang et al. [75])	$69.7{\pm}0.9$	$76.5{\pm}0.3$	64.1±0.7	$61.8{\pm}0.8$	$80.7{\pm}2.1$	78.7 ± 1.5	$78.8{\pm}1.2$	79.1±0.9	73.70
GraphMAE (Hou et al. [20])	$72.0{\pm}0.6$	$75.5{\pm}0.6$	64.1±0.3	$60.3 {\pm} 1.1$	$82.3{\pm}1.2$	$76.3{\pm}2.4$	$77.2{\pm}1.0$	83.1±0.9	73.85
Mole-BERT (Xia et al. [66])	$71.9{\pm}1.6$	$76.8{\pm}0.5$	$64.3{\pm}0.2$	$62.8{\pm}1.1$	$78.9{\pm}3.0$	$78.6{\pm}1.8$	$78.2{\pm}0.8$	$80.8 {\pm} 1.4$	74.04
3D InfoMax (Stärk et al. [54])	69.1±1.0	$74.5{\pm}0.7$	$64.4{\pm}0.8$	$60.6{\pm}0.7$	$79.9{\pm}3.4$	$74.4{\pm}2.4$	76.1±1.3	79.7±1.5	72.34
GraphMVP (Liu et al. [34])	$68.5{\pm}0.2$	$74.5{\pm}0.4$	$62.7{\pm}0.1$	$62.3{\pm}1.6$	$79.0{\pm}2.5$	$75.0{\pm}1.4$	$74.8 {\pm} 1.4$	$76.8 {\pm} 1.1$	71.69
MoleculeSDE (Liu et al. [35])	$71.8{\pm}0.7$	$76.8{\pm}0.3$	$65.0{\pm}0.2$	$60.8{\pm}0.3$	$87.0{\pm}0.5$	$80.9{\pm}0.3$	$78.8{\pm}0.9$	$79.5{\pm}2.1$	<u>75.07</u>
MOLEBLEND (Yu et al. [73])	$73.0{\pm}0.8$	$\textbf{77.8}{\pm 0.8}$	66.1±0.0	64.9±0.3	$\underline{87.6{\pm}0.7}$	$77.2{\pm}2.3$	$\underline{79.0{\pm}0.8}$	83.7±1.4	76.16
MOLINTERACT (\mathcal{L}_{Simple})	67.2±3.9	76.4±0.2	64.5±0.2	62.5±0.4	86.1±0.4	78.6±0.4	78.6±0.8	82.4±1.7	74.52
MOLINTERACT (\mathcal{L}_{All})	$68.5{\pm}1.3$	$\underline{77.3 \pm 0.5}$	$\underline{65.4{\pm}0.2}$	$62.9{\pm}0.4$	88.4±1.0	77.1±3.1	$79.5{\pm}0.4$	$79.1{\pm}0.03$	74.77

Table 3: Performance on MoleculeNet measured in ROC AUC. Higher is better.

282 4.2 3D Datasets - QM9

In QM9, we follow Thölke and Fabritiis [57] and finetune on 110K random molecules and use the 283 remaining 10K and 10.8K molecules as validation and test sets, respectively. QM9 is a dataset of 284 small molecules designed to test models' abilities to predicting various quantum and thermodynamic 285 properties, which crucially depend on 3D information. Performance is measured in terms of MAE 286 in order to determine how closely models can match DFT-level approximations of various quantum 287 properties of small molecules. Per Table 1, both versions of MOLINTERACT exhibit a substantial 288 lead in performance compared to baseline 3D pre-training methods, even without pre-training, 289 demonstrating the effectiveness of the deep multimodal interaction layers. Including the 3D and 2D 290 pre-training tasks, we see that MOLINTERACT's performance improves across the board, exceeding 291 the most recent state-of-the-art by as much as 34% (U), further validating the use of deep interactions 292 293 for improving the quality of learned features even with simple predictive SSL tasks.

294 4.3 2D Datasets - MoleculeNet

MoleculeNet is a set of 2D-only datasets with property prediction tasks ranging from toxicity 295 prediction to drug reactivity. ROC-AUC is used in order to evaluate each model's ability to correctly 296 determine these properties. Following [73], we report the mean and standard deviation across three 297 random seeds and use the Bemis-Murcko scaffolds recommended in DeepChem [49]. Per Table 3, 298 MOLINTERACT's performance on MoleculeNet is competitive with its multimodal and unimodal 299 GNN-based peers, among which it ranks only behind MoleculeSDE [35] in average ROC AUC and 300 even exceeds MoleculeSDE in 5/8 datasets. A possible explanation is that MoleculeSDE is tasked 301 directly with reconstructing the original equilibrium state 3D conformer during pre-training, granting 302 it highly detailed 3D knowledge which is especially useful in determining properties which may 303 benefit from a precise understanding of the 3D geometry of a molecule like blood-brain barrier 304 permeability [55]. It is also possible that the kind of 3D information learned by MOLINTERACT 305 is not immediately useful for MoleculeNet tasks unlike quantum metrics, as shown in Table 4. 306 Regarding other baselines, MOLINTERACT primarily falls behind non-GNN-based methods like 307 GROVER [50] and MOLEBLEND [73] which use more powerful transformer backbones. We also see 308 that MOLINTERACT with \mathcal{L}_{Simple} performs worse than with \mathcal{L}_{All} , which is expected given its smaller 309 ensemble of loss functions. 310

311 4.4 Ablation Studies

3D Transfer Performance in QM9. Table 4 shows performance on QM9 where only 2D graphs are provided to MOLINTERACT in order to test the degree of information transfer. Such an application may be valuable in cases where 3D structures are not consistently available, such as high-throughput

Method	α	$\Delta \mathcal{E}$	$\mathcal{E}_{\text{HOMO}}$	$\mathcal{E}_{\text{LUMO}}$	μ	C_v	R^2	ZPVE
PNA Corso et al. [7]	0.3972	123.08	82.10	85.72	0.4133	0.1670	22.14	15.08
GraphCL (You et al. [72])	0.3295	120.08	79.57	80.81	0.3937	0.1422	21.84	12.39
AttrMask (You et al. [72])	0.3570	116.21	80.58	84.93	0.4626	0.1587	29.23	25.91
GPT-GNN (Hu et al. [23])	0.3732	131.99	93.11	99.84	0.3975	0.1795	29.21	11.17
GraphMVP (Liu et al. [34])	0.3227	101.84	68.62	70.23	0.3489	0.1287	17.03	7.96
3D InfoMax (Stärk et al. [54])	0.3268	101.71	68.96	<u>69.51</u>	0.3507	0.1306	17.39	7.96
3D-PGT (Wang et al. [60])	<u>0.3121</u>	<u>101.53</u>	<u>68.24</u>	69.73	<u>0.3409</u>	<u>0.1217</u>	<u>16.89</u>	<u>7.92</u>
MOLINTERACT (2D)	0.2145	86.49	59.77	57.55	0.3055	0.0830	12.03	5.11

Table 4: Performance on QM9 using 2D-only models to study the degree of 3D information transfer.

preliminary drug screening [54, 16]. Under this restriction, MOLINTERACT outperforms several 2D baselines benchmarked by [54], demonstrating substantially stronger 3D performance given only 2D graphs, suggesting a high degree of 3D-to-2D information transfer despite such a simple suite of

³¹⁸ pre-training tasks. This emphasizes the importance of the architecture of MOLINTERACT, showing

the strength of the interaction layers even when one modality is missing.

Impact of Pre-training Tasks and Interactor Types. In Table 2, we investigate the impact of 320 the pre-training tasks in the architecture of MOLINTERACT on performance in the QM9 dataset. 321 "Only 3D tasks" refers to the method pre-trained only on interatomic distance, bond angle, and 322 dihedral angle prediction. "Betweenness" refers to the \mathcal{L}_{All} setting swapping centrality ranking loss 323 with betweenness ranking loss. "Mean" and "Self-Attention Interactor" refer to the \mathcal{L}_{Simple} setting 324 except with the averaging operation and a separate single-head self-attention modules for ϕ layer, 325 respectively. Finally, "3D structures only" refers to the setting where only 3D graphs are supplied to 326 MOLINTERACT. 327

In these ablations, we observe a noticeable decline in performance across the board compared to the 328 final version of MOLINTERACT. First, the "Only 3D tasks" ablation confirms that the 2D pre-training 329 tasks indeed play a role in enhancing multimodal performance on downstream tasks even when they 330 are not as directly related to properties such as $\Delta \mathcal{E}$, which are primarily reliant on 3D features. Next, 331 the worse performance of betweenness centrality compared to eigenvector centrality suggests that 332 333 the latter is more chemically meaningful. This is expected since eigenvector centrality is directly related to Laplacian eigenvector positional encodings [9, 29], which have been shown to enhance 334 performance on molecular graphs by breaking the symmetries of WL-indistinguishable nodes [29]. 335 The "Mean" and "Self-Attention" ablations show the superiority of a simple MLP-based interactor as 336 a balance between a parameter-free and complex interactor. In our training runs, the self-attention-337 based interactor exhibited extensive over-fitting. Finally, given only 3D structures, we see that 338 MOLINTERACT is competitive with contemporary methods, exceeds the current state-of-the-art in 339 μ, C_v , and ZPVE, and vastly outperforms a stock SchNet on all metrics by as much as 18% ($\Delta \mathcal{E}$), 340 suggesting that multimodal information is successfully utilized during interaction. 341

342 5 Conclusion

In this work, we introduce MOLINTERACT an architectural approach to improving multimodal self-supervised learning that leverages deep interactions to fuse 2D and 3D representations of molecules. With this deep interaction mechanism, our method is able to access fine-grained crossmodal information without sacrificing rich embeddings from modality-specific backbones, allowing for more effective interplay between 2D and 3D information when paired with even a simple set of predictive pre-training tasks, achieving new state-of-the-art performance on benchmark datasets as a result and contributing to the growing field of multimodal property prediction for small molecules.

350 **References**

- [1] Phillip Bonacich. Power and centrality: A family of measures. *American Journal of Sociology*,
 92(5):1170–1182, 1987. ISSN 00029602, 15375390.
- [2] Stephen P. Borgatti. Centrality and network flow. *Social Networks*, 27(1):55–71, 2005. ISSN 0378-8733. doi: https://doi.org/10.1016/j.socnet.2004.11.008.
- [3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. *arXiv preprint arXiv:2002.05709*, 2020.
- [4] Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self supervised pretraining for molecular property prediction. *arXiv preprint arXiv:2010.09885*, 2020.
- [5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), volume 1, pages 539–546 vol. 1, 2005. doi: 10.1109/CVPR.2005.202.
- [6] Nurendra Choudhary, Edward W Huang, Karthik Subbian, and Chandan K Reddy. An inter pretable ensemble of graph and language models for improving search relevance in e-commerce.
 In *Companion Proceedings of the ACM on Web Conference 2024*, pages 206–215, 2024.
- [7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
 neighbourhood aggregation for graph nets. In *Advances in Neural Information Processing Systems*, 2020.
- [8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 Thamar Solorio, editors, *Proceedings of the 2019 Conference of the North American Chapter* of the Association for Computational Linguistics: Human Language Technologies, Volume 1
 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
 for Computational Linguistics. doi: 10.18653/v1/N19-1423.
- [9] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.
- [10] Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou,
 Fan Wang, Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation
 learning for property prediction. *Nature Machine Intelligence*, pages 1–8, 2022. doi:
 10.1038/s42256-021-00438-4.
- [11] Linton C. Freeman. A set of measures of centrality based on betweenness. *Sociometry*, 40(1):
 35–41, 1977. ISSN 00380431.
- [12] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
 molecular graphs. In *International Conference on Learning Representations*, 2020.
- Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
 Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 1263–1272. PMLR, 06–11 Aug 2017.
- [14] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors, *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.
- [15] Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia
 Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisation
 for 3d molecular property prediction and beyond. In *International Conference on Learning Representations*, 2022.
- [16] Christoph Gorgulla, AkshatKumar Nigam, Matt Koop, Süleyman Selim Çınaroğlu, Christopher
 Secker, Mohammad Haddadnia, Abhishek Kumar, Yehor Malets, Alexander Hasson, Minkai
 Li, Ming Tang, Roni Levin-Konigsberg, Dmitry Radchenko, Aditya Kumar, Minko Gehev,
 Pierre-Yves Aquilanti, Henry Gabb, Amr Alhossary, Gerhard Wagner, Alán Aspuru-Guzik,

- Yurii S. Moroz, Konstantin Fackeldey, and Haribabu Arthanari. Virtualflow 2.0 the next
 generation drug discovery platform enabling adaptive screens of 69 billion molecules. *bioRxiv*,
 2023. doi: 10.1101/2023.04.25.537981.
- [17] Etash Kumar Guha, Shlok Natarajan, Thomas Möllenhoff, Mohammad Emtiyaz Khan, and Eugene Ndiaye. Conformal prediction via regression-as-classification. In *International Conference on Learning Representations*, 2024.
- [18] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with
 gaussian error linear units. *CoRR*, abs/1606.08415, 2016.
- [19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.
- [20] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 594–604, 2022.
- [21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
 CoRR, abs/2005.00687, 2020.
- [22] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 Leskovec. Strategies for pre-training graph neural networks. In *International Conference on Learning Representations*, 2020.
- [23] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
 pre-training of graph neural networks. In *Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2020.
- ⁴²⁶ [24] Eric Inae, Gang Liu, and Meng Jiang. Motif-aware attribute masking for molecular graph ⁴²⁷ pre-training, 2023.
- [25] Xiaofei He Junying Li, Deng Cai. Learning graph-level representation for drug discoveryk.
 arXiv preprint arXiv:1709.03741, 2017.
- [26] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International Conference on Learning Representations*, San Diega, CA, USA, 2015.
- [27] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *International Conference on Learning Representations*, 2014.
- Iohannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
 graph neural networks for molecules. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
 Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021.
- [29] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 Rethinking graph transformers with spectral attention. In M. Ranzato, A. Beygelzimer,
 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, volume 34, pages 21618–21629. Curran Associates, Inc., 2021.
- [30] Rayan Krishnan, Pranav Rajpurkar, and Eric J Topol. Self-supervised learning in medicine and healthcare. *Nature Biomedical Engineering*, 6(12):1346–1352, 2022.
- [31] Zhenyu Lei, Herun Wan, Wenqian Zhang, Shangbin Feng, Zilong Chen, Jundong Li, Qinghua
 Zheng, and Minnan Luo. BIC: Twitter bot detection with text-graph interaction and semantic
 consistency. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, 2023.
- [32] John W. Liebeschuetz, Jana Hennemann, Tjelvar S. G. Olsson, and Colin R. Groom. The good,
 the bad and the twisted: a survey of ligand geometry in protein crystal structures. *Journal of Computer-Aided Molecular Design*, 26:169 183, 2012.
- [33] Shengchao Liu, Mehmet F Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised
 representation for graphs, with applications to molecules. In H. Wallach, H. Larochelle,
 A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
- [34] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang.
 Pre-training molecular graph representation with 3d geometry. In *International Conference on Learning Representations*, 2022.

- [35] Shengchao Liu, Weitao Du, Zhi-Ming Ma, Hongyu Guo, and Jian Tang. A group symmetric
 stochastic differential equation model for molecule multi-modal pretraining. In *International Conference on Machine Learning*, pages 21497–21526. PMLR, 2023.
- [36] Shengchao Liu, Hongyu Guo, and Jian Tang. Molecular geometry pretraining with SE(3) invariant denoising distance matching. In *International Conference on Learning Representations*, 2023.
- [37] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang.
 Self-supervised learning: Generative or contrastive. *IEEE transactions on knowledge and data engineering*, 35(1):857–876, 2021.
- [38] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji.
 Spherical message passing for 3d molecular graphs. In *International Conference on Learning Representations*, 2022.
- [39] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
 International Conference on Learning Representations, 2017.
- [40] Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He.
 One transformer can understand both 2d & 3d molecular data. *arXiv preprint arXiv:2210.01765*, 2022.
- [41] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
 and projection for dimension reduction, 2018. cite arxiv:1802.03426Comment: Reference
 implementation available at http://github.com/Imcinnes/umap.
- [42] Maho Nakata and Tomomi Shimazaki. Pubchemqc project: A large-scale first-principles
 electronic structure database for data-driven chemistry. *Journal of Chemical Information and Modeling*, 57(6):1300–1308, 2017. doi: 10.1021/acs.jcim.7b00083. PMID: 28481528.
- [43] Nirmala Parisutham. How do centrality measures help to predict similarity patterns in molecular
 chemical structural graphs? *Artificial Intelligence Chemistry*, 1(2):100007, 2023. ISSN 2949-7477. doi: https://doi.org/10.1016/j.aichem.2023.100007.
- [44] Trang Pham, Truyen Tran, Khanh Hoa Dam, and Svetha Venkatesh. Graph classification via
 deep learning with virtual nodes. *CoRR*, abs/1708.04357, 2017.
- [45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 Sutskever. Learning transferable visual models from natural language supervision, 2021.
- [46] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry structures
 and properties of 134 kilo molecules. *Sci Data*, 1:140022, 2014.
- [47] Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, and O. Anatole von Lilienfeld.
 Electronic spectra from TDDFT and machine learning in chemical space. *The Journal of Chemical Physics*, 143(8):084111, 08 2015. ISSN 0021-9606. doi: 10.1063/1.4928757.
- [48] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. *Advances in Neural Information Processing Systems*, 35, 2022.
- [49] Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Karl Leswing, and Zhenqin
 Wu. *Deep Learning for the Life Sciences*. O'Reilly Media, 2019.
- [50] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou
 Huang. Self-supervised graph transformer on large-scale molecular data. In H. Larochelle,
 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 12559–12571. Curran Associates, Inc., 2020.
- [51] Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. *Journal of Chemical Information and Modeling*, 52(11):2864–2875, 2012. doi: 10.1021/ci300415d. PMID: 23088335.
- [52] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

- [53] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
 prediction of tensorial properties and molecular spectra. In Marina Meila and Tong Zhang,
 editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 Proceedings of Machine Learning Research, pages 9377–9388. PMLR, 18–24 Jul 2021.
- [54] Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
 Günnemann, and Pietro Lió. 3D infomax improves GNNs for molecular property prediction. In
 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
 editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
- 519 Proceedings of Machine Learning Research, pages 20479–20502. PMLR, 17–23 Jul 2022.
- [55] Claudia Suenderhauf, Felix Hammann, and Jörg Huwyler. Computational prediction of bloodbrain barrier permeability using decision tree induction. *Molecules*, 17(9):10429–10445, 2012.
 ISSN 1420-3049. doi: 10.3390/molecules170910429.
- [56] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
 semi-supervised graph-level representation learning via mutual information maximization. In
 International Conference on Learning Representations, 2019.
- [57] Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular potentials. In *International Conference on Learning Representations*, 2022.
- [58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- [59] Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. ComENet: Towards complete
 and efficient message passing for 3d molecular graphs. In Alice H. Oh, Alekh Agarwal, Danielle
 Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*,
 2022.
- [60] Xu Wang, Huan Zhao, Wei-wei Tu, and Quanming Yao. Automated 3d pre-training for
 molecular property prediction. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '23, page 2419–2430, New York, NY, USA, 2023.
 Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599252.
- [61] Xu Wang, Huan Zhao, Wei-wei Tu, and Quanming Yao. Automated 3d pre-training for
 molecular property prediction. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2419–2430, 2023.
- [62] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
 learning of representations via graph neural networks. *Nature Machine Intelligence*, pages 1–9,
 2022. doi: 10.1038/s42256-022-00447-x.
- [63] Stanley Wasserman and Katherine Faust. *Social Network Analysis: Methods and Applications*.
 Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
- [64] B.Yu. Weisfeiler and A.A. Leman. The reduction of a graph to canonical form and the algebra
 which appears therein. *Nauchno-Technicheskaya Informatsiya*, 2(9):12–16, 1968. Translation
 from Russian to English by Grigory Ryabov.
- [65] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
 Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: a benchmark for molecular machine
 learning. *Chemical Science*, 9:513 530, 2017.
- [66] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and
 Stan Z. Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In
 International Conference on Learning Representations, 2023.
- [67] Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li,
 Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the
 boundaries of molecular representation for drug discovery with the graph attention mechanism.
 Journal of Medicinal Chemistry, 63(16):8749–8760, 2020. doi: 10.1021/acs.jmedchem.9b00959.
 PMID: 31408336.
- [68] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 networks? In *International Conference on Learning Representations*, 2019.

- [69] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph level representation learning with local and global structure. In Marina Meila and Tong Zhang,
 editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 Proceedings of Machine Learning Research, pages 11548–11558. PMLR, 18–24 Jul 2021.
- [70] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
 Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels,
 Tommi Jaakkola, Klavs Jensen, and Regina Barzilay. Analyzing learned molecular representa tions for property prediction. *Journal of Chemical Information and Modeling*, 59(8):3370–3388,
 2019. doi: 10.1021/acs.jcim.9b00237. PMID: 31361484.
- [71] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D. Manning,
 Percy Liang, and Jure Leskovec. Deep bidirectional language-knowledge graph pretraining. In
 Neural Information Processing Systems, 2022.
- 576 [72] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
 577 Graph contrastive learning with augmentations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
 578 Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33,
 579 pages 5812–5823. Curran Associates, Inc., 2020.
- [73] Qiying Yu, Yudi Zhang, Yuyan Ni, Shikun Feng, Yanyan Lan, Hao Zhou, and Jingjing Liu.
 Multimodal molecular pretraining via modality blending. In *International Conference on Learning Representations*, 2024.
- [74] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D
 Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models. In
 International Conference on Learning Representations, 2021.
- [75] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
 self-supervised learning for molecular property prediction. *Advances in Neural Information Processing Systems*, 34:15870–15882, 2021.
- [76] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
 Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
 In International Conference on Learning Representations, 2023.
- [77] Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, and
 Tie-Yan Liu. Unified 2d and 3d pre-training of molecular representations. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22,
 page 2626–2636, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
- ⁵⁹⁶ 9781450393850. doi: 10.1145/3534678.3539368.
- [78] Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, and
 Tie-Yan Liu. Unified 2d and 3d pre-training of molecular representations. In *Proceedings of the* 28th ACM SIGKDD conference on knowledge discovery and data mining, pages 2626–2636,
 2022.

601 A Broader Impact

This work proposes a more effective method for developing multimodal representations of molecules for molecular property prediction. As such, it follows a line of work that has the potential to accelerate the drug and compound discovery process, making the development of new therapeutics easier and more cost-efficient. At the same time, there is potential for this work to be misused in order to aid in the development of compounds which negatively impact humanity in the form of harmful drugs, for example. We support the extensive usage of expert-guided control and regulation in order to steer the use of this technology and similar AI-assisted drug discovery techniques for social good.

609 **B** Limitations

There are generally two major limitations of MOLINTERACT. First, like other multimodal approaches 610 like MOLEBLEND [73], MOLINTERACT only takes into account the geometry of single 3D molecular 611 conformations, such as those in QM9 [46] and QM8 [51] which are in equilibrium state. In this way, 612 our method may not learn a comprehensive 3D representation of molecules and the wide spectrum 613 of possible conformers which make up a valid 3D geometry for a given compound. However, 614 other works [34, 35] tackle this problem by also tasking their architecture with generating 3D 615 conformations directly, which is an SSL task which may be adopted for our architecture as well. 616 Second, MOLINTERACT is limited in that even though the multimodal representations it learns are 617 effective, it still finds optimal performance when both modalities are available to the model, suggesting 618 a slight dependence on both modalities being provided to its interaction layers for downstream task 619 performance. However, this may be remedied by experimenting with tasking the architecture with 620 reproducing 2D/3D topology/geometry similar to MoleculeSDE [35] in order to make use of the 621 deactivated unimodal branch during finetuning. Further, in the 2D-only case, MOLINTERACT already 622 demonstrates an advance in the state-of-the-art when only 2D information is provide, and when 3D 623 structures are involved, 2D structure is generally easily recoverable. 624

Figure 2 plots eigenvector centrality versus betweenness centrality on two different molecules from PCQM4Mv2. While the two centrality measures are similar, eigenvector centrality is able to highlight nodes which are not only towards the middle of the molecule but also parts of certain substructures, such as the central ring in the top molecule or the top ring in the bottom molecule. In other words, it appears eigenvector centrality is a better measure of "communities" in the molecular graph, assigning nodes in substructures more similar centralities. Being able to discern which atoms have higher centrality may be a useful proxy for learning higher-order structure in molecular graphs.

632 C Hyperparameters and implementation details

Hyperparameters for pre-training on PCQM4Mv2 and finetuning on QM9, QM8, and MoleculeNet are in Table 5.

635 **D** Pre-training computational cost

Table 6 shows wall times to pre-train various baseline pre-training methods as included in the appendix 636 of MoleculeSDE [35]. Unfortunately, MOLEBLEND [73] does not yet have code available, and so 637 we could not include it in this benchmark. The wall-times for all methods besides MOLINTERACT 638 are reported from a machine using a single Nvidia V100 GPU. Due to access issues, we could 639 not attain a V100 GPU, and so our reported time is from a SLURM cluster node equipped with 640 an Nvidia A100 SXM4 80GB GPU. We recognize the generational gap in hardware, and so we 641 hypothesize that MOLINTERACT will almost certainly train slower on a V100. Reducing the number 642 of pre-training tasks will likely reduce pre-training wall time. Regrading memory requirements, 643 pre-training MOLINTERACT under our settings required at least 30GB VRAM. 644

645 E Performance on QM8

We also evaluate MOLINTERACT on 12 tasks from QM8 [47, 51]. QM8 is a smaller dataset than QM9 (20K vs 134K) with the task of predicting the electronic spectra of small organic molecules. Both 2D

Figure 2: Comparing eigenvector and betweenness centrality on a molecule from PCQM4Mv2.

Hyperparameter	PCQM4Mv2	QM9	QM8	MoleculeNet
Optimizer	Adam [26]	Adam [26]	Adam [26]	Adam [26]
Initialization	Glorot uniform [14]	-	-	-
Learning rate scheduler	Cosine annealing [39]	Cosine annealing [39]	Cosine annealing [39]	Cosine annealing [39]
Adam betas	(0.9, 0.999)	(0.9, 0.999)	(0.9, 0.999)	(0.9, 0.999)
Batch size	1024	128	128	{32, 64, 128, 256}
Max learning rate	1e-4	1e-4	1e-4	{1e-3, 3e-4, 5e-4, 1e-5}
Min learning rate	0	0	0	0
Epochs	50	1000	40	{40, 60, 80, 100}
Weight decay	0.0	0.0	0.0	0.0
All embedding dimensions	300	300	300	300
Number of layers	8	8	8	8
Interactor activation	Swish	Swish	Swish	Swish
Interactor Batch norm	None	None	None	None
Interactor Layer norm	None	None	None	None
Number of SchNet filters	128	128	128	128
Number of SchNet Gaussians	51	51	51	51
GIN learnable ϵ	True	True	True	True
GIN Jumping knowledge	Last	Last	Last	{Last, Mean, Sum}
Dropout	0.0	0.0	0.0	$\{0.0, 0.1, 0.15\}$

Table 5: Hyperparameters for pre-training (PCQM4Mv2) and finetuning (QM9, QM8, MoleculeNet)

Pre-training algorithm	Min/epoch	GPU
AttrMask	5.5	Nvidia V100 32GB
ContextPred	14	Nvidia V100 32GB
InfoGraph	6	Nvidia V100 32GB
MolCLR	10	Nvidia V100 32GB
Distance Prediction	6.7	Nvidia V100 32GB
3D InfoGraph	7.5	Nvidia V100 32GB
3D InfoMax	8.6	Nvidia V100 32GB
GraphMVP	11	Nvidia V100 32GB
MoleculeSDE	30	Nvidia V100 32GB
MolInteract (\mathcal{L}_{All})	17.8	Nvidia A100 80GB

Table 6: Wall time to pre-train MOLINTERACT compared to other pre-training algorithms.

Pre-training method	α	$\Delta \mathcal{E}$	$\mathcal{E}_{\text{HOMO}}$	$\mathcal{E}_{\text{LUMO}}$	μ	C_v	G	H	R^2	U	U_0	ZPVE
$\mathcal{L}_{B} + \mathcal{L}_{Cent}$	0.048	36.98	21.59	18.97	<u>0.022</u>	<u>0.026</u>	9.16	8.31	0.109	8.58	8.31	1.399
$\mathcal{L}_{D} + \mathcal{L}_{Cent}$	0.046	36.54	<u>20.85</u>	<u>18.33</u>	0.023	<u>0.026</u>	9.42	8.64	0.160	8.35	8.59	1.400
$\mathcal{L}_{Inter} + \mathcal{L}_{Cent}$	0.048	36.36	21.50	18.52	<u>0.022</u>	<u>0.026</u>	9.40	8.79	0.130	8.41	8.19	1.418
$\mathcal{L}_{\text{B}} + \mathcal{L}_{\text{Edge}}$	0.047	36.34	21.28	18.52	0.023	0.027	9.55	8.87	0.134	9.15	8.81	1.441
$\mathcal{L}_{\mathrm{D}} + \mathcal{L}_{\mathrm{Edge}}$	0.048	36.65	21.02	18.16	0.024	0.026	9.75	9.16	0.166	8.64	8.70	1.414
$\mathcal{L}_{Inter} + \mathcal{L}_{Edge}$	0.048	36.96	21.48	18.50	<u>0.022</u>	<u>0.026</u>	9.26	8.72	<u>0.102</u>	8.46	8.33	1.401
$\mathcal{L}_{B} + \mathcal{L}_{SPD}$	<u>0.047</u>	<u>36.32</u>	21.40	17.96	0.021	0.025	<u>9.13</u>	8.37	0.111	<u>8.36</u>	8.12	1.387
$\mathcal{L}_{\rm D}$ + $\mathcal{L}_{\rm SPD}$	0.047	36.48	20.83	18.00	<u>0.022</u>	0.025	9.00	8.55	0.161	8.54	8.44	1.307
$\mathcal{L}_{Inter} + \mathcal{L}_{SPD} \left(\mathcal{L}_{Simple} \right)$	<u>0.047</u>	35.92	21.54	18.34	0.021	0.025	<u>9.13</u>	<u>8.26</u>	0.097	8.16	<u>8.17</u>	<u>1.365</u>

Table 7: Ablations of MOLINTERACT on QM9 with different combinations of 2D and 3D loss terms.

Method	Average MAE
D-MPNN (Yang et al. [70])	0.0190 ± 0.0001
Attentive FP (Xiong et al. [67])	0.0179 ± 0.001
N-Gram _{RF} (Liu et al. [33])	$0.0236{\pm}0.0006$
N-Gram _{XGB} (Liu et al. [33])	$0.0215{\pm}0.0005$
Pretrained GNN (Hu et al. [22])	$0.0200 {\pm} 0.0001$
GROVER _{base} (Rong et al. [50])	$0.0218{\pm}0.0004$
GROVER _{large} (Rong et al. [50])	$0.0224{\pm}0.0003$
MolCLR (Wang et al. [62])	$0.0178 {\pm} 0.0003$
ChemRL-GEM (Fang et al. [10])	$0.0171 {\pm} 0.0001$
UniMol (Zhou et al. [76])	$0.0156{\pm}0.0001$
MOLINTERACT (base)	0.0161 ± 0.0005
MOLINTERACT (\mathcal{L}_{Simple})	$0.0158{\pm}0.0002$
MOLINTERACT (\mathcal{L}_{All})	$0.0157 {\pm} 0.0002$

Table 8: Multi-task performance on QM8 measured in average MAE across 12 tasks. Lower is better.

and 3D structures are provided. Following Zhou et al. [76], we use an 80%/10%/10% scaffold split, 648 and train for only 40 epochs. We compare with baselines reported by Zhou et al. [76] and report the 649 650 average MAE of 12 tasks in a multi-task setting across three random seeds. Table 8 demonstrates the effectiveness of MOLINTERACT, which not only outperforms pre-trained methods that leverage angle 651 information such as Fang et al. [10], but also competes with Uni-Mol, a large 3D model pre-trained 652 on over 200M molecular conformations, a dataset which is around 60 times larger and more diverse 653 than PCQM4Mv2. This shows that MOLINTERACT is able to use significantly less pre-training data, 654 which may be attributable to its utilization of both 2D and 3D information from modality-specific 655 encoders. Even when only using \mathcal{L}_{Simple} , MOLINTERACT achieves comparable results. 656

F F Pre-training loss function behavior

In this section, we show loss curves for each loss function term in \mathcal{L}_{All} during pre-training on 658 PCQM4Mv2 for MOLINTERACT. In Figures 3a, 5a, and 5b, we see that lower-order quantities such 659 as interatomic distances and edge types, low loss and high accuracy are easily achieved by epoch 660 10 and begin to plateau thereafter. More complex quantities, such as bond angles and SPDs, exhibit 661 similar elbow-shaped curves but saturate more slowly as shown in Figures 3b, 6a, and 6b. Finally, 662 dihedral angle and eigenvector centrality classification are the hardest quantities to predict during 663 pre-training, with both losses and accuracies improving much more slowly per Figures 4a, 4b, 7a, 664 and 7b. This is expected given that the dihedral angle distribution in each molecule are complex 665 in comparison [32], and learning to rank nodes by eigenvector centrality distills global structural 666 patterns. 667

We also show comprehensive ablations for each combination of individual 2D and 3D pre-training 668 tasks in Table 7. We see that \mathcal{L}_{Simple} performs the best overall out of each combination of tasks, with 669 $\mathcal{L}_{D} + \mathcal{L}_{SPD}$ following closely. Notably, the highest metrics usually occur for losses which include 670 \mathcal{L}_{SPD} , lending to the idea that shortest-path distances may contain the most useful 2D graph feature 671 information. This is somewhat surprising since SPDs do not include edge types, missing important 672 features such as whether an edge is a single or double bond, for example. A plausible explanation is 673 that edge information is already incorporated into the node embeddings during 2D message-passing 674 due to GINE's edge feature-aware convolution. Meanwhile, interatomic distance and dihedral angle 675 prediction take turns as the most effective 3D tasks with bond angle regression lagging behind. While 676 all three quantities are related to the overall equilibrium state of a molecule, a possible explanation 677 for their performance difference is that interatomic distances give a more complete description of the 678 overall 3D structure of a molecule, and dihedral angles may offer more fine-grained information than 679 bond angles with more complex distributions. 680

Figure 3: Interatomic distance and bond angle regression loss.

Figure 4: Dihedral angle classification loss and accuracy.

Figure 5: Edge type classification loss and accuracy.

Figure 6: SPD classification loss and accuracy.

Figure 7: Centrality ranking loss and accuracy.

681 G UMAP visualization

In Figure 8a and Figure 8b, we select 3 random test molecules from QM9 and plot them on their respective UMAP [41] projections. We see that MOLINTERACT exhibits more faithful multimodal molecule representations with 2D and 3D embeddings being more closely co-located than in the embedding space for MoleculeSDE. The 2D and 3D latent spaces of MOLINTERACT are therefore more well-aligned, contributing to its effectiveness in downstream tasks.

687 NeurIPS Paper Checklist

688	1.	Claims
689 690		Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?
691		Answer: [Yes]
692 693		Justification: Our work is focused on providing a new approach to multimodal molecular self-supervised learning, which is reflected in the main content of the paper.
694		Guidelines:
695 696		• The answer NA means that the abstract and introduction do not include the claims made in the paper.
697 698 699 700 701 702		 The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers. The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings. It is fine to include aspirational goals as motivation as long as it is clear that these goals
703		are not attained by the paper.
704	2.	Limitations
705		Question: Does the paper discuss the limitations of the work performed by the authors?
706		Answer: [Yes]
707		Justification: Please see Appendix B for a discussion of limitations of our method.
708		Guidelines:
709 710		• The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
711		• The authors are encouraged to create a separate "Limitations" section in their paper.
712 713 714 715 716		• The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
717 718 719		• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
720 721 722 723 724		• The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
725 726		 The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
727 728		• If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
729 730 731 732 733 734		• While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.
735	3.	Theory Assumptions and Proofs
736 737		Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

738 Answer: [NA]

739	Justification: This work does not include theoretical results.
740	Guidelines:
741	• The answer NA means that the paper does not include theoretical results.
742	• All the theorems, formulas, and proofs in the paper should be numbered and cross-
743	referenced.
744	• All assumptions should be clearly stated or referenced in the statement of any theorems.
745	• The proofs can either appear in the main paper or the supplemental material, but if
746	they appear in the supplemental material, the authors are encouraged to provide a short
747	proof sketch to provide intuition.
748	• Inversely, any informal proof provided in the core of the paper should be complemented
749	by formal proofs provided in appendix or supplemental material.
750	• Theorems and Lemmas that the proof relies upon should be properly referenced.
751	4. Experimental Result Reproducibility
752	Question: Does the paper fully disclose all the information needed to reproduce the main ex-
753	perimental results of the paper to the extent that it affects the main claims and/or conclusions
754	of the paper (regardless of whether the code and data are provided or not)?
755	Answer: [Yes]
756	Justification: We report all the necessary experimental details of our method in Section 3.4
757	and Appendix C.
758	Guidelines:
759	• The answer NA means that the paper does not include experiments.
760	• If the paper includes experiments, a No answer to this question will not be perceived
761	well by the reviewers: Making the paper reproducible is important, regardless of
762	whether the code and data are provided or not.
763	• If the contribution is a dataset and/or model, the authors should describe the steps taken
764	to make their results reproducible or verifiable.
765	• Depending on the contribution, reproducibility can be accomplished in various ways.
766	might suffice, or if the contribution is a specific model and empirical evaluation, it may
767	be necessary to either make it possible for others to replicate the model with the same
769	dataset, or provide access to the model. In general, releasing code and data is often
770	one good way to accomplish this, but reproducibility can also be provided via detailed
771	instructions for how to replicate the results, access to a hosted model (e.g., in the case
772	of a large language model), releasing of a model checkpoint, or other means that are
773	appropriate to the research performed.
774	• While NeurIPS does not require releasing code, the conference does require all submis-
775	sions to provide some reasonable avenue for reproductority, which may depend on the nature of the contribution. For example
770	(a) If the contribution is primarily a new algorithm the paper should make it clear how
778	to reproduce that algorithm.
779	(b) If the contribution is primarily a new model architecture, the paper should describe
780	the architecture clearly and fully.
781	(c) If the contribution is a new model (e.g., a large language model), then there should
782	either be a way to access this model for reproducing the results or a way to reproduce
783	the model (e.g., with an open-source dataset or instructions for how to construct
784	the dataset).
785	(u) we recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility
787	In the case of closed-source models, it may be that access to the model is limited in
788	some way (e.g., to registered users), but it should be possible for other researchers
789	to have some path to reproducing or verifying the results.
790	5. Open access to data and code
791	Ouestion: Does the paper provide open access to the data and code. with sufficient instruc-
792	tions to faithfully reproduce the main experimental results, as described in supplemental
793	material?

794	Answer: [Yes]
795 796	Justification: We include all code and data and instructions to reproduce our results in our supplementary material as a zipped archive.
797	Guidelines:
798	• The answer NA means that paper does not include experiments requiring code.
799 800	• Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
801 802 803	• While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source
804	benchmark).
805 806 807	• The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details
808 809	 The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
810 811 812	• The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
813 814	• At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
815 816	• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.
817 6	. Experimental Setting/Details
818 819 820	Question: Does the paper specify all the training and test details (e.g., data splits, hyper- parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
821	Answer: [Yes]
822 823	Justification: We lit all training and test details needed to understand the results in Section 3.4 and Appendix C.
824	Guidelines:
825	• The answer NA means that the paper does not include experiments.
826 827 828	 The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them. The full details can be provided either with the code, in appendix, or as supplemental material.
ozo 7	Experiment Statistical Significance
831	Question: Does the paper report error bars suitably and correctly defined or other appropriate
832	information about the statistical significance of the experiments?
833	Answer: [Yes]
834 835 836 837	Justification: We follow the existing literature on multimodal molecular SSL and report the mean and standard deviation for ROC AUC and MAE performance on MoleculeNet and QM8 from three random seeds. For QM9, we also follow the codebases from existing literature and report MAE from a single random seed (42).
838	Guidelines:
839	• The answer NA means that the paper does not include experiments.
840	• The authors should answer "Yes" if the results are accompanied by error bars, confi-
841	dence intervals, or statistical significance tests, at least for the experiments that support
842	the main claims of the paper.
843 844 845	• The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

846 847	• The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
848	• The assumptions made should be given (e.g., Normally distributed errors).
849	• It should be clear whether the error bar is the standard deviation or the standard error
850	of the mean.
851	• It is OK to report 1-sigma error bars, but one should state it. The authors should
852	preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
853	of Normality of errors is not verified.
854	• For asymmetric distributions, the authors should be careful not to show in tables or
855	figures symmetric error bars that would yield results that are out of range (e.g. negative
856	effor falles).
857 858	• If error bars are reported in tables of plots, The authors should explain in the text now they were calculated and reference the corresponding figures or tables in the text.
859	8. Experiments Compute Resources
860 861 862	Question: For each experiment, does the paper provide sufficient information on the com- puter resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
863	Answer: [Yes]
864	Justification: We include information on the amount of compute needed to run our experi-
865	ments in Appendix D.
866	Guidelines:
867	• The answer NA means that the paper does not include experiments.
868	• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
869	or cloud provider, including relevant memory and storage.
870 871	• The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
872	• The paper should disclose whether the full research project required more compute
873	than the experiments reported in the paper (e.g., preliminary or failed experiments that
874	dian t make it into the paper).
875	9. Code Of Ethics
876 877	Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
878	Answer: [Yes]
879	Justification: This work did not involve human subjects, use compromising datasets, or
880	engage in behavior that breaches the Code of Ethics.
881	Guidelines:
882	• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
883	• If the authors answer No, they should explain the special circumstances that require a
884	deviation from the Code of Ethics.
885 886	• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).
887	10. Broader Impacts
888 889	Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?
890	Answer: [Yes]
891	Justification: We discuss the broader impacts of our work in Appenxdix A.
892	Guidelines:
893	• The answer NA means that there is no societal impact of the work performed.
894	• If the authors answer NA or No, they should explain why their work has no societal
895	impact or why the paper does not address societal impact.

896 897 898 899	• Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
900 901 902 903 904 905 906	• The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
907 908 909 910	• The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
911 912 913 914	• If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).
915 11.	Safeguards
916 917 918	Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?
919	Answer: [NA]
920	Justification: The paper does not pose any risks of the kind described.
921	Guidelines:
922	• The answer NA means that the paper poses no such risks.
923 924 925 926	 Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
927 928	• Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
929 930 931	• We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.
932 12.	Licenses for existing assets
933 934 935	Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?
936	Answer: [Yes]
937 938	Justification: We credit the original authors of QM9, QM8, MoleculeNet, and all competing baselines.
939	Guidelines:
940	• The answer NA means that the paper does not use existing assets.
941	• The authors should cite the original paper that produced the code package or dataset
942	• The authors should state which version of the asset is used and, if possible, include a
943	URL.
944 945 946	 The name of the license (e.g., CC-BY 4.0) should be included for each asset. For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

947 948 949 950		• If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
951 952		• For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
953 954		• If this information is not available online, the authors are encouraged to reach out to the asset's creators.
955	13.	New Assets
956 957		Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?
958		Answer: [Yes]
959		Justification: We include documented code and details for our model.
960		Guidelines:
961		• The answer NA means that the paper does not release new assets.
962 963		 Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license,
964		limitations, etc.
965 966		• The paper should discuss whether and how consent was obtained from people whose asset is used.
967		• At submission time, remember to anonymize your assets (if applicable). You can either
968		create an anonymized URL or include an anonymized zip file.
969	14.	Crowdsourcing and Research with Human Subjects
970		Question: For crowdsourcing experiments and research with human subjects, does the paper
971 972		include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?
973		Answer: [NA]
974		Justification: This paper did not involve crowdsourcing nor research with human subjects.
975		Guidelines:
976 977		• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
978 979 980		• Including this information in the supplemental material is fine, but if the main contribu- tion of the paper involves human subjects, then as much detail as possible should be included in the main paper.
981 982		• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data
983		collector.
984 985	15.	Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
986 987		Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or
989		institution) were obtained?
990		Answer: [NA]
991		Justification: This paper did not involve crowdsourcing nor research with human subjects.
992		Guidelines:
993		• The answer NA means that the paper does not involve crowdsourcing nor research with
994		human subjects.
995 996 997		• Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

998	• We recognize that the procedures for this may vary significantly between institutions
999	and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1000	guidelines for their institution.
1001	• For initial submissions, do not include any information that would break anonymity (if
1002	applicable), such as the institution conducting the review.